WO2023140304A1 - 吸引装置 - Google Patents

吸引装置 Download PDF

Info

Publication number
WO2023140304A1
WO2023140304A1 PCT/JP2023/001419 JP2023001419W WO2023140304A1 WO 2023140304 A1 WO2023140304 A1 WO 2023140304A1 JP 2023001419 W JP2023001419 W JP 2023001419W WO 2023140304 A1 WO2023140304 A1 WO 2023140304A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
flow
blowout
fan
flow passage
Prior art date
Application number
PCT/JP2023/001419
Other languages
English (en)
French (fr)
Inventor
畠山昭弘
Original Assignee
畠山昭弘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 畠山昭弘 filed Critical 畠山昭弘
Publication of WO2023140304A1 publication Critical patent/WO2023140304A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains

Definitions

  • the present invention relates to a fan configured by a plurality of fans for forcibly sucking local air.
  • suction devices for local exhaust have been proposed.
  • a propeller fan with a coaxial double structure in which blades are arranged so that the outer portion generates a blown flow and the inner portion generates a suction flow.
  • Rotation of the propeller fan rotates the blowout flow and the suction flow in the same direction, generating a tornado flow and realizing effective suction.
  • a fan array consisting of a plurality of blowout fans 230 arranged on a circumference surrounding a suction fan 210 is used to form a large-diameter cylindrical air curtain capable of surrounding the suction target from the beginning.
  • Each blowout fan 230 is an axial fan, and the rotation axis thereof is twisted with respect to the rotation axis of the suction fan 210 to rotate the air curtain. This swirling generates a tornado flow in the suction flow.
  • the plurality of blow-out fans constituting the fan array are all twisted in the same direction around the suction axis in order to realize a stable air curtain and a tornado-shaped suction flow.
  • the present invention has been made in view of the above circumstances, and aims to provide a suction device that can stably form an air curtain that encloses a wide range, that can efficiently suck the enclosed range with a tornado flow, and that is easy to manufacture and excellent in design.
  • the suction device includes: A suction device for performing local exhaust, a suction flow passage having a substantially circular suction port at the end in the suction target direction and through which the suction flow flows; a suction fan for generating the suction flow in the suction flow passage; a blowout flow generating chamber formed in a substantially disk shape coaxially surrounding the suction flow passage, introducing the blowout flow from an introduction port on the side opposite to the suction target and expanding the flow into a disk shape; a plurality of blow-out fans provided at respective locations on the outer peripheral portion of the blow-out flow generating chamber for blowing out the blow-out flow from the blow-out flow generating chamber in an outward direction revolving around the axis of the suction flow passage; and a blowout flow deflecting guide provided on the outer peripheral side of the blowout flow generating chamber and deflecting the blowout flow blown out by the plurality of blowout fans in the suction target direction.
  • the suction device comprises an outer guide provided to extend the tip of the blowout flow deflection guide and an inner guide provided along the outer periphery of the blowout flow generation chamber, and may further include a blowout flow straightening guide for straightening the blowout flow.
  • a suction device is a suction device for performing local exhaust, a suction flow passage having a substantially circular suction port at the end in the suction target direction and through which the suction flow flows; a suction fan for generating the suction flow in the suction flow passage; a blowout fan comprising a plurality of axial fans arranged on a substantially circular circumference surrounding the suction flow passage in a plane orthogonal to the axis of the suction flow passage so that their rotation axes are parallel to the axis of the suction flow passage and generating a blowout flow; and a blown-out flow swirl guide for turning the blown-out flow from each of the blow-out fans around the axis of the suction flow passage.
  • the blow-out flow turning guide may be formed as an independent hood for each blow-out fan, and may be configured so that the mounting angle can be adjusted independently.
  • Each of the hoods may be configured such that an air outlet is formed in an elongated hole elongated in the rotation axis direction of the suction fan, so that when the blowing flows from the hoods are combined, a substantially cylindrical air curtain can be formed without gaps.
  • Each of the suction devices may further include a rotation control section that individually controls rotation speeds of the suction fan and each blowout fan.
  • the suction device since a plurality of blow-out fans arranged around the suction fan and a guide for directing the blow-out flow are used, it is possible to form a large air curtain with a sufficient blow-out speed and turning speed, surround the suction target and efficiently suck it with a tornado flow.
  • a plurality of blow-out fans form a blow-out flow that blows outward while rotating around the axis of the suction flow passage, and the blow-flow deflection guide bends the flow toward the target to be sucked, thereby realizing an air curtain that surrounds the target to be sucked.
  • the blowout flow swirl guide for turning the blowout flow generated by the fan array composed of the plurality of blowout fans since the blowout flow swirl guide for turning the blowout flow generated by the fan array composed of the plurality of blowout fans is provided, the rotation shafts of the plurality of blowout fans do not need to be twisted with respect to the axis of the suction flow passage, which facilitates manufacturing. Furthermore, by using a hood whose attachment angle can be adjusted independently for each blowout fan, the air curtain can be formed according to the installation environment of the suction device, such as the distance from the suction target and the distance from the wall.
  • FIG. 1 is a longitudinal sectional view conceptually showing a first embodiment of a suction device according to the present invention
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1
  • FIG. 2 is an external perspective view showing the suction device of FIG. 1
  • Fig. 2 is an exploded perspective view showing the suction device of Fig. 1
  • FIG. 5 is a longitudinal sectional view conceptually showing a modification of the first embodiment
  • FIG. 5 is a longitudinal sectional view conceptually showing a second embodiment of the suction device according to the present invention
  • Fig. 7 is a plan view of the device of Fig. 6
  • Fig. 7 is an external perspective view showing the suction device of Fig. 6
  • FIG. 11 is a perspective view showing a conventional suction device;
  • FIG. 1 is a longitudinal sectional view conceptually showing the first embodiment
  • FIG. 2 is a sectional view taken along the line AA
  • FIG. 3 is an external perspective view
  • FIG. 4 is an exploded perspective view.
  • the suction flow passage 10 has a substantially circular suction port 12 at the end in the direction of the suction target 90 and is a passage through which a suction flow flows.
  • the suction fan 20 is a fan that generates a suction flow. In this embodiment, it is composed of a propeller fan 20a and a motor 20b that rotates the propeller fan 20a.
  • the suction fan 20 is not limited to this.
  • a centrifugal fan such as a sirocco fan may be used.
  • the blowout flow generation chamber 30 is formed in a substantially disk shape coaxially surrounding the suction flow passage 10, and is a space in which the blowout flow is introduced from the introduction port 31 on the opposite side of the suction target 90 and expanded into a disk shape.
  • it is formed by an annular support disk 32 extending outward from the outer circumference of the suction duct 11 along a plane perpendicular to the suction duct 11, and an annular guide disk 33 provided parallel to the support disk 32 on the side opposite to the suction target 90.
  • the guide disk 33 is fixed to the support disk 32 via support walls 34 intermittently erected on the outer periphery of the support disk 32 (see FIGS. 3 and 4).
  • FIG. 3 shows the assembled state of the suction device 1, and the outer peripheral side of the upper surface of the device is covered with a guide disk 33 and a blowout flow deflecting guide 50, which will be described later.
  • the exploded perspective view of FIG. 4 shows a state in which the guide disk 33 and the blowout flow deflection guide 50 are shifted upward in FIG.
  • the plurality of blowout fans 40 are provided at respective locations on the outer peripheral portion of the blowout flow generating chamber 30, and are fans for blowing out the blowout flow from the blowout flow generating chamber 30 in an outward direction revolving about the axis 10c (see FIG. 1) of the suction flow passage 10.
  • each of the plurality of blowout fans 40 is an axial fan composed of a propeller fan 40a and a motor 40b that rotates the propeller fan 40a.
  • the plurality of blow-out fans 40 are provided between the support walls 34 in the blow-out flow generating chamber 30, and are arranged so that the direction of the rotation shaft 40c is not radial but is turned.
  • the blowing flow is blown from the inside of the blowing flow generation chamber 30 through between the supporting walls 34 and in a direction that rotates from the radial direction.
  • the above-mentioned “turning direction” may be the same as or different from the rotation direction of the suction fan 20 .
  • the swirling direction of the blowout flow which will be described later, and the direction in which the rotation of the suction fan 20 attempts to swirl the suction flow will be the same, which is preferable in that a tornado flow is likely to occur.
  • each support wall 34 has a straight portion 34a that directs the blowout flow obliquely outward, and an arcuate portion 34b that prevents the blowout flow from returning to the inside of the blowout flow generating chamber 30.
  • the support wall 34 may have any shape as long as it can support the guide disk 33, and may be, for example, a column shape. Since the blow-out flow generation chamber 30 has a planar space, it is easy to arrange in a direction in which the axial direction of the plurality of blow-out fans 40 is turned, and it is easy to generate a turning blow-out flow.
  • the blowout flow deflection guide 50 is provided on the outer peripheral side of the blowout flow generating chamber 30, and is a guide that deflects the blowout flow flatly blown out by the plurality of blowout fans 40 toward the suction target 90.
  • the blowout flow deflecting guide 50 is formed in a substantially annular shape when viewed from the top so as to be continuous from the outer periphery of the guide disk 33 of the blowout flow generating chamber 30, and has a thin plate shape that curves downward from the horizontal from the inside to the outside.
  • the blow-out flow deflecting guide 50 deflects the blow-out flow blown out by the plurality of blow-out fans 40 toward the suction target 90 while maintaining the rotation about the axis 10c of the suction flow passage 10, forming a rotating substantially cylindrical air curtain AC.
  • the rotation control unit 60 is a unit that individually controls the rotation speeds of the suction fan 20 and each blowout fan 40, and any known means can be used. For example, when AC motors are used as the motors 20b and 40b for driving the fans, the rotation control unit 60 can use an inverter circuit to control the drive frequency of the motors 20b and 40b. When DC motors are used as the motors 20b and 40b for driving the fans, the rotation control unit 60 may alternatively perform level control and PWM control of the driving voltages of the motors 20b and 40b.
  • the rotation control unit 60 may have a function of detecting an abnormality by a known means and performing control such as warning display and emergency stop of the suction device 1 when an abnormality occurs in each of the fans 20 and 40 .
  • FIG. 1 and 2 arrows (excluding the arrows of lead lines and the arrows indicating the viewing direction of the AA cross section) indicate the flow of air.
  • the introduced air is expanded in a disc shape inside the blowout flow generating chamber 30, and is blown outward by a plurality of blowout fans 40 arranged on the outer periphery, rotating around the axis 10c of the suction flow passage 10 (see FIG. 2).
  • the air is blown out from an annular outlet 51 between the outer periphery of the support disk 32 and forms a rotating substantially cylindrical air curtain AC.
  • the rotation of the suction fan 20 generates a suction flow, and the air inside the air curtain AC is sucked through the suction flow passage 10 formed inside the suction duct 11 . Therefore, the blowing flow forming the air curtain AC changes its direction to the suction port 12 side of the suction flow passage 10 at a reaching point determined by the wind speed or a physical floor surface or plane, and rises toward the suction port 12 of the suction flow passage 10 while turning as it is.
  • the turning radius becomes smaller while the rotational kinetic energy is maintained, so the turning speed increases and a tornado-like vortex reaching the suction target 90 is formed. This tornado-like vortex can efficiently suck the suction target 90 (for example, steam or smoke generated from the cooking range).
  • the sucked object 90 is exhausted as a suction flow through a suction flow passage 10 formed inside a suction duct 11. As shown in FIG. 1, the sucked object 90 is exhausted as a suction flow through a suction flow passage 10 formed inside a suction duct 11. As shown in FIG. 1, the sucked object 90 is exhausted as a suction flow through a suction flow passage 10 formed inside a suction duct 11. As shown in FIG. 1, the sucked object 90 is exhausted as a suction flow through a suction flow passage 10 formed inside a suction duct 11. As shown in FIG.
  • a plurality of blowout fans 40 form a blowout flow that blows outward while rotating about the axis 10c of the suction flow passage 10, and by changing the direction of this flow toward the suction target 90 by the blowout flow deflection guide 50, a large air curtain AC having a sufficient blowing speed and turning speed can be formed, and the suction target 90 can be surrounded and efficiently sucked with a tornado flow.
  • the suction device 1 which is easy to manufacture, can stably form an air curtain AC enclosing a wide range, can efficiently suck the enclosed range with a tornado flow, and is excellent in quietness because the wind can flow smoothly can be realized.
  • the rotational speeds of the suction fan 20 and the blowing fan 40 are individually controlled by the rotation control unit 60, so that the flow rates of the suction flow and the blowing flow can be set optimally, thereby realizing optimum suction according to the usage environment such as the distance to the suction target 90. Also, even if a wall or the like is close to the installation location of the suction device 1, by individually setting the flow rates of the plurality of blow-out fans 40, it is possible to offset the influence of the wall or the like on the air curtain AC.
  • FIG. 5 is a longitudinal sectional view showing a modification of the first embodiment.
  • the suction device 1A of this modified example is composed of an outer guide 71 provided to extend the tip of the outlet flow deflection guide 50 and an inner guide 72 provided along the outer periphery of the support disk 32 of the outlet flow generation chamber 30, and further includes a outlet flow regulating guide 70 for regulating the outlet flow.
  • Each of the outer guide 71 and the inner guide 72 has a substantially cylindrical shape, a skirt shape, or an inverted skirt shape, and its cross-sectional shape and angle can be adjusted as appropriate.
  • the outer guide 71 may be formed integrally with the blowout flow deflection guide 50
  • the inner guide 72 may also be formed integrally with the support disk 32 .
  • the connecting portion between the support disc 32 and the inner guide 72 may be formed in a curved shape so as not to be angular. Other than that, the configuration is the same as the suction device 1 of the first embodiment, and the operation is also the same.
  • the flow of the blowout flow can be stabilized by the blowout flow straightening guide 70, the air curtain AC formed by the blowout flow can be stabilized, and the tornado flow of the suction flow generated by folding back can be further stabilized.
  • the blowout flow straightening guide 70 is not essential, and the blowout flow straightening guide 70 can be omitted when the distance between the suction device 1A and the suction target 90 is short or when it is desired to secure a space between the suction device 1A and the suction target 90.
  • FIGSecond embodiment 6A and 6B are diagrams conceptually showing a second embodiment of the suction device according to the present invention, FIG. 7 is a plan view thereof, and FIG. 8 is an external perspective view thereof.
  • the suction device 101 of the second embodiment has a suction flow passage 110, a suction fan 120, a plurality of blowout fans 130, a blowout flow swirl guide 140, a supporting disc 150, and a rotation control section 160.
  • the suction flow passage 110 has a substantially circular suction port 112 at the end in the direction of the suction target 90 and is a passage through which a suction flow flows.
  • the suction fan 120 is a fan that generates a suction flow. In this embodiment, it is composed of a propeller fan 120a and a motor 120b that rotates the propeller fan 120a.
  • the suction fan 120 is not limited to this.
  • a centrifugal fan such as a sirocco fan may be used.
  • the plurality of blowout fans 130 are axial fans, and are arranged on a substantially circular circumference surrounding the suction flow passage 110 in a plane orthogonal to the axis 110c of the suction flow passage 110 so that the respective rotation shafts 130c are parallel to the axis 110c of the suction flow passage 110, and generate a blowout flow. That is, the plurality of blowout fans 130 constitute a fan array.
  • each blowout fan 130 is an axial fan composed of a propeller fan 130a and a motor 130b that rotates the propeller fan 130a.
  • the blown-out flow swirl guide 140 is a guide for turning the blown-out flow from each blow-out fan around the axis 110 c of the suction flow passage 110 .
  • the blowout flow swirl guide 140 is formed as an independent hood 141 for each blowout fan 130, and the blowout axis of the hood 141 is inclined in the direction of turning toward the suction target 90 about the axis 110c of the suction flow passage 110 (see FIGS. 7 and 8), thereby swirling the blowout flow.
  • the suction fan 120 is provided coaxially within the suction flow passage 110 as in the present embodiment, the above-mentioned “turning direction” may be the same as or different from the rotation direction of the suction fan 120 .
  • each hood 141 has an outlet 141a formed in an elongated hole extending in the rotation axis direction of the suction fan 120, so that when the blowout flows from each hood 141 are combined, a substantially cylindrical air curtain AC can be formed without gaps.
  • the mounting angle of each hood 141 may be adjusted independently, and the direction of the blowing axis of each hood 141 may be adjusted independently.
  • the blowout flow swirling guide 140 is not limited to the independent hood 141 for each of the blowout fans 130, and may be of any type as long as it can swirl the blowout flow from the blowout fan 130.
  • one hood covering all the blowout fans 130 arranged on the circumference may have a plurality of swirl vanes fixed inside.
  • the support disk 150 is a substrate that fixes the suction flow path 110 , the plurality of blowout fans 130 , and the blowout flow swirling guide 140 .
  • the support disk 150 is an annular disk that spreads outward from the outer periphery of the suction duct 111 that forms the suction flow passage 110 along a plane orthogonal to the axis of the suction duct 111. It has through-holes at equal intervals on the circumference of a predetermined radius from the center, each of which has a blowout fan 130 disposed therein, and a hood 141 as a blowout flow swirling guide 140 is attached.
  • the support disk 150 is not essential, and the suction flow passage 110, the plurality of blowout fans 130, and the blowout flow turning guide 140 may be fixed by some other mechanism.
  • the rotation control unit 160 is a unit that individually controls the rotation speeds of the suction fan 120 and each blowout fan 130, and any known means can be used. Since it is the same as the rotation control unit 60 of the first embodiment, detailed description is omitted.
  • FIG. 6 and 7 the arrows (excluding the arrows of the leader lines) indicate the air flow.
  • the suction fan 120 and the plurality of blowout fans 130 are driven to rotate, the plurality of blowout fans 130 blow out air parallel to the direction of the suction target 90, and the respective hoods 141 (blowout flow swirl guides 140) rotate around the rotary shaft 120c of the suction fan 120 (see FIG. 7), and all the swirled blowout flows are synthesized to form a swirling, substantially cylindrical air curtain AC.
  • the rotation of the suction fan 120 generates a suction flow, and the air inside the air curtain AC is sucked through the suction flow passage 110 formed inside the suction duct 111 . Therefore, the blowing flow forming the air curtain AC changes its direction toward the suction port 112 side of the suction flow passage 110 at a reaching point determined by the wind speed, or at a physical floor surface or plane, and rises toward the suction port 112 of the suction flow passage 110 while rotating as it is. At this time, the blowing flow is folded back, so that the turning radius is reduced while the rotational kinetic energy is maintained, so that the turning speed increases and a tornado-like vortex reaching the suction target 90 is formed. This tornado-like vortex can efficiently suck the suction target 90 .
  • the sucked target 90 is exhausted as a suction flow through a suction flow passage 110 formed inside a suction duct 111 .
  • the blowout flow swirl guide 140 for turning the blowout flow generated by the fan array composed of the plurality of blowout fans 130 since the blowout flow swirl guide 140 for turning the blowout flow generated by the fan array composed of the plurality of blowout fans 130 is provided, the rotation shafts 130c of the plurality of blowout fans 130 do not need to be twisted with respect to the rotation shaft 120c of the suction fan 120, which facilitates manufacturing. Furthermore, by using a hood 141 whose mounting angle can be adjusted independently for each blowout fan 130 as the blowout flow swirling guide 140, an air curtain AC can be formed that matches the installation environment of the suction device 101, such as the distance from the suction target 90 and the distance from the wall.
  • the rotation speed of the suction fan 120 and the blowing fan 130 are individually controlled by the rotation control unit 160, so that the flow rates of the suction flow and the blowing flow can be set optimally. Further, even if a wall or the like is close to the installation location of the suction device 101, by individually setting the flow rates of the plurality of blow-out fans 130, it is possible to offset the influence of the wall or the like on the air curtain AC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ventilation (AREA)

Abstract

【課題】広範囲を囲い込むエアカーテンを安定的に形成し、前記囲い込んだ範囲を竜巻流で効率的に吸引することができ、また製造容易性及びデザイン性にも優れた吸引装置を提供する。 【解決手段】局部排気を行うための吸引装置であって、 吸引口を吸引対象90方向の端部に有し、吸引流を流す吸引流通路10と、 吸引流通路10に吸引流を発生させる吸引ファン20と、 吸引対象90と反対側の導入口から吹出流を導入して円板状に拡げる吹出流発生室30と、 吹出流発生室30から、吸引流通路10の軸を中心に旋回した外側方向に前記吹出流を吹き出す複数の吹出ファン40と、 複数の吹出ファン40により吹き出された吹出流を吸引対象90方向に偏向させる、吹出流偏向ガイド50と、を備えた。

Description

吸引装置
この発明は、複数のファンで構成した局所的な空気を強制的に吸引するファンに関するものである。
 従来より、局部排気のための吸引装置が提案されている。
例えば、特許文献1の装置では、外側部分で吹き出し流を発生させ内側部分で吸引流を発生させるように羽根が配置された同軸二重構造のプロペラファンを用い、外側部分で吹き出し流を発生させてエアカーテンを形成する一方、内側部分でその内側の空気を吸引している。プロペラファンの回転により、吹き出し流と吸引流が同方向に回転するため、竜巻流が発生し、効果的な吸引が実現できる。
 特許文献2の装置では、2台のシロッコファンを用い、一方のファンで周辺部からの吹出しを行ってエアカーテンを発生させるとともに、他方のファンで中心部からの吸引を行っている。このとき、吹出流の通路の途中に傾斜羽根を設けて吹出流を旋回させ、それにより竜巻流を発生させている。
一方、特許文献3の装置では、図9(特許文献3の図6を修正した図)に示すように、吸引ファン210を囲む円周上に配置された複数の吹出ファン230からなるファンアレイを用い、最初から吸引対象を囲むことができる大径の円筒状のエアカーテンを形成している。各吹出ファン230は軸流ファンであり、その回転軸を吸引ファン210の回転軸に対して捻れた向きに配置することにより、エアカーテンを旋回させている。この旋回により、吸引流における竜巻流を発生させている。
特開平5-60088号公報 特開平8-75208号公報 特許第6973796号
 しかしながら、特許文献1及び特許文献2に記載の吸引装置では、広範囲を囲い込むエアカーテンを形成するために、吹出流がガイドによりスカート状に拡げられるので、吹出流の旋回が弱まり、その結果、吹き出し流が反転して形成される吸引流の旋回、すなわち竜巻流も弱くなる懸念がある。また、吹き出し流の旋回が弱いと、吹き出し流はすぐに拡散されるので、エアカーテンも安定的に形成できない懸念もある。
特許文献3に記載の吸引装置では、ファンアレイを構成する複数の吹出ファンは、安定したエアカーテン及び吸引流の竜巻流化を実現するために、吸引軸を中心として全て同じ方向に捻れた配置としているが、これらを実現するには各ファンを大きく傾ける必要があるため、製造容易性及び製品のデザイン性で若干問題がある。
 本発明は、上記実情に鑑みてなされたもので、広範囲を囲い込むエアカーテンを安定的に形成し、前記囲い込んだ範囲を竜巻流で効率的に吸引することができ、また製造容易性及びデザイン性にも優れた吸引装置を提供することを目的とする。
 前記課題を解決するために、本発明の第1の観点に係る吸引装置は、
 局部排気を行うための吸引装置であって、
略円形の吸引口を吸引対象方向の端部に有し、吸引流を流す吸引流通路と、
前記吸引流通路に前記吸引流を発生させる吸引ファンと、
前記吸引流通路を同軸に包囲する略円板状に形成され、前記吸引対象と反対側の導入口から吹出流を導入して円板状に拡げる吹出流発生室と、
前記吹出流発生室の外周部のそれぞれの箇所に設けられ、前記吹出流発生室から、前記吸引流通路の軸を中心に旋回した外側方向に前記吹出流を吹き出す複数の吹出ファンと、
前記吹出流発生室の外周側に設けられ、前記複数の吹出ファンにより吹き出された前記吹出流を前記吸引対象方向に偏向させる、吹出流偏向ガイドと、を備えたことを特徴とする。
 上記吸引装置は、前記吹出流偏向ガイドの先端を延長するように設けられた外側ガイドと、前記吹出流発生室の外周に沿って設けられた内側ガイドからなり、前記吹出流を整流するための吹出流整流ガイドをさらに有してもよい。
本発明の第2の観点に係る吸引装置は、局部排気を行うための吸引装置であって、
略円形の吸引口を吸引対象方向の端部に有し、吸引流を流す吸引流通路と、
前記吸引流通路に前記吸引流を発生させる吸引ファンと、
前記吸引流通路の軸に直交する平面内の当該吸引流通路を囲む略円周上に、回転軸が前記吸引流通路の軸に平行になるように配置され、吹出流を発生させる複数の軸流ファンからなる吹出ファンと、
各前記吹出ファンによる吹出流を、前記吸引流通路の軸を中心として旋回させる吹出流旋回ガイドと、を備えたことを特徴とする。
上記吹出流旋回ガイドは、前記吹出ファンごとに独立したフードとして形成され、取付角度を独立して調整できるように構成されていてもよい。
各前記フードは、吹出口が前記吸引ファンの回転軸方向に長い長穴に形成されており、それにより、各前記フードからの吹出流が合成されたとき、隙間なく略円筒状のエアカーテンが形成できるように構成されていてもよい。
前記各吸引装置は、前記吸引ファンと各前記吹出ファンの回転速度を個別に制御する回転制御部をさらに有してもよい。
 本発明に係る吸引装置によれば、吸引ファンの周囲に配置された複数の吹出ファンと、吹出流を方向付けるガイドを用いたので、十分な吹出速度と旋回速度を有する大きなエアカーテンを形成でき、吸引対象を包囲して竜巻流で効率的に吸引することができる。
 このうち、第1の観点に係る吸引装置によれば、複数の吹出ファンにより、吸引流通路の軸を中心に旋回しながら外方向に吹き出す吹出流を形成し、これを吹出流偏向ガイドにより吸引対象の方向に折り返すことで、上記吸引対象を包囲するエアカーテンを実現できる。
 また、第2の観点に係る吸引装置によれば、複数の吹出ファンからなるファンアレイにより生成した吹出流を旋回させる吹出流旋回ガイドを設けたので、複数の吹出ファンの回転軸を吸引流通路の軸に対して捻って配置する必要がなく、製造が容易である。さらに、吹出流旋回ガイドを、吹出ファンごとに独立して取付角度を調整可能なフードとすることにより、吸引装置の設置環境、例えば、吸引対象との距離や壁からの距離等に合わせたエアカーテンを形成することができる。
本発明に係る吸引装置の第1の実施形態を概念的に示す縦断面図である。 図1のA-A断面図である。 図1の吸引装置を示す外観斜視図である。 図1の吸引装置を示す分解斜視図である。 第1の実施形態の変形例を概念的に示す縦断面図である。 本発明に係る吸引装置の第2の実施形態を概念的に示す縦断面図である。 図6の装置の平面図である。 図6の吸引装置を示す外観斜視図である。 従来の吸引装置を示す斜視図である。
 以下、本発明の実施形態について、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態を概念的に示す縦断面図で、図2はそのA-A断面図、図3は外観斜視図、図4は分解斜視図である。
第1の実施形態の吸引装置1は、図1に示すように、吸引流通路10と、吸引ファン20と、吹出流発生室30と、複数の吹出ファン40と、吹出流偏向ガイド50と、さらに回転制御部60を備える。
吸引流通路10は、略円形の吸引口12を吸引対象90方向の端部に有し、吸引流を流す通路であり、本実施形態では、円筒状の吸引ダクト11の内部に形成している。
吸引ファン20は、吸引流を発生させるファンで、本実施形態ではプロペラファン20aとそれを回転させるモータ20bで構成され、回転軸20cが吸引流通路10の軸10cと同軸になるように、吸引流通路10内に配置されている。但し、本発明では、吸引ファン20はこれに限られず、例えば、シロッコファン等の遠心ファンでもよく、回転軸20cも吸引流通路10の軸10cと同軸でなくてもよい。
吹出流発生室30は、吸引流通路10を同軸に包囲する略円板状に形成され、前記吸引対象90と反対側の導入口31から吹出流を導入して円板状に拡げる空間である。
本実施形態では、吸引ダクト11の外周から当該吸引ダクト11と直交する面に沿って外側に広がる円環状の支持円板32と、この支持円板32と平行に吸引対象90と反対側に設けられた円環状のガイド円板33により形成されている。ガイド円板33は、支持円板32の外周部に断続的に立設された支持壁34を介して支持円板32に固定されている(図3及び図4参照)。ガイド円板33の内周と吸引ダクト11の外周との間には、前記導入口31が円環状に形成されている。
図3の斜視図は、吸引装置1の組み立てた状態を示し、装置上面の外周側がガイド円板33と後述する吹出流偏向ガイド50に覆われている。図4の分解斜視図は、図3においてガイド円板33と吹出流偏向ガイド50を上方にずらした状態を示し、支持円板32とその外周部に断続的に立設された支持壁34が現れる。
複数の吹出ファン40は、図2に示すように、吹出流発生室30の外周部のそれぞれの箇所に設けられ、吹出流発生室30から、吸引流通路10の軸10c(図1参照)を中心に旋回した外側方向に吹出流を吹き出すファンである。
本実施形態では、複数の吹出ファン40は、それぞれプロペラファン40aとそれを回転させるモータ40bで構成される軸流ファンである。複数の吹出ファン40は、吹出流発生室30内の支持壁34と支持壁34の間に設けられ、回転軸40c方向が放射状から旋回した方向になるように配置されている。これにより、吹出流は、吹出流発生室30の内側から支持壁34と支持壁34の間を通って、放射状から旋回した方向に吹き出される。
尚、本実施形態のように吸引ファン20が吸引流通路10内に同軸に設けられている場合、上記「旋回した方向」は吸引ファン20の回転方向と同じでもよく、異なっていてもよい。但し、「旋回した方向」が吸引ファン20の回転方向と同じであれば、後述する吹出流の旋回方向と、吸引ファン20の回転が吸引流を旋回させようとする方向が同じになるので、若干竜巻流が発生しやすくなる点で好ましい。
各支持壁34は、本実施形態では、吹出流を斜め外方向に方向付ける直線部分34aと、吹出流が吹出流発生室30内部側に戻ることを防ぐ円弧状部分34bを有する。但し、支持壁34は、前記ガイド円板33を支持できればどのような形状でも良く、例えば支柱状としてもよい。
吹出流発生室30は、平面状の空間を有するので、複数の吹出ファン40の軸方向を旋回した方向に配置しやすく、旋回する吹出流を生成しやすい。
吹出流偏向ガイド50は、図1に示すように、前記吹出流発生室30の外周側に設けられ、前記複数の吹出ファン40により平面状に吹き出された吹出流を吸引対象90方向に偏向させるガイドである。
本実施形態では、吹出流偏向ガイド50は、吹出流発生室30のガイド円板33の外周から連続するように上面視で略円環状に形成され、縦断面形状は、内側から外側に向かって水平から下方向にカーブする薄板状を有する。
この吹出流偏向ガイド50により、前記複数の吹出ファン40により吹き出された吹出流は、吸引流通路10の軸10cを中心とする旋回を維持しつつ吸引対象90方向に偏向され、旋回する略円筒状のエアカーテンACを形成する。
回転制御部60は、吸引ファン20と各吹出ファン40の回転速度を個別に制御するユニットで、任意の公知の手段を利用できる。例えば、ファンを駆動するモータ20b、40bとしてACモータを用いる場合、回転制御部60は、インバータ回路を用いてモータ20b、40bの駆動周波数を制御するものが利用できる。ファンを駆動するモータ20b、40bとしてDCモータを用いる場合、回転制御部60は、代替的に、モータ20b、40bの駆動電圧のレベル制御やPWM制御を行うものであってもよい。この回転制御部60によって吸引ファン20と吹出ファン40の出力バランスを調整することにより、吸引流と吹出流の流量を最適に設定することが可能となり、これにより、吸引対象90までの距離等使用環境に合わせた最適な吸引を可能にできる。
尚、回転制御部60は、個々のファン20,40に異常が生じた場合、公知の手段により異常を検出し、警告表示や吸引装置1の緊急停止等の制御を行う機能を有していてもよい。
次に、このように形成された第1の実施形態の吸引装置1の動作について、図1及び図2を参照して説明する。尚、図1及び図2において矢印(引出線の矢印及びA-A断面の視方向を示す矢印を除く)は空気の流れを示す。
 吸引ファン20及び複数の吹出ファン40が回転駆動されると、複数の吹出ファン40によって空気が導入口31から吹出流発生室30内に導入される。吹出流発生室30の吸引対象90側は支持円板32で閉塞されているので、導入された空気は、吹出流発生室30内で円板状に拡げられ、外周部に配置された複数の吹出ファン40により、吸引流通路10の軸10cを中心に旋回した外側方向に吹き出され(図2参照)、吹出流偏向ガイド50により、旋回を維持しつつ吸引対象90方向に偏向され、吹出流偏向ガイド50と支持円板32の外周との間の円環状の吹出口51から吹き出され、旋回する略円筒状のエアカーテンACを形成する。
 一方、吸引ファン20の回転により吸引流が発生し、エアカーテンACの内側の空気は、吸引ダクト11の内部に形成された吸引流通路10を通って吸引される。このため、エアカーテンACを形成した吹出流は、その風速で決まる到達点、または物理的な床面や平面で吸引流通路10の吸引口12側に向きを変えて、そのまま旋回しながら吸引流通路10の吸引口12に向かって上昇する。このとき、吹出流は、向きを変えることによって、回転運動エネルギーが維持されたまま旋回する半径が小さくなるので、旋回が高速になり、吸引対象90まで達する竜巻状の渦が形成される。この竜巻状の渦により、吸引対象90(例えば、調理用レンジ台から発生する湯気や煙等)を効率的に吸引することができる。
吸引された吸引対象90は、図1に示すように、吸引流として吸引ダクト11の内部に形成された吸引流通路10を通って排気される。
 本実施形態の吸引装置1によれば、複数の吹出ファン40により、吸引流通路10の軸10cを中心に旋回しながら外方向に吹き出す吹出流を形成し、これを吹出流偏向ガイド50により吸引対象90の方向に向きを変えることで、十分な吹出速度と旋回速度を有する大きなエアカーテンACを形成でき、吸引対象90を包囲して竜巻流で効率的に吸引することができる。
 この構成により、製造が容易で、広範囲を囲い込むエアカーテンACを安定的に形成でき、囲い込んだ範囲を竜巻流で効率的に吸引でき、また、風の流れをスムーズにできるため静粛性にも優れた吸引装置1を実現できる。
 また、本実施形態では、回転制御部60により、吸引ファン20と、吹出ファン40の回転速度を個別に制御することにより、吸引流と吹出流の流量を最適に設定でき、これにより、吸引対象90までの距離等使用環境に合わせた最適な吸引を実現することができる。
また、吸引装置1の設置場所に例えば壁面等が近接する場合でも、複数の吹出ファン40の流量を個別に設定することにより、その壁面等によるエアカーテンACへの影響を相殺することも可能となる。
(変形例)
図5は、第1の実施形態の変形例を示す縦断面図である。
本変形例の吸引装置1Aは、吹出流偏向ガイド50の先端を延長するように設けられた外側ガイド71と、吹出流発生室30の支持円板32の外周に沿って設けられた内側ガイド72からなり、吹出流を整流するための吹出流整流ガイド70をさらに有するものである。
外側ガイド71と内側ガイド72は、それぞれ、略円筒状、スカート状又は逆スカート状であり、断面形状や角度は適宜調整できる。尚、外側ガイド71は、吹出流偏向ガイド50と一体に形成されていてもよく、内側ガイド72も、支持円板32と一体に形成されていてもよい。支持円板32と内側ガイド72との接続部は、角張らないように曲線的に形成してもよい。
それ以外の構成は、第1の実施形態の吸引装置1と同じで、動作も同じである。
この変形例では、吹出流整流ガイド70により、吹出流の流れを安定化でき、吹出流で形成されるエアカーテンACを安定させて、折り返されて生ずる吸引流の竜巻流をより安定させることができる。
但し、本発明において、吹出流整流ガイド70は必須ではなく、吸引装置1Aと吸引対象90との距離が短い場合や、吸引対象90との間にスペースを確保したいときなどは、吹出流整流ガイド70を省略することもできる。
(第2の実施形態)
図6は、本発明に係る吸引装置の第2の実施形態を概念的に示す図であり、図7はその平面図、図8は外観斜視図である。
第2の実施形態の吸引装置101は、図6に示すように、吸引流通路110と、吸引ファン120と、複数の吹出ファン130と、吹出流旋回ガイド140と、支持用円板150と、回転制御部160と、を有する。
吸引流通路110は、略円形の吸引口112を吸引対象90方向の端部に有し、吸引流を流す通路であり、本実施形態では、円筒状の吸引ダクト111の内部に形成している。
吸引ファン120は、吸引流を発生させるファンで、本実施形態ではプロペラファン120aとそれを回転させるモータ120bで構成され、回転軸120cが吸引流通路110の軸110cと同軸になるように、吸引流通路110内に配置されている。但し、本発明では、吸引ファン120はこれに限られず、例えば、シロッコファン等の遠心ファンでもよく、回転軸120cも吸引流通路110の軸110cと同軸でなくてもよい。
複数の吹出ファン130は、軸流ファンからなり、吸引流通路110の軸110cに直交する平面内の当該吸引流通路110を囲む略円周上に、それぞれの回転軸130cが吸引流通路110の軸110cに平行になるように配置され、吹出流を発生させるファンである。すなわち、複数の吹出ファン130はファンアレイを構成している。本実施形態では、各吹出ファン130は、それぞれプロペラファン130aとそれを回転させるモータ130bで構成される軸流ファンである。
吹出流旋回ガイド140は、各吹出ファンによる吹出流を、吸引流通路110の軸110cを中心として旋回させるガイドである。本実施形態では、吹出流旋回ガイド140は、吹出ファン130ごとに独立したフード141として形成され、フード141の吹出軸は吸引対象90に向かって吸引流通路110の軸110cを中心に旋回する方向に傾いており(図7,図8参照)、それにより、吹出流を旋回させるようになっている。
尚、本実施形態のように吸引ファン120が吸引流通路110内に同軸に設けられている場合、上記「旋回した方向」は吸引ファン120の回転方向と同じでも良く、異なっていても良い。但し、「旋回する方向」が吸引ファン120の回転方向と同じであれば、後述する吹出流の旋回方向と、吸引ファン120が吸引流を旋回させようとする方向が同じになるので、若干竜巻流が発生しやすくなる点で好ましい。
各フード141は、図8に示すように、吹出口141aが吸引ファン120の回転軸方向に長い長穴に形成されており、それにより、各フード141からの吹出流が合成されたとき、隙間なく略円筒状のエアカーテンACが形成できるようになっている。
各フード141の取付角度は独立して調整でき、各フード141の吹出軸の方向が独立して調整できるように構成されていてもよい。
但し、本発明では、吹出流旋回ガイド140は、上記吹出ファン130ごとに独立したフード141に限られずに、吹出ファン130からの吹出流を旋回できるものであればいずれでも良く、例えば、円周上に配列された全ての吹出ファン130を覆う1つのフードで内部に固定した複数の旋回羽根を有するものでもよい。
 支持用円板150は、吸引流通路110と、複数の吹出ファン130と、吹出流旋回ガイド140を固定する基板である。
本実施形態では、支持用円板150は、吸引流通路110を形成する吸引ダクト111の外周から外側に当該吸引ダクト111の軸に直交する平面に沿って広がる円環状の円板で、中心から所定半径の円周上の周方向等間隔に貫通孔を有し、それぞれ吹出ファン130が配置され、吹出流旋回ガイド140としてのフード141が取付けられている。
尚、本発明において支持用円板150は必須ではなく、その他の何らかの機構により吸引流通路110と、複数の吹出ファン130と、吹出流旋回ガイド140を固定してもよい。
回転制御部160は、吸引ファン120と各吹出ファン130の回転速度を個別に制御するユニットで、任意の公知の手段を利用できる。第1の実施形態の回転制御部60と同様なので、詳細な説明は省略する。
次に、このように形成された第2の実施形態の吸引装置101の動作について、図6及び図7を参照して説明する。尚、図6及び図7において矢印(引出線の矢印を除く)は空気の流れを示す。
 吸引ファン120及び複数の吹出ファン130が回転駆動されると、複数の吹出ファン130によって空気が吸引対象90方向に平行に吹出され、それぞれのフード141(吹出流旋回ガイド140)により、吸引ファン120の回転軸120cを中心に旋回され(図7参照)、旋回された全ての吹出流が合成されて、旋回する略円筒状のエアカーテンACを形成する。
 一方、吸引ファン120の回転により吸引流が発生し、エアカーテンACの内側の空気は、吸引ダクト111の内部に形成された吸引流通路110を通って吸引される。このため、エアカーテンACを形成した吹出流は、その風速で決まる到達点、または物理的な床面や平面で吸引流通路110の吸引口112側に向きを変えて、そのまま旋回しながら吸引流通路110の吸引口112に向かって上昇する。このとき、吹出流は、折り返されることによって、回転運動エネルギーが維持されたまま旋回する半径が小さくなるので、旋回が高速になり、吸引対象90まで達する竜巻状の渦が形成される。この竜巻状の渦により、吸引対象90を効率的に吸引することができる。
吸引された吸引対象90は、図6に示すように、吸引流として吸引ダクト111の内部に形成された吸引流通路110を通って排気される。
 本実施形態の吸引装置101によれば、複数の吹出ファン130からなるファンアレイにより生成した吹出流を旋回させる吹出流旋回ガイド140を設けたので、複数の吹出ファン130の回転軸130cを吸引ファン120の回転軸120cに対して捻って配置する必要がなく、製造が容易である。さらに、吹出流旋回ガイド140を、吹出ファン130ごとに独立して取付角度を調整可能なフード141とすることにより、吸引装置101の設置環境、例えば、吸引対象90との距離や壁からの距離等に合わせたエアカーテンACを形成することができる。
 また、本実施形態でも第1の実施形態と同様に、回転制御部160により、吸引ファン120と、吹出ファン130の回転速度を個別に制御することにより、吸引流と吹出流の流量を最適に設定でき、これにより、吸引対象90までの距離等使用環境に合わせた最適な吸引を実現することができる。
また、吸引装置101の設置場所に例えば壁面等が近接する場合でも、複数の吹出ファン130の流量を個別に設定することにより、その壁面等によるエアカーテンACへの影響を相殺することも可能となる。
なお、本発明は、上記した実施形態に限定されない。当業者であれば本発明の範囲で、種々の追加や変更を行うことができる。例えば、上記各実施形態では、図2,6等に示すように、吹出流及び吸引流とも上面側から見て時計方向に回転させているが、本発明はこれに限らず、反時計方向に回転させるようにしてもよい。
1,1A  吸引装置
10  吸引流通路
10c 軸
11  吸引ダクト
12  吸引口
20       吸引ファン
20a プロペラファン
20b モータ
20c 回転軸
30  吹出流発生室
31  導入口
32  支持円板
33  ガイド円板
34  支持壁
34a 直線部分
34b 円弧状部分
40  吹出ファン
40a プロペラファン
40b モータ
40c 回転軸
50  吹出流偏向ガイド
60  回転制御部
70  吹出流整流ガイド
71  外側ガイド
72  内側ガイド
90  吸引対象
101 吸引装置
110 吸引流通路
110c 軸
111 吸引ダクト
112 吸引口
120 吸引ファン
120a プロペラファン
120b モータ
120c 回転軸
130 吹出ファン
130c 回転軸
140 吹出流旋回ガイド
141 フード
141a 吹出口
150 支持用円板
160 回転制御部
220 吸引ファン(従来の吸引装置)
230 吹出ファン(従来の吸引装置)
AC  エアカーテンAC
 

Claims (6)

  1. 局部排気を行うための吸引装置であって、
    略円形の吸引口を吸引対象方向の端部に有し、吸引流を流す吸引流通路と、
    前記吸引流通路に前記吸引流を発生させる吸引ファンと、
    前記吸引流通路を同軸に包囲する略円板状に形成され、前記吸引対象と反対側の導入口から吹出流を導入して円板状に拡げる吹出流発生室と、
    前記吹出流発生室の外周部のそれぞれの箇所に設けられ、前記吹出流発生室から、前記吸引流通路の軸を中心に旋回した外側方向に前記吹出流を吹き出す複数の吹出ファンと、
    前記吹出流発生室の外周側に設けられ、前記複数の吹出ファンにより吹き出された前記吹出流を前記吸引対象方向に偏向させる、吹出流偏向ガイドと、を備えた吸引装置。
  2. 前記吹出流偏向ガイドの先端を延長するように設けられた外側ガイドと、前記吹出流発生室の外周に沿って設けられた内側ガイドからなり、前記吹出流を整流するための吹出流整流ガイドをさらに有する、請求項1に記載の吸引装置。
  3. 局部排気を行うための吸引装置であって、
    略円形の吸引口を吸引対象方向の端部に有し、吸引流を流す吸引流通路と、
    前記吸引流通路に前記吸引流を発生させる吸引ファンと、
    前記吸引流通路の軸に直交する平面内の当該吸引流通路を囲む略円周上に、回転軸が前記吸引流通路の軸に平行になるように配置され、吹出流を発生させる複数の軸流ファンからなる吹出ファンと、
    各前記吹出ファンによる吹出流を、前記吸引流通路の軸を中心として旋回させる吹出流旋回ガイドと、を備えた吸引装置。
  4. 吹出流旋回ガイドは、前記吹出ファンごとに独立したフードとして形成され、取付角度を独立して調整できるように構成された、請求項3に記載の吸引装置。
  5. 各前記フードは、吹出口が前記吸引流通路の軸方向に長い長穴に形成されており、それにより、各前記フードからの吹出流が合成されたとき、隙間なく略円筒状のエアカーテンが形成できるように構成された、請求項4に記載の吸引装置。
  6. 前記吸引ファンと各前記吹出ファンの回転速度を個別に制御する回転制御部をさらに有する、請求項1~5のいずれかに記載の吸引装置。
     

     
PCT/JP2023/001419 2022-01-20 2023-01-19 吸引装置 WO2023140304A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007401 2022-01-20
JP2022007401A JP2023106210A (ja) 2022-01-20 2022-01-20 吸引装置

Publications (1)

Publication Number Publication Date
WO2023140304A1 true WO2023140304A1 (ja) 2023-07-27

Family

ID=87348290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001419 WO2023140304A1 (ja) 2022-01-20 2023-01-19 吸引装置

Country Status (2)

Country Link
JP (1) JP2023106210A (ja)
WO (1) WO2023140304A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195140A (ja) * 1989-01-24 1990-08-01 Eiko Shioda 換気装置
JPH04140A (ja) * 1990-04-13 1992-01-06 Kumagai Gumi Co Ltd 排気方法
JPH09101049A (ja) * 1995-10-03 1997-04-15 Fujita Corp 気流生成装置
JP2005317205A (ja) * 2004-04-26 2005-11-10 Kuniaki Horikoshi 電磁誘導調理器具における換気補助装置
CN103175238A (zh) * 2011-12-22 2013-06-26 博西华电器(江苏)有限公司 增强抽油烟效果的方法、装置及抽油烟机
KR20150027624A (ko) * 2013-09-04 2015-03-12 김지하 스왈러와 가이드 부재를 구비한 국소배기장치
CN105180238A (zh) * 2015-09-17 2015-12-23 宁波方太厨具有限公司 一种旋幕式的龙卷风吸油烟机
KR101761516B1 (ko) * 2016-08-01 2017-07-26 김치옥 토네이도 환풍기
JP6973796B2 (ja) * 2018-10-11 2021-12-01 昭弘 畠山 ファンアレイ装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195140A (ja) * 1989-01-24 1990-08-01 Eiko Shioda 換気装置
JPH04140A (ja) * 1990-04-13 1992-01-06 Kumagai Gumi Co Ltd 排気方法
JPH09101049A (ja) * 1995-10-03 1997-04-15 Fujita Corp 気流生成装置
JP2005317205A (ja) * 2004-04-26 2005-11-10 Kuniaki Horikoshi 電磁誘導調理器具における換気補助装置
CN103175238A (zh) * 2011-12-22 2013-06-26 博西华电器(江苏)有限公司 增强抽油烟效果的方法、装置及抽油烟机
KR20150027624A (ko) * 2013-09-04 2015-03-12 김지하 스왈러와 가이드 부재를 구비한 국소배기장치
CN105180238A (zh) * 2015-09-17 2015-12-23 宁波方太厨具有限公司 一种旋幕式的龙卷风吸油烟机
KR101761516B1 (ko) * 2016-08-01 2017-07-26 김치옥 토네이도 환풍기
JP6973796B2 (ja) * 2018-10-11 2021-12-01 昭弘 畠山 ファンアレイ装置

Also Published As

Publication number Publication date
JP2023106210A (ja) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2012101823A1 (ja) サーキュレータ
KR100428689B1 (ko) 사류식 에어제트 송풍기
JPH1054388A (ja) 遠心送風機
JPH0689907B2 (ja) 空調装置
JP6011348B2 (ja) 空調装置用送風機
JP7308985B2 (ja) 遠心送風機及び空気調和装置
WO2023140304A1 (ja) 吸引装置
AU2007234497A1 (en) Multiblade centrifugal blower
JP5029178B2 (ja) 遠心式送風機
JP2010121797A (ja) 空気調和機
KR101396137B1 (ko) 환기풍력을 이용한 발전장치
JPH1183097A (ja) 送風機及び該送風機を用いた空気清浄装置並びに空気調和装置
JP2008082230A (ja) 多翼送風機
JP3893840B2 (ja) 吹出し気流の旋回成分補正方法及び送風装置
JP2001295793A (ja) 軸流送風装置
CN208669692U (zh) 蜗壳、风机和制冷设备
JP2006275311A (ja) ファンフィルターユニット
JP3284826B2 (ja) 空間渦流発生装置
JP2001182692A (ja) 遠心式送風機
JP2023004084A (ja) 軸流ブロワ
JP7076166B1 (ja) 吸引装置
KR200467395Y1 (ko) 송풍장치
CN211903081U (zh) 空气调节装置
WO2022201218A1 (ja) 羽根車及び多翼送風機
JP2002235697A (ja) 送風装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743297

Country of ref document: EP

Kind code of ref document: A1