WO2023120651A1 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
WO2023120651A1
WO2023120651A1 PCT/JP2022/047393 JP2022047393W WO2023120651A1 WO 2023120651 A1 WO2023120651 A1 WO 2023120651A1 JP 2022047393 W JP2022047393 W JP 2022047393W WO 2023120651 A1 WO2023120651 A1 WO 2023120651A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control
braking
target
wheel
Prior art date
Application number
PCT/JP2022/047393
Other languages
English (en)
French (fr)
Inventor
英志 加藤
和哉 森下
芳夫 増田
大地 長江
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2023120651A1 publication Critical patent/WO2023120651A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the present disclosure relates to a vehicle braking control device.
  • Patent Document 1 discloses a system for the purpose of "sufficiently demonstrating the function of boosting the brake fluid pressure even when an abnormality in communication of operating state information related to the VSA device occurs during operation of the VSA device".
  • the vehicle braking system 10 includes an ESB device 16 that generates braking fluid pressure by operating a braking motor 72, a VSA device 18 that adjusts the braking fluid pressure by operating a pump motor 135, and operating state information relating to the VSA device 18. to the ESB device 16, and when the ESB device 16 receives communication of information indicating that the VSA device 18 is in operation via the CAN communication medium 33.
  • the first braking control unit 77 includes: The pressurization control is continued even when it is recognized that an abnormality in communication of the operating state information has occurred.”
  • the ESB device receives information from the VSA device (also called “second braking unit”) through communication that the VSA device is operating. If an abnormality occurs in communication during the process, the ESB device continues to increase the brake fluid pressure. That is, in the device of Patent Document 1, a situation is assumed in which a communication abnormality occurs while the operation information of the second braking unit is being transmitted to the first braking unit. Therefore, the first braking unit can recognize that the second braking unit has been activated. However, once the operation of the first and second braking units is terminated, it becomes impossible to grasp the operating conditions of the first and second braking units in the event of a communication abnormality. Therefore, in a vehicle braking control device, it is desired that the braking control can be appropriately executed when a communication abnormality occurs and mutual operating conditions cannot be grasped.
  • An object of the present invention is to provide a braking control device for a vehicle, which is composed of two braking units connected by communication, and can appropriately perform pressure regulation control when communication is abnormal.
  • a braking control device (SC) for a vehicle includes a first unit (SA) that outputs a supply pressure (Pm) in accordance with an operation amount (Sp) of a brake operating member (BP); SA) and a wheel cylinder (CW), a second unit (SB) that adjusts the supply pressure (Pm) and outputs a wheel pressure (Pw) to the wheel cylinder (CW); A communication bus (BS) for signal transmission between the first unit (SA) and the second unit (SB), a manipulated variable sensor (SP) for detecting the manipulated variable (Sp), the supply pressure (Pm ), and a supply pressure sensor (PM) for detecting .
  • SA first unit
  • Sp brake operating member
  • CW wheel cylinder
  • BS for signal transmission between the first unit (SA) and the second unit (SB)
  • SP manipulated variable sensor
  • PM supply pressure sensor
  • the second unit (SB) calculates the target pressure (Pt) based on the operation amount (Sp). Then, the wheel pressure (Pw) is adjusted based on the deviation (hP) between the target pressure (Pt) and the supply pressure (Pm). For example, the second unit (SB) increases the wheel pressure (Pw) by an amount corresponding to the deviation (hP) when the supply pressure (Pm) is lower than the target pressure (Pt).
  • the target pressure Pt is calculated and the hydraulic pressure deviation hP is determined. Then, the wheel pressure Pw is adjusted based on the hydraulic pressure deviation hP.
  • the hydraulic pressure deviation hP calculated by the second braking unit SB is a state quantity representing the difference between the target value of the supply pressure (that is, the target pressure Pt) and the actual supply pressure Pm during normal operation. Adjustment based on the hydraulic pressure deviation hP enables appropriate pressure adjustment control to be performed even when the operating state of the first braking unit SA cannot be grasped.
  • FIG. 1 is a schematic diagram for explaining an entire vehicle JV equipped with a braking control device SC;
  • FIG. 2 is a schematic diagram for explaining a configuration example of a first braking unit SA;
  • FIG. It is a schematic diagram for explaining a configuration example of a second braking unit SB.
  • FIG. 4 is a flow chart for explaining pressure regulation control processing;
  • FIG. 4 is a block diagram for explaining drive control of the pressure regulating valve UA;
  • 4 is a block diagram for explaining drive control of a control valve UB;
  • the side closer to the master cylinder CM (the side farther from the wheel cylinder CW) is referred to as the "upper”, and the side closer to the wheel cylinder CW (the side farther from the master cylinder CM) ) is referred to as “bottom”.
  • the side closer to the discharge part of the first and second fluid pumps QA and QB (the side farther from the suction part) is " The side closer to the suction port of the first and second fluid pumps QA, QB (the side away from the discharge port) is referred to as the "downstream side".
  • the first fluid unit YA of the first braking unit SA, the second fluid unit YB of the second braking unit SB, and the wheel cylinder CW are connected by a fluid path (communication path HS). Furthermore, in the first and second fluid units YA, YB, various components (UA, etc.) are connected by fluid paths.
  • the "fluid path” is a path for moving the damping fluid BF, and corresponds to a pipe, a flow path in the actuator, a hose, and the like.
  • the communication path HS, return path HK, return path HL, reservoir path HR, input path HN, servo path HV, pressure reduction path HG, etc. are fluid paths.
  • the vehicle JV is a hybrid vehicle or an electric vehicle having an electric motor for driving.
  • the vehicle JV is provided with a regeneration device KG.
  • the regenerative device KG is composed of a generator GN and a regenerative device control unit EG (also referred to as a “regenerative controller”).
  • the generator GN is also the electric motor for driving.
  • the electric motor/generator GN operates as a generator, and the generated electric power is stored in the storage battery BG via the regenerative controller EG.
  • the regeneration device KG is provided for the front wheels WHf. In this configuration, the regenerative braking force Fg is generated at the front wheels WHf by the regenerative device KG.
  • the braking device SX is composed of a brake caliper CP, a friction member MS (for example, brake pad), and a rotary member (for example, brake disc) KT.
  • a wheel cylinder CW is provided in the brake caliper CP.
  • Hydraulic pressure Pw (referred to as "wheel pressure") in the wheel cylinder CW presses the friction member MS against the rotating member KT fixed to each wheel WH. Thereby, a braking force Fm is generated on the wheels WH.
  • a braking force generated by the wheel pressure Pw is referred to as a "frictional braking force Fm".
  • the vehicle JV is equipped with a braking operation member BP and various sensors (SP, etc.).
  • a braking operation member (for example, a brake pedal) BP is a member operated by the driver to decelerate the vehicle JV.
  • the vehicle JV is provided with an operation displacement sensor SP that detects an operation displacement Sp of the braking operation member BP.
  • the operation displacement Sp is one of the state variables (state variables) indicating the operation amount (braking operation amount) of the braking operation member BP, and represents the driver's braking intention in the brake-by-wire type braking control device SC. signal (ie, braking instruction).
  • the operation displacement sensor SP (corresponding to the "operation amount sensor”) includes two detection units SPa and SPb (referred to as “first and second detection units”). That is, the detection of the operation displacement Sp is doubled, and the operation displacement sensor SP is made redundant.
  • a first detection section SPa (referred to as a “first displacement detection section") of the operation displacement sensor SP is connected to the first braking unit SA (particularly, the first control unit EA) by a first displacement signal line LSpa.
  • the second detection portion SPb (referred to as “second displacement detection portion”) of the operation displacement sensor SP is connected to the second braking unit SB (particularly, the second control unit EB) by a second displacement signal line LSpb.
  • the signal Spa (referred to as “first operation displacement") from the first displacement detector SPa is directly input to the first control unit EA.
  • the signal Spb (referred to as “second operation displacement") from the second displacement detector SPb is directly input to the second control unit EB.
  • “signal lines LSpa, LSpb” are electric wires (wire harnesses) for signal transmission.
  • the hydraulic pressure Ps of the stroke simulator SS (referred to as "simulator pressure") is employed as another state quantity representing the amount of braking operation.
  • the simulator pressure Ps is detected by a simulator pressure sensor PS.
  • the simulator pressure sensor PS is connected to the first braking unit SA (particularly the first control unit EA) by simulator pressure signal lines LPs. Therefore, the simulator pressure Ps is directly input to the first control unit EA.
  • the simulator pressure Ps is a state quantity corresponding to the operating force of the brake operating member BP.
  • the vehicle JV is equipped with various sensors.
  • braking control that individually controls the wheel pressure Pw of each wheel WH such as anti-lock brake control and anti-skid control (referred to as "each wheel independent control")
  • the wheel WH has its rotational speed (wheel speed) Vw
  • a wheel speed sensor VW for detecting is provided.
  • a steering amount sensor for detecting a steering amount Sa for example, an operation angle of a steering wheel
  • a yaw rate sensor for detecting a yaw rate Yr of the vehicle
  • a longitudinal acceleration sensor for detecting a longitudinal acceleration Gx of the vehicle
  • a lateral acceleration Gy of the vehicle.
  • Each signal of the wheel speed Vw, the steering amount Sa, the yaw rate Yr, the longitudinal acceleration Gx, and the lateral acceleration Gy is input to the second braking unit SB (particularly, the second control unit EB) via respective signal lines. be.
  • the vehicle JV is equipped with a braking control device SC.
  • the braking control device SC employs a so-called front-rear type (also referred to as "II type") as the two braking systems.
  • the actual wheel pressure Pw is regulated by the brake controller SC.
  • the braking control device SC is composed of two braking units SA and SB.
  • the first braking unit SA is composed of a first hydraulic unit YA and a first control unit EA.
  • the first fluid unit YA is controlled by the first control unit EA using a storage battery BT (brake storage battery) different from the driving storage battery BG as a power source.
  • the second braking unit SB is composed of a second hydraulic unit YB and a second control unit EB.
  • the second fluid unit YB like the first braking unit SA, is controlled by the second control unit EB using the storage battery BT as a power source.
  • the first braking unit SA (particularly the first control unit EA) and the second braking unit SB (particularly the second control unit EB) are connected to the communication bus BS.
  • a regeneration device KG (in particular, a regeneration control unit EG) is connected to the communication bus BS.
  • the "communication bus BS” has a network structure in which a plurality of control units (also called “controllers") hang from a communication line terminated at both ends.
  • a communication bus BS provides signaling between a plurality of controllers (EA, EB, EG, etc.). That is, the plurality of controllers can transmit signals (detected values, calculated values, control flags, etc.) to the communication bus BS and receive signals from the communication bus BS.
  • a vehicle bus (an internal communication network interconnecting the controllers in the vehicle) is adopted as the communication bus BS, and CAN is used for the serial communication protocol.
  • the communication bus BS is composed of a communication line (for example, a CAN bus cable) and a transmission/reception microcontroller in each controller.
  • the first braking unit SA generates a supply pressure Pm according to the operation of the braking operation member BP (brake pedal).
  • the supply pressure Pm is finally supplied to the wheel cylinder CW via the communication path HS (fluid path) and the second braking unit SB.
  • the first braking unit SA is composed of a first hydraulic unit YA and a first control unit EA.
  • the first fluid unit YA (also referred to as "first actuator") is composed of an apply section AP, a pressure regulating section CA, and an input section NR.
  • a supply pressure Pm is output from the apply portion AP in accordance with the operation of the braking operation member BP.
  • the apply part AP is composed of a tandem-type master cylinder CM and primary and secondary master pistons NM and NS.
  • Primary and secondary master pistons NM and NS are inserted into the tandem-type master cylinder CM.
  • the interior of the master cylinder CM is partitioned into four hydraulic pressure chambers Rmf, Rmr, Ru and Rs by two master pistons NM and NS.
  • the interior of the master cylinder CM is partitioned into a servo chamber Ru and a reaction force chamber Rs by the flange Tu of the master piston NM.
  • the master chamber Rm and the servo chamber Ru are arranged so as to face each other with the collar portion Tu interposed therebetween.
  • the pressure receiving area rm of the master chamber Rm and the pressure receiving area ru of the servo chamber Ru are made equal.
  • the master pistons NM and NS When not braking, the master pistons NM and NS are in the most retracted position (that is, the position where the volume of the master chamber Rm is maximized). In this state, the master chamber Rm of the master cylinder CM communicates with the master reservoir RV.
  • the brake fluid BF is stored inside the master reservoir RV (which is an atmospheric pressure reservoir and is also simply referred to as a "reservoir").
  • the master pistons NM and NS are moved in the forward direction Ha (the direction in which the volume of the master chamber Rm decreases). This movement cuts off communication between the master chamber Rm and the reservoir RV.
  • the brake fluid BF pressurized to the supply pressure Pm is output (pumped) from the master chamber Rm of the master cylinder CM.
  • the supply pressure Pm is also referred to as "master pressure” because it is the hydraulic pressure in the master chamber Rm.
  • a servo pressure Pu is supplied to the servo chamber Ru of the apply unit AP by the pressure regulating unit CA.
  • the pressure regulating section CA is composed of a first electric motor MA, a first fluid pump QA, and a pressure regulating valve UA.
  • a first fluid pump QA is driven by the first electric motor MA.
  • the suction portion and the discharge portion are connected by a return path HK (fluid path).
  • the suction portion of the first fluid pump QA is also connected to the master reservoir RV via the reservoir passage HR.
  • a discharge portion of the first fluid pump QA is provided with a check valve.
  • a normally open pressure regulating valve UA is provided in the return passage HK.
  • the pressure regulating valve UA is a linear electromagnetic valve whose valve opening amount is continuously controlled based on the energized state (for example, supply current). Since the pressure regulating valve UA adjusts the hydraulic pressure difference (differential pressure) between its upstream side and downstream side, it is also called a "differential pressure valve”.
  • a circulating flow KN (indicated by a dashed arrow) of the brake fluid BF is generated in the return passage HK.
  • the pressure regulating valve UA When the pressure regulating valve UA is in a fully open state (when the pressure regulating valve UA is of a normally open type and thus is not energized), the fluid between the discharge portion of the first fluid pump QA and the pressure regulating valve UA in the return path HK is The pressure Pu (referred to as "servo pressure”) is "0 (atmospheric pressure)".
  • the circulating flow KN (flow of the brake fluid BF circulating in the return passage HK) is throttled by the pressure regulating valve UA.
  • the flow path of the return passage HK is narrowed by the pressure regulating valve UA, and the orifice effect of the pressure regulating valve UA is exhibited.
  • the hydraulic pressure Pu on the upstream side of the pressure regulating valve UA is increased from "0". That is, in the circulating flow KN, a hydraulic pressure difference (differential pressure) between the upstream hydraulic pressure Pu (servo pressure) and the downstream hydraulic pressure (atmospheric pressure) is generated with respect to the pressure regulating valve UA.
  • the differential pressure is adjusted by the amount of power supplied to the pressure regulating valve UA.
  • the return path HK is connected to the servo chamber Ru via a servo path HV (fluid path) at a portion between the discharge portion of the first fluid pump QA and the pressure regulating valve UA. Therefore, the servo pressure Pu is introduced (supplied) into the servo chamber Ru.
  • An increase in the servo pressure Pu presses the master pistons NM, NS in the forward direction Ha (the direction in which the volume of the master chamber Rm decreases), and the hydraulic pressures Pmf, Pmr in the front wheel and rear wheel master chambers Rmf, Rmr (front wheels, rear wheel supply pressure) is increased.
  • the input unit NR is composed of an input cylinder CN, an input piston NN, an introduction valve VA, a release valve VB, a stroke simulator SS, and a simulator hydraulic pressure sensor PS.
  • the input cylinder CN is fixed to the master cylinder CM.
  • An input piston NN is inserted into the input cylinder CN.
  • the input piston NN is mechanically connected to the braking operation member BP via a clevis (U-shaped link) so as to interlock with the braking operation member BP (brake pedal).
  • There is a gap Ks (also referred to as "separation displacement") between the end face of the input piston NN and the end face of the primary piston NM.
  • Regenerative cooperative control is realized by adjusting the separation distance Ks with the servo pressure Pu.
  • the input chamber Rn of the input unit NR is connected to the reaction force chamber Rs of the apply unit AP via the input channel HN (fluid channel).
  • the input path HN is provided with a normally closed introduction valve VA.
  • the input path HN is connected to the master reservoir RV via the reservoir path HR between the introduction valve VA and the reaction force chamber Rs.
  • a normally open release valve VB is provided in the reservoir passage HR.
  • the introduction valve VA and the release valve VB are on/off solenoid valves.
  • a stroke simulator SS (also simply referred to as a “simulator”) is connected to an input path HN between the introduction valve VA and the reaction force chamber Rs.
  • the introduction valve VA When power is not supplied to the introduction valve VA and the open valve VB, the introduction valve VA is closed and the open valve VB is opened. By closing the introduction valve VA, the input chamber Rn is sealed and fluidly locked. As a result, the master pistons NM and NS are displaced integrally with the braking operation member BP. Further, the simulator SS is communicated with the master reservoir RV by opening the open valve VB. When power is supplied to the introduction valve VA and the open valve VB, the introduction valve VA is opened and the open valve VB is closed. Thereby, the master pistons NM and NS can be displaced separately from the braking operation member BP. At this time, since the input chamber Rn is connected to the stroke simulator SS, the operating force Fp of the braking operation member BP is generated by the simulator SS.
  • first mode A state in which the master pistons NM, NS and the braking operation member BP are displaced separately (when the solenoid valves VA, VB are energized) is called "first mode (or bi-wire mode)".
  • the braking control device SC functions as a brake-by-wire type device (that is, a device capable of independently generating the frictional braking force Fm in response to the driver's braking operation). Therefore, in the first mode, the wheel pressure Pw is generated independently of the operation of the braking operation member BP.
  • the state in which the master pistons NM, NS and the braking operation member BP are displaced integrally (when the solenoid valves VA, VB are not energized) is called "second mode (or manual mode)".
  • the wheel pressure Pw is interlocked with the driver's braking operation.
  • one of the first mode (by-wire mode) and the second mode (manual mode) is selected depending on whether power is supplied to the introduction valve VA and the release valve VB. Note that when a power failure occurs in the braking control device SC (for example, failure of the storage battery BT), the input section NR becomes the second mode.
  • a simulator pressure sensor PS is provided between the introduction valve VA and the reaction force chamber Rs in the input path HN so as to detect the hydraulic pressure Ps (simulator pressure) in the simulator SS.
  • the simulator pressure sensor PS is connected to the first control unit EA by simulator pressure signal lines LPs. Therefore, the simulator pressure Ps is directly input to the first control unit EA via the simulator pressure signal line LPs.
  • a first actuator YA is controlled by a first control unit EA (also referred to as a "first controller").
  • the first controller EA is composed of a first microprocessor MPa and a first drive circuit DRa.
  • the first controller EA is connected to a communication bus BS so as to share signals (detected values, calculated values, control flags, etc.) with other controllers (EB, EG, etc.).
  • the first controller EA and the first detection section SPa of the operation displacement sensor SP are connected via a signal line LSpa for the first detection section SPa. Also, the first controller EA and the simulator pressure sensor PS are connected via a signal line LPs for the simulator pressure sensor PS. The first operation displacement Spa and the simulator pressure Ps are directly input to the first controller EA through these signal lines LSpa and LPs.
  • a pressure regulation control algorithm is programmed in the first controller EA (in particular, the first microprocessor MPa).
  • Pressure adjustment control is control for adjusting the supply pressure Pm (result, wheel pressure Pw), and includes regenerative cooperative control.
  • Pressure regulation control is executed based on the first and second operation displacements Spa and Spb, the simulator pressure Ps, the supply pressure Pm, and the maximum regenerative braking force Fx.
  • the first electric motor MA that constitutes the first actuator YA and various electromagnetic valves (UA, etc.) are driven by the first drive circuit DRa based on the pressure regulation control algorithm.
  • an H-bridge circuit is configured with switching elements (for example, MOS-FETs) so as to drive the first electric motor MA.
  • the first drive circuit DRa is provided with switching elements so as to drive various electromagnetic valves (UA, etc.).
  • the first drive circuit DRa includes a motor current sensor (not shown) that detects a current Im (actual value) supplied to the first electric motor MA, and a current Ia (actual value) supplied to the pressure regulating valve UA. and includes a first current sensor (not shown) that senses a "first supply current").
  • the first electric motor MA is provided with a rotational speed sensor (not shown) for detecting its rotational speed Na (actual value).
  • a rotation angle sensor (not shown) that detects the rotation angle Ka (actual value) may be provided in the first electric motor MA, and the motor rotation speed Na may be calculated based on the motor rotation angle Ka.
  • the first controller EA calculates a first target current Ita (target value) corresponding to the first supply current Ia based on the operation displacement Sp (manipulation amount). Then, the first supply current Ia is controlled so as to approach and match the first target current Ita (so-called current feedback control). Also, in the first controller EA, a target rotation speed Nta (target value) corresponding to the actual rotation speed Na is calculated based on the operation displacement Sp. Then, the motor supply current Im is controlled so that the actual rotation speed Na approaches and coincides with the target rotation speed Nta (so-called rotation speed feedback control).
  • the drive signal Ma for controlling the first electric motor MA and the drive signals Ua, Va, Vb for controlling the various electromagnetic valves UA, VA, VB are calculated.
  • the switching elements of the first drive circuit DRa are driven according to the drive signal (Ma, etc.) to control the first electric motor MA and the solenoid valves UA, VA, and VB.
  • the second braking unit SB is a general-purpose unit (device) for executing independent control for each wheel, such as antilock brake control, traction control, skid prevention control, and the like.
  • complementary control is performed in the second braking unit SB.
  • the "complementary control" compensates for excess or deficiency of the supply pressure Pm caused by the abnormality of the first braking unit SA.
  • the second braking unit SB is composed of a second hydraulic unit YB and a second control unit EB.
  • a second fluid unit YB (also referred to as a "second actuator") is provided between the first actuator YA and the wheel cylinder CW in the communication path HS.
  • the second actuator YB is composed of a supply pressure sensor PM, a control valve UB, a second fluid pump QB, a second electric motor MB, a pressure regulating reservoir RB, an inlet valve VI, and an outlet valve VO.
  • the control valve UB is a normally open linear solenoid valve (differential pressure valve), like the pressure regulating valve UA. Via the control valve UB, the wheel pressure Pw can be increased separately from the supply pressure Pm in the front and rear wheel systems.
  • the front and rear wheel supply pressure sensors PMf and PMr detect the actual hydraulic pressures Pmf and Pmr (front and rear wheel supply pressures) supplied from the first actuator YA (in particular, the front and rear wheel master chambers Rmf and Rmr). It is provided above the front and rear wheel control valves UBf and UBr (the part of the communication path HS on the side closer to the first actuator YA) so as to detect the pressure).
  • the supply pressure sensor PM is also called a "master pressure sensor" and is built in the second actuator YB.
  • a second fluid pump QB is driven by a second electric motor MB.
  • the second fluid pump QB sucks the braking fluid BF from the upper portion of the control valve UB and discharges it to the lower portion of the control valve UB.
  • the circulating flow KL of the brake fluid BF that is, the front wheel and rear wheel circulating flows KLf and KLr, indicated by dashed arrows) containing the pressure regulating reservoir RB is provided in the connecting passage HS and the return passage HL. occurs.
  • the adjustment pressure Pq is equal to or higher than the supply pressure Pm (that is, "Pq ⁇ Pm").
  • the mechanism for generating the adjustment pressure Pq in the second actuator YB is the same as the mechanism for generating the servo pressure Pu in the first actuator YA.
  • the front and rear wheel communication paths HSf and HSr are each branched into two and connected to the front and rear wheel cylinders CWf and CWr.
  • a normally open inlet valve VI and a normally closed outlet valve VO are provided for each wheel cylinder CW so that each wheel pressure Pw can be individually adjusted.
  • the inlet valve VI is provided in the branched communication path HS (that is, the side closer to the wheel cylinder CW with respect to the branched portion of the communication path HS).
  • the communication path HS is connected to the pressure regulating reservoir RB via the pressure reduction path HG at the lower portion of the inlet valve VI (the portion of the communication path HS on the side closer to the wheel cylinder CW).
  • An outlet valve VO is arranged in the pressure reducing passage HG.
  • On/off solenoid valves are employed as the inlet valve VI and the outlet valve VO.
  • the wheel pressure Pw can be individually reduced from the supply pressure Pm at each wheel.
  • the inlet valve VI and the outlet valve VO are not powered and their operations are stopped, the inlet valve VI is opened and the outlet valve VO is closed. In this state, the wheel pressure Pw is equal to the adjustment pressure Pq.
  • the wheel pressure Pw is adjusted independently for each wheel cylinder CW. To reduce the wheel pressure Pw, the inlet valve VI is closed and the outlet valve VO is opened. Since the inflow of the brake fluid BF to the wheel cylinder CW is blocked and the brake fluid BF in the wheel cylinder CW flows out to the pressure regulating reservoir RB, the wheel pressure Pw is reduced.
  • the inlet valve VI In order to increase the wheel pressure Pw (however, the upper limit of the increase is up to the adjustment pressure Pq), the inlet valve VI is opened and the outlet valve VO is closed.
  • the brake fluid BF is prevented from flowing out to the pressure regulating reservoir RB, and the regulating pressure Pq from the pressure regulating valve UB is supplied to the wheel cylinder CW, thereby increasing the wheel pressure Pw.
  • both the inlet valve VI and the outlet valve VO are closed. Since the wheel cylinder CW is fluidly sealed, the wheel pressure Pw is kept constant.
  • a second actuator YB is controlled by a second control unit EB (also referred to as a "second controller").
  • the second controller EB like the first controller EA, is composed of a second microprocessor MPb and a second drive circuit DRb.
  • a second controller EB is connected to the communication bus BS. Therefore, the first controller EA and the second controller EB can share signals via the communication bus BS.
  • the wheel speed Vw, the steering amount Sa, the yaw rate Yr, the longitudinal acceleration Gx, and the lateral acceleration Gy are input to the second controller EB (particularly, the second microprocessor MPb).
  • the second controller EB calculates the vehicle body speed Vx based on the wheel speed Vw.
  • each wheel independent control enumerated below is executed. Specifically, as independent control for each wheel, antilock brake control (so-called ABS control) that suppresses locking of the wheels WH, traction control that suppresses idle rotation of the driving wheels, and understeer/oversteer that suppresses the vehicle.
  • Antiskid control is executed to improve directional stability.
  • the second drive circuit DRb drives the second electric motor MB constituting the second actuator YB and various electromagnetic valves (UB, etc.).
  • an H bridge circuit is configured with switching elements (for example, MOS-FETs) so as to drive the second electric motor MB.
  • the second drive circuit DRb is provided with a switching element so as to drive various electromagnetic valves (such as UB).
  • the second drive circuit DRb includes a motor current sensor (not shown) that detects the supply current In (actual value) to the second electric motor MB, and a supply current Ib (actual value) to the control valve UB.
  • the drive signal Ub for the control valve UB the drive signal Vi for the inlet valve VI, the drive signal Vo for the outlet valve VO, and the drive signal Mb for the second electric motor MB are calculated. Then, the second electric motor MB and the solenoid valves UB, VI, and VO are controlled by the second drive circuit DRb based on the drive signal (Ub, etc.).
  • the second controller EB and the second detection section SPb of the operation displacement sensor SP are connected via a signal line LSpb for the second detection section SPb.
  • the second controller EB and the supply pressure sensor PM are connected via a signal line LPm (for example, a signal pin) for the supply pressure sensor PM. Therefore, the second operation displacement Spb is directly input to the second controller EB through the signal line LSpb, and the supply pressure Pm is directly input through the signal line LPm.
  • the second operation displacement Spb and the supply pressure Pm are transmitted from the second controller EB to the first controller EA through the communication bus BS. That is, the first controller EA acquires the second operation displacement Spb and the supply pressure Pm from the second controller EB through the communication bus.
  • the second controller EB in addition to the above independent control for each wheel, complementary control is executed to cope with the abnormality of the braking control device SC.
  • complementary control the deterioration in performance of the first braking unit SA is compensated for by the second braking unit SB.
  • the pressure regulation control includes complementary control corresponding to an abnormality in the communication bus BS (also referred to as "communication abnormality").
  • the communication bus BS consists of a communication line (eg CAN bus cable) and communication microcontrollers in the first and second controllers EA, EB.
  • a communication abnormality occurs due to disconnection of a communication line, failure of a communication microcontroller in the first and second controllers EA, EB, or the like.
  • the second braking unit SB grasps the operating state of the first braking unit SA. I can't do it. For example, if the cause of the communication abnormality is a failure of the communication line, the first braking unit SA cannot perform closed-loop control (that is, feedback control) based on the supply pressure Pm, but open-loop control (that is, feedforward control). can be executed. On the other hand, if the communication abnormality is caused by a failure of the first controller EA and the function of the first braking unit SA is completely lost, the supply pressure Pm is generated only by the driver's muscle strength. Complementary control addresses this situation.
  • closed-loop control that is, feedback control
  • open-loop control that is, feedforward control
  • the description of the processing example assumes the following. -
  • the regeneration device KG is provided only on the front wheels WHf. Therefore, the regenerative braking force Fg acts on the front wheels WHf, but does not act on the rear wheels WHr.
  • the supply pressure sensor PM is housed in the second actuator YB and is connected to the second controller EB by a signal line LPm.
  • the first controller EA acquires the supply pressure Pm from the second controller EB through the communication bus BS.
  • the rear wheel supply pressure sensor PMr is omitted, and only the front wheel supply pressure sensor PMf is provided as the supply pressure sensor PM. Therefore, only the front wheel supply pressure Pmf is used as the signal for the supply pressure Pm.
  • Various braking forces are as follows. - "Vehicle total braking force Fu” is the actual braking force acting on the entire vehicle JV. A target value corresponding to the vehicle total braking force Fu is the “target vehicle system power Fv”. - “Friction braking force Fm” is the braking force that is actually generated according to the wheel pressure Pw. A target value corresponding to the frictional braking force Fm is the “target frictional braking force Fn”. - “Regenerative braking force Fg” is the braking force actually generated by the regenerative device KG. A target value corresponding to the regenerative braking force Fg is the "target regenerative braking force Fh”.
  • the target regenerative braking force Fh is calculated by the first braking unit SA (especially the first controller) and transmitted to the regenerative device KG (especially the regenerative controller EG) via the communication bus BS.
  • the regenerative controller EG controls the generator GN so that the actual regenerative braking force Fg approaches and matches the target regenerative braking force Fh.
  • "Limit regenerative braking force Fx" is the maximum value (limit value) of regenerative braking force Fg that can be generated by the regenerative device KG. Therefore, in the regenerative device KG, the regenerative braking force Fg is generated within a range (limit) up to the limit regenerative braking force Fx.
  • the limit regenerative braking force Fx is calculated by the regenerative device KG (particularly the regenerative controller EG) and transmitted to the first braking unit SA (particularly the first controller EA) via the communication bus BS.
  • the pressure regulation control includes two types of control depending on the operating state of the communication bus BS.
  • the first is pressure regulation control when signal transmission through the communication bus BS is normal (referred to as "normal state"), and is referred to as "normal control”.
  • the second is pressure regulation control when there is an abnormality in signal transmission through the communication bus BS (referred to as "abnormal state”), and is called “complementary control”. Complementary control is performed by the second braking unit SB.
  • the pressure regulation control in the first braking unit SA will be explained.
  • the following processing is performed by the first controller EA.
  • step S110 power is supplied (powered) to the introduction valve VA and the release valve VB.
  • the normally closed introduction valve VA is opened, the normally open release valve VB is closed, and the first mode in which the master pistons NM, NS and the braking operation member BP can be displaced separately is selected. be done.
  • the supply pressure Pm that is, the wheel pressure Pw
  • the operating force Fp of the brake operating member BP is generated by the stroke simulator SS.
  • the operation displacement sensor SP is provided with two operation displacement detection units SPa and SPb (first and second detection units).
  • the first operation displacement Spa (detection value of the first detection unit SPa) is directly acquired through the first displacement signal line LSpa.
  • the second operation displacement Spb (detection value of the second detection part SPb) and the supply pressure Pm (detection value of the supply pressure sensor PM) are obtained from the second controller EB via the communication bus BS.
  • the target vehicle system power Fv (the target value of the braking force acting on the entire vehicle) is calculated based on the operation displacement Sp and the calculation map Zfv.
  • the target vehicle body force Fv is determined to be “0" when the operation displacement Sp is less than the predetermined displacement so according to the calculation map Zfv.
  • the target vehicle body force Fv is determined to increase from “0” as the operating displacement Sp increases from “0".
  • the "predetermined displacement so” is a predetermined value (constant) that represents the play of the braking operation member BP.
  • step S140 "whether or not signal transmission by communication is in a normal state” is determined. This determination process is called “adequacy determination”. The propriety of communication is determined by "whether or not signals can be transmitted and received via the communication bus BS in the first braking unit SA". If all signals can be sent and received, the suitability determination is affirmative, and the process proceeds to step S150. On the other hand, if there is an abnormality in signal transmission/reception, the suitability determination is negative, and the process proceeds to step S180.
  • step S140 if the suitability determination is affirmative, the determination flag FT is set to "0". On the other hand, when the suitability determination is denied, the determination flag FT is determined to be "1". "Determination flag FT” is a control flag that indicates whether the communication function is appropriate. In the judgment flag FT, "0" represents a normal state, and "1" represents a communication abnormal state.
  • Normal control is pressure regulation control when all the operations of the braking control device SC are normal.
  • the processing of steps S150 to S170 corresponds to normal control.
  • the processing is executed by the first controller EA. For example, in normal control, only the first actuator YA is driven.
  • the target regenerative braking force Fh and the target frictional braking force Fn are calculated based on the target vehicle system power Fv and the limit regenerative braking force Fx.
  • the target regenerative braking force Fh is determined as a value equal to or less than the limit regenerative braking force Fx.
  • the target regenerative braking force Fh is made equal to the limit regenerative braking force Fx, and the target friction braking force Fn is set to the limit regenerative braking force from the target vehicle system power Fv.
  • the target regenerative braking force Fh is transmitted from the first controller EA to the regenerative controller EG via the communication bus BS. Then, the regenerative controller EG controls the generator GN so that the actual regenerative braking force Fg approaches and matches the target regenerative braking force Fh.
  • "Target pressure Pt" is a target value corresponding to the supply pressure Pm.
  • the target pressure Pt is also a target value corresponding to the wheel pressure Pw.
  • the target pressure Pt depends on the specifications of the braking device SX (pressure receiving area of the wheel cylinder CW, effective braking radius of the rotating member KT, coefficient of friction of the friction member MS, effective radius of the wheel (tire), etc.).
  • the first controller EA controls the first actuator YA so that the supply pressure Pm (actual value) approaches and matches the target pressure Pt (target value).
  • the supply pressure Pm is acquired from the second controller EB via the communication bus BS.
  • the first electric motor MA is driven and the brake fluid BF is discharged from the first fluid pump QA.
  • a circulation flow KN of the brake fluid BF is generated in the return passage HK.
  • the servo pressure Pu is generated by driving the pressure regulating valve UA and throttling the circulating flow KN.
  • the pressure regulating valve UA is controlled by feedback control based on the supply pressure Pm so that the supply pressure Pm approaches the target pressure Pt.
  • the regenerative controller EG identifies the communication abnormality and stops power generation by the generator GN. In any case, when a communication abnormality occurs, the regenerative braking force Fg is set to "0" and the regenerative cooperative control is terminated.
  • step S190 "whether or not the first braking unit SA is operable (referred to as 'ability determination')" is determined. For example, if everything is normal except that the supply pressure Pm cannot be acquired by communication, it is determined that the operation of the first braking unit SA is possible (that is, the ability determination is affirmative). However, if the driving voltage Ve of the first braking unit SA (the voltage that can be applied to the first controller EA and the first actuator YA) drops below the predetermined voltage ve, the first braking unit SA will operate. is determined to be impossible (that is, the determination of whether or not it is possible is denied).
  • the "driving voltage Ve" is detected by a driving voltage sensor (not shown) provided in the first driving circuit DRa.
  • the "predetermined voltage ve" is a threshold value for performance determination, and is a preset predetermined value (constant). If the capability determination is affirmative, the process proceeds to step S200. On the other hand, when the capability determination is negative, the process proceeds to step S220.
  • step S200 the first controller EA cannot acquire the signal of the second operation displacement Spb, so the operation displacement Sp is calculated based on the first operation displacement Spa.
  • the target regenerative braking force Fh is determined to be "0"
  • the target frictional braking force Fn is equal to the target vehicle system power Fv. It has been replaced with power Fn. Therefore, the target frictional braking force Fn calculated based on the operation displacement Sp is converted into the dimension of the supply pressure Pm based on the specifications of the braking device SX, and the target pressure Pt is determined.
  • the first actuator YA is driven only by feedforward control based on the target pressure Pt. Since the supply pressure Pm cannot be obtained when communication is abnormal, feedback control according to the supply pressure Pm is omitted.
  • step S220 power supply to the introduction valve VA and the release valve VB is stopped, and the operation mode of the input section NR is set to the second mode. .
  • the master piston NM is moved in conjunction with the braking operation member BP.
  • Complementary control is pressure regulation control in the second braking unit SB when communication is abnormal.
  • the processing of steps S310 to S370 corresponds to complementary control.
  • Complementary control is executed by the second controller EB.
  • the second operation displacement Spb (detection value of the second displacement detector SPb) is acquired via the signal line LSpb.
  • the supply pressure Pm (detection value of the supply pressure sensor PM) is acquired via the signal line LPm.
  • the first manipulation displacement Spa and the determination flag FT are read from the communication bus BS. In the case of communication abnormality, the second controller EB cannot acquire signals such as the first operation displacement Spa and the determination flag FT.
  • step S320 the second controller EB determines whether or not "signal transmission via communication is in a normal state" by the same method as in step S140.
  • the second braking unit SB if it is possible to transmit and receive signals via the communication bus BS, the determination of propriety is affirmative, and the process returns to step S310. Complementary control is not executed in this case. If the signal cannot be transmitted or received, the process proceeds to step S330.
  • step S320 if the suitability determination is affirmative, the determination flag FU is set to "0" indicating a normal state. On the other hand, when the second braking unit SB cannot transmit or receive a signal and the suitability determination is denied, the determination flag FU is set to "1" indicating an abnormal state.
  • step S330 the operation of the regeneration device KG is stopped.
  • the operation displacement Sp is calculated.
  • the calculation map Zfv used for the first controller EA and the calculation map Zfv used for the second controller EB do not need to match completely, and it is sufficient that they are approximate.
  • the target frictional braking force Fn is converted into the dimension of the supply pressure Pm based on the specifications of the braking device SX, etc., and the target pressure Pt is determined.
  • the hydraulic pressure deviation hP is the target value for increasing the supply pressure Pm. Further, when the supply pressure Pm is higher than the target pressure Pt and the hydraulic pressure deviation hP is smaller than "0", the hydraulic pressure deviation hP is a target value for decreasing the supply pressure Pm.
  • the second actuator YB is driven based on the hydraulic pressure deviation hP to adjust (increase or decrease) the wheel pressure Pw.
  • the second electric motor MB and the control valve UB is driven.
  • the second electric motor MB is driven, and the brake fluid BF is discharged from the second fluid pump QB.
  • a circulating flow KL of the brake fluid BF is generated in the communication path HS and the return path HL.
  • the control valve UB When the hydraulic pressure deviation hP is greater than or equal to the predetermined pressure increase deviation hp, the control valve UB increases the supply pressure Pm by an amount corresponding to the hydraulic pressure deviation hP.
  • the "predetermined pressure increase deviation hp" is a preset positive predetermined value (constant).
  • the adjustment to increase the supply pressure Pm is called “pressure increase control” in complementary control.
  • the control valve UB In the pressure increase control, the control valve UB is driven and the circulating flow KL is throttled, thereby generating a differential pressure between the upstream side and the downstream side of the control valve UB. As a result, the adjustment pressure Pq, which is the upstream hydraulic pressure, is increased from the supply pressure Pm, which is the downstream hydraulic pressure. That is, when the second actuator YB is driven, the control valve UB is controlled such that the differential pressure between the adjustment pressure Pq and the supply pressure Pm (that is, the hydraulic pressure "Pq-Pm”) becomes the hydraulic pressure deviation hP. .
  • the wheel pressure Pw is increased from the supply pressure Pm by the hydraulic pressure deviation hP by appropriately driving the control valve UB.
  • the second electric motor MB, the inlet valve VI and the outlet valve VO are driven.
  • the inlet valve VI and the outlet valve VO reduce the supply pressure Pm by an amount corresponding to the hydraulic pressure deviation hP.
  • the "predetermined pressure reduction deviation hq" is a preset negative predetermined value (constant).
  • the adjustment that is reduced from the supply pressure Pm is called "pressure reduction control" in complementary control.
  • the inlet valve VI and the outlet valve VO are appropriately driven (for example, by a driving method similar to antilock brake control), so that the wheel pressure Pw is reduced from the supply pressure Pm by the hydraulic pressure deviation hP.
  • the second electric motor MB is driven to return the brake fluid BF from the pressure regulating reservoir RB to the upper portion of the control valve UB.
  • the supply pressure Pm output from the first braking unit SA may decrease.
  • the function of the first braking unit SA is lost and the supply pressure Pm is generated from the first braking unit SA only by the driver's muscular strength.
  • the second braking unit SB compensates for the drop in the supply pressure Pm in the complementary control.
  • the target pressure Pt is determined based on the operation displacement Sp and the same calculation map Zfv as in the first braking unit SA. Therefore, the target pressure Pt in the second braking unit SB is the target value of the supply pressure Pm in normal control.
  • the hydraulic pressure deviation hP is determined as a positive value. Then, the supply pressure Pm is increased by the second braking unit SB by an amount corresponding to the hydraulic pressure deviation hP, and is output as the wheel pressure Pw.
  • the wheel pressure Pw output at this time is equivalent to the wheel pressure Pw in normal control. In other words, supplementary control (in particular, pressure increase control) appropriately compensates for the decrease in supply pressure Pm.
  • the supply pressure that is, the target pressure Pt
  • the actually generated supply pressure Pm ie hydraulic pressure deviation hP
  • pressure reduction control may be omitted and only pressure increase control may be executed. This is based on the fact that compensation for the decrease in wheel pressure Pw is most important in complementary control.
  • inlet valve VI and outlet valve VO are actuated, noise and vibration may occur. Therefore, by omitting the pressure reduction control, the quietness of the braking control device SC can be improved.
  • ⁇ Drive control of pressure regulating valve UA Details of the drive control of the pressure regulating valve UA (particularly, the processing of steps S170 and S210) will be described with reference to the block diagram of FIG.
  • the drive control process is executed by the first controller EA.
  • the servo pressure Pu is adjusted by the pressure regulating valve UA, and finally the supply pressure Pm is adjusted.
  • the drive control of the pressure regulating valve UA is composed of an indicated current calculation block IS, a hydraulic pressure deviation calculation block HP, a compensation current calculation block IH, and a first current feedback control block IFA.
  • the indicated current Isa is calculated based on the target pressure Pt and a preset calculation map Zis.
  • the "indicated current Isa" is a target value related to the supply current Ia (first supply current) of the pressure regulating valve UA required to achieve the target pressure Pt.
  • the indicated current Isa is determined to increase as the target pressure Pt increases.
  • the indicated current calculation block IS corresponds to feedforward control based on the target pressure Pt.
  • the compensation current calculation block IH calculates the compensation current Ih based on the hydraulic pressure deviation hP and a preset calculation map Zih.
  • the command current Isa is calculated corresponding to the target pressure Pt, but an error may occur between the target pressure Pt and the supply pressure Pm.
  • the "compensation current Ih" is for compensating (reducing) this error.
  • the compensation current Ih is determined according to the calculation map Zih so as to increase as the hydraulic pressure deviation hP increases. Specifically, when the target pressure Pt is higher than the supply pressure Pm and the hydraulic pressure deviation hP has a positive sign, the compensation current Ih with a positive sign is determined such that the indicated current Isa is increased.
  • the compensation current Ih with a negative sign is determined such that the indicated current Isa is decreased.
  • the calculation map Zih is provided with a dead zone.
  • the compensation current calculation block IH corresponds to feedback control based on the supply pressure Pm.
  • First target current Ita is the final target value of the current supplied to the pressure regulating valve UA. That is, the first target current Ita is determined as the sum of the feedforward term Isa and the feedback term Ih. Therefore, drive control of the pressure regulating valve UA is composed of feedforward control (processing of the indicated current calculation block IS) and feedback control (processing of the compensation current calculation block IH) in hydraulic pressure.
  • the first supply current Ia approaches and matches the first target current Ita based on the first target current Ita (target value) and the first supply current Ia (actual value).
  • the first drive signal Ua is calculated so that Here, the first supply current Ia is detected by a first supply current sensor IA provided in the first drive circuit DRa.
  • the first current feedback control block IFA if "Ita>Ia”, the first drive signal Ua is determined such that the first supply current Ia increases. On the other hand, if "Ita ⁇ Ia”, the first drive signal Ua is determined such that the first supply current Ia decreases. That is, in the first current feedback control block IFA, feedback control related to current is executed. Therefore, in drive control of the pressure regulating valve UA, in addition to feedback control related to hydraulic pressure, feedback control related to current is provided.
  • feedback control based on the supply pressure Pm is not executed in drive control of the pressure regulating valve UA, and only feedforward control based on the target pressure Pt is executed.
  • Complementary control processing is executed by the second controller EB.
  • the second controller EB cannot receive the determination flag FT determined by the first controller EA and the first operation displacement Spa.
  • the wheel pressure Pw is adjusted based on the hydraulic pressure deviation hP.
  • the complementary control includes pressure increase control for increasing the wheel pressure Pw and pressure decrease control for decreasing the wheel pressure Pw.
  • Complementary control includes a range in which "hydraulic pressure deviation hP is greater than predetermined pressure reduction deviation hq (preset negative constant) and smaller than pressure increase predetermined deviation hp (preset positive constant)." A dead band is provided at .
  • Drive control of the control valve UB in complementary control is composed of a hydraulic pressure deviation calculation block HP, a second target current calculation block IBT, a second current feedback control block IFB, and a pressure reduction control block PG.
  • the hydraulic pressure deviation calculation block HP calculates the deviation hP between the target pressure Pt and the supply pressure Pm.
  • the processing of the hydraulic pressure deviation calculation block HP is the same as the processing of the hydraulic pressure deviation calculation block HP of the first controller EA.
  • the target pressure Pt is calculated by the second braking unit SB based on the same method as the calculation method of the target pressure Pt in the first braking unit SA.
  • the hydraulic pressure deviation hP is treated as a target value of the differential pressure between the supply pressure Pm and the wheel pressure Pw.
  • the second target current calculation block IBT When the supply pressure Pm is lower than the target pressure Pt (more specifically, when the hydraulic pressure deviation hP is equal to or greater than the predetermined pressure increase deviation hp and exceeds the dead zone of complementary control), the second target current calculation block IBT , the hydraulic pressure deviation hP, and a preset calculation map Zib, the second target current Itb is calculated.
  • "Second target current Itb” is a target value related to the supply current Ib (second supply current) of the control valve UB, which is necessary for the control valve UB to generate a differential pressure corresponding to the hydraulic pressure deviation hP. be.
  • the second target current Itb is determined according to the calculation map Zib so as to increase as the hydraulic pressure deviation hP increases.
  • the processing of the second target current calculation block IBT is the same processing as the above-described indicated current calculation block IS (that is, feedforward control based on hydraulic pressure).
  • the second supply current Ib approaches and matches the second target current Itb based on the second target current Itb (target value) and the second supply current Ib (actual value).
  • the second drive signal Ub is calculated so that Here, the second supply current Ib is detected by a second supply current sensor IB provided in the second drive circuit DRb.
  • the second current feedback control block IFB if "Itb>Ib", the second drive signal Ub is determined such that the second supply current Ib increases. On the other hand, if "Itb ⁇ Ib”, the second drive signal Ub is determined such that the second supply current Ib decreases.
  • the same feedback control as to the current as in the first current feedback control block IFA is performed.
  • the second target current calculation block IBT and the second current feedback control block IFB correspond to pressure increase control processing.
  • the pressure reduction control block PG controls the inlet valve VI , and the outlet valve VO is controlled.
  • drive signals Vi and Vo for the inlet valve VI and the outlet valve VO are determined so that the supply pressure Pm is reduced by an amount corresponding to the hydraulic pressure deviation hP.
  • the pressure reduction control block PG corresponds to pressure reduction control processing.
  • the drive control of the control valve UB described above is open-loop control, it may be configured as closed-loop control including feedback control related to hydraulic pressure.
  • an adjustment pressure sensor (not shown) is provided below the control valve UB so as to detect the adjustment pressure Pq. Then, the second target current Itb is finely adjusted based on the difference between the supply pressure Pm and the adjustment pressure Pq in the same manner as the compensation current calculation block IH.
  • Two-system pressure regulation control in which the front and rear wheel pressures Pwf and Pwr are independently and individually adjusted by driving the second actuator YB is called “two-system pressure regulation.”
  • the two-system pressure regulation improves the regeneration efficiency and optimizes the braking force distribution between the front and rear wheels compared to the one-system pressure regulation.
  • differential pressures hPf, hPr between the front and rear wheel target wheel pressures Ptwf, Ptwr and the target supply pressure Ptm (or the actual supply pressure Pm) (referred to as "front and rear wheel target differential pressures") ), feedforward control is executed.
  • Complementary control is also applied in the two-system pressure regulation configuration.
  • the regenerative cooperative control is terminated and the generation of the regenerative braking force Fg is stopped.
  • the second actuator YB adjusts the supply pressure Pm (actual value) by an amount corresponding to the hydraulic pressure deviation hP (target value) so as to compensate for the excess or deficiency of the supply pressure Pm output from the first braking unit SA. adjusted (increased or decreased).
  • the pressure regulation control is appropriately executed when the communication is abnormal, and the excess or deficiency of the supply pressure Pm from the first braking unit SA is controlled appropriately. compensated.
  • the target values of various braking forces are calculated in terms of the longitudinal forces acting on the vehicle JV.
  • it may be calculated in the dimension of the deceleration of the vehicle JV or in the dimension of the torque of the wheels WH. This is based on the fact that the state quantities from longitudinal force to vehicle deceleration (referred to as "state quantity related to force") are equivalent. Therefore, the target pressure Pt is calculated based on the state quantity related to the force from the longitudinal force acting on the vehicle JV to the deceleration of the vehicle JV.
  • front and rear types are adopted as the two braking systems.
  • a diagonal type also referred to as an "X type"
  • one of the two master chambers Pm is connected to the front left wheel cylinder and the rear right wheel cylinder
  • the other of the two master chambers Pm is connected to the front right wheel cylinder and the left rear wheel cylinder. It is connected to the rear wheel cylinder.
  • the braking system is limited to the front-rear type.
  • the supply pressure sensor PM was built into the second actuator YB and connected to the second controller EB.
  • the supply pressure sensor PM may have two detection units, which may be connected to the first and second controllers EA and EB.
  • the first controller EA can acquire the supply pressure Pm and execute feedback control related to the supply pressure Pm even when communication is abnormal. Therefore, the hydraulic pressure error described above does not occur, and no complementary control is executed to compensate for this. Therefore, in the complementary control, the complementary control (especially pressure increase control) is executed only when the communication abnormality occurs and the performance of the first braking unit SA is degraded. That is, in this configuration, the pressure reduction control is omitted in the complementary control.
  • the pressure regulating unit CA is exemplified by one that regulates the servo pressure Pu by throttling the circulating flow KN of the braking fluid BF discharged by the fluid pump QA with the pressure regulating valve UA (so-called reflux type configuration). was done.
  • the pressure accumulated in the accumulator may be regulated by a linear electromagnetic valve (so-called accumulator type configuration).
  • the servo pressure Pu may be adjusted by increasing or decreasing the volume in the cylinder by a piston directly driven by an electric motor (so-called electric cylinder type configuration).
  • the pressure regulator CA feeds back the supply pressure Pm as an output signal to electrically adjust the hydraulic pressure Pu (servo pressure) in the servo chamber Ru.
  • a tandem type was exemplified as the master cylinder CM.
  • a single-type master cylinder CM may be employed.
  • the secondary master piston NS is omitted.
  • One master chamber Rm is connected to four wheel cylinders CW.
  • the master chamber Rm may be connected to the front wheel cylinder CWf, and the servo pressure Pu may be directly supplied from the pressure regulating section CA to the rear wheel cylinder CWr.
  • the front wheel supply pressure Pmf is output from the master cylinder CM.
  • the pressure regulator CA outputs the servo pressure Pu as the rear wheel supply pressure Pmr.
  • the pressure receiving area rm (master area) of the master chamber Rm and the pressure receiving area ru (servo area) of the servo chamber Ru are set equal.
  • the master area rm and the servo area ru may not be equal.
  • it is possible to convert the supply pressure Pm and the servo pressure Pu based on the ratio between the servo area ru and the master area rm (that is, "Pm ⁇ rm Pu ⁇ ru” conversion).
  • the supply pressure Pm is output via the master cylinder CM in the first braking unit SA. That is, the apply portion AP and the pressure regulating portion CA are arranged in series in the hydraulic pressure transmission path, and the servo pressure Pu supplied from the pressure regulating portion CA is transmitted as the supply pressure Pm via the master piston NM. .
  • the applying section AP and the pressure adjusting section CA may be arranged in parallel. Specifically, each of the apply section AP (especially the master cylinder CM) and the pressure regulating section CA is directly connected to the second actuator YB.
  • connection between the pressure regulating section CA and the second actuator YB is selected
  • connection between the applying section AP and the second actuator YB is selected.
  • the selection is accomplished by an on/off solenoid valve (referred to as a "switch valve").
  • the servo pressure Pu generated by the pressure adjusting section CA is directly output as the supply pressure Pm without going through the applying section AP.
  • the apply part AP is connected to the stroke simulator SS, and the operating force Fp of the braking operation member BP is generated by the simulator SS.
  • the hydraulic pressure in the master chamber Rm generated by operating the brake operating member BP is output as the supply pressure Pm.
  • the apply section AP is separated from the simulator SS.
  • the braking control device SC is applied to the vehicle JV in which the rear wheels WHr are not equipped with the regenerative device KG.
  • the braking control device SC may be applied to a vehicle JV in which a rear wheel WHr is provided with a regeneration device KG.
  • Embodiments of the braking control device SC are summarized below.
  • the braking control device SC is a brake-by-wire type device that can independently adjust the operating displacement Sp (operating displacement) of the brake operating member BP and the hydraulic pressure Pw (wheel pressure) of the wheel cylinder CW.
  • the braking control device SC includes a "first braking unit SA (first unit) for outputting a supply pressure Pm in accordance with an operation displacement Sp (operation amount) of the braking operation member BP", and a “first braking unit SA and wheel a second braking unit SB (second unit) which is provided between the cylinder CW and adjusts the supply pressure Pm to output the wheel pressure Pw to the wheel cylinder CW;
  • a communication bus BS for transmitting signals to and from SB, an operation displacement sensor SP (operation amount sensor) for detecting operation displacement Sp (operation amount), and a supply pressure sensor PM for detecting supply pressure Pm. and are provided.
  • the braking control device SC functions as a brake-by-wire type device.
  • the first braking unit SA selects the first mode (by-wire mode) and performs normal control.
  • the target pressure Pt is calculated based on the operation displacement Sp, and the supply pressure Pm is controlled so as to approach the target pressure Pt.
  • feedback control closed-loop control
  • feedforward control open loop control
  • the second braking unit SB calculates the target pressure Pt based on the operation displacement Sp (particularly, the second operation displacement Spb). .
  • the calculation of the target pressure Pt in the second braking unit SB is performed in the same manner as the calculation of the target pressure Pt in the first braking unit SA. Therefore, the target pressures Pt calculated by the first and second braking units SA and SB are substantially equal.
  • the wheel pressure Pw is adjusted based on the deviation hP between the target pressure Pt and the supply pressure Pm.
  • the wheel pressure Pw when the supply pressure Pm is lower than the target pressure Pt, the wheel pressure Pw is increased by an amount corresponding to the deviation hP.
  • the wheel pressure Pw when the supply pressure Pm is higher than the target pressure Pt, the wheel pressure Pw is reduced by an amount corresponding to the deviation hP.
  • the wheel pressure Pw may not be decreased, and only the wheel pressure Pw may be increased. This is based on the fact that compensation for the decrease in wheel pressure Pw is most important. In the configuration in which the wheel pressure Pw is prohibited from being decreased and only increased, the inlet valve VI and the outlet valve VO are not driven when adjusting the wheel pressure Pw, so the braking control device SC is quieter.
  • the first braking unit SA transmits the situation to the second braking unit SB. I can't.
  • the second braking unit SB cannot grasp the operating state of the first braking unit SA in the case of communication abnormality.
  • the operation of the first braking unit SA may be completely stopped.
  • the first braking unit SA (particularly, the input section NR) is in the second mode (manual mode), and the supply pressure Pm is not generated electrically, but is generated using the muscle strength of the driver as the power source. (corresponding to the case where step S190 is negative).
  • the output Pm from the first braking unit SA may be significantly lower than the target value Pt.
  • the hydraulic pressure deviation hP calculated by the second braking unit SB is the supply pressure (that is, the target pressure Pt) that should be output and the actual pressure. It represents the deviation from the generated supply pressure Pm (that is, the excess or deficiency of the supply pressure Pm with respect to the target pressure Pt).
  • the second braking unit SB can appropriately perform the pressure regulation control.
  • the operating displacement sensor SP is connected to both the first and second braking units SA, SB, but the supply pressure sensor PM is connected only to the second braking unit SB.
  • the first braking unit SA acquires the supply pressure Pm from the second braking unit SB via the communication bus BS. Therefore, when there is an abnormality in signal transmission, the first braking unit SA Information on the supply pressure Pm cannot be used, and feedback control cannot be executed.
  • the first braking unit SA since the supply pressure Pm is adjusted only by feedforward control, an error may occur in the wheel pressure Pw. However, since the wheel pressure Pw is appropriately adjusted by the complementary control described above, the accuracy of the pressure regulation control is favorably ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

制動制御装置は、制動操作部材の操作量に応じて供給圧を出力する第1ユニットと、第1ユニットとホイールシリンダとの間に設けられ、供給圧を調整してホイールシリンダにホイール圧を出力する第2ユニットと、第1ユニットと第2ユニットとの間で信号伝達を行う通信バスと、操作量を検出する操作量センサと、供給圧を検出する供給圧センサと、を備える。制動制御装置では、信号伝達に異常がある場合には、第2ユニットは、操作量に基づいて目標圧を演算し、目標圧と供給圧との偏差に基づいてホイール圧を調整する。

Description

車両の制動制御装置
 本開示は、車両の制動制御装置に関する。
 特許文献1には、「VSA装置の作動中において、VSA装置に係る作動状態情報の通信異常が生じた際であっても、制動液圧の昇圧機能を十分に発揮させる」ことを目的に、「車両用制動装置10は、制動モータ72の作動によって制動液圧を発生させるESB装置16と、ポンプモータ135の作動によって制動液圧を調圧するVSA装置18と、VSA装置18に係る作動状態情報をESB装置16宛に通信する際に用いられるCAN通信媒体33と、ESB装置16がCAN通信媒体33を介してVSA装置18が作動中である旨の作動中情報の通信を受けている場合に、VSA装置18への給液流路における制動液圧を、制動モータ72の作動によって昇圧させる与圧制御を行う第1の制動制御部77と、を備える。第1の制動制御部77は、作動状態情報の通信異常が生じた旨を認識した場合でも、前記与圧制御を継続して行う」ことが記載されている。
 特許文献1の装置では、ESB装置(「第1制動ユニット」ともいう)が、VSA装置(「第2制動ユニット」ともいう)から、通信によって、VSA装置が作動している情報を受けている途中で、通信に異常が発生した場合には、ESB装置による制動液圧の増加が継続される。即ち、特許文献1の装置では、第2制動ユニットの作動情報が、第1制動ユニットに送信されている最中に通信異常が発生する状況が想定されている。従って、第1制動ユニットは、第2制動ユニットが作動していたことを把握することができる。しかしながら、第1、第2制動ユニットの作動が一旦終了されると、通信異常時には、第1、第2制動ユニットの作動状況は把握できなくなる。このため、車両の制動制御装置においては、通信異常が発生し、相互の作動状況が把握できなくなった場合に、制動制御が適切に実行され得ることが望まれている。
特開2016-147614号公報
 本発明の目的は、通信で接続された2つの制動ユニットにて構成される車両の制動制御装置において、通信異常時に調圧制御が適切に行われ得るものを提供することである。
 本発明に係る車両の制動制御装置(SC)は、制動操作部材(BP)の操作量(Sp)に応じて供給圧(Pm)を出力する第1ユニット(SA)と、前記第1ユニット(SA)とホイールシリンダ(CW)との間に設けられ、前記供給圧(Pm)を調整して前記ホイールシリンダ(CW)にホイール圧(Pw)を出力する第2ユニット(SB)と、前記第1ユニット(SA)と前記第2ユニット(SB)との間で信号伝達を行う通信バス(BS)と、前記操作量(Sp)を検出する操作量センサ(SP)と、前記供給圧(Pm)を検出する供給圧センサ(PM)と、を備える。車両の制動制御装置(SC)において、
 本発明に係る車両の制動制御装置(SC)では、前記信号伝達に異常がある場合には、前記第2ユニット(SB)は、前記操作量(Sp)に基づいて目標圧(Pt)を演算し、前記目標圧(Pt)と前記供給圧(Pm)との偏差(hP)に基づいて前記ホイール圧(Pw)を調整する。例えば、前記第2ユニット(SB)は、前記供給圧(Pm)が前記目標圧(Pt)よりも小さい場合に、前記ホイール圧(Pw)を前記偏差(hP)に相当する分だけ増加する。
 2つの制動ユニットSA、SBの間で、信号伝達に異常がある場合には、それらの作動状況が相互に把握できない。上記構成によれば、第2制動ユニットSBでは、目標圧Ptが演算され、液圧偏差hPが決定される。そして、液圧偏差hPに基づいて、ホイール圧Pwが調整される。第2制動ユニットSBで演算される液圧偏差hPは、正常時の供給圧の目標値(即ち、目標圧Pt)と実際の供給圧Pmとのズレを表す状態量である。液圧偏差hPに基づく調整により、第1制動ユニットSAの作動状態が把握できない場合であっても、適切に調圧制御が実行される。
制動制御装置SCを搭載した車両JVの全体を説明するための概略図である。 第1制動ユニットSAの構成例を説明するための概略図である。 第2制動ユニットSBの構成例を説明するための概略図である。 調圧制御の処理を説明するためのフロー図である。 調圧弁UAの駆動制御を説明するためのブロック図である。 制御弁UBの駆動制御を説明するためのブロック図である。
<構成部材等の記号、及び、記号末尾の添字>
 以下の説明において、「CW」等の如く、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。各車輪に係る記号末尾に付された添字「f」、「r」は、それが前後輪の何れの系統に関するものであるかを示す包括記号である。例えば、各車輪に設けられたホイールシリンダCWにおいて、「前輪ホイールシリンダCWf」、「後輪ホイールシリンダCWr」と表記される。更に、記号末尾の添字「f」、「r」は省略され得る。添字「f」、「r」が省略された場合には、各記号は総称を表す。例えば、「CW」は、車両の前後車輪に設けられたホイールシリンダの総称である。
 マスタシリンダCMからホイールシリンダCWに至るまでの流体路において、マスタシリンダCMに近い側(ホイールシリンダCWから遠い側)が「上部」と称呼され、ホイールシリンダCWに近い側(マスタシリンダCMから遠い側)が「下部」と称呼される。また、第1、第2流体ユニットYA、YBにおける制動液BFの循環流KN、KLにおいて、第1、第2流体ポンプQA、QBの吐出部に近い側(吸入部から離れた側)が「上流側」と称呼され、第1、第2流体ポンプQA、QBの吸入部に近い側(吐出部から離れた側)が「下流側」と称呼される。
 第1制動ユニットSAの第1流体ユニットYA、第2制動ユニットSBの第2流体ユニットYB、及び、ホイールシリンダCWは、流体路(連絡路HS)にて接続される。更に、第1、第2流体ユニットYA、YBでは、各種構成要素(UA等)が流体路にて接続される。ここで、「流体路」は、制動液BFを移動するための経路であり、配管、アクチュエータ内の流路、ホース等が該当する。以下の説明で、連絡路HS、還流路HK、戻し路HL、リザーバ路HR、入力路HN、サーボ路HV、減圧路HG等は流体路である。
<制動制御装置SCを搭載した車両JV>
 図1の概略図を参照して、本発明に係る制動制御装置SCを搭載した車両JVの全体構成について説明する。車両JVは、駆動用の電気モータを備えたハイブリッド車両、又は、電気自動車である。車両JVには、回生装置KGが備えられる。回生装置KGは、ジェネレータGN、及び、回生装置用の制御ユニットEG(「回生コントローラ」ともいう)にて構成される。ジェネレータGNは、駆動用の電気モータでもある。回生制動では、電気モータ/ジェネレータGNが発電機として作動し、発電された電力が、回生コントローラEGを介して、蓄電池BGに蓄えられる。例えば、回生装置KGは、前輪WHfに備えられる。該構成では、回生装置KGによって、前輪WHfに回生制動力Fgが発生される。
 車両JVには、前輪、後輪制動装置SXf、SXr(=SX)が備えられる。制動装置SXは、ブレーキキャリパCP、摩擦部材MS(例えば、ブレーキパッド)、及び、回転部材(例えば、ブレーキディスク)KTにて構成される。ブレーキキャリパCPには、ホイールシリンダCWが設けられる。ホイールシリンダCW内の液圧Pw(「ホイール圧」という)によって、摩擦部材MSが、各車輪WHに固定された回転部材KTに押し付けられる。これにより、車輪WHには制動力Fmが発生される。ホイール圧Pwによって発生される制動力が「摩擦制動力Fm」と称呼される。
 車両JVには、制動操作部材BP、及び、各種センサ(SP等)が備えられる。制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両JVを減速するために操作する部材である。車両JVには、制動操作部材BPの操作変位Spを検出する操作変位センサSPが設けられる。操作変位Spは、制動操作部材BPの操作量(制動操作量)を表示する状態量(状態変数)の1つであり、ブレーキバイワイヤ型の制動制御装置SCにおいては、運転者の制動意志を表す信号(即ち、制動指示)である。
 操作変位センサSP(「操作量センサ」に相当)には、2つの検出部SPa、SPb(「第1、第2検出部」という)が含まれる。即ち、操作変位Spの検出が二重で行われ、操作変位センサSPが冗長化されてる。操作変位センサSPの第1検出部SPa(「第1変位検出部」という)は、第1変位信号線LSpaによって第1制動ユニットSA(特に、第1制御ユニットEA)に接続される。一方、操作変位センサSPの第2検出部SPb(「第2変位検出部」という)は、第2変位信号線LSpbによって第2制動ユニットSB(特に、第2制御ユニットEB)に接続される。従って、第1変位検出部SPaの信号Spa(「第1操作変位」という)は、直接的には、第1制御ユニットEAに入力される。一方、第2変位検出部SPbの信号Spb(「第2操作変位」という)は、直接的には、第2制御ユニットEBに入力される。例えば、「信号線LSpa、LSpb」は、信号伝達用の電線(ワイヤハーネス)である。
 操作変位センサSPの他に、制動操作量を表す他の状態量として、ストロークシミュレータSSの液圧Ps(「シミュレータ圧」という)が採用される。シミュレータ圧Psは、シミュレータ圧センサPSによって検出される。シミュレータ圧センサPSは、シミュレータ圧信号線LPsによって第1制動ユニットSA(特に、第1制御ユニットEA)に接続される。従って、シミュレータ圧Psは、直接的には、第1制御ユニットEAに入力される。なお、シミュレータ圧Psは、制動操作部材BPの操作力に相当する状態量である。
 車両JVには、各種センサが備えられる。アンチロックブレーキ制御、横滑り防止制御等の各車輪WHのホイール圧Pwを個別に制御する制動制御(「各輪独立制御」という)のために、車輪WHには、その回転速度(車輪速度)Vwを検出する車輪速度センサVWが備えられる。また、操舵量Sa(例えば、ステアリングホイールの操作角)を検出する操舵量センサ、車両のヨーレイトYrを検出するヨーレイトセンサ、車両の前後加速度Gxを検出する前後加速度センサ、及び、車両の横加速度Gyを検出する横加速度センサが備えられる(以上、非図示)。車輪速度Vw、操舵量Sa、ヨーレイトYr、前後加速度Gx、及び、横加速度Gyの各信号は、夫々の信号線を介して、第2制動ユニットSB(特に、第2制御ユニットEB)に入力される。
 車両JVには、制動制御装置SCが備えられる。制動制御装置SCでは、2系統の制動系統として、所謂、前後型(「II型」ともいう)のものが採用される。制動制御装置SCによって、実際のホイール圧Pwが調整される。
 制動制御装置SCは、2つの制動ユニットSA、SBにて構成される。第1制動ユニットSAは、第1流体ユニットYA、及び、第1制御ユニットEAにて構成される。第1流体ユニットYAは、駆動用蓄電池BGとは別の蓄電池BT(制動用蓄電池)を電力源として、第1制御ユニットEAによって制御される。第2制動ユニットSBは、第2流体ユニットYB、及び、第2制御ユニットEBにて構成される。第2流体ユニットYBは、第1制動ユニットSAと同様に、蓄電池BTを電力源として、第2制御ユニットEBによって制御される。
 第1制動ユニットSA(特に、第1制御ユニットEA)、及び、第2制動ユニットSB(特に、第2制御ユニットEB)は、通信バスBSに接続される。また、通信バスBSには、回生装置KG(特に、回生制御ユニットEG)が接続される。「通信バスBS」は、両端が終端とされる通信線に複数の制御ユニット(「コントローラ」ともいう)がぶら下がるネットワーク構造を有している。通信バスBSによって、複数のコントローラ(EA、EB、EG等)の間で信号伝達が行われる。つまり、複数のコントローラは、通信バスBSに信号(検出値、演算値、制御フラグ等)を送信することができるとともに、通信バスBSから信号を受信することができる。例えば、通信バスBSとして、ビークルバス(車両内のコントローラを相互接続する内部通信ネットワーク)が採用され、CANがシリアル通信プロトコルに用いられる。通信バスBSは、通信線(例えば、CANバスケーブル)、及び、各コントローラにおける送受信用マイクロコントローラにて構成される。
<第1制動ユニットSA>
 図2の概略図を参照して、制動制御装置SCの第1制動ユニットSA(「第1ユニット」に相当)の構成例について説明する。第1制動ユニットSAは、制動操作部材BP(ブレーキペダル)の操作に応じて、供給圧Pmを発生する。供給圧Pmは、連絡路HS(流体路)、及び、第2制動ユニットSBを介して、最終的には、ホイールシリンダCWに供給される。第1制動ユニットSAは、第1流体ユニットYA、及び、第1制御ユニットEAにて構成される。
≪第1流体ユニットYA≫
 第1流体ユニットYA(「第1アクチュエータ」ともいう)は、アプライ部AP、調圧部CA、及び、入力部NRにて構成される。
[アプライ部AP]
 制動操作部材BPの操作に応じて、アプライ部APから供給圧Pmが出力される。アプライ部APは、タンデム型のマスタシリンダCM、及び、プライマリ、セカンダリマスタピストンNM、NSにて構成される。
 タンデム型マスタシリンダCMには、プライマリ、セカンダリマスタピストンNM、NSが挿入される。マスタシリンダCMの内部は、2つのマスタピストンNM、NSによって、4つの液圧室Rmf、Rmr、Ru、Rsに区画される。前輪、後輪マスタ室Rmf、Rmr(=Rm)は、マスタシリンダCMの一方側底部、及び、マスタピストンNM、NSによって区画される。更に、マスタシリンダCMの内部は、マスタピストンNMのつば部Tuによって、サーボ室Ruと反力室Rsとに仕切られる。マスタ室Rmとサーボ室Ruとは、つば部Tuを挟んで、相対するように配置される。ここで、マスタ室Rmの受圧面積rmとサーボ室Ruの受圧面積ruとは等しくされる。
 非制動時には、マスタピストンNM、NSは、最も後退した位置(即ち、マスタ室Rmの体積が最大になる位置)にある。該状態では、マスタシリンダCMのマスタ室Rmは、マスタリザーバRVに連通している。マスタリザーバRV(大気圧リザーバであり、単に「リザーバ」ともいう)の内部に制動液BFが貯蔵される。制動操作部材BPが操作されると、マスタピストンNM、NSが前進方向Ha(マスタ室Rmの体積が減少する方向)に移動される。該移動により、マスタ室RmとリザーバRVとの連通は遮断される。そして、マスタピストンNM、NSが、更に、前進方向Haに移動されると、前輪、後輪供給圧Pmf、Pmr(=Pm)が「0(大気圧)」から増加される。これにより、マスタシリンダCMのマスタ室Rmから、供給圧Pmに加圧された制動液BFが出力(圧送)される。供給圧Pmは、マスタ室Rmの液圧であるため、「マスタ圧」とも称呼される。
[調圧部CA]
 調圧部CAによって、アプライ部APのサーボ室Ruに対して、サーボ圧Puが供給される。調圧部CAは、第1電気モータMA、第1流体ポンプQA、及び、調圧弁UAにて構成される。
 第1電気モータMAによって、第1流体ポンプQAが駆動される。第1流体ポンプQAにおいて、吸入部と吐出部とは、還流路HK(流体路)によって接続される。また、第1流体ポンプQAの吸入部は、リザーバ路HRを介して、マスタリザーバRVとも接続される。第1流体ポンプQAの吐出部には、逆止弁が設けられる。
 還流路HKには、常開型の調圧弁UAが設けられる。調圧弁UAは、通電状態(例えば、供給電流)に基づいて開弁量が連続的に制御されるリニア型の電磁弁である。調圧弁UAは、その上流側と下流側との液圧差(差圧)を調整するので、「差圧弁」とも称呼される。
 第1流体ポンプQAから制動液BFが吐出されると、還流路HKには、制動液BFの循環流KN(破線矢印で示す)が発生される。調圧弁UAが全開状態にある場合(調圧弁UAは常開型であるため、非通電時)には、還流路HKにおいて、第1流体ポンプQAの吐出部と調圧弁UAとの間の液圧Pu(「サーボ圧」という)は、「0(大気圧)」である。調圧弁UAへの通電量(供給電流)が増加されると、調圧弁UAによって循環流KN(還流路HK内で循環する制動液BFの流れ)が絞られる。換言すれば、調圧弁UAによって、還流路HKの流路が狭められて、調圧弁UAによるオリフィス効果が発揮される。これにより、調圧弁UAの上流側の液圧Puが「0」から増加される。つまり、循環流KNにおいて、調圧弁UAに対して、上流側の液圧Pu(サーボ圧)と下流側の液圧(大気圧)との液圧差(差圧)が発生される。該差圧は、調圧弁UAへの通電量によって調節される。
 還流路HKは、第1流体ポンプQAの吐出部と調圧弁UAとの間の部位にて、サーボ路HV(流体路)を介してサーボ室Ruに接続される。従って、サーボ圧Puは、サーボ室Ruに導入(供給)される。サーボ圧Puの増加によって、マスタピストンNM、NSが前進方向Ha(マスタ室Rmの体積が減少する方向)に押圧され、前輪、後輪マスタ室Rmf、Rmr内の液圧Pmf、Pmr(前輪、後輪供給圧)が増加される。
 前輪、後輪マスタ室Rmf、Rmr(=Rm)には、前輪、後輪連絡路HSf、HSr(=HS)が接続される。前輪、後輪連絡路HSf、HSrは、第2制動ユニットSB(特に、第2流体ユニットYB)を経由して、前輪、後輪ホイールシリンダCWf、CWr(=CW)に接続される。従って、前輪、後輪供給圧Pmf、Pmrは、第1制動ユニットSAから前輪、後輪ホイールシリンダCWf、CWrに対して供給される。ここで、前輪供給圧Pmfと後輪供給圧Pmrとは等しい(即ち、「Pmf=Pmr」)。
[入力部NR]
 入力部NRによって、回生協調制御を実現するよう、制動操作部材BPは操作されるが、ホイール圧Pwが発生しない状態が生み出される。「回生協調制御」は、制動時に、車両JVが有する運動エネルギを効率良く電気エネルギに回収できるよう、摩擦制動力Fm(ホイール圧Pwによる制動力)と回生制動力Fg(ジェネレータGNによる制動力)とを協働させるものである。入力部NRは、入力シリンダCN、入力ピストンNN、導入弁VA、開放弁VB、ストロークシミュレータSS、及び、シミュレータ液圧センサPSにて構成される。
 入力シリンダCNは、マスタシリンダCMに固定される。入力シリンダCNには、入力ピストンNNが挿入される。入力ピストンNNは、制動操作部材BP(ブレーキペダル)に連動するよう、クレビス(U字リンク)を介して、制動操作部材BPに機械的に接続される。入力ピストンNNの端面とプライマリピストンNMの端面とは隙間Ks(「離間変位」ともいう)を有している。離間距離Ksがサーボ圧Puによって調節されることで、回生協調制御が実現される。
 入力部NRの入力室Rnは、入力路HN(流体路)を介して、アプライ部APの反力室Rsに接続される。入力路HNには、常閉型の導入弁VAが設けられる。入力路HNは、導入弁VAと反力室Rsとの間にて、リザーバ路HRを介して、マスタリザーバRVに接続される。リザーバ路HRには、常開型の開放弁VBが設けられる。導入弁VA、及び、開放弁VBは、オン・オフ型の電磁弁である。導入弁VAと反力室Rsとの間で、入力路HNにストロークシミュレータSS(単に、「シミュレータ」ともいう)が接続される。
 導入弁VA、及び、開放弁VBに電力供給(給電)が行われない場合には、導入弁VAは閉弁され、開放弁VBは開弁される。導入弁VAの閉弁により、入力室Rnは封止され、流体ロックされる。これにより、マスタピストンNM、NSは、制動操作部材BPと一体で変位する。また、開放弁VBの開弁により、シミュレータSSは、マスタリザーバRVに連通される。導入弁VA、及び、開放弁VBに電力供給(給電)が行われる場合には、導入弁VAは開弁され、開放弁VBは閉弁される。これにより、マスタピストンNM、NSは、制動操作部材BPとは別体で変位することが可能である。このとき、入力室RnはストロークシミュレータSSに接続されるので、制動操作部材BPの操作力FpがシミュレータSSによって発生される。
 マスタピストンNM、NSと制動操作部材BPとが別体で変位する状態(電磁弁VA、VBの通電時)が「第1モード(又は、バイワイヤモード)」と称呼される。第1モードでは、制動制御装置SCはブレーキバイワイヤ型の装置(即ち、運転者の制動操作に対して、摩擦制動力Fmが独立で発生可能な装置)として機能する。このため、第1モードでは、制動操作部材BPの操作とは独立でホイール圧Pwは発生される。一方、マスタピストンNM、NSと制動操作部材BPとが一体で変位する状態(電磁弁VA、VBの非通電時)が「第2モード(又は、マニュアルモード)」と称呼される。第2モードでは、ホイール圧Pwは運転者の制動操作に連動する。入力部NRでは、導入弁VA、及び、開放弁VBへの給電の有無によって、第1モード(バイワイヤモード)、及び、第2モード(マニュアルモード)のうちの一方の作動モードが選択される。なお、制動制御装置SCで電力失陥が生じた場合(例えば、蓄電池BTの故障等)には、入力部NRは第2モードになる。
 シミュレータSS内の液圧Ps(シミュレータ圧)を検出するよう、入力路HNには、導入弁VAと反力室Rsとの間で、シミュレータ圧センサPSが設けられる。シミュレータ圧センサPSは、シミュレータ圧信号線LPsによって、第1制御ユニットEAに接続される。従って、シミュレータ圧Psは、シミュレータ圧信号線LPsを介して第1制御ユニットEAに直接入力される。
≪第1制御ユニットEA≫
 第1制御ユニットEA(「第1コントローラ」ともいう)によって、第1アクチュエータYAが制御される。第1コントローラEAは、第1マイクロプロセッサMPa、及び、第1駆動回路DRaにて構成される。第1コントローラEAは、他のコントローラ(EB、EG等)との間で信号(検出値、演算値、制御フラグ等)を共有できるよう、通信バスBSに接続される。
 第1コントローラEAと操作変位センサSPの第1検出部SPaとは、第1検出部SPa用の信号線LSpaを介して接続される。また、第1コントローラEAとシミュレータ圧センサPSとは、シミュレータ圧センサPS用の信号線LPsを介して接続される。第1コントローラEAには、これらの信号線LSpa、LPsを通して、第1操作変位Spa、及び、シミュレータ圧Psが、直接入力される。
 第1コントローラEA(特に、第1マイクロプロセッサMPa)には、調圧制御のアルゴリズムがプログラムされている。「調圧制御」は、供給圧Pm(結果、ホイール圧Pw)を調節するための制御であり、回生協調制御を含んでいる。調圧制御は、第1、第2操作変位Spa、Spb、シミュレータ圧Ps、供給圧Pm、及び、最大回生制動力Fxに基づいて実行される。
 調圧制御のアルゴリズムに基づいて、第1駆動回路DRaによって、第1アクチュエータYAを構成する第1電気モータMA、及び、各種電磁弁(UA等)が駆動される。第1駆動回路DRaには、第1電気モータMAを駆動するよう、スイッチング素子(例えば、MOS-FET)にてHブリッジ回路が構成される。また、第1駆動回路DRaには、各種電磁弁(UA等)を駆動するよう、スイッチング素子が備えられる。加えて、第1駆動回路DRaには、第1電気モータMAへの供給電流Im(実際値)を検出するモータ電流センサ(非図示)、及び、調圧弁UAへの供給電流Ia(実際値であり、「第1供給電流」という)を検出する第1電流センサ(非図示)が含まれる。なお、第1電気モータMAには、その回転数Na(実際値)を検出する回転数センサ(非図示)が設けられる。第1電気モータMAに回転角Ka(実際値)を検出する回転角センサ(非図示)が設けられ、モータ回転角Kaに基づいて、モータ回転数Naが演算されてもよい。
 第1コントローラEAでは、操作変位Sp(操作量)に基づいて、第1供給電流Iaに対応する第1目標電流Ita(目標値)が演算される。そして、第1供給電流Iaが、第1目標電流Itaに近付き、一致するように制御される(所謂、電流フィードバック制御)。また、第1コントローラEAでは、操作変位Spに基づいて、実際の回転数Naに対応する目標回転数Nta(目標値)が演算される。そして、実際の回転数Naが、目標回転数Ntaに近付き、一致するように、モータ供給電流Imが制御される(所謂、回転数フィードバック制御)。これらの制御アルゴリズムに基づいて、第1電気モータMAを制御するための駆動信号Ma、及び、各種電磁弁UA、VA、VBを制御するための駆動信号Ua、Va、Vbが演算される。そして、駆動信号(Ma等)に応じて、第1駆動回路DRaのスイッチング素子が駆動され、第1電気モータMA、及び、電磁弁UA、VA、VBが制御される。
<第2制動ユニットSB>
 図3の概略図を参照して、制動制御装置SCの第2制動ユニットSB(「第2ユニット」に相当)の構成例について説明する。第2制動ユニットSBは、アンチロックブレーキ制御、トラクション制御、横滑り防止制御等の各輪独立制御を実行するための汎用のユニット(装置)である。加えて、第2制動ユニットSBでは、補完制御が実行される。「補完制御」は、第1制動ユニットSAの異常に起因する供給圧Pmの過不足を補うものである。
 第2制動ユニットSBには、第1制動ユニットSAから、前輪、後輪供給圧Pmf、Pmr(=Pm)が供給される。そして、第2制動ユニットSBにて、前輪、後輪供給圧Pmf、Pmrが調整(増減)され、前輪、後輪ホイールシリンダCWf、CWrの液圧Pwf、Pwr(前輪、後輪ホイール圧)として出力される。第2制動ユニットSBは、第2流体ユニットYB、及び、第2制御ユニットEBにて構成される。
≪第2流体ユニットYB≫
 第2流体ユニットYB(「第2アクチュエータ」ともいう)は、連絡路HSにおいて、第1アクチュエータYAとホイールシリンダCWとの間に設けられる。第2アクチュエータYBは、供給圧センサPM、制御弁UB、第2流体ポンプQB、第2電気モータMB、調圧リザーバRB、インレット弁VI、及び、アウトレット弁VOにて構成される。
 前輪、後輪制御弁UBf、UBr(=UB)が、前輪、後輪連絡路HSf、HSr(=HS)に設けられる。制御弁UBは、調圧弁UAと同様に、常開型のリニア電磁弁(差圧弁)である。制御弁UBによって、ホイール圧Pwは、前後車輪系統で供給圧Pmから個別に増加されることが可能である。
 前輪、後輪供給圧センサPMf、PMr(=PM)が、第1アクチュエータYA(特に、前輪、後輪マスタ室Rmf、Rmr)から供給される実際の液圧Pmf、Pmr(前輪、後輪供給圧)を検出するよう、前輪、後輪制御弁UBf、UBrの上部(第1アクチュエータYAに近い側の連絡路HSの部位)に設けられる。供給圧センサPMは、「マスタ圧センサ」とも称呼され、第2アクチュエータYBに内蔵される。前輪、後輪供給圧センサPMf、PMrは、前輪、後輪供給圧信号線LPmf、LPmr(=LPm)によって、第2制動ユニットSB(特に、第2制御ユニットEB)に接続される。つまり、前輪、後輪供給圧Pmf、Pmr(=Pm)の信号は、第2制御ユニットEBに直接入力される。なお、前輪供給圧Pmfと後輪供給圧Pmrとは実質的には同じであるため、前輪、後輪供給圧センサPMf、PMrのうちの何れか一方は省略されてもよい。例えば、後輪供給圧センサPMrが省略される構成では、前輪供給圧センサPMfによって前輪供給圧Pmfのみが検出され、第2制御ユニットEBにダイレクトに入力される。
 前輪、後輪戻し路HLf、HLr(=HL)によって、前輪、後輪制御弁UBf、UBrの上部(第1アクチュエータYAに近い側の連絡路HSの部位)と、前輪、後輪制御弁UBf、UBrの下部(ホイールシリンダCWに近い側の連絡路HSの部位)とが接続される。前輪、後輪戻し路HLf、HLrには、前輪、後輪流体ポンプQBf、QBr(=QB)、及び、前輪、後輪調圧リザーバRBf、RBr(=RB)が設けられる。第2流体ポンプQBは、第2電気モータMBによって駆動される。
 第2電気モータMBが駆動されると、第2流体ポンプQBによって、制動液BFが、制御弁UBの上部から吸い込まれ、制御弁UBの下部に吐出される。これにより、連絡路HS、及び、戻し路HLには、調圧リザーバRBを含んだ、制動液BFの循環流KL(即ち、前輪、後輪循環流KLf、KLrであり、破線矢印で示す)が発生する。制御弁UBによって、連絡路HSの流路が狭められ、制動液BFの循環流KLが絞られると、その際のオリフィス効果によって、制御弁UBの下部の液圧Pq(「調整圧」という)が、制御弁UBの上部の液圧Pm(供給圧)から増加される。換言すれば、循環流KLにおいて、制御弁UBに対して、下流側の液圧Pm(供給圧)と上流側の液圧Pq(調整圧)との液圧差(差圧)が、制御弁UBによって調整される。なお、供給圧Pmと調整圧Pqとの大小関係では、調整圧Pqは供給圧Pm以上である(即ち、「Pq≧Pm」)。以上で説明したように、第2アクチュエータYBでの調整圧Pqの発生メカニズムは、第1アクチュエータYAでのサーボ圧Puの発生メカニズムと同じである。
 第2アクチュエータYBの内部にて、前輪、後輪連絡路HSf、HSrは、夫々、2つに分岐されて、前輪、後輪ホイールシリンダCWf、CWrに接続される。各ホイール圧Pwを個別に調節できるよう、ホイールシリンダCW毎に、常開型のインレット弁VI、及び、常閉型のアウトレット弁VOが設けられる。具体的には、インレット弁VIは、分岐された連絡路HS(即ち、連絡路HSの分岐部に対してホイールシリンダCWに近い側)に設けられる。連絡路HSは、インレット弁VIの下部(ホイールシリンダCWに近い側の連絡路HSの部位)にて、減圧路HGを介して、調圧リザーバRBに接続される。そして、減圧路HGには、アウトレット弁VOが配置される。インレット弁VI、及び、アウトレット弁VOとして、オン・オフ型の電磁弁が採用される。インレット弁VI、及び、アウトレット弁VOによって、ホイール圧Pwは、各車輪で供給圧Pmから個別に減少されることが可能である。
 インレット弁VI、及び、アウトレット弁VOに給電が行われず、それらの作動が停止している場合には、インレット弁VIは開弁され、アウトレット弁VOは閉弁される。この状態では、ホイール圧Pwは、調整圧Pqに等しい。インレット弁VI、及び、アウトレット弁VOの駆動によって、ホイール圧Pwが、ホイールシリンダCW毎に独立して調整される。ホイール圧Pwを減少するためには、インレット弁VIが閉弁され、アウトレット弁VOが開弁される。ホイールシリンダCWへの制動液BFの流入が阻止されるとともに、ホイールシリンダCW内の制動液BFが調圧リザーバRBに流出するので、ホイール圧Pwは減少される。ホイール圧Pwを増加するため(但し、増加の上限は調整圧Pqまで)には、インレット弁VIが開弁され、アウトレット弁VOが閉弁される。制動液BFの調圧リザーバRBへの流出が阻止され、調圧弁UBからの調整圧PqがホイールシリンダCWに供給されるので、ホイール圧Pwが増加される。ホイール圧Pwを保持するためには、インレット弁VI、及び、アウトレット弁VOが共に閉弁される。ホイールシリンダCWは流体的に封止されるので、ホイール圧Pwが一定に維持される。
≪第2制御ユニットEB≫
 第2制御ユニットEB(「第2コントローラ」ともいう)によって、第2アクチュエータYBが制御される。第2コントローラEBは、第1コントローラEAと同様に、第2マイクロプロセッサMPb、及び、第2駆動回路DRbにて構成される。第2コントローラEBは、通信バスBSに接続される。従って、第1コントローラEAと第2コントローラEBとは、通信バスBSを介して信号を共有することができる。
 第2コントローラEB(特に、第2マイクロプロセッサMPb)には、車輪速度Vw、操舵量Sa、ヨーレイトYr、前後加速度Gx、及び、横加速度Gyが入力される。第2コントローラEBにて、車輪速度Vwに基づいて、車体速度Vxが演算される。第2コントローラEBでは、以下に列挙する各輪独立制御が実行される。具体的には、各輪独立制御として、車輪WHのロックを抑制するアンチロックブレーキ制御(所謂、ABS制御)、駆動車輪の空転を抑制するトラクション制御、及び、アンダステア・オーバステアを抑制して車両の方向安定性を向上する横滑り防止制御(所謂、ESC)が実行される。
 第2マイクロプロセッサMPbにプログラムされた制御アルゴリズムに応じて、第2駆動回路DRbによって、第2アクチュエータYBを構成する第2電気モータMB、及び、各種電磁弁(UB等)が駆動される。第2駆動回路DRbには、第2電気モータMBを駆動するよう、スイッチング素子(例えば、MOS-FET)にてHブリッジ回路が構成される。また、第2駆動回路DRbには、各種電磁弁(UB等)を駆動するよう、スイッチング素子が備えられる。加えて、第2駆動回路DRbには、第2電気モータMBへの供給電流In(実際値)を検出するモータ電流センサ(非図示)、及び、制御弁UBへの供給電流Ib(実際値であり、「第2供給電流」という)を検出する第2電流センサ(非図示)が含まれる。第2マイクロプロセッサMPbの制御アルゴリズムに基づいて、制御弁UBの駆動信号Ub、インレット弁VIの駆動信号Vi、アウトレット弁VOの駆動信号Vo、第2電気モータMBの駆動信号Mbが演算される。そして、駆動信号(Ub等)に基づいて、第2駆動回路DRbによって、第2電気モータMB、及び、電磁弁UB、VI、VOが制御される。
 第2コントローラEBと操作変位センサSPの第2検出部SPbとは、第2検出部SPb用の信号線LSpbを介して接続される。また、第2コントローラEBと供給圧センサPMとは、供給圧センサPM用の信号線LPm(例えば、信号ピン)を介して接続される。従って、第2コントローラEBには、第2操作変位Spbが信号線LSpbを通して直接入力され、供給圧Pmが信号線LPmを通して直接入力される。そして、第2操作変位Spb、及び、供給圧Pmは、通信バスBSを通して、第2コントローラEBから第1コントローラEAに送信される。つまり、第1コントローラEAでは、第2操作変位Spb、及び、供給圧Pmが、第2コントローラEBから、通信バスを通して取得される。
 第2コントローラEBでは、上記の各輪独立制御に加え、制動制御装置SCの異常に対応するよう、補完制御が実行される。補完制御では、第1制動ユニットSAの性能低下が、第2制動ユニットSBによって補われる。
<調圧制御の処理>
 図4~6を参照して、調圧制御の処理例について説明する。調圧制御には、回生協調制御に加え、通信バスBSにおける異常(「通信異常」ともいう)に対応する補完制御が含まれる。通信バスBSは、通信線(例えば、CANバスケーブル)、及び、第1、第2コントローラEA、EBにおける通信用マイクロコントローラにて構成される。通信異常は、通信線の断線、第1、第2コントローラEA、EBにおける通信用マイクロコントローラの故障等によって発生する。
 第1、第2制動ユニットSA、SB(特に、第1、第2コントローラEA、EB)の間で通信異常が発生すると、第2制動ユニットSBは、第1制動ユニットSAの作動状態を把握することができなくなる。例えば、通信異常の原因が通信線の故障であれば、第1制動ユニットSAでは、供給圧Pmに基づく閉ループ制御(即ち、フィードバック制御)は実行できないが、開ループ制御(即ち、フィードフォワード制御)は実行することができる。一方、通信異常の原因が第1コントローラEAの故障であり、第1制動ユニットSAの機能が完全に失われていれば、供給圧Pmは運転者の筋力のみで発生される。補完制御は、該状況に対応するものである。以下、第1制動ユニットSAでの調圧制御と、第2制動ユニットSBでの調圧制御とに分けて説明する。調圧制御のアルゴリズムは、第1、第2コントローラEA、EBのマイクロプロセッサMPa、MPbに、夫々プログラムされている。
 処理例の説明では、以下のことが想定されている。
-回生装置KGは、前輪WHfのみに備えられる。従って、回生制動力Fgは、前輪WHfには作用するが、後輪WHrには作用しない。
-制動制御装置SCが正常に作動する場合には、第2アクチュエータYBは駆動されず、第1アクチュエータYAのみが駆動される。従って、制動制御装置SCの正常作動時には、ホイール圧Pwは、第1アクチュエータYAのみによって調整されるので、ホイール圧Pwと供給圧Pmとは一致する(即ち、「Pm=Pw」)。
-第1アクチュエータYAでは、マスタ室Rmの受圧面積rm(「マスタ面積」ともいう)とサーボ室Ruの受圧面積ru(「サーボ面積」ともいう)とが等しく設定される。従って、「rm=ru」であり、静的な状態では、「Pm=Pu」である(ここで、シール部材SLの摩擦は無視している)。
-供給圧センサPMは、第2アクチュエータYBに内蔵され、第2コントローラEBに信号線LPmによって接続される。第1コントローラEAは、供給圧Pmを、通信バスBSを通して、第2コントローラEBから取得する。
-第2アクチュエータYBでは、後輪供給圧センサPMrが省略され、供給圧センサPMとして、前輪供給圧センサPMfのみが設けられる。従って、供給圧Pmの信号として、前輪供給圧Pmfのみが採用される。
 各種の制動力は、以下の通りである。
-「車体総制動力Fu」は、車両JVの全体に作用する実際の制動力である。車体総制動力Fuに対応する目標値が、「目標車体制動力Fv」である。
-「摩擦制動力Fm」は、ホイール圧Pwに応じて実際に発生する制動力である。摩擦制動力Fmに対応する目標値が、「目標摩擦制動力Fn」である。
-「回生制動力Fg」は、回生装置KGによって実際に発生される制動力である。回生制動力Fgに対応する目標値が「目標回生制動力Fh」である。目標回生制動力Fhは、第1制動ユニットSA(特に、第1コントローラ)にて演算され、通信バスBSを介して、回生装置KG(特に、回生コントローラEG)に送信される。回生装置KGでは、回生コントローラEGによって、実際の回生制動力Fgが、目標回生制動力Fhに近付き、一致するように、ジェネレータGNが制御される。
-「限界回生制動力Fx」は、回生装置KGが発生し得る回生制動力Fgの最大値(限界値)である。従って、回生装置KGでは、限界回生制動力Fxまでの範囲(限度)で、回生制動力Fgが発生される。限界回生制動力Fxは、回生装置KG(特に、回生コントローラEG)にて演算され、通信バスBSを介して、第1制動ユニットSA(特に、第1コントローラEA)に送信される。
<調圧制御の流れ>
 図4のフロー図を参照して、調圧制御の全体について説明する。調圧制御には、通信バスBSの作動状態に応じて、2つの制御が含まれる。第1は、通信バスBSによる信号伝達が正常である場合(「正常状態」という)の調圧制御であり、「通常制御」と称呼される。第2は、通信バスBSによる信号伝達に異常がある場合(「異常状態」という)の調圧制御であり、「補完制御」と称呼される。補完制御は、第2制動ユニットSBによって実行される。
 第1制動ユニットSAにおける調圧制御について説明する。以下の処理は、第1コントローラEAにて行われる。
 ステップS110にて、導入弁VA、及び、開放弁VBに電力供給(給電)が行われる。これにより、常閉型の導入弁VAが開弁され、常開型の開放弁VBが閉弁され、マスタピストンNM、NSと制動操作部材BPとが別体で変位可能な第1モードが選択される。第1モードでは、供給圧Pm(即ち、ホイール圧Pw)は、制動操作部材BPの操作とは独立で調整される。このとき、制動操作部材BPの操作力Fpは、ストロークシミュレータSSによって発生される。
 ステップS120にて、第1、第2操作変位Spa、Spb、供給圧Pm(=Pmf)等の信号が読み込まれる。操作変位センサSPには、2つの操作変位検出部SPa、SPb(第1、第2検出部)が備えられる。第1操作変位Spa(第1検出部SPaの検出値)は、第1変位信号線LSpaを通して、直接取得される。第2操作変位Spb(第2検出部SPbの検出値)、及び、供給圧Pm(供給圧センサPMの検出値)は、通信バスBSを介して、第2コントローラEBから取得される。
 ステップS120では、第1、第2操作変位Spa、Spbに基づいて、操作変位Spが演算される。具体的には、第1、第2操作変位Spa、Spbの平均値が、操作変位Spとして決定される(即ち、「Sp=(Spa+Spb)/2」)。また、第1、第2操作変位Spa、Spbのうちの一方側が取得できない場合には、取得できる他方側によって操作変位Spが決定される(即ち、「Sp=Spa」、又は、「Sp=Spb」)。操作変位センサSPは冗長化されているので、操作変位Spは、第1、第2操作変位Spa、Spbのうちの少なくとも1つに基づいて決定される。操作変位Spは、第1コントローラEAから、通信バスBSに送信される。
 ステップS130にて、操作変位Sp、及び、演算マップZfvに基づいて、目標車体制動力Fv(車両全体に作用する制動力の目標値)が演算される。目標車体制動力Fvは、演算マップZfvに応じて、操作変位Spが所定変位so未満の場合には「0」に決定される。そして、操作変位Spが所定変位so以上の場合には、操作変位Spが「0」から増加するに従い、目標車体制動力Fvが「0」から増加するように決定される。ここで、「所定変位so」は、制動操作部材BPの遊びを表す、予め設定された所定値(定数)である。
 ステップS140にて、「通信による信号伝達が正常状態であるか、否か」が判定される。該判定処理が、「適否判定」と称呼される。通信の適否は、「第1制動ユニットSAにおいて、通信バスBSを介した信号の送受信が可能であるか、否か」で判定される。全ての信号の授受が可能である場合には、適否判定は肯定され、処理はステップS150に進められる。一方、信号授受に異常がある場合には、適否判定は否定され、処理はステップS180に進められる。
 ステップS140では、適否判定が肯定される場合には、判定フラグFTが「0」に決定される。一方、適否判定が否定される場合には、判定フラグFTが「1」に決定される。「判定フラグFT」は、通信機能の適否を表示する制御フラグである。判定フラグFTでは、「0」が正常状態を表し、「1」が通信異常状態を表す。
≪第1制動ユニットSAにおける通常制御の処理≫
 通常制御について説明する。通常制御は、制動制御装置SCの作動が全て正常である場合の調圧制御である。ステップS150~S170の処理が通常制御に該当する。該処理は、第1コントローラEAにて実行される。例えば、通常制御では、第1アクチュエータYAのみが駆動される。
 ステップS150にて、目標車体制動力Fv、及び、限界回生制動力Fxに基づいて、目標回生制動力Fh、及び、目標摩擦制動力Fnが演算される。具体的には、目標回生制動力Fhが、限界回生制動力Fx以下の値として決定される。例えば、目標車体制動力Fvが限界回生制動力Fx以下である場合には、目標回生制動力Fhが目標車体制動力Fvに等しくされ、目標摩擦制動力Fnが「0」に決定される(即ち、「Fv≦Fx」の場合には「Fh=Fv、Fn=0」)。一方、目標車体制動力Fvが限界回生制動力Fxよりも大きい場合には、目標回生制動力Fhが限界回生制動力Fxに等しくされ、目標摩擦制動力Fnが「目標車体制動力Fvから限界回生制動力Fx(=Fh)を減した値」に決定される(即ち、「Fv>Fx」の場合には「Fh=Fx、Fn=Fv-Fx=Fv-Fh」)。目標回生制動力Fhは、通信バスBSを介して、第1コントローラEAから回生コントローラEGに送信される。そして、回生コントローラEGによって、実際の回生制動力Fgが、目標回生制動力Fhに近付き、一致するように、ジェネレータGNが制御される。
 ステップS160にて、目標摩擦制動力Fnに基づいて、目標圧Pt(=Ptf、Ptr)が演算される。「目標圧Pt」は、供給圧Pmに対応する目標値である。また、制動制御装置SCの正常作動時には、「Pm=Pw」であるため、目標圧Ptは、ホイール圧Pwに対応する目標値でもある。具体的には、目標圧Ptは、制動装置SX等の諸元(ホイールシリンダCWの受圧面積、回転部材KTの有効制動半径、摩擦部材MSの摩擦係数、車輪(タイヤ)の有効半径等)に基づいて、目標摩擦制動力Fnが、供給圧Pm(即ち、ホイール圧Pw)の次元に変換されることで決定される。なお、「Pmf=Pmr」であるため、前輪目標圧Ptfと後輪目標圧Ptrとは等しい値として決定される(即ち、「Ptf=Ptr」)。
 ステップS170にて、供給圧Pm(実際値)が目標圧Pt(目標値)に近付き、一致するように、第1コントローラEAによって、第1アクチュエータYAが制御される。具体的には、供給圧Pmが、通信バスBSを介して、第2コントローラEBから取得される。第1電気モータMAが駆動され、第1流体ポンプQAから制動液BFが吐出される。これにより、還流路HKに制動液BFの循環流KNが発生される。そして、調圧弁UAが駆動され、循環流KNが絞られることによって、サーボ圧Puが発生される。第1アクチュエータYAの駆動では、供給圧Pmが目標圧Ptに近付くよう、供給圧Pmに基づくフィードバック制御によって、調圧弁UAが制御される。
≪通信異常時の第1制動ユニットSAにおける処理≫
 通信が正常に機能しない場合(即ち、通信異常の場合)の第1制動ユニットSAでの調圧制御について説明する。ステップS140の適否判定が否定されると、ステップS180にて、回生装置KGの作動が停止される。第1コントローラEAと回生コントローラEGとの間の通信が機能している場合には、「Fh=0」又は「FT=1」が第1コントローラEAから回生コントローラEGに送信されて、回生装置KGでは、ジェネレータGNによる発電が停止される。しかしながら、第1コントローラEAの通信機能が不調である場合には、回生コントローラEGは、目標回生制動力Fhを取得することができない。回生コントローラEGでは、このことに基づいて通信異常が識別され、ジェネレータGNによる発電が停止される。何れにしても、通信異常が発生した場合には、回生制動力Fgは「0」にされ、回生協調制御は終了される。
 ステップS190にて、「第1制動ユニットSAが作動可能であるか、否か(「能否判定」という)」が判定される。例えば、通信による供給圧Pmの取得ができないこと以外は正常である場合には、第1制動ユニットSAの作動が可能であることが判定される(即ち、能否判定が肯定される)。しかし、第1制動ユニットSAの駆動電圧Ve(第1コントローラEA、及び、第1アクチュエータYAに印加可能な電圧)が所定電圧ve未満に低下している場合には、第1制動ユニットSAの作動が不可であることが判定される(即ち、能否判定が否定される)。ここで、「駆動電圧Ve」は、第1駆動回路DRaに設けられた駆動電圧センサ(非図示)によって検出さる。また、「所定電圧ve」は能否判定用のしきい値であり、予め設定された所定値(定数)である。能否判定が肯定される場合には、処理はステップS200に進められる。一方、能否判定が否定される場合には、処理はステップS220に進められる。
 ステップS200では、第1コントローラEAは、第2操作変位Spbの信号を取得できないので、操作変位Spは、第1操作変位Spaに基づいて演算される。具体的には、第1操作変位Spaが操作変位Spとして決定される(即ち、「Sp=Spa」)。更に、ステップS200では、操作変位Sp(=Spa)、及び、演算マップZfvに基づいて、目標圧Ptが演算される。目標回生制動力Fhは「0」に決定され、目標摩擦制動力Fnは目標車体制動力Fvに等しいので、演算マップZfvでは、目標車体制動力Fv(演算マップZfvの縦軸)は目標摩擦制動力Fnに置換されている。従って、操作変位Spに基づいて演算された目標摩擦制動力Fnが、制動装置SXの諸元等に基づいて、供給圧Pmの次元に換算されて、目標圧Ptが決定される。
 ステップS210にて、目標圧Ptによるフィードフォワード制御のみによって、第1アクチュエータYAが駆動される。通信異常時には供給圧Pmが取得できないので、供給圧Pmに応じたフィードバック制御は省略される。
 ステップS190の能否判定が否定される場合には、ステップS220にて、導入弁VA、及び、開放弁VBへの電力供給が停止され、入力部NRの作動モードが、第2モードにされる。これにより、マスタピストンNMは、制動操作部材BPに連動して移動される。
 ステップS230にて、第1電気モータMA、及び、調圧弁UAへの電力供給が減少される。第1制動ユニットSAに全く給電できない場合を除き、給電が可能な場合には、第1制動ユニットSA(特に、調圧部CA)に含まれ、供給圧Pmを増加するための構成要素(UA、MA等)に対する給電が、通常制御の場合に比較して減少される。つまり、第1制動ユニットSAが異常状態である場合には、調圧部CAでは、給電停止、又は、出力低下駆動の継続(例えば、第1電気モータMAの低回転数nxでの駆動)が行われる。なお、通信異常が第1コントローラEAの機能喪失に起因する場合には、第1アクチュエータYAの構成要素には電力供給ができないので、入力部NRは第2モードになり、調圧部CAからの出力は停止される(即ち、「Pu=0」になる)。
≪補完制御の処理≫
 補完制御について説明する。補完制御は、通信異常時の第2制動ユニットSBでの調圧制御である。ステップS310~S370の処理が補完制御に該当する。補完制御は第2コントローラEBにて実行される。
 ステップS310にて、第2コントローラEBにて、第1、第2操作変位Spa、Spb、供給圧Pm(=Pmf)、判定フラグFT等の各種信号が読み込まれる。第2操作変位Spb(第2変位検出部SPbの検出値)は信号線LSpbを介して取得される。同様に、供給圧Pm(供給圧センサPMの検出値)は、信号線LPm介して取得される。第1操作変位Spa、及び、判定フラグFTは、通信バスBSから読み込まれる。なお、通信異常の場合には、第2コントローラEBでは、第1操作変位Spa、判定フラグFT等の信号が取得できない。
 ステップS320にて、第2コントローラEBにて、ステップS140と同様の方法で、「通信を介した信号伝達が正常状態であるか、否か」の適否判定が実行される。第2制動ユニットSBにおいて、通信バスBSを介した信号の受送信が可能である場合には、適否判定は肯定され、処理はステップS310に戻される。この場合には、補完制御は実行されない。信号の受送信が不可である場合には、処理はステップS330に進められる。ステップS320では、適否判定が肯定される場合には、判定フラグFUが、正常状態を表示する「0」に決定される。一方、第2制動ユニットSBにおいて、信号の送受信ができず、適否判定が否定される場合には、判定フラグFUが、異常状態を表示する「1」に決定される。
 ステップS330にて、回生装置KGの作動が停止される。例えば、「Fh=0」が、第2コントローラEBから回生コントローラEGに送信されて、回生装置KGでは、ジェネレータGNの発電が停止される(即ち、「Fg=0」)。或いは、「FU=1」が送信されて、ジェネレータGNの作動が停止されてもよい。
 ステップS340にて、操作変位Spが演算される。通信異常時には、第2コントローラEBでは、第1操作変位Spaの信号が受信できないため、第2操作変位Spbが操作変位Spとして決定される(即ち、「Sp=Spb」)。更に、ステップS340にて、操作変位Sp(=Spb)、及び、ステップS130と同様の方法に基づいて、目標車体制動力Fvが演算される。ここで、「同様の方法」は、回生制動力Fgが発生されない状態(即ち、「Fh=0、Fg=0」の状態)において、同様の演算マップZfvを採用して、目標車体制動力Fvを演算することである。但し、第1コントローラEAに用いられる演算マップZfvと第2コントローラEBに用いられる演算マップZfvとは完全に一致している必要はなく、それらが近似していればよい。
 ステップS350にて、目標摩擦制動力Fnが、制動装置SX等の諸元に基づいて供給圧Pmの次元に換算されて、目標圧Ptが決定される。第2コントローラEBにおける目標圧Ptは、第1コントローラEAにおける目標圧Ptと同様に、操作変位Sp(=Spb)、及び、演算マップ(Zfv等)に基づいて演算された供給圧Pmに対応する目標値である。従って、ステップS350での目標圧Ptは、ステップS200での目標圧Ptに、実質的に同じである。
 ステップS360にて、目標圧Pt、及び、供給圧Pmに基づいて、目標圧Ptと供給圧Pmとの偏差hP(「液圧偏差」という)が演算される。具体的には、目標圧Ptから供給圧Pmが減算されて、液圧偏差hPが決定される(即ち、「hP=Pt-Pm」)。第1制動ユニットSAにて演算される目標圧Ptと第2制動ユニットSBにて演算される目標圧Ptとは等価であるため、液圧偏差hPは、第1制動ユニットSAから出力されるべき供給圧(即ち、第1制動ユニットSAでの目標圧Pt)と実際に生じた供給圧Pmとの差を表す状態量である。このため、供給圧Pmが目標圧Ptよりも小さく、液圧偏差hPが「0」よりも大きい場合には、液圧偏差hPは、供給圧Pmを増加するための目標値である。また、供給圧Pmが目標圧Ptよりも大きく、液圧偏差hPが「0」よりも小さい場合には、液圧偏差hPは、供給圧Pmを減少するための目標値である。
 ステップS370にて、液圧偏差hPに基づいて、第2アクチュエータYBが駆動され、ホイール圧Pwの調整(増加又は減少)が行われる。供給圧Pmが目標圧Ptよりも小さく、ホイール圧Pwの増加が必要な場合(即ち、液圧偏差hPが「0」よりも大きい場合)には、第2電気モータMB、及び、制御弁UBが駆動される。具体的には、第2電気モータMBが駆動され、第2流体ポンプQBから制動液BFが吐出される。これにより、連絡路HS、及び、戻し路HLに制動液BFの循環流KLが発生される。そして、液圧偏差hPが増圧所定偏差hp以上である場合に、制御弁UBによって、供給圧Pmが液圧偏差hPに相当する分だけ増加される。ここで、「増圧所定偏差hp」は、予め設定された正の所定値(定数)である。供給圧Pmから増加される調整が、補完制御における「増圧制御」と称呼される。
 増圧制御では、制御弁UBが駆動され、循環流KLが絞られることによって、制御弁UBの上流側と下流側とで差圧が発生する。これにより、上流側液圧である調整圧Pqが、下流側液圧である供給圧Pmから増加される。つまり、第2アクチュエータYBの駆動では、調整圧Pqと供給圧Pmとの差圧(即ち、液圧「Pq-Pm」)が、液圧偏差hPになるように、制御弁UBが制御される。調整圧Pqはホイール圧Pwに等しいので、第2アクチュエータYBからは、供給圧Pm(実際値)に対して、液圧偏差hP(目標値)に対応する実際の液圧が加えられた液圧が、ホイール圧Pw(実際値)として出力される(即ち、「Pw=Pm+hP」)。増圧制御では、供給圧Pmが目標圧Ptよりも小さい場合に、制御弁UBが適宜駆動されることで、ホイール圧Pwが供給圧Pmから液圧偏差hPの分だけ増加される。
 一方、供給圧Pmが目標圧Ptよりも大きく、ホイール圧Pwの減少が必要な場合には、第2電気モータMB、インレット弁VI、及び、アウトレット弁VOが駆動される。具体的には、液圧偏差hPが減圧所定偏差hq未満である場合に、インレット弁VI、及び、アウトレット弁VOによって、供給圧Pmが、液圧偏差hPに相当する分だけ減少され、ホイール圧Pwとして出力される(即ち、「Pw=Pm-hP」)。ここで、「減圧所定偏差hq」は、予め設定された負の所定値(定数)である。供給圧Pmから減少される調整が、補完制御における「減圧制御」と称呼される。減圧制御では、供給圧Pmが目標圧Ptよりも大きい場合に、インレット弁VI、及び、アウトレット弁VOが適宜駆動されること(例えば、アンチロックブレーキ制御と同様の駆動方法)で、ホイール圧Pwが供給圧Pmから液圧偏差hPの分だけ減少される。なお、第2電気モータMBは、調圧リザーバRBから制御弁UBの上部に制動液BFを戻すために駆動される。
 第1制動ユニットSA(特に、第1コントローラEA)の作動に異常が発生し、通信異常が生じる場合には、第1制動ユニットSAから出力である供給圧Pmが低下することがある。極端な場合、第1制動ユニットSAの機能が失われ、第1制動ユニットSAからは、運転者の筋力のみによって、供給圧Pmが発生される。該状況でも、補完制御では、第2制動ユニットSBによって、供給圧Pmの低下が補われる。具体的には、第2制動ユニットSBでは、操作変位Sp、及び、第1制動ユニットSAと同様の演算マップZfvに基づいて、目標圧Ptが決定される。従って、第2制動ユニットSBでの目標圧Ptは、通常制御における供給圧Pmの目標値である。第1制動ユニットSAから出力される供給圧Pmは低下している場合には、液圧偏差hPは正の値として決定される。そして、第2制動ユニットSBによって、供給圧Pmから液圧偏差hPに相当する分が増加されて、ホイール圧Pwとして出力される。このときに出力されるホイール圧Pwは、通常制御におけるホイール圧Pwと同等である。つまり、補完制御(特に、増圧制御)によって、供給圧Pmの低下分が適切に補完される。
 また、通信線の断線等に起因して、通信異常が生じる場合がある。この場合には、第1制動ユニットSAは作動可能ではあるが、供給圧Pmが取得できないため、液圧フィードバック制御が実行できない。これにより、目標圧Ptと供給圧Pmとの間に誤差が生じることがある。第2制動ユニットSBでの液圧偏差hPは、この液圧誤差に相等しいため、通信異常に起因する液圧誤差が補償されるよう、補完制御(即ち、増圧制御、及び、減圧制御)によって、ホイール圧Pwの調整(増減)が行われる。
 以上で説明したように、補完制御では、第1制動ユニットSA、及び、通信機能が正常であれば本来出力されるはずである供給圧(即ち、目標圧Pt)と実際に発生した供給圧Pmとの差(即ち、液圧偏差hP)が補償される。通信異常の発生時には、第2制動ユニットSBは、第1制動ユニットSAの作動状態を把握することができないが、補完制御によって、実際の供給圧Pmが過不足なく補われる。結果、通信異常時であっても、調圧制御の精度が確保される。
 第2制動ユニットSBによる補完制御では、減圧制御が省略され、増圧制御のみが実行されてもよい。これは、補完制御では、ホイール圧Pwの低下分の補填が最も重要であることに基づく。加えて、インレット弁VI、及び、アウトレット弁VOが作動されると、音、振動が発生することもある。このため、減圧制御が省略されることで、制動制御装置SCの静寂性が向上され得る。
<調圧弁UAの駆動制御>
 図5のブロック図を参照して、調圧弁UAの駆動制御の詳細(特に、ステップS170、S210の処理)について説明する。該駆動制御の処理は、第1コントローラEAによって実行される。調圧弁UAによって、サーボ圧Puが調節され、最終的には、供給圧Pmが調節される。
 調圧弁UAの駆動制御は、指示電流演算ブロックIS、液圧偏差演算ブロックHP、補償電流演算ブロックIH、及び、第1電流フィードバック制御ブロックIFAにて構成される。
 指示電流演算ブロックISでは、目標圧Pt、及び、予め設定された演算マップZisに基づいて、指示電流Isaが演算される。「指示電流Isa」は、目標圧Ptが達成されるために必要な、調圧弁UAの供給電流Ia(第1供給電流)に係る目標値である。演算マップZisに応じて、目標圧Ptの増加に従って、指示電流Isaが増加するように決定される。指示電流演算ブロックISは、目標圧Ptに基づくフィードフォワード制御に相当する。
 液圧偏差演算ブロックHPでは、目標圧Ptと供給圧Pmとの偏差hP(液圧偏差)が演算される。具体的には、目標圧Ptから供給圧Pmが減算されて、液圧偏差hPが決定される(即ち、「hP=Pt-Pm」)。
 補償電流演算ブロックIHでは、液圧偏差hP、及び、予め設定された演算マップZihに基づいて、補償電流Ihが演算される。指示電流Isaは、目標圧Ptに対応して演算されるが、目標圧Ptと供給圧Pmとの間に誤差が生じる場合がある。「補償電流Ih」は、この誤差を補償(減少)するためのものである。補償電流Ihは、演算マップZihに応じて、液圧偏差hPの増加に従って、増加するように決定される。具体的には、目標圧Ptが供給圧Pmよりも大きく、液圧偏差hPが正符号の場合には、指示電流Isaが増加されるよう、正符号の補償電流Ihが決定される。一方、目標圧Ptが供給圧Pmよりも小さく、液圧偏差hPが負符号の場合には、指示電流Isaが減少されるよう、負符号の補償電流Ihが決定される。ここで、演算マップZihには、不感帯が設けられる。また、補償電流演算ブロックIHは、供給圧Pmに基づくフィードバック制御に相当する。
 指示電流Isaに対して、補償電流Ihが加えられて、第1目標電流Itaが演算される(即ち、「Ita=Isa+Ih」)。「第1目標電流Ita」は、調圧弁UAに供給される電流の最終的な目標値である。つまり、第1目標電流Itaは、フィードフォワード項Isaとフィードバック項Ihとの和として決定される。従って、調圧弁UAの駆動制御は、液圧において、フィードフォワード制御(指示電流演算ブロックISの処理)、及び、フィードバック制御(補償電流演算ブロックIHの処理)によって構成される。
 第1電流フィードバック制御ブロックIFAでは、第1目標電流Ita(目標値)、及び、第1供給電流Ia(実際値)に基づいて、第1供給電流Iaが、第1目標電流Itaに近付き、一致するように、第1駆動信号Uaが演算される。ここで、第1供給電流Iaは、第1駆動回路DRaに設けられた第1供給電流センサIAによって検出される。第1電流フィードバック制御ブロックIFAでは、「Ita>Ia」であれば、第1供給電流Iaが増加するように第1駆動信号Uaが決定される。一方、「Ita<Ia」であれば、第1供給電流Iaが減少するように第1駆動信号Uaが決定される。つまり、第1電流フィードバック制御ブロックIFAでは、電流に係るフィードバック制御が実行される。従って、調圧弁UAの駆動制御では、液圧に係るフィードバック制御に加え、電流に係るフィードバック制御が備えられる。
 通信線の断線等で通信異常が発生する場合(即ち、ステップS210の処理)には、第1コントローラEAでは、供給圧Pmが取得できない。このため、第1コントローラEAでは、指示電流Isaは演算されるが、液圧偏差hPは演算できないので、補償電流Ihは演算されない(即ち、「Ih=0」)。結果、指示電流Isaが、目標電流Itaとして決定される(即ち、「Ita=Isa」)。通信異常時には、調圧弁UAの駆動制御では、供給圧Pmに基づくフィードバック制御は実行されず、目標圧Ptに基づくフィードフォワード制御のみが実行される。
<制御弁UBの駆動制御>
 図6のブロック図を参照して、補完制御での制御弁UBの駆動制御の詳細(特に、ステップS360、S370の処理)について説明する。補完制御の処理は、第2コントローラEBによって実行される。通信異常が判定される前(即ち、「FT=0、FU=0」の場合)には、第2アクチュエータYBの作動は停止されている。ステップS320の適否判定が否定され、通信異常状態が判定される時点(即ち、「FU=0」から「FU=1」への切り替え時点)で、第2アクチュエータYBにて補完制御が開始される。なお、通信異常の場合には、第2コントローラEBは、第1コントローラEAにて決定された判定フラグFT、及び、第1操作変位Spaが受信できない。
 補完制御では、液圧偏差hPに基づいて、ホイール圧Pwの調整が行われる。補完制御には、ホイール圧Pwを増加する増圧制御とホイール圧Pwを減少する減圧制御とが含まれる。補完制御には、「液圧偏差hPが、減圧所定偏差hq(予め設定された負の定数)よりも大きく、且つ、増圧所定偏差hp(予め設定された正の定数)よりも小さい」範囲で不感帯が設けられる。補完制御での制御弁UBの駆動制御は、液圧偏差演算ブロックHP、第2目標電流演算ブロックIBT、第2電流フィードバック制御ブロックIFB、及び、減圧制御ブロックPGにて構成される。
 液圧偏差演算ブロックHPでは、目標圧Ptと供給圧Pmとの偏差hPが演算される。液圧偏差演算ブロックHPの処理は、第1コントローラEAの液圧偏差演算ブロックHPの処理と同じである。具体的には、操作変位Spに基づいて演算された目標圧Ptから、供給圧Pmが減算されて、液圧偏差hPが決定される(即ち、「hP=Pt-Pm」)。目標圧Ptは、第1制動ユニットSAにおける目標圧Ptの演算方法と同様の方法に基づいて、第2制動ユニットSBにて演算される。詳細には、目標圧Ptは、「Fh=0」でのステップS130~S160の処理、又は、ステップS200の処理にて採用される演算マップと同一又は近似の演算マップ(Zfv等)に基づいて演算される。補完制御では、液圧偏差hPが、供給圧Pmとホイール圧Pwとの差圧の目標値として取り扱われる。
 供給圧Pmが目標圧Ptよりも小さい場合(詳細には、液圧偏差hPが増圧所定偏差hp以上であり、補完制御の不感帯を超える場合)には、第2目標電流演算ブロックIBTにて、液圧偏差hP、及び、予め設定された演算マップZibに基づいて、第2目標電流Itbが演算される。「第2目標電流Itb」は、制御弁UBによって液圧偏差hPに相当する分の差圧を発生させるために必要な、制御弁UBの供給電流Ib(第2供給電流)に係る目標値である。第2目標電流Itbは、演算マップZibに応じて、液圧偏差hPの増加に従って、増加するように決定される。第2目標電流演算ブロックIBTの処理は、前述の指示電流演算ブロックISと同様の処理(即ち、液圧に基づくフィードフォワード制御)である。
 第2電流フィードバック制御ブロックIFBでは、第2目標電流Itb(目標値)、及び、第2供給電流Ib(実際値)に基づいて、第2供給電流Ibが、第2目標電流Itbに近付き、一致するように、第2駆動信号Ubが演算される。ここで、第2供給電流Ibは、第2駆動回路DRbに設けられた第2供給電流センサIBによって検出される。第2電流フィードバック制御ブロックIFBでは、「Itb>Ib」であれば、第2供給電流Ibが増加するように第2駆動信号Ubが決定される。一方、「Itb<Ib」であれば、第2供給電流Ibが減少するように第2駆動信号Ubが決定される。第2電流フィードバック制御ブロックIFBでは、前述の第1電流フィードバック制御ブロックIFAと同様の電流に係るフィードバック制御が実行される。第2目標電流演算ブロックIBT、及び、第2電流フィードバック制御ブロックIFBが、増圧制御の処理に相当する。
 供給圧Pmが目標圧Ptよりも大きい場合(詳細には、液圧偏差hPが減圧所定偏差hq以下であり、補完制御の不感帯を超える場合)には、減圧制御ブロックPGにて、インレット弁VI、及び、アウトレット弁VOが制御される。減圧制御ブロックPGでは、供給圧Pmが、液圧偏差hPに相当する分だけ減少されるように、インレット弁VI、及び、アウトレット弁VOの駆動信号Vi、Voが決定される。減圧制御ブロックPGが、減圧制御の処理に相当する。
 上述した制御弁UBの駆動制御は開ループ制御であるが、液圧に係るフィードバック制御を含む閉ループ制御として構成されてもよい。該構成では、調整圧Pqを検出するよう、制御弁UBの下部に調整圧センサ(非図示)が設けられる。そして、上記の補償電流演算ブロックIHと同様の方法で、供給圧Pmと調整圧Pqとの偏差に基づいて、第2目標電流Itbが微調整される。
<2系統調圧の構成>
 上述した実施形態では、制動制御装置SCの正常状態では、第2アクチュエータYBの作動は停止され、第1アクチュエータYAのみが駆動された。この場合、前輪、後輪供給圧Pmf、Pmr(=Pm)は等しいので、前輪、後輪ホイール圧Pwf、Pwr(=Pw)は等しい。このような調圧制御が「1系統調圧」と称呼される。1系統調圧の構成では、通常制御において、第2アクチュエータYBは駆動されないので、供給圧Pmに対応する目標圧Ptm(「目標供給圧」という)とホイール圧Pwに対応する目標圧Ptw(「目標ホイール圧」という)とは一致する(即ち、「Pt=Ptm=Ptw」)。
 1系統調圧の構成に代えて、制動制御装置SCの正常時に、第1アクチュエータYAに加え、第2アクチュエータYBが駆動されて、前輪、後輪ホイール圧Pwf、Pwrが別々に調節されてもよい。具体的には、第1アクチュエータYAから、同一の供給圧Pmf、Pmr(=Pm)が、第2アクチュエータYBに供給される。そして、第2アクチュエータYBによって、回生装置KGが備えられる車輪に対応する一方側系統のホイール圧(例えば、前輪ホイール圧Pwf)が、回生装置KGが備えられない車輪に対応する他方側系統のホイール圧(例えば、後輪ホイール圧Pwr)よりも小さくなるように調整される。第2アクチュエータYBの駆動によって、前輪、後輪ホイール圧Pwf、Pwrが、独立且つ個別に調節される調圧制御が「2系統調圧」と称呼される。回生協調制御において、2系統調圧は、1系統調圧に比較して、回生効率が向上されるとともに、前後車輪間の制動力配分が適正化される。
 2系統調圧の構成では、正常状態でも第2アクチュエータYBが駆動されるので、供給圧Pmに対応する目標圧Ptm(目標供給圧)とホイール圧Pwに対応する目標圧Ptw(目標ホイール圧)とが異なる。このため、第1アクチュエータYAでは、供給圧Pm(=Pmf、Pmr)が、目標供給圧Ptmに近付き、一致するように、フィードフォワード制御、及び、フィードバック制御が実行される。そして、第2アクチュエータYBでは、前輪、後輪目標ホイール圧Ptwf、Ptwrと目標供給圧Ptm(又は、実際の供給圧Pm)との差圧hPf、hPr(「前輪、後輪目標差圧」という)に基づいて、フィードフォワード制御が実行される。
 2系統調圧の構成においても、補完制御が適用される。通信異常が判定される時点(即ち、判定フラグFT、FUが「1」に切り替えられる時点)にて、回生協調制御が終了され、回生制動力Fgの発生が停止される。補完制御では、第1制動ユニットSAから出力される供給圧Pmの過不足が補われるよう、第2アクチュエータYBによって供給圧Pm(実際値)が液圧偏差hP(目標値)に相当する分だけ調整(増加又は減少)される。2系統調圧の構成であっても、1系統調圧の構成と同様に、通信異常時に、調圧制御が適切に実行され、第1制動ユニットSAからの供給圧Pmの過不足が適量で補われる。
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果(通信異常時における適切な調圧制御の実行等)を奏する。
 上述の実施形態では、各種制動力の目標値(Fv、Fx、Fh、Fn等)が車両JVに作用する前後力の次元で演算された。これに代えて、車両JVの減速度の次元、或いは、車輪WHのトルクの次元で演算されてもよい。これは、前後力から車両減速度に至る状態量(「力に係る状態量」という)は、等価であることに基づく。従って、目標圧Ptは、車両JVに作用する前後力から車両JVの減速度に至るまでの力に係る状態量に基づいて演算される。
 上述の実施形態では、2系統の制動系統として、前後型のものが採用された。これに代えて、2系統の制動系統として、ダイアゴナル型(「X型」ともいう)のものが採用されてもよい。該構成では、2つのマスタ室Pmのうちの一方が、左前輪ホイールシリンダ、及び、右後輪ホイールシリンダに接続され、2つのマスタ室Pmのうちの他方が、右前輪ホイールシリンダ、及び、左後輪ホイールシリンダに接続される。但し、2系統調圧が採用される構成では、制動系統は、前後型に限られる。
 上述の実施形態では、供給圧センサPMは、第2アクチュエータYBに内蔵され、第2コントローラEBに接続された。供給圧センサPMが、操作変位センサSPと同様に、2つの検出部を備え、それらが、第1、第2コントローラEA、EBに接続されてもよい。該構成では、通信異常時であっても、第1コントローラEAは供給圧Pmを取得でき、供給圧Pmに係るフィードバック制御を実行することができる。従って、上述した液圧誤差は発生せず、これを補償するための補完制御は実行されない。従って、補完制御では、通信異常が発生し、且つ、第1制動ユニットSAの性能が低下した場合に限って、補完制御(特に、増圧制御)が実行される。即ち、該構成では、補完制御において、減圧制御が省略される。
 上述の実施形態では、調圧部CAとして、流体ポンプQAが吐出する制動液BFの循環流KNを調圧弁UAで絞ることによってサーボ圧Puを調節するもの(所謂、還流型の構成)が例示された。これに代えて、調圧部CAでは、アキュムレータに蓄圧された圧力がリニア型電磁弁によって調節されてもよい(所謂、アキュムレータ型の構成)。また、電気モータで直接駆動されるピストンによって、シリンダ内の体積が増減されて、サーボ圧Puが調整されてもよい(所謂、電動シリンダ型の構成)。電気モータの出力は、供給電流に比例するため、調圧弁UAと同様に、目標圧Ptに基づくフィードフォワード制御の実行が可能である。何れの構成でも、調圧部CAによって、供給圧Pmが出力信号としてフィードバックされて、サーボ室Ruの液圧Pu(サーボ圧)が電気的に調整される。
 上述の実施形態では、マスタシリンダCMとして、タンデム型のものが例示された。これに代えて、シングル型のマスタシリンダCMが採用されてもよい。該構成では、セカンダリマスタピストンNSが省略される。そして、1つのマスタ室Rmが、4つのホイールシリンダCWに接続される。該構成では、マスタシリンダCMから、同一の供給圧Pmf、Pmr(=Pm)が出力される。
 シングル型のマスタシリンダCMが採用される構成では、マスタ室Rmが前輪ホイールシリンダCWfに接続され、後輪ホイールシリンダCWrには、調圧部CAからサーボ圧Puが直接供給されてもよい。該構成では、マスタシリンダCMから、前輪供給圧Pmfが出力される。一方、調圧部CAから、サーボ圧Puが、後輪供給圧Pmrとして出力される。
 上述の実施形態では、アプライ部APにおいて、マスタ室Rmの受圧面積rm(マスタ面積)とサーボ室Ruの受圧面積ru(サーボ面積)とが等しく設定された。マスタ面積rmとサーボ面積ruとは等しくなくてもよい。マスタ面積rmとサーボ面積ruとが異なる構成では、サーボ面積ruとマスタ面積rmとの比率に基づいて、供給圧Pmとサーボ圧Puとの変換演算が可能である(即ち、「Pm・rm=Pu・ru」に基づく換算)。
 上述の実施形態では、第1制動ユニットSAにおいて、供給圧PmがマスタシリンダCMを介して出力された。即ち、液圧の伝達経路においてアプライ部APと調圧部CAとが直列に配置され、調圧部CAから供給されたサーボ圧Puが、マスタピストンNMを介して、供給圧Pmとして伝達された。これに代えて、アプライ部APと調圧部CAとが並列に配置されてもよい。具体的には、アプライ部AP(特に、マスタシリンダCM)、及び、調圧部CAの夫々は、第2アクチュエータYBに直に接続される。そして、第1モードでは「調圧部CAと第2アクチュエータYBとの接続」が選択され、第2モードでは「アプライ部APと第2アクチュエータYBとの接続」が選択される。例えば、該選択は、オン・オフ電磁弁(「切替弁」という)によって達成される。該構成における第1モードでは、調圧部CAにて発生されたサーボ圧Puが、アプライ部APを介さずに、供給圧Pmとして直接出力される。このとき、アプライ部APはストロークシミュレータSSに接続され、制動操作部材BPの操作力FpはシミュレータSSによって発生される。一方、第2モードでは、制動操作部材BPの操作によって発生されたマスタ室Rmの液圧が、供給圧Pmとして出力される。このとき、アプライ部APはシミュレータSSから切り離される。
 上述の実施形態では、制動制御装置SCは、後輪WHrに回生装置KGが備えらない車両JVに適用された。制動制御装置SCは、後輪WHrに回生装置KGが備えられる車両JVに適用されてもよい。
<実施形態のまとめ>
 以下、制動制御装置SCの実施形態についてまとめる。制動制御装置SCは、制動操作部材BPの操作変位Sp(操作変位)とホイールシリンダCWの液圧Pw(ホイール圧)とを独立で調整可能なブレーキバイワイヤ型の装置である。
 制動制御装置SCには、「制動操作部材BPの操作変位Sp(操作量)に応じて供給圧Pmを出力する第1制動ユニットSA(第1ユニット)」と、「第1制動ユニットSAとホイールシリンダCWとの間に設けられ、供給圧Pmを調整してホイールシリンダCWにホイール圧Pwを出力する第2制動ユニットSB(第2ユニット)」と、「第1制動ユニットSAと第2制動ユニットSBとの間で信号伝達を行う通信バスBS」と、「操作変位Sp(操作量)を検出する操作変位センサSP(操作量センサ)」と、「供給圧Pmを検出する供給圧センサPM」と、が備えられる。第1制動ユニットSAでは、操作変位Spと供給圧Pmとが独立する第1モード、及び、操作変位Spと供給圧Pmとが連動する第2モードのうちの何れかの一方が選択される。これにより、制動制御装置SCは、ブレーキバイワイヤ型の装置として機能する。
 制動制御装置SCの作動が正常である場合(例えば、信号伝達が正常である場合)には、第1制動ユニットSAにて、第1モード(バイワイヤモード)が選択され、通常制御が実行される。通常制御では、操作変位Spに基づいて目標圧Ptが演算され、供給圧Pmが目標圧Ptに近付くように制御される。具体的には、供給圧Pmが目標圧Ptに一致するよう、供給圧Pmに基づくフィードバック制御(閉ループ制御)が実行される。なお、通常制御では、該フィードバック制御の他に、目標圧Ptに基づくフィードフォワード制御(開ループ制御)が実行される。
 制動制御装置SCでは、信号伝達(即ち、通信)に異常がある場合には、第2制動ユニットSBでは、操作変位Sp(特に、第2操作変位Spb)に基づいて目標圧Ptが演算される。ここで、第2制動ユニットSBにおける目標圧Ptの演算は、第1制動ユニットSAにおける目標圧Ptの演算と同様の方法で行われる。従って、第1、第2制動ユニットSA、SBの夫々で演算される目標圧Ptは実質的には等しい。そして、第2制動ユニットSBでは、目標圧Ptと供給圧Pmとの偏差hPに基づいてホイール圧Pwが調整される。具体的には、第2制動ユニットSBでは、供給圧Pmが目標圧Ptよりも小さい場合には、ホイール圧Pwが偏差hPに相当する分だけ増加される。一方、第2制動ユニットSBでは、供給圧Pmが目標圧Ptよりも大きい場合には、ホイール圧Pwが偏差hPに相当する分だけ減少される。更に、補完制御では、ホイール圧Pwの減少は行われず、ホイール圧Pwの増加に限って行われてもよい。これは、ホイール圧Pwの低下補償が最重要であることに基づく。ホイール圧Pwの減少が禁止され、増加のみが行われる構成では、ホイール圧Pwの調整に際して、インレット弁VI、アウトレット弁VOが駆動されないため、制動制御装置SCの静寂性が向上される。
 第1、第2コントローラEA、EBの間で情報伝達ができない場合には、第1制動ユニットSAに異常が発生しても、第1制動ユニットSAは該状況を第2制動ユニットSBに伝達することができない。換言すれば、通信異常の場合には、第2制動ユニットSBは、第1制動ユニットSAの作動状態を把握することができない。例えば、第1制動ユニットSA(特に、第1コントローラEA)が故障し、通信異常が生じる場合には、第1制動ユニットSAの作動が完全に停止されていることがある。この場合、第1制動ユニットSA(特に、入力部NR)は第2モード(マニュアルモード)にされていて、供給圧Pmは電気的には発生されず、運転者の筋力を動力源に発生される(ステップS190が否定される場合に相当)。また、第1制動ユニットSAでの作動は完全には停止されていないが、第1制動ユニットSAのからの出力Pmが、目標値Ptから大幅に低下していることもある。
 補完制御では、各種異常に対応して、第1制動ユニットSAから出力される供給圧Pmが適切である場合は補完が行われず、供給圧Pmが不適切である場合に限って、供給圧Pmが過不足なく補われる。第2制動ユニットSBで演算される液圧偏差hPは、信号伝達を含めて、制動制御装置SCが正常であれば、本来出力されるはずである供給圧(即ち、目標圧Pt)と実際に発生した供給圧Pmとの乖離(即ち、目標圧Ptに対する供給圧Pmの過不足量)を表す。このため、液圧偏差hPに基づく補完制御では、供給圧Pmの過不足量が調整(増減)されて、第2制動ユニットSBからホイール圧Pwとして出力される。これにより、通信異常のために第1制動ユニットSAの作動状態が把握できなくても、第2制動ユニットSBによって、適切に調圧制御が実行される。
 例えば、制動制御装置SCでは、操作変位センサSPは、第1、第2制動ユニットSA、SBの両方に接続されるが、供給圧センサPMは、第2制動ユニットSBのみに接続される。該構成では、第1制動ユニットSAは、供給圧Pmを、通信バスBSを介して、第2制動ユニットSBから取得するので、信号伝達に異常がある場合には、第1制動ユニットSAは、供給圧Pmの情報を利用できず、フィードバック制御の実行ができなくなる。第1制動ユニットSAでは、供給圧Pmがフィードフォワード制御のみによって調整されるため、ホイール圧Pwに誤差が生じることがある。しかしながら、上記の補完制御により、ホイール圧Pwが適切に調整されるため、調圧制御の精度が良好に確保される。
 

Claims (2)

  1.  制動操作部材の操作量に応じて供給圧を出力する第1ユニットと、
     前記第1ユニットとホイールシリンダとの間に設けられ、前記供給圧を調整して前記ホイールシリンダにホイール圧を出力する第2ユニットと、
     前記第1ユニットと前記第2ユニットとの間で信号伝達を行う通信バスと、
     前記操作量を検出する操作量センサと、
     前記供給圧を検出する供給圧センサと、
     を備える車両の制動制御装置において、
     前記第1ユニットは、前記操作量に基づいて目標圧を演算し、前記供給圧を前記目標圧に近付けるように制御し、
     前記信号伝達に異常がある場合には、
     前記第2ユニットは、前記操作量に基づいて前記目標圧を演算し、前記目標圧と前記供給圧との偏差に基づいて前記ホイール圧を調整する、車両の制動制御装置。
  2.  請求項1に記載される車両の制動制御装置において、
     前記第2ユニットは、前記供給圧が前記目標圧よりも小さい場合に、前記ホイール圧を前記偏差に相当する分だけ増加する、車両の制動制御装置。
     
PCT/JP2022/047393 2021-12-22 2022-12-22 車両の制動制御装置 WO2023120651A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-208679 2021-12-22
JP2021208679A JP2023093196A (ja) 2021-12-22 2021-12-22 車両の制動制御装置

Publications (1)

Publication Number Publication Date
WO2023120651A1 true WO2023120651A1 (ja) 2023-06-29

Family

ID=86902700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047393 WO2023120651A1 (ja) 2021-12-22 2022-12-22 車両の制動制御装置

Country Status (2)

Country Link
JP (1) JP2023093196A (ja)
WO (1) WO2023120651A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169039A (ja) * 2013-03-05 2014-09-18 Hitachi Automotive Systems Ltd ブレーキ制御装置
WO2016136671A1 (ja) * 2015-02-27 2016-09-01 日立オートモティブシステムズ株式会社 ブレーキ制御装置
WO2019187807A1 (ja) * 2018-03-28 2019-10-03 日立オートモティブシステムズ株式会社 電動ブレーキシステム、液圧制御回路、および、液量制御回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169039A (ja) * 2013-03-05 2014-09-18 Hitachi Automotive Systems Ltd ブレーキ制御装置
WO2016136671A1 (ja) * 2015-02-27 2016-09-01 日立オートモティブシステムズ株式会社 ブレーキ制御装置
WO2019187807A1 (ja) * 2018-03-28 2019-10-03 日立オートモティブシステムズ株式会社 電動ブレーキシステム、液圧制御回路、および、液量制御回路

Also Published As

Publication number Publication date
JP2023093196A (ja) 2023-07-04

Similar Documents

Publication Publication Date Title
JP4535103B2 (ja) ブレーキ制御装置
US20080234909A1 (en) Brake control apparatus and pump-up system
KR102357637B1 (ko) 전동 배력 장치 및 브레이크 제어 장치
US20230053950A1 (en) Brake system and method for controlling a brake system
JP7040316B2 (ja) 車両の制動制御装置
US20210261106A1 (en) Brake control device for vehicle
WO2020004240A1 (ja) 車両の制動制御装置
CN112313124A (zh) 车辆制动控制装置
JP4803109B2 (ja) ブレーキ制御装置
WO2023120651A1 (ja) 車両の制動制御装置
WO2023120652A1 (ja) 車両の制動制御装置
WO2023120653A1 (ja) 車両の制動制御装置
WO2023120650A1 (ja) 車両の制動制御装置
JP2023093198A (ja) 車両の制動制御装置
WO2023157874A1 (ja) 車両の制動制御装置
JP2023093201A (ja) 車両の制動制御装置
WO2023171814A1 (ja) 車両の制動制御装置
JP2023093199A (ja) 車両の制動制御装置
JP2023093200A (ja) 車両の制動制御装置
WO2023171813A1 (ja) 車両の制動制御装置
WO2023171812A1 (ja) 車両の制動制御装置
WO2023171810A1 (ja) 車両の制動制御装置
WO2023171811A1 (ja) 車両の制動制御装置
WO2024111655A1 (ja) 車両の制動制御装置
JP2024033554A (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911353

Country of ref document: EP

Kind code of ref document: A1