WO2023149675A1 - 티타늄계 촉매를 포함하는 필름용 폴리에스테르 수지 조성물 및 그 제조방법 - Google Patents
티타늄계 촉매를 포함하는 필름용 폴리에스테르 수지 조성물 및 그 제조방법 Download PDFInfo
- Publication number
- WO2023149675A1 WO2023149675A1 PCT/KR2023/000483 KR2023000483W WO2023149675A1 WO 2023149675 A1 WO2023149675 A1 WO 2023149675A1 KR 2023000483 W KR2023000483 W KR 2023000483W WO 2023149675 A1 WO2023149675 A1 WO 2023149675A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester resin
- film
- titanium
- resin composition
- formula
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/85—Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0091—Complexes with metal-heteroatom-bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Definitions
- the present invention relates to a polyester composition for a film and a polyester resin for a film manufactured therefrom.
- Polyester refers to a polymer formed by polycondensation of a compound formed by the formation of an ester between a carboxyl group and a hydroxyl group.
- polyester polymerized with terephthalic acid and ethylene glycol has excellent mechanical and chemical properties, so it has high industrial value and is widely used in fibers, films, sheets, and hollow molded articles.
- films using polyester resins are widely used in various industrial fields such as magnetic recording media, condensers, optics, and general industrial use because they have excellent mechanical properties, thermal properties, chemical resistance, and electrical properties.
- melt extrusion molding is required at a temperature higher than the melting point of 250 to 300 ° C. may occur, which causes a decrease in the transparency of the film.
- various catalysts are generally used for the polycondensation reaction of the polyester resin, but antimony compounds or germanium compounds are mostly used on an industrial scale.
- polyester resins polycondensed with antimony compounds as catalysts show a unique black color and are concerned about toxicity and environmental pollution
- polyester resins polycondensed with germanium compounds as catalysts are industrially
- a titanium (Ti)-based catalyst introduced as an alternative to this is capable of overcoming the problems of the antimony and germanium catalysts, but when used as a polyester polycondensation catalyst, the polyester itself is colored yellow and the melting thermal stability becomes unstable. may occur.
- a titanium-based compound catalyst is used in a film or the like, the formation of particles such as by-products cannot be suppressed, which affects the lubricity and smoothness of the film, and as a result, the film may be ruptured.
- An object of the present invention is to provide a polyester resin composition for a film capable of producing a polyester resin having a low foreign matter content.
- the polyester resin according to the present invention has excellent electrostatic application property and low melting resistivity, so when a film is manufactured using the polyester resin, a gap is not formed between the drum surface and the sheet-like article even at a high rotation speed, resulting in a uniform and highly transparent film. It serves another purpose.
- the present invention for solving the above problems is a polyester resin composition for a film including a polyester resin, a titanium-based chelate catalyst, a pinning agent, and a phosphorus-based compound, and satisfying all of the following relational expressions (1) to (3).
- the M means the total content of metal components excluding phosphorus (P) in the polyester resin composition
- T is the content of titanium based on the titanium element
- the R means melting resistivity.
- the composition may be a polyester resin composition for a film, characterized in that it satisfies the following relational expression (4).
- the P means the amount of elemental phosphorus contained in the phosphorus compound.
- the titanium chelate catalyst is a polyester resin for a film, characterized in that it is a reaction product of titanium alkoxide (titanium-(IV)-alkoxide) and alpha-hydroxy carboxylic acid represented by the following formula (1) may be a composition.
- R 1 is an alkyl group having 1 to 6 carbon atoms or an isomer thereof.
- reaction product may be a polyester resin composition for a film, characterized in that titanium alpha-hydroxy carboxylate (titanium alpha-hydroxy carboxylate) represented by the following formula (2).
- R 2 to R 5 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms or an isomer thereof.
- the phosphorus-based compound may be a polyester resin composition for a film, characterized in that represented by the following formula (3), preferably TEP (Triethyl phosphate).
- R 6 to R 8 are each independently an alkyl group having 1 to 6 carbon atoms or an isomer thereof.
- the pinning agent may be a polyester resin composition for film, characterized in that the magnesium (Mg) compound.
- the above-described composition may be a polyester resin composition for a film characterized in that it further comprises 1 ⁇ 10ppm based on the total weight of the polyester resin composition of the complementary colorant containing blue and red dyes.
- a film made of a polyester resin composition selected from any one of the above-mentioned polyester resin compositions is provided.
- step (2) preparing an esterification reaction product in which an acid component and a diol component are reacted, and (2) adding a titanium-based chelate catalyst, a pinning agent, and a phosphorus-based compound to the prepared esterification reaction product to obtain
- a step of preparing a polyester resin wherein step (2) is characterized by preparing a polyester resin having a melt resistivity of 0.01 to 10 M ⁇ cm by combining the composition of the titanium-based chelate catalyst, pinning agent, and phosphorus-based compound. It is a method for producing a polyester resin for a film to be.
- the step (2) may be a method for producing a polyester resin for a film, characterized in that the carboxyl group at the end of the polyester resin is 1 to 45 by combining the composition of the titanium-based chelate catalyst, pinning agent, and phosphorus-based compound.
- titanium-based chelate catalyst is a reaction product of titanium alkoxide (titanium-(IV)-alkoxide) represented by Formula 1 and alpha-hydroxy carboxylic acid, and the phosphorus-based compound is represented by Formula 3 It may be a method for producing a polyester resin for a film, characterized in that represented by.
- R 1 is each independently an alkyl group having 1 to 6 carbon atoms and an isomer thereof, and at least one of them is not hydrogen.
- R 6 to R 8 are each independently an alkyl group having 1 to 6 carbon atoms or an isomer thereof.
- reaction product may be a polyester resin composition for a film, characterized in that titanium alpha-hydroxy carboxylate (titanium alpha-hydroxy carboxylate) represented by the following formula (2).
- R 2 to R 5 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms or an isomer thereof.
- the polyester resin composition using the titanium-based chelate catalyst according to the present invention enables a polycondensation reaction of polyester at a low temperature to improve the thermal stability of the polyester resin and at the same time exhibits a high degree of polymerization, thereby reducing terminal groups (carboxyl groups) is minimized, and a polyester resin having a small foreign material content can be produced.
- the polyester resin according to the present invention has excellent electrostatic application property and low melting resistivity, so when a film is manufactured using the polyester resin, a film of uniform thickness is produced because a gap between the drum surface and the sheet-like article is not formed even at a high rotation speed, and foreign matter A film with high transparency can be produced with a small content.
- the present invention provides a polyester resin composition for a film comprising a polyester resin polycondensate, a titanium-based chelate catalyst, a pinning agent, and a phosphorus-based compound and satisfying all of the following relational expressions (1) to (3), A solution to a problem was sought.
- the M means the total content of metal components excluding phosphorus (P) in the polyester resin composition
- T is the content of titanium based on the titanium element
- the R means melting resistivity.
- the physical properties of the polyester resin itself can be improved, and the uniformity and transparency of the film manufactured through this can be improved.
- the polyester resin polycondensate may be prepared through an esterification reaction by reacting an acid component and a diol component.
- Polymerization of the acid component and the diol component may be carried out under conditions commonly used in the esterification polymerization reaction in the art, for example stirring at 200 to 260 ° C. for 150 to 240 minutes at a rate of 40 to 80 rpm It can be done through, but is not limited thereto.
- the acid component includes terephthalic acid, and may further include an aromatic polycarboxylic acid having 6 to 14 carbon atoms, an aliphatic polycarboxylic acid having 2 to 14 carbon atoms, or a sulfonic acid metal salt other than terephthalic acid.
- the aromatic polyhydric carboxylic acid having 6 to 14 carbon atoms may be used without limitation as an acid component known as an acid component used for the production of polyester, but preferably any one selected from the group consisting of dimethyl terephthalate, isophthalic acid and dimethyl isophthalate. It may be one or more, and more preferably, it may be isophthalic acid in terms of reaction stability with terephthalic acid, ease of handling, and economy.
- aliphatic polyhydric carboxylic acids having 2 to 14 carbon atoms may be used without limitation as known acid components used for the production of polyester, but non-limiting examples thereof include oxalic acid, malonic acid, succinic acid, and glutaric acid. acid, adipic acid, suberic acid, citric acid, pimmeric acid, azelaic acid, sebacic acid, nonanoic acid, decanoic acid, dodecanoic acid, and hexanodecanoic acid.
- the sulfonic acid metal salt may be sodium 3,5-dicarbomethoxybenzene sulfonate.
- the diol component may each independently include an aliphatic diol component having 2 to 14 carbon atoms and polyethylene glycol.
- aliphatic diol components specifically, ethylene glycol, diethylene glycol, neopentyl glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, propylene glycol, trimethylglycol, tetramethylene glycol, pentachloride It may be any one or more selected from the group consisting of methyl glycol, hexamethylene glycol, heptamethylene glycol, octamethylene glycol, nonamethylene glycol, decamethylene glycol, undecamethylene glycol, dodecamethylene glycol and tridecamethylene glycol, but in particular Not limited.
- it may be any one or more of ethylene glycol, diethylene glycol, neopentyl glycol, 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol.
- the titanium-based chelate catalyst refers to a titanium-based chelate compound in which titanium is a central atom and other materials are bonded around it. Since these titanium-based chelate compounds are stable even in the presence of water molecules, they are not deactivated even if added before the esterification reaction in which a large amount of water is produced as a by-product, so the esterification reaction and polycondensation reaction can be shortened compared to the prior art, and coloration due to yellowing can suppress In addition, conventional titanium alkoxide has a problem in that it is difficult to handle when applied to a process as a non-aqueous material.
- the titanium-based chelate catalyst applied to the present invention is a water-soluble material and is stable even in the presence of water molecules, and has the advantage of having high activity during polymerization.
- the titanium-based chelate catalyst may be included so as to be 10 to 15 ppm in terms of atoms to be obtained, and through this, thermal stability or color tone is better, which is preferable.
- thermal stability or color tone is better, which is preferable.
- a commonly used titanium compound may have one or more substituents selected from the group consisting of an alkoxy group, a phenoxy group, an acylate group, an amino group, and a hydroxyl group.
- substituents selected from the group consisting of an alkoxy group, a phenoxy group, an acylate group, an amino group, and a hydroxyl group.
- substituents selected from the group consisting of an alkoxy group, a phenoxy group, an acylate group, an amino group, and a hydroxyl group.
- substituents selected from the group consisting of an alkoxy group, a phenoxy group, an acylate group, an amino group, and a hydroxyl group.
- acylate group examples include tetraacylate groups such as lactate and stearate, phthalic acid, trimellitic acid, trimesic acid, hemimeritic acid, pyromellitic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, and adip.
- tetraacylate groups such as lactate and stearate, phthalic acid, trimellitic acid, trimesic acid, hemimeritic acid, pyromellitic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, and adip.
- acids polyvalent carboxylic acid functional groups such as sebacic acid, maleic acid, phthalic acid, cyclohexanedicarboxylic acid or their anhydrides, ethylenediaminetetraacetic acid, nitrilotripropionic acid, carboxyiminodiacetic acid, carboxymethylimino2 Propionic acid, diethylenetriaminopentaacetic acid, triethylenetetraamino6acetic acid, iminodiacetic acid, imino2propionic acid, hydroxyethyliminodiacetic acid, hydroxyethylimino2propionic acid, methoxyethyl iminodiacetic acid etc., but is not limited thereto.
- a reaction product of titanium alkoxide (titanium-(IV)-alkoxide) represented by Formula 1 and alpha-hydroxy carboxylic acid may be advantageous in terms of polymerization reaction. That is, the conventional titanium alkoxide is a non-aqueous material and has a difficult handling problem when applied to a process, but the titanium-based chelate compound applied in the present invention is a water-soluble material, stable even in the presence of water molecules, and has the advantage of having high activity during polymerization.
- R 1 is hydrogen, an alkyl group having 1 to 6 carbon atoms, or an isomer thereof, and at least one of them is not hydrogen.
- reaction product may be titanium alpha-hydroxy carboxylate represented by Formula 2 below.
- R 2 to R 5 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms.
- Chemical Formula 2 as the titanium clate catalyst according to the present invention to maximize effects such as low process temperature, high polymerization degree, heat resistance, and minimization of end groups.
- a known titanium-based polyester catalyst other than the titanium-based chelate catalyst represented by Formula 2 according to the present invention is used for polyester polycondensation, the polyester itself may be colored yellow and the melt thermal stability may be unstable.
- the film when the film is produced with a polyester resin prepared using a known titanium-based polyester catalyst other than the titanium-based chelate catalyst represented by Formula 2 according to the present invention, the formation of particles such as by-products can be suppressed. This affects the lubricity and smoothness of the film, and as a result, the film may be ruptured.
- titanium alpha-hydroxy carboxylate represented by Chemical Formula 2 is stable even in the presence of water molecules, so it is not deactivated even if added before an esterification reaction in which a large amount of water is produced as a by-product. Accordingly, the esterification reaction and the polycondensation reaction can proceed within a shorter time than before, and through this, coloring due to yellowing can be suppressed.
- the above-described titanium chelate must be used, and if a titanium chelate is coordinated or reacted with another type of compound, the desired heat resistance and high polymerization degree cannot be obtained, and in addition, the terminal group As the number increases, there may be a problem of deterioration of physical properties according to the foreign matter content.
- the titanium chelate catalyst according to the present invention when applied, the metal content can be greatly reduced to 1/10 or less compared to the conventional (Sb catalyst), so that excellent melting resistivity can be exhibited.
- the peening agent suppresses the formation of foreign substances when polycondensation of polyester is performed, increases the degree of polymerization, and simultaneously lowers the melt resistivity.
- commonly used pinning agents may be used, and particularly although not limited, preferably, a metal-based pinning agent may be used, and more specifically, it is preferable to use an alkali metal compound, an alkaline earth metal compound, a manganese compound, a cobalt compound, a zinc compound, or the like because of high electrostatic activity.
- magnesium acetate sodium acetate, calcium acetate, lithium acetate, calcium phosphate, magnesium oxide, magnesium hydroxide, magnesium alkoxide, manganese acetate, zinc acetate, and the like, and one or a mixture of two or more may be used. and can be used. More preferably, it may be a magnesium (Mg)-based compound.
- the pinning agent may be included in the polyester resin composition by 10 to 100 ppm based on the element used. If the content of the pinning agent is less than 10 ppm, high adhesion between the sheet-shaped article and the cooling drum does not occur during film casting, resulting in uneven film thickness, and film manufacturing efficiency decreases because the rotation speed cannot be increased during casting. . If the content of the pinning agent exceeds 100 ppm, since the content of metal increases, this part may occur as a defect during film manufacturing, and unfavorable problems may occur in products and processes such as appearance defects. More preferably, it may be included in 20 to 80 ppm.
- the phosphorus compound is included in the polyester resin composition of the present invention and serves as a heat stabilizer in the polycondensation process.
- Examples of the phosphorus compound include phosphoric acid, phosphorous acid, phosphonic acid, and derivatives thereof, and specific examples include phosphoric acid, trimethyl phosphate, tributyl phosphate, triphenyl phosphate, monomethyl phosphate, dimethyl phosphate, monobutyl phosphate, and dibutyl phosphate.
- the phosphorus-based compound may be represented by the following formula (3), more preferably TEP (Triethyl phosphate) there is.
- the R 6 to R 8 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms or an isomer thereof, and at least one of them is not hydrogen.
- the PO 4- group can easily form a complex through a coordinate bond to various metals, a high molecular weight complex is also possible, and an appropriate equivalent ratio of metal catalyst and phosphorus forms a reactant and melt resistivity is an important factor in improving That is, since the melting resistivity decreases as the equivalent ratio of phosphorus and metal decreases, the design may be appropriately changed in consideration of the above effects.
- the phosphorus compound may be included so that the phosphorus atom content is 10 to 30 ppm based on the mass of the finally obtained polyester resin composition. If the content of the phosphorus compound relative to the mass of the polyester resin composition is less than 5 ppm, the role as a heat stabilizer cannot be sufficiently performed, which may cause a decrease in the heat resistance of the polyester resin. If it is exceeded, the melt specific resistance has a large value, and the usability as a film is hindered, and a large amount of highly insoluble foreign matter may be generated, which may affect transparency.
- the polyester resin composition for a film of the present invention can achieve its object only when all of the following relational expressions (1) to (3) are satisfied.
- M means the total content of metal components other than phosphorus (P) in the polyester resin composition
- T is the content of titanium based on the titanium element
- R means the melting resistivity
- the total content (definition) of the metal component (M) is, for example, a concept including the metal component among the metal components and impurities included in the final product. That is, the total content of the metal component (M) means all metal components other than phosphorus in the polyester resin composition, and may be, for example, the total sum of the content of titanium metal, magnesium content, etc. included in the composition.
- BHT Bis-2-hydroxyethyl terephthalate
- the metal component is included in an amount of 0.01 to 150 ppm. If it exceeds 150 ppm, a large amount of foreign matter is formed in the polyester resin, and the degree of polymerization is significantly lowered, making it difficult to implement viscosity and required chemical/physical properties, and metals are precipitated or complexes are formed in the resin, causing internal defects. can cause Therefore, the transparency of the film produced through this may be reduced and haze may be generated. More preferably, the metal component may be included in an amount of 0.01 to 100 ppm in consideration of the role of phosphorus as a metal sequestering agent, which will be described later.
- the titanium content (T) is included in the polyester resin composition by 1 to 40 ppm based on the titanium element. If it is provided at less than 1 ppm in terms of titanium atoms, it may be difficult to properly promote the esterification reaction, and if it is provided at more than 40 ppm, reactivity is promoted, but there may be a problem in that coloring occurs.
- Conventional titanium alkoxide is a non-aqueous material and has a difficult handling problem when applied to a process.
- As a catalyst-applied water-soluble material applied to the present invention it is stable even in the presence of water molecules and has the advantage of having high activity during polymerization.
- it may be included in an amount of 1 to 15 ppm, and more preferably, it may be included in an amount of 10 to 25 ppm, which can reduce metal components while exhibiting the best catalytic activity.
- Melting resistivity is one of the physical properties of a polyester resin and refers to a physical property that is identified as an index of electrostatic adhesion when a film is produced by forming a polyester resin into a film by an electrostatic adhesion casting method.
- the polyester resin composition according to the present invention may exhibit a melt resistivity of 0.01 to 10 M ⁇ cm. If the melting resistivity exceeds 10 M ⁇ cm, static electricity is not sufficiently precipitated on the surface of the sheet (film), so good electrostatic adhesion cannot be exhibited. That is, in the casting process, air bubbles are generated between the rotating cooling drum and the sheet, making it impossible to obtain a film with a uniform thickness, and may also affect yield due to a decrease in production speed. In addition, when the film has a melting resistivity of 0.01 M ⁇ cm or less, adhesion is lowered during film casting, so casting is not good. Therefore, it can exhibit good electrostatic adhesion and a melting resistivity of 0.1 to 3 M ⁇ cm more preferably within a range that does not degrade the physical properties of the film.
- the polyester resin composition for a film according to an embodiment of the present invention may further include a colorant to improve the optical properties of the film.
- a complementary colorant including blue and red dyes may be further included in an amount of 1 to 10 ppm based on the total weight of the polyester resin composition.
- the complementary colorant those known in the textile field may be added, and non-limiting examples thereof include original dyes, pigments, vat dyes, disperse dyes, organic pigments, and the like.
- blue and red dyes are mixed and used, there is an advantage in that the color tone can be finely controlled.
- the blue dye may include, for example, solvent blue 104, solvent blue 122, or solvent blue 45
- the red dye may include solvent red 111, solvent red 179, or solvent red 195.
- the complementary colorant in the composition exceeds 10 ppm, there may be a problem in that dispersibility is lowered and foreign matter is generated or scattered. On the contrary, if the content of the complementary colorant in the composition is less than 1 ppm, titanium has a unique yellow color, which may hinder sufficient utilization in films for optical applications where a slight difference in color tone is a problem. Therefore, the complementary colorant may be included in an amount of 2 to 8 ppm more preferably for balance of dispersibility and color tone.
- the color coordinate b value of the resin exceeds 8 due to such a colorant, it affects the film color and is not suitable for optical films that require transparency, and it changes not only the surface color of the film but also the color of the side of the film, so that appearance defects may occur. . Therefore, it is preferable that the color coordinate b value is 8 or less.
- the metal component (M) inhibits the activity of the catalyst or forms foreign substances to deteriorate the physical properties of the polycondensed polyester resin.
- metals such as catalysts and pinning agents are used. is indispensably required
- phosphorus (P) may additionally perform a role of a metal ion sequestering agent that prevents the formation of other foreign substances by reacting with the above-described metal component in addition to the effect as the above-described thermal stabilizer.
- a metal ion sequestering agent is mainly used to increase the yield of a desired compound by reducing its activity or lowering the content of impurities by chemically reacting with metal ions. Therefore, if the optimal content ratio of the metal component and phosphorus (P) is known, the physical properties of polyester can be improved and the formation of foreign substances due to metal ions can be minimized.
- the polyester resin composition of the present invention may additionally satisfy the following relational expression (4).
- the amount of phosphorus compound used is preferably 10 to 30 ppm in terms of phosphorus atoms with respect to the polymer obtained after polymerization.
- the polyester resin prepared according to one embodiment of the present invention may include 1 to 45 terminal carboxyl groups.
- the polyester resin composition according to the present invention when used, polymerization is performed at a low temperature and at the same time has a high polymerization degree, so that an effect of reducing the amount of polymer end groups (COOH) can be obtained. As a result, more stable process performance and an effect of increasing production speed can be obtained.
- the polyester resin prepared according to one embodiment of the present invention may have an intrinsic viscosity of 0.300 to 0.900 dl/g. If the intrinsic viscosity is lower than 0.300 dl/g, the viscosity is insufficient and a problem may occur that a large amount of bubbles are generated due to the thin viscosity during film casting. Unexpected problems may arise. More preferably, it may be 0.500 to 0.800 dl/g.
- the polyester resin composition according to the present invention provides an optimal polyester resin for film by adjusting the content of other metal additives including a titanium-based killite catalyst.
- films made of polyester have excellent properties such as mechanical properties, thermal properties, chemical resistance, and electrical properties, so they are widely used for industrial purposes such as magnetic recording media, capacitors, optics, and general industrial use.
- a polyester film is obtained by melt-extruding a polyester resin by an extruder and biaxially stretching it in the transverse/longitudinal directions.
- the polyester film is melted and extruded at a temperature higher than the melting point of the polyester resin, which is 250 to 300 ° C, during molding processing of the polyester film, thermal decomposition of the polyester resin may occur, and when a small amount of oxygen is mixed, oxidation may occur. Gel-like foreign matter may occur due to decomposition, which may act as an internal defect in the molded film.
- an electrostatic application casting method in which a high voltage is applied to the upper surface of a sheet-like article and the sheet-like article adheres to a rotating cooling drum is mainly used, but if the speed of the rotating cooling drum is increased to improve the film forming speed, Adhesion between the sheet-shaped film and the rotating cooling drum is reduced, resulting in a decrease in film thickness uniformity and transparency, and poor film surface due to application unevenness.
- a high degree of surface smoothness or thinning is required for films for magnetic recording media or dry film resists, and the above-described gel-like foreign matter or poor electrostatic application are not desirable to worsen such film surface defects or transparency.
- the present invention sought a solution to the conventional problems by manufacturing a film with a polyester resin prepared using the polyester composition for a film according to the present invention described above.
- the description of the polyester resin composition for a film and the polyester resin prepared therefrom will be omitted.
- the polyester resin according to the present invention satisfies the conditions of the above-described relational expressions (1) to (3), so that the amount of charge on the surface of the film increases, so that the polyester resin according to the present invention has excellent electrostatic application property and exhibits high electrostatic adhesion to the drum surface even at a high rotation speed. A gap between the film and the sheet-like film is not formed, so that a uniform and highly transparent film can be produced.
- a highly polymerized polyester resin having a low content of terminal carboxyl groups can be obtained and a film forming process can be performed even at a low temperature according to a small melt resistivity value, so that a film having excellent heat resistance can be manufactured.
- the polyester film is melt-extruded by a conventional manufacturing method using the polyester composition, for example, a conventionally known T-die method to obtain an unstretched sheet, and the obtained unstretched sheet is machined. It can be produced by a method of preparing by stretching 2 to 7 times, preferably 3 to 5 times in the transverse direction, and then stretching 2 to 7 times, preferably 3 to 5 times in the transverse direction.
- M means the total content of metal components other than phosphorus (P) in the polyester resin composition
- T is the content of titanium based on the titanium element
- R means the melting resistivity.
- an esterification product may be obtained through an esterification reaction of the acid component and the diol component using synthesis conditions known in the field of polyester synthesis.
- the acid component and the diol component may be added to react at a molar ratio of 1:1.1 to 2.0, but is not limited thereto.
- the esterification reaction may be preferably carried out at a temperature of 200 ⁇ 270 °C and a pressure of 1100 ⁇ 1350 Torr (Torr). If the above conditions are not satisfied, there may be problems in that an esterification compound suitable for a polycondensation reaction cannot be formed due to an increase in esterification reaction time or a decrease in reactivity.
- the polycondensation reaction may be performed at a temperature of 250 to 300 ° C and a pressure of 0.3 to 1.0 Torr, and if the above conditions are not satisfied, there may be problems such as delay in reaction time, decrease in polymerization degree, induction of thermal decomposition, etc.
- step (2) the esterification product prepared in step (1) is expanded and condensed into a polyester resin by adding a titanium-based chelate catalyst, a pinning agent, and a phosphorus-based compound according to the present invention.
- the titanium-based chelate catalyst may be a reaction product of titanium alkoxide (titanium-(IV)-alkoxide) represented by Formula 1 and alpha-hydroxy carboxylic acid, and the phosphorus-based compound is represented by the following formula It may be indicated by 3.
- titanium alkoxide titanium-(IV)-alkoxide
- the phosphorus-based compound is represented by the following formula It may be indicated by 3.
- the reaction product may be titanium alpha-hydroxy carboxylate represented by Formula 2 below.
- R 1 is an alkyl group having 1 to 6 carbon atoms.
- R 2 to R 5 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms.
- R 6 to R 8 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, and at least one of them is not hydrogen.
- the polyester resin composition for film according to the present invention includes a titanium-based chelate catalyst, a pinning agent, and a phosphorus-based compound, and presents an optimal content ratio thereof, thereby having excellent thermal stability and melting resistance, and at the same time, production speed and yield are improved.
- a polyester resin for an improved film and the resulting film can be prepared.
- TPA terephthalic acid
- EG ethylene glycol
- the formed ester reactant is transferred to a polycondensation reactor, and a titanium-based chelate represented by Formula 2, which is a reaction product of a compound represented by Formula 1-1 and alpha-hydroxy carboxylic acid as a polycondensation catalyst
- a polyester resin was prepared by adding 20 ppm of a catalyst, adding 25 ppm of triethyl phosphate (based on P element) as a heat stabilizer, and gradually raising the temperature to 280 ° C while gradually reducing the pressure to a final pressure of 0.5 Torr to perform a polycondensation reaction.
- R 2 to R 5 are hydrogen.
- the polyester resin according to Examples and Manufacturing Examples of the present invention After quantitatively injecting the polyester resin according to Examples and Manufacturing Examples of the present invention into a glass tube, it is put into a melting bath and melted. After masking with Teflon tape so that no current flows except for the measuring part of the electrode, the measuring probe (electrode) is inserted into the molten polymer to move the charge. Press the start of the resistance measurement software and record the resistance after stabilizing for 10 minutes.
- the polyester resin prepared in Example was melted in an ortho-chlorophenol solvent at a concentration of 2.0 g / 25 ml at 110 ° C for 30 minutes, and then incubated at 25 ° C for 30 minutes to obtain CANON Intrinsic viscosity was measured using an automatic viscosity measurement device connected to a viscometer.
- the carboxyl group content of Examples was measured according to the following method. 0.15 g of polyester powder pulverized to a size of 20 mesh was accurately weighed into a test tube, and 5 ml of benzyl alcohol was added thereto, followed by heating and dissolving at 210° C. for 1300 seconds while stirring with a micro stirrer. After dissolution, immerse the test tube in 25 °C water for 6 seconds to rapidly cool it, pour the contents into a 50 ml beaker containing 10 ml of chloroform, and then put 5 ml of benzyl alcohol into the test tube and stir for 60 seconds to remove the remaining polyester resin solution. Rinse thoroughly.
- the carboxyl group content was neutralized with phenol red (0.1% benzyl alcohol solution) as an indicator and 0.1N sodium hydroxide benzyl alcohol solution was neutralized using mycrosyringe (volume: 100 ⁇ l), and the titration value was corrected according to the blank test result for the titration reagent. It was calculated according to Equation 1 below.
- f is the concentration coefficient of 0.1 N sodium hydroxide benzyl alcohol solution
- the polyester resin according to the present invention prepared by the internal defect measurement method is melted on a slide glass to prepare a sample with a thickness of 500 ⁇ m, and using an optical microscope, observe defects in a layer with a depth of 180 ⁇ m at 200 times magnification in transmitted light Then, the number of defects with a size of 1.5 ⁇ m or more in an area of 448 ⁇ m ⁇ 336 ⁇ m is calculated by averaging the number of defects in a total of 5 micrographs. In addition, the size of the defect can be measured through the microscope scale bar and is measured based on the long axis of the defect.
- polyester resin is melted through a T-die using an extruder, cooled with a casting drum to prepare a sheet with a thickness of 1690 ⁇ m, and the prepared sheet is stretched three times horizontally and vertically to prepare a 188 ⁇ m sheet. Then, the haze of the film was measured.
- the haze measurement method was measured based on ASTM D-1003, and after randomly extracting 7 parts from 2 edges and 1 central part, the film was sectioned into 5 cm ⁇ 5 cm in size, and the haze measuring instrument (Nippon Denshoku NDH 300A) ) and transmits light with a wavelength of 555 nm, and calculated by Equation 2 below, and then the average value excluding the maximum / minimum value was calculated.
- Example 4 Formula 1 Formula 2 160 20 40 0.47
- Example 5 Formula 1 Formula 2 180 20 50 0.42
- Example 6 Formula 1 Formula 2 200 20 60 0.38
- Example 7 Formula 1 Formula 2 220 20 70 0.34
- Example 8 Formula 1 Formula 2 320 20 120 0.23
- Example 10 Formula 1 Formula 2 160 20 40 0.47
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
본 발명은 낮은 온도에서 폴리에스테르의 중축합반응을 가능하게 하여 폴리에스테르 수지의 열 안정성을 향상시킴과 동시에 높은 중합도를 나타냄에 따라 말단기(카르복실기)가 최소화되고, 이물 함량이 적은 폴리에스테르 수지를 제조할 수 있고, 정전인가성이 우수하고 용융비저항이 작아서 이를 이용하여 필름을 제조하는 경우 빠른 회전 속도에서도 드럼 표면과 시트형 물품의 간극이 형성되지 않아서 균일한 두께의 필름이 제조되고 이물함량이 작아 투명도가 높은 필름을 제조할 수 있다.
Description
본 발명은 필름용 폴리에스테르 조성물 및 이를 통해 제조된 필름용 폴리에스테르 수지에 관한 것이다.
폴리에스테르란 카르복실기와 수산기 사이에 에스테르가 생김으로써 형성된 화합물이 중축합된 고분자를 의미한다. 통상적으로 테레프탈산과 에틸렌글리콜을 중합시킨 폴리에스테르는 기계적 성질 및 화학적 성질이 모두 우수하기 때문에 공업적 가치가 높고 섬유, 필름, 시트 및 중공 성형체 등에 넓게 사용되고 있다.
특히 폴리에스테르 수지를 이용한 필름은 그 기계적 특성, 열적 특성, 내약품성 및 전기적 특성 등이 우수한 성질을 가지기 때문에 자기 기록 매체용, 콘덴서용, 광학용, 일반 공업용 등 다양한 산업분야에서 폭넓게 이용되고 있다.
다만 이러한 폴리에스테르 수지를 이용하여 필름을 제작하기 위해서는 다음과 같은 공정 상의 문제점이 발생할 수 있다.
첫 번째 폴리에스테르 수지를 이용하여 필름을 제조하기 위해서는 고전압을 인가하고 시트형 필름을 회전 냉각 드럼에 밀착시키는 정전 인가 캐스트법을 사용해야 하는데, 폴리에스테르 수지는 정전 인가성이 낮아서 상기 필름과 드럼 간의 밀착력이 저하될 수 있고, 이는 제조된 필름의 두께 균일성, 투명성, 표면 평활성이라는 필름 자체의 물성을 떨어뜨릴 수 있다.
두 번째, 폴리에스테르 수지를 이용하여 제조한 필름을 성형 가공하기 위해서는 250~300℃에 달하는 융점 이상의 온도에서 융해 압출 성형이 필요하기 때문에 고온 가공 중의 미량의 산소 유입만으로도 산화 분해에 의한 다량의 이물이 발생할 수 있으며, 이는 필름의 투명도를 저하시키는 원인이 된다. 이러한 폴리에스테르 수지의 단점을 보완하기 위해 폴리에스테르 수지의 중축합 반응에는 일반적으로 다양한 촉매가 사용되고 있는데 공업적 규모에서는 대부분이 안티몬 화합물 또는 게르마늄 화합물이 사용되고 있다.
그러나 안티몬 화합물을 촉매로 하여 증축합된 폴리에스테르 수지는 특유의 검은 색을 나타내고 독성 및 환경오염의 우려가 있으며, 게르마늄 화합물을 촉매로 하여 중축합된 폴리에스테르 수지는 게르마늄 자체의 희소성으로 인해 공업적인 대량 생산에 어려움이 있다. 이에 대한 대안으로 소개된 것이 티타늄(Ti)계 촉매인데 상기 안티몬 및 게르마늄 촉매의 문제점을 극복할 수 있으나, 폴리에스테르 중축합 촉매로 사용 시 폴리에스테르 자체가 노랗게 착색되고, 용융 열안정이 불안정해지는문제가 발생할 수 있다. 특히 티타늄계 화합물 촉매를 필름 등에 사용하는 경우 부산물 등의 입자 형성을 억제할 수 없어 필름의 윤활성 및 평활성 등에 영향을 미치며 결과적으로 필름의 파열을 초래할 수 있다.
따라서 상술한 폴리에스테르 수지의 공정상의 문제점을 개선함과 동시에 안티몬 화합물이나 게르마늄 화합물을 대신하면서 티타늄계 화합물 촉매의 특유의 문제점을 해결할 수 있는 촉매에 대한 개발이 시급한 실정이다.
본 발명은 상술한 문제를 극복하기 위해 안출된 것으로, 낮은 온도에서 폴리에스테르의 중축합반응이 가능하여 폴리에스테르 수지의 열 안정성을 향상시킴과 동시에 높은 중합도로 인해 말단기(카르복실기)가 최소화되며, 이물 함량이 적은 폴리에스테르 수지 제조할 수 있는 필름용 폴리에스테르 수지 조성물을 제공하는 것에 목적이 있다.
또한 본 발명에 따른 폴리에스테르 수지는 정전인가성이 우수하고 용융비저항이 작아서, 이를 이용하여 필름을 제조하는 경우 빠른 회전 속도에서도 드럼 표면과 시트형 물품의 간극이 형성되지 않아서 균일하고 투명도가 높은 필름을 제공하는데 또 다른 목적이 있다.
상술한 과제를 해결하기 위한 본 발명은 폴리에스테르 수지, 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물을 포함하며 하기 관계식 (1) ~ (3)을 모두 만족하는 필름용 폴리에스테르 수지 조성물이다.
(1) M = 1 ~ 150 ppm
(2) T = 5 ~ 45 ppm
(3) R = 0.01 ~ 10 MΩ·cm
이때 상기 M은 폴리에스테르 수지 조성물에서 인(P)을 제외한 금속 성분의 총 함량을 의미하고,
상기 T는 티타늄 원소 기준 티타늄의 함량이고,
상기 R은 용융비저항을 의미한다.
또한 본 발명의 일 실시예에 의하면, 상기 조성물은 하기 관계식 (4)를 만족하는 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물일 수 있다.
(4) P/M = 0.1 ~ 0.
이때 상기 P는 인계 화합물에 포함된 인 원소량을 의미한다.
또한, 상기 티타늄 킬레이트 촉매는 하기 화학식 1로 표시되는 티타늄 알콕사이드(titanium-(IV)-alkoxide)와 알파~하이드록시 카르복시산(alpha-hydroxy carboxylic acid)의 반응 생성물인 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물일 수 있다.
[화학식 1]
Ti-(OR1)4
이때 상기 R1은 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이다.
또한, 상기 반응생성물은 하기 화학식 2로 표시되는 티타늄 알파-하이드록시 카르복실레이트(titanium alpha-hydroxy carboxylate)인 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물일 수 있다.
[화학식 2]
이때 상기 R2 내지 R5는 각각 독립적으로 수소 또는 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이다.
또한, 상기 인계 화합물은 하기 화학식 3으로 표시되는 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물일 수 있으며 바람직하게는 TEP (Triethyl phosphate)일 수 있다.
[화학식 3]
이때 상기 R6 내지 R8 은 각각 독립적으로 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이다.
또한, 상기 피닝제는 마그네슘(Mg) 화합물인 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물일 수 있다.
또한, 상술한 조성물은 블루 및 레드 염료를 포함하는 보색제를 폴리에스테르 수지조성물 전체 중량을 기준으로 1 ~ 10ppm 더 포함하는 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물일 수 있다.
본 발명의 다른 실시예에 의하면, 상술한 폴리에스테르 수지 조성물 중 어느 하나에서 선택된 폴리에스테르 수지 조성물로 제조된 필름이다.
또한 본 발명의 또 다른 실시예에 의하면, 산성분 및 디올성분이 반응된 에스테르화 반응물을 제조하는 단계 및 (2) 상기 제조된 에스테르화 반응물에 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물을 첨가하여 폴리에스테르 수지를 제조하는 단계를 포함하고, 상기 (2) 단계는 상기 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물의 조성을 조합하여 용융비저항이 0.01 내지 10 MΩ·cm인 폴리에스테르 수지를 제조하는 것을 특징으로 하는 필름용 폴리에스테르 수지의 제조방법이다.
또한, 상기 (2) 단계는 상기 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물의 조성을 조합하여 폴리에스테르 수지 말단의 카르복실기가 1 내지 45 개인 것을 특징으로 하는 필름용 폴리에스테르 수지의 제조방법일 수 있다.
또한, 상기 티타늄계 킬레이트 촉매는 하기 화학식 1로 표시되는 티타늄 알콕사이드(titanium-(IV)-alkoxide)와 알파~하이드록시 카르복시산(alpha-hydroxy carboxylic acid)의 반응 생성물이고, 상기 인계 화합물은 하기 화학식 3으로 표시되는 것을 특징으로 하는 필름용 폴리에스테르 수지의 제조방법일 수 있다.
[화학식 1]
Ti-(OR1)4
이때 상기 R1은 각각 독립적으로 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이며 적어도 어느 하나는 수소가 아니다.
[화학식 3]
이때 상기 R6 내지 R8 은 각각 독립적으로 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이다.
또한, 상기 반응생성물은 하기 화학식 2로 표시되는 티타늄 알파-하이드록시 카르복실레이트(titanium alpha-hydroxy carboxylate)인 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물일 수 있다.
[화학식 2]
이때 상기 R2 내지 R5는 각각 독립적으로 수소 또는 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이다.
본 발명에 따른 티타늄계 킬레이트 촉매를 사용한 폴리에스테르 수지 조성물은 낮은 온도에서 폴리에스테르의 중축합반응을 가능하게 하여 폴리에스테르 수지의 열 안정성을 향상시킴과 동시에 높은 중합도를 나타냄에 따라 말단기(카르복실기)가 최소화되고, 이물 함량이 적은 폴리에스테르 수지를 제조할 수 있다.
본 발명에 따른 폴리에스테르 수지는 정전인가성이 우수하고 용융비저항이 작아서 이를 이용하여 필름을 제조하는 경우 빠른 회전 속도에서도 드럼 표면과 시트형 물품의 간극이 형성되지 않아서 균일한 두께의 필름이 제조되고 이물함량이 작아 투명도가 높은 필름을 제조할 수 있다.
이하 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
상술한 바와 같이 종래의 폴리에스테스 수지는 통상적으로 내화학성이 우수하여 광범위하게 사용되고 있으나 이를 이용한 필름 제조 공정은 폴리에스테르 수지 특유의 물성으로 인한 문제점이 있으며 이를 개선하기 위한 촉매들이 소개되었다. 다만 종래에 소개된 촉매들은 색조, 생산성, 환경오염 및 경제적인 면 등에서 공업적인 생산에 어려움이 있었다.
이에 본 발명에서는 위한 본 발명은 폴리에스테르 수지 중축합물, 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물을 포함하며 하기 관계식 (1) ~ (3)을 모두 만족하는 필름용 폴리에스테르 수지 조성물을 제공하여 상술한 문제의 해결을 모색하였다.
(1) M = 1 ~ 150 ppm
(2) T = 5 ~ 45 ppm
(3) R은 10 MΩ·cm 이하
이때 상기 M은 폴리에스테르 수지 조성물에서 인(P)을 제외한 금속 성분의 총 함량을 의미하고,
상기 T는 티타늄 원소 기준 티타늄의 함량이고,
상기 R은 용융비저항을 의미한다.
이를 통해 폴리에스테르 수지 자체의 물성을 향상시키고 더불어 이를 통해 제조된 필름의 균일도와 투명도를 높일 수 있다.
이하 본 발명의 대해서 구체적으로 설명한다.
상기 폴리에스테르 수지 중축합물은 산성분 및 디올성분이 반응하여 에스테르화 반응을 통해 제조될 수 있다.
상기 산성분 및 디올성분의 중합은 당업계에서 통상적으로 사용되는 에스테르화 중합 반응에 사용되는 조건으로 수행될 수 있으며, 일 예로 200 내지 260℃에서 150 내지 240분 동안 40 내지 80 rpm의 속도로 교반을 통해 이루어질 수 있으나, 이에 제한되지 않는다.
한편, 상기 산성분은 테레프탈산을 포함하며, 이외에 테레프탈산이 아닌 탄소수 6 내지 14의 방향족 다가 카르복실산이나, 탄소수 2 내지 14의 지방족 다가 카르복실산 또는 설폰산 금속염을 더 포함할 수 있다.
상기 탄소수 6 내지 14의 방향족 다가 카르복실산은 폴리에스테르의 제조를 위해 사용되는 산성분으로서 공지된 것들을 제한 없이 사용할 수 있으나, 바람직하게는 디메틸테레프탈레이트, 이소프탈산 및 디메틸이소프탈레이트로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 보다 바람직하게는 테레프탈산과의 반응 안정성, 취급 용이성 및 경제적인 측면에서 이소프탈산일 수 있다.
또한, 탄소수 2 내지 14의 지방족 다가 카르복실산은 폴리에스테르의 제조를 위해 사용되는 산성분으로서 공지된 것들을 제한 없이 사용할 수 있으나, 이에 대한 비제한적인 예로써, 옥살산, 말론산, 석신산, 글루타르산, 아디프산, 수베린산, 시트르산, 피메르산, 아젤라인산, 세바스산, 노나노산, 데카노인산, 도데카노인산 및 헥사노데카노인산으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
또한, 상기 설폰산 금속염은 소디움 3,5-디카르보메톡시벤젠 설포네이트일 수 있다.
다음으로, 에스테르화 반응물의 단량체 중 하나인 디올성분에 대해 설명한다.
상기 디올성분은 각각 독립적으로 탄소수 2 내지 14의 지방족 디올성분 및 폴리에틸렌 글리콜을 포함할 수 있다. 지방족 디올성분의 경우 구체적으로 에틸렌글리콜, 디에틸렌 글리콜, 네오펜틸글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 프로필렌글리콜, 트리메틸글리콜, 테트라메킬렌글리콜, 펜타메틸글리콜, 헥사메틸렌글리콜, 헵타메틸렌클리콜, 옥타메틸렌글리콜, 노나메틸렌글리콜, 데카메틸렌글리콜, 운데카메틸렌글리콜, 도데카메틸렌글리콜 및 트리데카메틸렌글리콜으로 구성된 군으로부터 선택되는 어느 하나 이상일 수 있으나 특별히 한정하지 않는다. 바람직하게는 에틸렌글리콜,디에틸렌글리콜, 네오펜틸글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올 중 어느 하나 이상일 수 있다.
다음, 상기 티타늄계 킬레이트 촉매는 티타늄을 중심 원자로 하여 그 주위에 다른 물질이 결합한 티타늄계 킬레이트 화합물을 의미한다. 이러한 티타늄계 킬레이트 화합물의 경우 물분자 존재 하에서도 안정하기 때문에 물이 다량으로 부생하는 에스테르화 반응 이전에 첨가해도 실활되지 않음에 따라서 종래보다 에스테르 반응 및 중축합 반응을 단축시킬 수 있고 황변에 의한 착색을 억제할 수 있다. 또한, 종래 티타늄 알콕사이드는 비수용물질로 공정 적용 시 핸들링이 어려운 문제점이 있었다. 본 발명에 적용되는 티타늄계 킬레이트 촉매는 수용성 물질로 물분자 존재하에서도 안정하며 중합 반응 시 높은 활성을 가지는 장점이 있다.
상기 티타늄계 킬레이트 촉매는 수득되는 원자 환산으로 10 내지 15 ppm이 되도록 포함될 수 있고 이를 통해 열안정성이나 색조가 보다 양호해져 바람직하다. 티타늄 원자 환산으로 10 ppm 미만으로 구비되는 경우 에스테르화 반응을 적절히 촉진시키기 어려울 수 있으며, 만일 15 ppm 초과하여 구비되는 경우 반응성은 촉진되나 착색이 발생하는 문제점이 있을 수 있다.
이와 같은 티타늄 킬레이트 촉매는 통상적으로 사용되는 것을 사용할 수 있으며 티탄 화합물로서는 알콕시기, 페녹시기, 아실레이트기, 아미노기 및 수산기를 포함하는 군으 로부터 선택되는 1종 이상의 치환기를 가질 수 있다. 예를 들면 테트라에톡시드, 테트라프로폭시드, 테트라이소프로폭시드, 테트라부톡시드, 테트라-2-에틸 헥속시드 등의 테트라알콕시기, B-디케톤계 관능기, 락트산, 말산, 타르타르산, 살리실산, 시트르산 등의 히드록시 다가 카르복실산 계 관능기, 아세토아세트산 메틸, 아세토아세트산 에틸 등의 케토에스테르계 관능기를 들 수 있고, 페녹시기로서는 예를 들면 페녹시, 크레실레이트 등을 들 수 있다. 아실레이트기로서는 예를 들면 락테이트, 스테아레이트 등의 테트라아실레이트기, 프탈산, 트리메리트산, 트리메신산, 헤미메리트산, 피로메리트산, 옥살산, 말론산, 숙신산, 글루타르산, 아디프산, 세바스산, 말레산, 프탈산, 시클로헥산디카르복실산 또는 그것들의 무수물 등의 다가 카르복실산계 관능기, 에틸렌디아민4아세트산, 니트릴로3프로피온산, 카르복 시이미노2아세트산, 카르복시메틸이미노2프로피온산, 디에틸렌트리아미노5아세트산, 트리에틸렌테트라아미노6아세트 산, 이미노2아세트산, 이미노2프로피온산, 히드록시에틸이미노2아세트산, 히드록시에틸이미노2프로피온산, 메톡시에틸 이미노2아세트산 등이 될 수 있으며 이에 제한되지 않는다.
바람직하게는 하기 화학식 1로 표시되는 티타늄 알콕사이드(titanium-(IV)-alkoxide)와 알파하이드록시 카르복시산(alpha-hydroxy carboxylic acid)의 반응 생성물인 것이 중합 반응면에서 유리할 수 있다. 즉, 종래 티타늄 알콕사이드는 비수용물질로 공정 적용 시 핸들링이 어려운 문제점이 있었으나 본 발명에 적용되는 티타늄계 킬레이트 화합물은 수용성 물질로 물분자 존재하에서도 안정하며 중합 반응 시 높은 활성을 가지는 장점이 있다.
[화학식 1]
Ti-(OR1)4
이때 상기 R1은 수소 또는 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이며 적어도 어느 하나는 수소가 아니다.
이때, 상기 반응생성물은 하기 화학식 2로 표시되는 티타늄 알파-하이드록시 카르복실레이트(titanium alpha-hydroxy carboxylate)일 수 있다.
[화학식 2]
이때 상기 R2 내지 R5는 각각 독립적으로 수소 또는 탄소수 1 내지 6개의 알킬기이다.
특히 상기 화학식 2를 본 발명에 따른 티타늄 클레이트 촉매로 사용하는 것이 낮은 공정 온도, 고중합도, 내열성 및 말단기의 최소화 등의 효과를 극대화하는데 가장 바람직하다. 만일 본 발명에 따른 화학식 2로 표현되는 티타늄계 킬레이트 촉매가 아닌 공지의 다른 티타늄계 폴리에스테르 촉매를 사용하여 폴리에스테르 중축합 반응 시 폴리에스테르 자체가 노랗게 착색되고, 용융 열안정이 불안정해지는 문제가 발생할 수 있다.
필름 또한 마찬가지로, 본 발명에 따른 화학식 2로 표현되는 티타늄계 킬레이트 촉매가 아닌 공지의 다른 티타늄계 폴리에스테르 촉매를 사용하여 제조된 폴리에스테르 수지로 필름을 제조하는 경우, 부산물 등의 입자 형성을 억제할 수 없어 필름의 윤활성 및 평활성 등에 영향을 미치며 결과적으로 필름의 파열을 초래할 수 있다.
상기 화학식 2로 표시되는 티타늄 알파-하이드록시 카르복실레이트는 종래 티타늄 킬레이트 촉매 대비 대비 상기 티타늄계 촉매는 물분자 존재 하에서도 안정하기 때문에 물이 다량으로 부생하는 에스테르화 반응의 이전에 첨가해도 실활되지 않음에 따라서 종래보다 단축된 시간 내 에스테르 반응 및 중축합 반응이 진행될 수 있고, 이를 통해 황변에 의한 착색을 억제할 수 있다. 또한, 낮은 온도에서 중합반응을 가능하게 하여 폴리에스테르 수지의 내열성을 향상시킴과 동시에 높은 중합도를 나타내어 말단기(카르복실기)가 최소화되고, 이물 함량이 적은 폴리에스테르 수지를 제조할 수 있다.
다만 본 발명이 목적하는 효과를 얻기 위해서는 상술한 티타늄 킬레이트를 사용하여야 하며 티타늄 킬레이트에 다른 종류의 화합물과 배위결합 하거나 또는 반응한 것을 사용하면 목적하는 내열성과 고중합도를 얻을 수 없으며, 더불어 말단기의 개수가 늘어나서 이물 함량에 따른 물성 저하 문제가 있을 수 있다. 또한, 본 발명에 따른 티타늄 킬레이트 촉매 적용시 종래(Sb 촉매) 대비 금속함량을 1/10이하로 크게 낮출 수 있어서 우수한 용융비저항을 나타낼 수 있다.
다음, 상기 피닝(peening) 제는 폴리에스테르가 중축합 반응을 할 때 이물 형성을 억제하고 중합도를 높임과 동시에 용융비저항을 낮추는 역할을 수행한다. 본 발명에서는 통상적으로 사용되는 피닝제가 사용될 수 있으며 특별히 제한하지 않으나 바람직하게는 금속계 피닝제를 사용할 수 있으며, 보다 구체적으로는 알칼리금속 화합물, 알칼리토금속 화합물, 망간 화합물, 코발트 화합물, 아연 화합물 등을 사용하는 것이 정전기 활성이 크므로 바람직하다. 이들의 구체적인 예를 들면, 마그네슘 아세테이트, 소듐 아세테이트, 칼슘 아세테이트, 리튬 아세테이트, 칼슘 포스페이트, 마그네슘 옥사이드, 마그네슘 하이드록사이드, 마그네슘 알콕사이드, 망간 아세테이트, 아연 아세테이트 등을 사용할 수 있으며, 하나 또는 둘 이상을 혼합하여 사용할 수 있다. 보다 바람직하게는 마그네슘(Mg)계 화합물일 수 있다.
이때 상기 피닝제는 사용되는 원소 기준 10 내지 100 ppm만큼 폴리에스테르 수지 조성물에 포함될 수 있다. 만일 피닝제의 함량이 10 ppm 미만이라면 필름 캐스팅 시 sheet형물품과 냉각드럼 사이의 높은 부착력이 발생하지 않아 필름두께가 불균일하며, 캐스팅 시 회전 속도를 빨리할 수 없기 떄문에 필름 제조 효율이 떨어지게 된다. 만일 피닝제의 함량이 100 ppm을 초과한다면 금속의 함량이 많아지기 때문에 이부분이 필름 제조 시 결점으로 발생할 수 있으며 외관 불량 등 제품과 공정에 불리한 문제가 발생할 수 있다. 보다 바람직하게는 20 내지 80 ppm으로 포함될 수 있다.
다음, 상기 인화합물은 본 발명의 폴리에스테르 수지 조성물에 포함되어 중축합 과정에서의 열 안정제로 역할을 한다.
상기 인화합물로는 인산, 아인산, 포스폰산 및 이들의 유도체 등을 들 수 있고, 구체적인 예로서는 인산, 인산 트리메틸, 인산 트리부틸, 인산 트리페닐, 인산 모노메틸, 인산 디메틸, 인산 모노부틸, 인산 디부틸, 아인산, 아인산 트리메틸, 아인산 트리부틸, 메틸 포스폰산, 메틸포스폰산디메틸, 에틸포스폰산 디메틸, 디에틸포스포노 초산에틸, 페닐 포스폰산 디메틸, 페닐 포스폰산 디에틸, 페니르호스혼산니르 등을 들 수 있고, 바람직하게는 이들 중에서도 디에틸포스포노 초산에틸, 인산 트리메틸이 될 수 있으며 보다 바람직하게는 상기 인계 화합물은 하기 화학식 3으로 표시되는 것일 수 있으며, 보다 바람직하게는 TEP (Triethyl phosphate)일 수 있다.
본 발명에 따른 하기 화학식 3으로 표시되는 인계 화합물을 사용한 경우. 상술한 공지의 인계 화합물을 사용한 경우 보다 열 안정제로서의 티타늄 촉매의 활성을 도와준다. 만일 하기 화학식 3으로 표시되는 인계 화합물이 아니라 다른 공지의 인계 화합물을 사용하는 경우 폴리에스테르 수지의 내열성 향상과 용융비저항 최소화라는 본 발명의 목적을 달성할 수 없다.
[화학식 3]
이때 상기 R6 내지 R8 은 각각 독립적으로 수소 또는 탄소수 1 내지 6개의 알킬기 및 이의 이성질체이이며 적어도 어느 하나는 수소가 아니다.
본 발명의 상기 화학식 3에서 상기 PO4-기는 각종 금속에 배위결합을 통해 착물을 용이하게 형성할 수 있기 때문에 고분자량의 착제도 가능하며 금속촉매와 인의 적정 당량비는 반응물을 형성하는 것과 또 용융비저항을 개선하는데에 중요한 요소이다. 즉 인과 금속의 당량비가 낮아질수록 용융비저항이 낮아지기 때문에 상기 효과를 고려하여 적절하게 변경하여 설계할 수 있다.
당해 인 화합물은 최종적으로 얻어진 폴리에스테르 수지 조성물 질량에 대해 인 원자의 함량이 10 ~ 30 ppm 가 되도록 포함될 수 있다. 만일 상기 폴리에스테르 수지 조성물 질량에 대하여 인 화합물의 함량이5 ppm 미만이면 열 안정제로서의 역할을 충분히 수행할 수 없어서 폴리에스테르 수지의 내열성이 저하의 원인이 될 수 있으며, 반대로 인 화합물의 함량 30 ppm를 초과하면 용융비저항이 큰 값을 갖아 필름으로서의 활용성이 저해되고 고 불용성 이물이 다량 생성될 수 있어 투명도에 영향을 줄 수 있다.
한편, 본 발명의 필름용 폴리에스테르 수지 조성물은 하기 관계식 (1) ~ (3)을 반드시 모두 만족하여야 그 목적을 달성할 수 있다.
(1) M = 1 ~ 150 ppm
(2) T = 1 ~ 40 ppm
(3) R은 10 MΩ·cm 이하
이때 상기 M은 폴리에스테르 수지 조성물에서 인(P)을 제외한 금속 성분의 총 함량을 의미하고, 상기 T는 티타늄 원소 기준 티타늄의 함량이고, 상기 R은 용융비저항을 의미한다.
상기 관계식 (1)을 설명한다. 금속성분(M)의 총함량이라 함은(정의) 예를 들어 최종제품에 포함되는 금속성분 및 불순물 중 금속성분을 포함하는 개념이다. 즉 금속 성분(M)의 총 함량은 폴리에스테르 수지 조성물 중 인을 제외한 모든 금속 성분을 의미하며 예를 들면, 조성물에 포함된 티타늄 금속 함량, 마그네슘 함량 등의 총 합이 될 수 있다.
이와 같은 금속 성분은 폴리에스테르 중합 공정에서 생성되는 Bis-2- hydroxyethyl terephthalate(BHT)와 반응하여 BHT-P Complex. BHT-Metal-P 등의 화합물을 형성하거나 촉매로 사용되는 티타늄과 반응하여 이물을 형성할 수 있다. 이러한 이물들은 제조된 폴리에스테르 수지 내에서 결점으로 작용하게 되고 청결도를 저하하여 물성이 저하될 수 있다.
따라서 상기 금속 성분은 0.01 ~ 150 ppm으로 포함된다. 만일 150 ppm을 초과하는 경우 폴리에스테르 수지 내 이물이 다량 형성되어 중합도가 현저히 낮아져서 점도 및 요구되는 화학적/물리적 물성을 구현하기 어려우며 수지 내에서 금속이 석출되거나 또는 복합체(complex)를 형성하여 내부결점을 발생시킬 수 있다. 따라서 이를 통해 제조된 필름의 투명도를 저하시키고 헤이즈를 발생시킬 수 있다. 보다 바람직하게는 후술할 인의 금속봉쇄제의 역할을 고려하여 금속 성분은 0.01 내지 100 ppm으로 포함될 수 있다.
다음 관계식 (2)를 설명한다.
상기 티타늄 함량(T)은 티타늄 원소를 기준으로 1 ~ 40 ppm만큼 폴리에스테르 수지 조성물에 포함된다. 만일 티타늄 원자 환산으로 1ppm 미만으로 구비되는 경우 에스테르화 반응을 적절히 촉진시키기 어려울 수 있으며, 만일 40ppm 초과하여 구비되는 경우 반응성은 촉진되나 착색이 발생하는 문제점이 있을 수 있다.
종래 티타늄 알콕사이드는 비수용물질로 공정 적용 시 핸들링이 어려운 문제점이 있었다. 본 발명에 적용되는 촉매응 수용성 물질로 물분자 존재하에서도 안정하며 중합 반응 시 높은 활성을 가지는 장점이 있다. 이에 바람직하게는 1 ~ 15 ppm 만큼 포함될 수 있으며 보다 바람직하게는 가장 우수한 촉매의 활성을 나타냄과 동시에 금속성분을 줄일 수 있는10 ~ 25 ppm에서 포함할 수 있다.
다음, 관계식 (3) 상기 용융비저항(R)에 대해 설명한다.
용용비저항이란 폴리에스테르 수지의 물성 중 하나로 폴리에스테르 수지를 정전 밀착 캐스트법으로 제막하여 필름을 제조할 때, 정전 밀착성의 지표로 확인하는 물성을 의미한다. 이 값이 작을수록 양호한 정전 밀착성을 나타내어 캐스팅 과정에서 균일한 두께에 필름을 얻을 수 있으며, 회전 속도에 영향을 주어 생산 속도를 증대시킬 수 있다.
이때, 본 발명에 따른 폴리에스테르 수지 조성물은 0.01 ~ 10 MΩ·cm의 용융비저항을 나타낼 수 있다. 만일 용융비저항이 10 MΩ·cm을 초과하는 경우 시트(필름) 표면에 정전기가 충분히 석출되지 않아서 양호한 정전 밀착성을 나타낼 수 없다. 즉, 캐스팅 과정에서 회전 냉각 드럼과 시트 사이에 기포가 생겨서 균일한 두께의 필름이 얻을 수 없게 되고 생산 속도 저하로 인한 수율에도 영향을 미칠 수 있다. 또한 0.01 MΩ·cm 이하 용융비저항을 가지는 경우 필름 캐스팅 시 밀착성이 저하되어 캐스팅이 양호하지 않은 문제점이 있다. 따라서 양호한 정전 밀착성을 나타냄과 필름의 물성을 저하시키지 않는 범위로 보다 바람직하게는 0.1 ~ 3 MΩ·cm의 용융비저항을 나타낼 수 있다.
다음 본 발명의 일 실시예에 의한 필름용 폴리에스테르 수지 조성물은 필름의 광학특성 향상을 위하여 보색제를 더 포함할 수 있다. 이 경우 블루 및 레드 염료를 포함하는 보색제를 폴리에스테르 수지조성물 전체 중량을 기준으로 1 ~ 10ppm 더 포함할 수 있다.
상기 보색제로는 섬유분야에서 공지된 것을 첨가할 수 있고, 이에 대한 비제한적인 예로서 원착용 염료, 안료, 건염염료, 분산염료, 유기안료 등이 있다. 다만, 바람직하게는 블루 및 레드 염료가 혼합된 것을 사용할 수 있다. 이는 보색제로 일반적으로 사용되는 코발트 화합물의 경우 인체유해성이 커 바람직하지 못하기 때문인데 반해 블루 및 레드 염료가 혼합된 보색제는 인체에 무해하여 바람직하다. 또한, 블루 및 레드 염료를 혼합하여 사용되는 경우 색조를 미세하게 제어할 수 있는 이점이 있다. 상기 블루 염료는 일예로 solvent blue 104, solvent blue 122, solvent blue 45 등이 있을 수 있고, 상기 레드 염료는 일예로 solvent red 111, solvent red 179, solvent red 195 등이 있을 수 있다.
만일 조성물 내의 상기 보색제의 함량이 10 ppm을 초과하는 경우 분산성이 저하되고 이물이 생성되거나 또는 비산하는 문제가 있을 수 있다. 이와 반대로 만일 조성물 내의 상기 보색제의 함량이 1 ppm 미만 인 경우 티타늄 특유의 노랑색을 띠게 되어 근소한 색조의 차이가 문제가 되는 광학 용도의 필름 등에서 충분한 활용을 저해할 수 있다. 따라서 상기 보색제는 분산성 및 색조의 균형을 위해 보다 바람직하게는 2 ~ 8 ppm으로 포함될 수 있다.
이와 같은 보색제로 인해 수지의 색좌표 b값이 8을 초과하는 경우 필름 색상에 영향을 주어 투명성을 요구하는 광학용 필름에 적합하지 않으며 필름 표면 색상뿐만 아니라 필름 측면 색상 변화를 주므로 외관 불량이 발생할 수 있다. 따라서 바람직하게는 색좌표 b값이 8이하인 것이 좋다.
한편, 금속 성분(M)은 상술한 바와 같이 촉매의 활성을 저해하거나 이물을 형성하여 중축합된 폴리에스테르 수지의 물성을 저하시키지만 보다 효율적인 폴리에스테르 중축합을 위하여 촉매, 피닝제 등의 금속의 사용은 필수적으로 요구된다.
이때, 인(P)은 상술한 열 안정제로서의 효과 이외에도 상술한 금속 성분과 반응하여 다른 이물을 형성시키지 못하게 하는 금속이온 봉쇄제(Sequestering Agent)의 역할을 추가적으로 수행할 수 있다. 금속이온 봉쇄제란 금속이온에 화학작용을 하여 그 활성을 감소시키거나 불순물의 함량을 낮추어 목적하는 화합물의 수율을 높이기 위하여 주로 사용된다. 따라서 금속 성분과 인(P)의 최적의 함량비를 알 수 있다면 폴리에스테르의 물성을 향상시킴과 동시에 금속 이온으로 인한 이물의 형성을 최소화할 수 있다.
이에 본 발명의 일 실시예에 따르면, 본 발명의 폴리에스테르 수지 조성물은 하기 관계식 (4)를 추가적으로 만족할 수 있다.
(4) P/M = 0.1 ~ 0.6
만일 조성물 내의 금속 이온과 인의 함량비가 0.6을 초과하는 경우 용융비저항 수치가 높아져 필름 캐스팅 시 필름이 두께가 불균일하거나 캐스팅이 원활하지 않는 문제가 발생할 수 있고, 만일 조성물 내의 금속 이온과 인의 함량비가 0.1 미만인 경우 인이 금속이온 봉쇄제로서의 역할을 충분히 수행할 수 없어서 이물이 발생하는 등 폴리에스테르 수지 자체 물성이 저하될 수 있다. 또한 인화합물의 사용량은 중합 후에 수득되는 중합물에 대하여 인 원자 환산으로 10~30 ppm을 사용하는 것이 바람직하다
한편, 본 발명의 일 실시예에 의하여 제조된 폴리에스테르 수지는 말단의 카르복실기를 1 ~ 45개 포함할 수 있다. 상술한 것과 같이, 본 발명에 따른 폴리에스테스 수지 조성물을 사용하는 경우 낮은 온도에서 중합이 수행됨과 동시에 고중합도를 가지게 되어 추가적으로 중합체 말단기(COOH)가 감소하는 효과를 얻을 수 있다. 이로써 보다 안정적인 공정 수행과 생산 속도를 증대시키는 효과를 얻을 수 있다.
또한, 본 발명의 일 실시예에 의하여 제조된 폴리에스테르 수지는 고유점도가 0.300 ~ 0.900 dl/g일 수 있다. 만일 고유점도가 0.300 dl/g 보다 낮은 경우 점도가 불충분하여 필름캐스팅시 묽은 점도로 인하여 기포가 다량 발생되는 문제가 발생할 수 있고, 0.900 dl/g 보다 큰 경우는 점도가 높아 캐스팅 시 균일하게 캐스팅이 되지 않는 문제가 발생할 수 있다. 보다 바람직하게는 0.500 ~ 0.800 dl/g일 수 있다.
이와 같이 본 발명에 따른 폴리에스테르 수지 조성물은 티타늄계 킬라이트 촉매를 비롯한 다른 금속 첨가물들의 함량을 조절함으로써 최적의 필름용 폴리에스테르 수지를 제공한다.
다음, 본 발명에 따른 상기 폴리에스테르 수지를 사용하여 제조된 필름에 대하여 설명한다.
일반적으로 폴리에스테르로 제조한 필름은 그 기계적 특성, 열적 특성, 내약품성, 전기적 특성 등이 우수한 성질을 가지기 때문에 자기 기록 매체용, 콘덴서용, 광학용, 일반 공업용 등의 산업용도에 넓게 이용되고 있다. 일반적으로 폴리에스테르 필름은 압출기에 의해 폴리에스테르 수지를 용융 압출한 후, 가로/세로 방향으로 이축 연신 하여 얻어진다.
이때, 폴리에스테르 필름의 성형 가공 시에는 250~300℃이라고 하는 폴리에스테르 수지의 융점 이상의 온도에서 용융해 압출 성형하기 때문에, 폴리에스테르 수지의 열분해 문제가 발생할 수 있고 미량의 산소가 혼입된 경우에는 산화 분해에 의한 겔형 이물이 발생할 수 있어 성형한 필름에 내부결점으로 작용할 수 있다.
또한 폴리에스테르 수지를 필름화 하는 경우, 시트형 물품 상면에 고전압을 인가하고 시트형 물품을 회전 냉각 드럼에 밀착시키는 정전 인가 캐스트법이 주로 사용되고 있지만, 제막속도를 향상시키기 위해 회전 냉각 드럼의 속도를 빠르게 하면 시트형 필름과 회전 냉각 드럼과의 밀착력이 저하되어 필름의 두께 균일성이나 투명성 저하하고, 인가 불균일에 의한 필름 표면의 불량을 일으킬 수 있다. 특히 근래에는 자기 기록 매체용이나 드라이필름 레지스트용 필름 등에서는 고도의 표면 평활성이나 박막화가 요구되어 상기한 겔형 이물이나 정전 인가성 불량은 이러한 필름 표면 불량이나 투명성을 악화시키기 위해 바람직하지 않다.
이에 본 발명은 상술한 본 발명에 따른 필름용 폴리에스테르 조성물을 사용하여 제조된 폴리에스테르 수지로 필름을 제조하여 종래의 문제점에 대한 해결을 모색하였다. 중복을 피하기 위해 전술한 필름용 폴리에스테르 수지 조성물 및 이를 통해 제조된 폴리에스테르 수지에 대한 설명은 생략한다.
상술한 본 발명에 따른 필름용 폴리에스테르 조성물을 사용하여 제조된 폴리에스테르 수지로 정전 인가 캐스트법에 의한 필름을 제조하는 경우, 시트형 필름과 회전 냉각 드럼 사이 간극이 형성되지 않는 높은 정전 밀착성을 가짐에 따라 냉각회전 드럼의 회전 속도를 증가시켜도 균일하게 캐스팅될 수 있다.
즉 본 발명에 따른 폴리에스테르 수지는 상술한 관계식 (1) 내지 (3)의 조건을 만족함에 따라 필름 표면에 전하량이 높아져서 정전인가성이 우수하여 높은 정전 밀착성을 나타냄에 따라 빠른 회전 속도에서도 드럼 표면과 시트형 필름의 간극이 형성되지 않아서 균일하고 투명도가 높은 필름을 제조할 수 있다.
뿐만 아니라, 중축합 과정에서 말단 카르복실기기의 함량이 낮은 고중합 폴리에스테르 수지를 얻을 수 있고 작은 용융비저항값을 가짐에 따라 낮은 온도에서도 필름 성형 가공이 가능하여 내열성이 우수한 필름을 제조할 수 있다.
본 발명에서 폴리에스테르 필름은 상기 폴리에스테르 조성물을 사용하여 통상의 제조방법, 예를 들어 종래 공지된 T-다이법으로 용융압출시켜 미연신 시트(sheet)를 수득하고, 수득한 미연신 시트를 기계방향으로 2 내지7배, 바람직하게는 3 내지 5 배로 연신시킨 다음, 횡방향으로 2 내지 7배, 바람직하게는 3 내지 5배 연신시켜 제조하는 방법 등으로 제조할 수 있다.
다음, 본 발명에 따른 필름용 폴리에스테르 수지의 제조방법을 설명한다.
(1) 산성분 및 디올성분이 반응된 에스테르화 반응물을 제조하는 단계 및 (2) 상기 제조된 에스테르화 반응물에 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물을 첨가하여 폴리에스테르 수지를 제조하는 단계를 포함하고 하기 관계식 (1) ~ (3)을 만족하여 제조된다.
(1) M = 1 ~ 150 ppm
(2) T = 1 ~ 40 ppm
(3) R은10 MΩ·cm 이하
이때 상기 M은 폴리에스테르 수지 조성물에서 인(P)을 제외한 금속 성분의 총 함량을 의미하고, 상기 T는 티타늄 원소 기준 티타늄의 함량이고, 상기 R은 용융비저항을 의미한다. 중복을 피하기 위해 전술한 필름용 폴리에스테르 수지 조성물 및 이를 통해 제조된 폴리에스테르 수지에 대한 설명은 생략한다.
(1) 단계에서, 산성분 및 디올성분은 폴리에스테르 합성분야의 공지된 합성 조건을 이용하여 에스테르화 반응을 통해 에스테르화 반응물을 얻을 수 있다. 이때, 산성분과 디올성분은 1:1.1 ~ 2.0의 몰비로 반응하도록 투입될 수 있는데, 이에 제한되는 것은 아니다.
또한, 상기 에스테르화 반응은 바람직하게는 200 ~ 270℃의 온도 및 1100 ~ 1350 토르(Torr)의 압력 하에서 수행될 수 있다. 상기 조건을 만족하지 않는 경우 에스테르화 반응 시간이 길어지거나 반응성 저하로 중축합 반응에 적합한 에스테르화 화합물을 형성할 수 없는 문제가 발생하는 문제점이 있을 수 있다. 또한, 상기 중축합 반응은 250 ~ 300℃ 온도 및 0.3 ~ 1.0 토르(Torr) 압력 하에서 이루어질 수 있으며, 만일 상기 조건을 만족하지 못하는 경우 반응시간 지연, 중합도 저하, 열분해 유발 등의 문제점이 있을 수 있다
다음 (2) 단계로 상술한 (1) 단계에서 제조된 에스테르화 반응물은 본 발명에 따른 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물이 첨가되어 폴리에스테르 수지로 증축합된다.
이때 상기 티타늄계 킬레이트 촉매는 하기 화학식 1로 표시되는 티타늄 알콕사이드(titanium-(IV)-alkoxide)와 알파~하이드록시 카르복시산(alpha-hydroxy carboxylic acid)의 반응 생성물일 수 있고, 상기 인계 화합물은 하기 화학식 3으로 표시되는 것일 수 있다. 이와 같은 티타늄계 킬레이트 촉매 적용 시 Sb 촉매 적용 시 보다 반응속도가 빠르기 때문에 상대적으로 낮은 온도에서도 축중합이 가능하다.
상기 반응생성물은 하기 화학식 2로 표시되는 티타늄 알파-하이드록시 카르복실레이트(titanium alpha-hydroxy carboxylate)일 수 있다.
[화학식 1]
Ti-(OR1)4
이때 상기 R1은 탄소수 1 내지 6개의 알킬기이다.
[화학식 2]
이때 상기 R2 내지 R5는 각각 독립적으로 수소 또는 탄소수 1 내지 6개의 알킬기이다.
[화학식 3]
또한 상기 R6 내지 R8는 각각 독립적으로 수소 또는 탄소수 1 내지 6개의 알킬기이이며 적어도 어느 하나는 수소가 아니다.
이와 같이 본 발명에 따른 따른 필름용 폴리에스테르 수지 조성물은 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물을 포함하고 이들의 최적 함량비를 제시함으로서 우수한 열 안정성과 용융비저항을 가짐과 동시에 생산 속도와 수율이 향상된 필름용 폴리에스테르 수지 및 이에 따른 필름을 제조할 수 있다.
[실시예 1] 폴리에스테르 수지 제조
에스테르 반응조에 산성분으로 테레프탈산(TPA) 100%, 디올성분으로 에틸렌글리콜(EG) 100 몰% 투입한 후 250℃, 1140Torr 조건에서 반응시켜 에스테르 반응물을 얻었다. 이 때 산성분과 디올성분은 1:1.2의 몰비로 투입되었다.
형성된 에스테르 반응물을 중축합 반응기에 이송하고, 중축합 촉매로 하기 화학식 1-1으로 표시되는 화합물과 알파~하이드록시 카르복시산(alpha-hydroxy carboxylic acid)의 반응생성물인 화학식 2로 표시는 되는 티타늄계 킬레이트 촉매 20 ppm을 넣고, 열안정제로 트리에틸인산 25ppm(P원소 기준)을 투입하여 최종압력 0.5 Torr가 되도록 서서히 감압하면서 280℃까지 승온하여 축중합반응을 수행하여 폴리에스테르 수지를 제조하였다.
[화학식 1-1]
Ti(OR)4
[화학식 2-1]
상기 R2 내지 R5는 모두 수소이다.
[실시예 2~10] 폴리에스테르 수지 제조
실시예 1과 동일하게 제조하되 금속 함량 또는 마그네슘 함량을 달리하여 제조하고 이를 표 2에 나타내었다.
[실시예 11~12] 폴리에스테르 수지 제조
실시예 1과 동일하게 제조하되 티타늄 킬레이트 촉매의 함량을 달리하여 제조하고 이를 표 2에 나타내었다.
[실험예 1] 용융비저항 측정
Glass tube에 본 발명의 실시예 및 제조예에 따른 폴리에스테르 수지를 정량 투입 후 Melting bath에 넣고 용융시킨다. 전극의 측정부 이외는 통전하지 않게 테프론 테이프에 의해 마스킹을 실시한 후 용융된 폴리머에 측정 프로브를 (전극) 꽂아서 전하를 이동시킨다. 저항 측정 소프트웨어의 시작을 누르고 10분간 안정화 후 저항치를 기록한다.
[실험예 2] 고유점도 측정
실시예에서 제조된 폴리에스테르 수지를 오르쏘-클로로 페놀(Ortho-Chloro Phenol) 용매에 110℃ 온도에서 2.0g/25ml의 농도로 30분간 용융한 후, 25℃에서 30분간 항온하여 캐논(CANON) 점도계가 연결된 자동 점도측정 장치를 이용하여 고유점도를 측정하였다.
[실험예 3] 카르복실기 말단기 정량
실시예의 카르복시기 함량은 하기 방법에 따라 측정하였다. 20메시 크기로 분쇄한 폴리에스테르 분말 0.15g을 정밀하게 달아 시험관에 넣고 5ml의 벤질알코올을 가하여 초소형 교반기로 교반하면서 1300초 동안에 걸쳐 210℃에서 가열 용해시켰다. 용해직 후 시험관을 25℃의 물에 6초 담가 급냉시키고 10ml의 클로로포름이 들어있는 50ml의 비커에 내용물을 부은 후, 다시 5ml의 벤질알코올을 시험관에 넣어 60초간 교반시키면서 남아있는 폴리에스테르 수지 용액을 완전히 헹구었다. 카르복시기 함량은 페놀레드 (0.1% 벤질알코올 용액)을 지시약으로 하여 0.1N 수산화나트륨 벤질알코올 용액을 mycrosyringe (용량: 100㎕)를 사용하여 중화적정 하고 적정결정치를 적정시약에 대한 바탕시험 결과에 따라 보정하여 하기 수학식 1에 따라 계산하였다.
[수학식 1]
카르복시기 함량 (eq./106g PET) =
[적정액의 부피(㎕)-바탕시험 결과(㎕)] × 0.1 × f / PET 시료의 무게
이때, f는 0.1 N 수산화나트륨 벤질알코올 용액의 농도계수이다
[실험예 4] 내부결점 개수
내부 결점 측정 방법으로 제조된 본 발명에 따른 폴리에스테르수지를 슬라이드 글라스(Slide glass) 위에 용융시켜 두께 500㎛ 샘플을 제조하고 광학현미경을 이용하여 투과광에서 200배 배율로 깊이 180㎛ 층의 결점을 관찰하여 448㎛×336㎛ 면적 내 크기 1.5㎛ 이상의 결점 개수를 총 5장의 현미경 사진에서의 결점 개수를 평균하여 계산한다. 또한 결점 크기는 현미경 Scale Bar를 통해 측정할 수 있으며 결점의 장축을 기준으로 측정한다.
[실험예 5] 필름 헤이즈 측정
Pilot 필름제막기를 이용하여 폴리에스터 수지를 압출기이용 T다이를 통해 용융시키고, 캐스팅 드럼으로 냉각시켜 두께 1690㎛ 시트를 제조하고, 제조된 시트를 가로, 세로 각각 3배 연신하여 188㎛ 시트를 제조하여 필름의 헤이즈를 측정하였다.
헤이즈 측정 방법은 ASTM D-1003을 기준으로 측정하였으며, 필름을 변부 2개소, 중심부 1개소에서 무작위로 7개 부분을 추출한 후 각 5㎝×5㎝ 크기로 절편하여 헤이즈 측정기(니혼덴쇼쿠 NDH 300A)에 넣고 555nm 파장의 빛을 투과시켜 하기의 수학식2으로 계산한 후 최대/최소값을 제외한 평균값을 산출하였다.
[수학식 2] 헤이즈(%)
(전체산란광/전체투과광)× 100
실시예 |
티타늄 알콕사이드 종류 | 티타늄 킬레이트 촉매 종류 |
금속 함량(M) | 티타늄 킬레이트 촉매 함량(T) | 마그네슘 함량 |
금속함량(M)/인함량(P) |
실시예1 | 화학식 1 | 화학식 2 | 86 | 20 | 3 | 0.87 |
실시예2 | 화학식 1 | 화학식 2 | 110 | 20 | 15 | 0.68 |
실시예3 | 화학식 1 | 화학식 2 | 140 | 20 | 30 | 0.54 |
실시예4 | 화학식 1 | 화학식 2 | 160 | 20 | 40 | 0.47 |
실시예5 | 화학식 1 | 화학식 2 | 180 | 20 | 50 | 0.42 |
실시예6 | 화학식 1 | 화학식 2 | 200 | 20 | 60 | 0.38 |
실시예7 | 화학식 1 | 화학식 2 | 220 | 20 | 70 | 0.34 |
실시예8 | 화학식 1 | 화학식 2 | 320 | 20 | 120 | 0.23 |
실시예9 | 화학식 1 | 화학식 2 | 160 | 20 | 40 | 0.47 |
실시예10 | 화학식 1 | 화학식 2 | 160 | 20 | 40 | 0.47 |
실시예11 | 화학식 1 | 화학식 2 | 82 | 0.5 | 40 | 0.91 |
실시예12 | 화학식 1 | 화학식 2 | 300 | 55 | 40 | 0.25 |
실시예 | 고유점도 (dl/g) |
말단기 측정 | 용융비저항® (MΩ·cm) |
내부 결점 개수 |
실시예1 | 0.45 | 21.5 | 3.6 | 양호 |
실시예2 | 0.48 | 27.5 | 1.9 | 양호 |
실시예3 | 0.52 | 35 | 0.8 | 양호 |
실시예4 | 0.38 | 40 | 1.4 | 양호 |
실시예5 | 0.46 | 45 | 2.2 | 양호 |
실시예6 | 0.25 | 50 | 2.5 | 양호 |
실시예7 | 0.85 | 55 | 7 | 양호 |
실시예8 | 1.11 | 80 | 9 | 불량 |
실시예9 | 0.5 | 40 | 4 | 보통 |
실시예10 | 0.45 | 40 | 6 | 보통 |
실시예11 | 0.99 | 20.5 | 11 | 불량 |
실시예12 | 1.03 | 75 | 14 | 불량 |
상기 표 1 및 2를 참조하면, 본 발명의 모든 수치점위를 만족하는 실시예 3 및 4의 경우 모든 물성이 우수함을 알 수 있다. 즉 금속함량이 높은 실시예 5 내지 8의 경우 용융비저항이 높거나 내부 결점 테스트에서 불량이 나오는 것을 알 수 있다. 또한 티타늄 킬레이트 촉매의 함량이 본 발명의 수치범위를 벗어난 실시예 11 및 12의 경우 모든 물성이 현저히 낮은 결과를 나타냄을 알 수 있다.
Claims (12)
- 폴리에스테르 수지 중축합물, 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물을 포함하며 하기 관계식 (1) ~ (3)을 모두 만족하는 필름용 폴리에스테르 수지 조성물(1) M = 1 내지 150 ppm(2) T = 1 내지 40 ppm(3) R은 10 MΩ·cm 이하이때 상기 M은 폴리에스테르 수지 조성물에서 인(P)을 제외한 금속 성분의 총 함량을 의미하고,상기 T는 티타늄 원소 기준 티타늄의 함량이고,상기 R은 용융비저항을 의미한다.
- 제1항에 있어서상기 조성물은 하기 관계식 (4)를 만족하는 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물.(4) P/M = 0.1 내지 0.6이때 상기 P는 인계 화합물에 포함된 인 원소량을 의미한다.
- 제1항에 있어서,상기 티타늄 킬레이트 촉매는 하기 화학식 1로 표시되는 티타늄 알콕사이드(titanium-(IV)-alkoxide)와 알파 하이드록시 카르복시산(alpha-hydroxy carboxylic acid)의 반응 생성물인 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물.[화학식 1]Ti-(OR1)4이때 상기 R1은 각각 독립적으로 수소 또는 탄소수 1 내지 6개의 알킬기이고 적어도 하나는 수소가 아니다.
- 제1항에 있어서,상기 피닝제는 마그네슘(Mg)계 화합물인 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물.
- 제1항에 있어서,블루 및 레드 염료를 포함하는 보색제를 폴리에스테르 수지 조성물 전체 중량을 기준으로 1 내지 10 ppm 더 포함하는 것을 특징으로 하는 필름용 폴리에스테르 수지 조성물.
- 제1항 내지 제7항 중 어느 한 항에서 선택된 폴리에스테르 수지 조성물을 이용하여 제조되고, 말단 카르복실기가 1 내지 45 개인 것을 특징으로 하는 필름용 폴리에스테르 수지.
- 제 8항에 따른 필름용 폴리에스테르 수지로 제조된 필름.
- (1) 산성분 및 디올성분이 반응된 에스테르화 반응물을 제조하는 단계; 및(2) 상기 제조된 에스테르화 반응물에 티타늄계 킬레이트 촉매, 피닝제 및 인계 화합물을 첨가하여 폴리에스테르 수지를 제조하는 단계; 를 포함하고 하기 관계식 (1) ~ (3)을 모두 만족하는 필름용 폴리에스테르 수지의 제조방법.(1) M = 1 ~ 150 ppm(2) T = 1 ~ 40 ppm(3) R은 10 MΩ·cm 이하이때 상기 M은 폴리에스테르 수지 조성물에서 인(P)을 제외한 금속 성분의 총 함량을 의미하고,상기 T는 티타늄 원소 기준 티타늄의 함량이고,상기 R은 용융비저항을 의미한다.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220015652A KR102718885B1 (ko) | 2022-02-07 | 티타늄계 촉매를 포함하는 필름용 폴리에스테르 수지 조성물 및 그 제조방법 | |
KR10-2022-0015652 | 2022-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023149675A1 true WO2023149675A1 (ko) | 2023-08-10 |
Family
ID=87552485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/000483 WO2023149675A1 (ko) | 2022-02-07 | 2023-01-11 | 티타늄계 촉매를 포함하는 필름용 폴리에스테르 수지 조성물 및 그 제조방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023149675A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0149378B1 (ko) * | 1995-08-16 | 1998-10-15 | 박홍기 | 폴리에스테르 필름의 제조방법 |
KR20020051354A (ko) * | 2000-12-22 | 2002-06-29 | 조정래 | 이축 연신 필름용 폴리에스테르 수지의 제조방법 |
KR20150116866A (ko) * | 2013-02-06 | 2015-10-16 | 우데 인벤타-피셔 게엠바하 | 티타늄 함유 촉매의 제조 방법, 티타늄 함유 촉매, 폴리에스테르의 제조 방법 및 폴리에스테르 |
KR102172280B1 (ko) * | 2019-05-13 | 2020-10-30 | 도레이첨단소재 주식회사 | 열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유 및 부직포 |
KR20220012575A (ko) * | 2020-07-23 | 2022-02-04 | 도레이첨단소재 주식회사 | 염색성이 우수한 난연성 폴리에스테르 섬유 및 이의 제조방법 |
-
2023
- 2023-01-11 WO PCT/KR2023/000483 patent/WO2023149675A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0149378B1 (ko) * | 1995-08-16 | 1998-10-15 | 박홍기 | 폴리에스테르 필름의 제조방법 |
KR20020051354A (ko) * | 2000-12-22 | 2002-06-29 | 조정래 | 이축 연신 필름용 폴리에스테르 수지의 제조방법 |
KR20150116866A (ko) * | 2013-02-06 | 2015-10-16 | 우데 인벤타-피셔 게엠바하 | 티타늄 함유 촉매의 제조 방법, 티타늄 함유 촉매, 폴리에스테르의 제조 방법 및 폴리에스테르 |
KR102172280B1 (ko) * | 2019-05-13 | 2020-10-30 | 도레이첨단소재 주식회사 | 열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유 및 부직포 |
KR20220012575A (ko) * | 2020-07-23 | 2022-02-04 | 도레이첨단소재 주식회사 | 염색성이 우수한 난연성 폴리에스테르 섬유 및 이의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20230119466A (ko) | 2023-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013066003A1 (ko) | 대전방지 특성을 갖는 전방향족 액정 폴리에스테르 수지 컴파운드 및 물품 | |
WO2021060686A1 (ko) | 폴리에스테르 수지 혼합물, 폴리에스테르 필름 및 이의 제조 방법 | |
JPH05222180A (ja) | ポリエステルの製造法 | |
WO2014092275A1 (ko) | 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법 | |
WO2015102305A1 (ko) | 생분해성 폴리에스테르 수지 제조용 조성물 및 생분해성 폴리에스테르 수지의 제조 방법 | |
WO2014092276A1 (ko) | 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법 | |
WO2022102902A1 (ko) | 생분해성 적층 필름 및 이의 제조 방법 | |
WO2023149675A1 (ko) | 티타늄계 촉매를 포함하는 필름용 폴리에스테르 수지 조성물 및 그 제조방법 | |
WO2022086062A1 (ko) | 습식 부직포용 폴리에스테르 단섬유, 이를 포함하는 습식 부직포 및 이의 제조방법 | |
WO2019066448A1 (ko) | 폴리에스테르 중합 조성물, 폴리에스테르 수지 마스터배치 칩 및 이를 이용한 폴리에스테르 필름 | |
WO2014092277A1 (ko) | 생분해성 지방족/방향족 폴리에스테르 공중합체의 연속 제조방법 | |
WO2021010591A1 (ko) | 폴리에스테르 수지 혼합물 | |
WO2021141236A1 (ko) | 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물 및 그 제조방법 | |
WO2020138802A1 (ko) | 열가소성 수지 조성물 및 이로부터 형성된 성형품 | |
WO2022102936A1 (ko) | 재사용 단량체를 포함하는 폴리에스테르 공중합체 | |
WO2021086082A1 (ko) | 폴리에스테르 필름, 이의 제조 방법, 및 이를 이용한 폴리에틸렌테레프탈레이트 용기의 재생 방법 | |
WO2024162678A1 (ko) | 폴리에스테르 수지 조성물 및 이를 포함하는 사출 또는 압출 성형품 | |
WO2022092758A1 (ko) | 생분해성 고분자 복합체 제조 방법 및 생분해성 고분자 복합체 | |
WO2024136285A1 (ko) | 생분해성 폴리에스테르 수지 비드 및 이의 제조 방법 | |
WO2024162677A1 (ko) | 폴리에스테르 수지, 이의 제조 방법 및 이를 포함하는 성형 제품 | |
WO2023101191A1 (ko) | 폴리에스테르계 필름 및 이의 제조 방법 | |
WO2019132451A1 (ko) | 폴리에스테르 수지 및 이를 이용한 폴리에스테르 필름 | |
WO2024005362A1 (ko) | 폴리에스테르 필름 및 이를 포함하는 케이블 | |
WO2024177224A1 (ko) | 수소 연료 전지용 폴리에스테르 필름 및 막전극 어셈블리 | |
WO2013048103A1 (en) | Polyester resin composition and polyester film using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23749910 Country of ref document: EP Kind code of ref document: A1 |