WO2023134300A1 - 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件 - Google Patents

通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件 Download PDF

Info

Publication number
WO2023134300A1
WO2023134300A1 PCT/CN2022/132970 CN2022132970W WO2023134300A1 WO 2023134300 A1 WO2023134300 A1 WO 2023134300A1 CN 2022132970 W CN2022132970 W CN 2022132970W WO 2023134300 A1 WO2023134300 A1 WO 2023134300A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
shell
quantum dot
capsule
dot material
Prior art date
Application number
PCT/CN2022/132970
Other languages
English (en)
French (fr)
Inventor
朱小波
董博然
朱东亮
徐越
郭三维
Original Assignee
广东粤港澳大湾区国家纳米科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东粤港澳大湾区国家纳米科技创新研究院 filed Critical 广东粤港澳大湾区国家纳米科技创新研究院
Publication of WO2023134300A1 publication Critical patent/WO2023134300A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the application belongs to the technical field of nanomaterial synthesis, and in particular relates to a method for preparing quantum dot materials through precursor capsules, quantum dot materials, quantum dot compositions and quantum dot devices.
  • Quantum dots are quasi-zero-dimensional semiconductor nanocrystals whose size radius is smaller than or approximately equal to the radius of their Bohr excitons. Because of its continuously adjustable fluorescence emission wavelength, high quantum yield, and narrow half-peak width, it is widely used in biomedical labeling, solar cells, lighting, and display fields.
  • Non-injection method is also called one-pot method or one-step method.
  • various precursors and ligands are added to the solvent at low temperature, and then heated to generate quantum dots.
  • the release speed of the monomer becomes faster, and when the concentration of the monomer rises above the nucleation concentration, crystal nuclei of quantum dots will be formed.
  • the method is very simple to operate, has low equipment requirements, and is suitable for large-scale production.
  • the release rate of the monomer is accelerated, and the concentration of the monomer is maintained above the nucleation concentration, and new quantum dot nuclei are continuously generated.
  • the particle size of the quantum dot crystal nucleus is different, so the particle size distribution of the quantum dot prepared by this method is relatively wide, resulting in a wide half-width of the obtained quantum dot material.
  • injection method refers to raising the solution and some precursors to a high temperature first, and then quickly injecting other precursors into the solvent to form a high degree of supersaturation locally at the injection interface and form a large number of crystal nuclei in a short time.
  • the particle size distribution of quantum dots obtained by this method is more uniform than that of the "non-injection method".
  • the nucleation process of this method is completed locally in the injection, the controllability is poor, and it is difficult to achieve industrial scale-up.
  • the injected precursor is mostly at room temperature, and the temperature of the precursor solution to be injected is usually around 300 ° C, resulting in a large number of local heat exchange processes.
  • the above disordered heat exchange process also leads to The particle size distribution of the crystal nuclei is not uniform, and the repeatability of the reaction process is poor in the industrial production process; if the injected precursor is also raised to the same temperature as the solution, the equipment is too complicated.
  • the purpose of this application is to overcome the shortcomings of the prior art that the particle size distribution of the prepared quantum dot material is relatively wide, the controllability of the preparation process is poor, it is difficult to realize industrial scale-up, and the equipment is too complicated, and to provide a method for preparing quantum dots through precursor capsules.
  • the application requires relatively low equipment requirements.
  • the present application provides a method for preparing quantum dot materials through precursor capsules, including:
  • the precursor capsule includes a shell and a first precursor covered by the shell;
  • the heating causes the shell to rupture to release the first precursor, and the first precursor and the second precursor react to obtain a quantum dot material .
  • the shell is substantially insoluble in the solvent, and the shell has a melting point not less than the temperature of the reaction.
  • the difference between the melting point of the shell and the reaction temperature of the first precursor covered by the shell is 0-20°C.
  • the mixture contains ligands and/or ligand precursors that are not coated by the shell; and/or
  • the mixture contains precursor capsules containing ligands and/or ligand precursors.
  • the ratio of the average single volume of the precursor capsule to the total volume of the reaction system of the reaction is 1:50-1:1000, preferably, the ratio is 1:100-1:700.
  • the number of precursor capsules is 2-100, preferably, the number is 2-10.
  • the precursor capsule is prepared by the following process:
  • the shell is made by plastic molding process, and at least one precursor is injected into the shell to obtain the precursor capsule.
  • the present application also provides a preparation method of a quantum dot material, including:
  • the precursor capsule includes a shell and a first precursor containing the first element covered by the shell ;
  • the temperature of the mixed solution is raised, and the temperature rise causes the capsule of the precursor to be ruptured to release the first precursor, and the first precursor and the second precursor are reacted to obtain the The quantum dot material of the first element and the second element.
  • the preparation method of the quantum dot material also includes:
  • the mixed liquid also includes a dopant element precursor capsule, wherein the dopant element precursor capsule includes a shell and a dopant element precursor covered by the shell, and/or
  • the mixed solution also includes a dopant element precursor not covered by the shell;
  • the temperature increase also enables the doping element precursor to participate in the reaction to obtain a quantum dot material containing the first element, the second element and the doping element.
  • the application also provides a method for preparing a core-shell quantum dot material, including:
  • the core layer precursor capsule includes the first A shell and the first precursor of the core layer covered by the first shell
  • the nth shell precursor capsule includes the n+1th shell and the n+1th shell wrapped by the n+1th shell n-shell first precursor, where n ⁇ 1;
  • the mixed solution is subjected to the first temperature rise and the (n+1)th temperature rise in sequence, wherein the first temperature rise causes the first shell to rupture to release the first precursor of the core layer, and the core layer
  • the first precursor of the first layer and the second precursor of the core layer undergo a first reaction;
  • the n+1th temperature rise causes the n+1th shell to rupture and release the first precursor of the nth shell layer , and make the first precursor of the nth shell react with the second precursor of the nth shell to obtain the core-shell quantum dot material.
  • the present application also provides a quantum dot material prepared by the preparation method described in the aforementioned first aspect, and the half-peak width of the quantum dot material is below 25 nm.
  • the present application provides a quantum dot composition, including the quantum dot material described in the aforementioned second aspect.
  • the present application provides a quantum dot device, including the quantum dot material described in the second aspect, or the quantum dot composition described in the third aspect.
  • the present application provides a quantum dot preparation method in which a precursor capsule coated with a shell is used as a reactant.
  • the first precursor cannot participate in the reaction because it is coated in the shell, which avoids the formation of quantum dot nuclei with different particle sizes during the heating process.
  • the temperature rises to an appropriate reaction temperature it also The melting point of the shell is reached.
  • the shell of the precursor capsule ruptures, releasing the first precursor inside, forming a relatively high degree of supersaturation locally, and the first precursor and the second precursor nucleate quickly, Obtain quantum dot material.
  • the preparation method provided by the present application can improve the monodispersity and size uniformity of the obtained quantum dot materials, and has good controllability, and can prepare quantum dot materials with uniform size on a large scale only by a single feeding, and the quantum dot materials have High luminous intensity and narrower half-peak width compared to the preparation method of the prior art.
  • the precursor capsules used in the preparation method can be synthesized, stored and transported in large quantities, the batch-to-batch difference in the whole process is small, easy to scale up production, suitable for industrialization, and relatively low in equipment requirements.
  • Fig. 1 is a schematic flow chart of the preparation method of the present application.
  • Fig. 2 is a graph showing the variation of the luminous intensity of the quantum dot material obtained in Example 1 of the present application with wavelength.
  • Fig. 3 is a graph showing the variation of the luminous intensity of the quantum dot material obtained in Example 2 of the present application with wavelength.
  • Fig. 4 is a graph showing the variation of the luminous intensity of the quantum dot material obtained in Example 3 of the present application with wavelength.
  • FIG. 5 is a graph showing the variation of the luminous intensity of the quantum dot material obtained in Comparative Example 1 with wavelength.
  • FIG. 6 is a graph showing the variation of the luminous intensity of the quantum dot material obtained in Comparative Example 2 with wavelength.
  • Precursor capsule 11. First precursor; 12. Shell; 20. Second precursor; 30. Quantum dot material.
  • the application provides a method for preparing quantum dot materials through precursor capsules, comprising:
  • the precursor capsule 10 includes a shell 12 and a first precursor 11 covered by the shell 12;
  • the heating causes the casing 12 to rupture to release the first precursor 11, and makes the first precursor 11 and the second precursor 20 react, The quantum dot material 30 is obtained.
  • the first precursor 11 is involved in the mixing in the form of the precursor capsule 10, and before the temperature is raised to the melting point of the shell 12, the shell 12 is not destroyed, and the first precursor 11 Unable to participate in the reaction process, after the temperature rises to the melting point of the shell 12, the system temperature also reaches the suitable temperature for the quantum dot formation reaction, the first precursor 11 is released, and the injection temperature of the first precursor 11 is the same as that of the second precursor 20 at the same temperature, the first precursor 11 rapidly reacts with the second precursor 20 to form the quantum dot material 30 .
  • the above reaction process not only avoids the formation of quantum dot nuclei of different sizes during the heating process, but also avoids the problems of poor repeatability and wide particle size distribution of quantum dot nuclei caused by temperature differences between different precursors in the existing injection method.
  • the present application can obtain the quantum dot material 30 with a more uniform particle size distribution, and obtain better optical performance of the quantum dot.
  • the precursor capsule 10 can be prepared in batches and stored stably.
  • the preparation method of the present application is more conducive to industrial scale-up production, and the process is simple and repeatable. Well, it is conducive to the synthesis of large quantities of high-quality quantum dot materials 30 .
  • the present application has no special restrictions on the respective types of the first precursor 11 and the second precursor 20. It can be understood that the first precursor 11 and the second precursor 20 correspond to each other and can react , forming the quantum dot material 30 .
  • the first precursor 11 and the second precursor 20 each independently contain a precursor material containing one or more elements forming the quantum dot material 30, and the precursor material contains at least one corresponding element precursor.
  • the first precursor 11 can be the precursor material that contains Se element
  • the second precursor 20 can be the precursor material that contains Cd element;
  • the precursor material of Se element The material can be selected from one or more of selenium-containing precursors such as Se powder, TOP-Se, TBP-Se, ODE-Se, etc.
  • the precursor material of Cd element can be selected from cadmium oxide, cadmium stearate, oleic acid One or more of cadmium-containing precursors such as cadmium. Those skilled in the art can select specific substances contained in the first precursor 11 and the second precursor 20 according to different target materials.
  • the housing 12 is substantially insoluble in the solvent, and the melting point of the housing 12 is not less than the temperature of the reaction.
  • the "shell 12 is substantially insoluble in the solvent” means that before the temperature of the mixture reaches the melting point of the shell 12, the shell 12 will not dissolve in the solvent. rupture without releasing the first precursor 11 encapsulated in the shell 12 .
  • the application does not limit the type of the solvent, as long as the shell 12 is basically insoluble in the solvent, and the precursor material can be sufficiently dispersed so that different precursor materials can react to obtain the quantum dot material 30; exemplary Yes, the solvent can be selected from liquid paraffin, ODE, TOPO, etc.
  • the difference between the melting point of the shell 12 and the reaction temperature of the first precursor 11 covered by the shell 12 is 0-20°C. Controlling the difference between the melting point of the shell 12 and the reaction temperature within the above range can obtain quantum dot products with suitable particle sizes on the basis of ensuring that the precursors coated in the shell 12 are not released in advance, and ensure that Optical performance of quantum dots and avoiding excessive energy consumption.
  • the present application does not have any restrictions on the material of the shell 12, as long as it can meet the requirements of being basically insoluble in the solvent and the melting point is close to the temperature required for the quantum dot reaction, and can be broken during the heating process to release the precursor coated therein. Yes; those skilled in the art can further select the material of the shell 12 according to the first precursor 11 based on considerations of preservation, stability and convenience of use.
  • the material of the housing 12 includes polymer materials and/or colloidal materials, and examples include but are not limited to materials such as PS and PMMA.
  • the temperature and time of the reaction are not specifically limited, as long as different corresponding precursors can be reacted to form the quantum dot material 30.
  • Those skilled in the art can carry out the temperature rise according to the temperature of the reaction and the rupture temperature of the shell 12, so that the shell 12 ruptures at a temperature close to or higher than the reaction temperature, thereby releasing the first precursor 11 The reaction is carried out.
  • the mixed solution contains ligands and/or ligand precursors that are not coated by the shell 12; and/or, the mixed solution contains ligands and/or ligand precursors.
  • the present application has no particular limitation on the ligand and/or ligand precursor, as long as it can participate in the reaction to form the corresponding quantum dot material 30 with the ligand attached to the surface.
  • the formed ligands include one or more of carboxylic acid group, amino group, silicon(oxy)alkyl group, mercapto group, and (oxygen)phosphinyl ligands.
  • Those skilled in the art can optimize the volume and number of the precursor capsules 10 according to the dispersion of the first precursor 11 in the mixed liquid after release, the volume of the reaction system, processing cost, energy consumption and other factors.
  • the ratio of the average individual volume of the precursor capsule 10 to the total volume of the reaction system of the reaction is 1:50-1:1000, preferably, the ratio is 1:100-1: 700, and a further preferred ratio is 1:200-1:700.
  • the precursor capsule 10 with an appropriate volume according to the volume of different reaction systems can be more evenly dispersed in the mixed liquid after the first precursor 11 coated in the shell 12 is released. It is more conducive to making the first precursor 11 and the second precursor 20 respectively form appropriate local supersaturation at the crack boundary of the shell 12 at the same temperature, and perform sufficient, uniform and fast reactions, thereby further improving the quantum dot material.
  • the size distribution of 30 is uniform, the half-width is narrower, and the luminous intensity is better; at the same time, the increase in processing cost and energy consumption caused by too many precursor capsules 10 is avoided.
  • the number of precursor capsules 10 may be 2-100, preferably, the number is 2-10. Under the preferred solution of the present application, selecting an appropriate number of precursor capsules 10 according to the volume of different reaction systems has better controllability and is more conducive to the formation of quantum dot materials 30 with uniform particle size distribution.
  • the number of precursor capsules 10 is too small, the contingency of industrial production may be increased, and the difference between batches is relatively difficult to control; if the number of precursor capsules 10 is too large, local supersaturation may be caused If it is not enough, nucleation will be affected, and the particle size distribution uniformity of the quantum dot material 30 will also be reduced to a certain extent, and the processing cost and energy consumption will be increased.
  • those skilled in the art can optimize the amount of precursor required in the reaction system according to different target quantum dot products, thereby further optimizing the number of precursor capsules 10 and/or the volume of a single capsule; wherein, The volume of a single capsule * the number of capsules can be regarded as the total volume of the precursor added.
  • the first precursor 11 can be uniformly or non-uniformly dispersed and packaged in multiple shells 12, wherein "uniformly or non-uniformly” can be understood as the amount of the first precursor 11 in different shells 12 And/or components are “uniformly or non-uniformly".
  • the amount of the first precursor 11 is "uniformly or non-uniformly” means that the mass and/or volume of the first precursor 11 contained in different shells 12 is uniform or non-uniform, the first precursor 11
  • the composition of "uniformly or non-uniformly" means that when the first precursor 11 includes multiple components, different shells 12 may contain the same or different components of the precursor of the first shell 12 .
  • the precursor capsule 10 is prepared by the following process: performing emulsion polymerization of at least one first precursor 11 and a monomer forming the corresponding shell 12 to generate the precursor capsule 10 .
  • the precursor capsule 10 is prepared through the following process: the shell 12 is made through a plastic molding process, and then the precursor material is injected into the shell 12 to obtain the precursor capsule 10 .
  • the molding process is selected from extrusion and injection molding processes.
  • the above preparation method provided in the present application is suitable for preparing quantum dot materials 30 of various structures, including single-layer quantum dot materials and core-shell quantum dot materials with or without doping elements.
  • Those skilled in the art can adjust the composition of the precursor capsule 10 and/or the mixed solution according to the target quantum dot material to be prepared.
  • the present application also provides a preparation method of a quantum dot material, including:
  • the precursor capsule 10 includes a shell 12 and a shell 12 that contains the first element the first precursor of 11;
  • the temperature of the mixed solution is raised, and the temperature rise causes the precursor capsule 10 to be ruptured to release the first precursor 11, and the first precursor 11 and the second precursor 20 to react , to obtain the quantum dot material 30 containing the first element and the second element.
  • first element and the second element correspond to each other and participate in the same nucleation reaction to obtain the quantum dot material 30 .
  • the present application can also prepare quantum dot materials containing one or more doping elements, the doping elements are introduced in the form of precursor capsules 10, or the doping element precursors are directly introduced into the mixed solution.
  • the above-mentioned doping element may be one or more, and it participates in the reaction together with the first element and the second element to obtain the doped quantum dot material.
  • the above-mentioned doping element precursors can be covered by the shell 12 in the same precursor capsule 10 containing the first precursor 11 of the first element, or all or part of them can be respectively covered by the shell of the doping element in the same precursor capsule 10 that does not contain the first element.
  • the doping element precursor capsule of the first precursor 11 of an element the doping element precursor components contained in different precursor capsules 10 and different doping element precursor capsules can be the same or different, and those skilled in the art can according to The actual needs are free to choose.
  • the application also provides a method for preparing a core-shell quantum dot material, including:
  • the core layer precursor capsule includes the first A shell and the first precursor of the core layer covered by the first shell
  • the nth shell precursor capsule includes the n+1th shell and the n+1th shell wrapped by the n+1th shell n-shell first precursor, where n ⁇ 1;
  • the mixed solution is subjected to the first temperature rise and the (n+1)th temperature rise in sequence, wherein the first temperature rise causes the first shell to rupture to release the first precursor of the core layer, and the core layer
  • the first precursor of the first layer and the second precursor of the core layer undergo a first reaction;
  • the n+1th temperature rise causes the n+1th shell to rupture and release the first precursor of the nth shell layer , and make the first precursor of the nth shell react with the second precursor of the nth shell to obtain the core-shell quantum dot material.
  • first precursor of the core layer and the second precursor of the core layer correspond to each other and participate in the same first reaction for nucleation; the first precursor of the nth shell layer and the second precursor of the nth shell layer The two precursors correspond to each other and participate in the corresponding reaction for shell formation; the core-shell quantum dot material is obtained.
  • n-th shell precursor capsule and the n-th shell second precursor can introduce the n-th shell precursor capsule and the n-th shell second precursor according to the number of required shells, and carry out corresponding heating and corresponding reactions to obtain multi-shelled core-shell quantum point material.
  • the core layer precursor capsule, the first shell layer precursor capsule, the second shell layer precursor capsule, the third shell layer precursor capsule, the second core layer precursor, the first The second precursor of the shell layer, the second precursor of the second shell layer, and the second precursor of the third shell layer are mixed with a solvent to obtain a mixed liquid; wherein, the core layer precursor capsule includes a first shell and is covered by the The first precursor of the core layer covered by the first shell, the first shell precursor capsule includes a second shell and the first precursor of the first shell covered by the second shell, the said The 2nd shell precursor capsule includes a third shell and a 2nd shell first precursor wrapped by the third shell, the 3rd shell precursor capsule includes a fourth shell and covered by the third shell The first precursor of the third shell layer covered by the fourth shell; the mixed solution is sequentially subjected to the first temperature rise, the second temperature rise, the third temperature rise, and the fourth temperature rise, wherein the first temperature rise makes the first temperature rise A shell is ruptured to release the first precursor of the core layer, and make
  • the present application also provides a quantum dot material 30 prepared by the preparation method described in the first aspect, and the half-peak width of the quantum dot material 30 is below 25 nm.
  • the type of the quantum dot material 30 is not limited, as long as it can be obtained by reacting different precursors.
  • the quantum dot material 30 can be selected from: Group II-IV, Group II-VI, At least one of II-V, III-V, III-VI, IV-VI, I-III-VI, II-IV-VI, II-IV-V semiconductor compounds; and/ Or, II-IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI, II-IV-VI, IIIV-V At least one of semiconductor compounds with a core-shell structure composed of at least two of the semiconductor compounds; and/or at least one of perovskite nanoparticle materials and metal oxide nanoparticle materials.
  • the quantum dot material 30 provided by the present application has a more uniform size distribution and exhibits better optical properties, especially a narrower half-peak width.
  • the present application provides a quantum dot composition, which includes the quantum dot material 30 described in the aforementioned second aspect.
  • the present application provides a quantum dot device, which includes the quantum dot material 30 described in the second aspect, or the quantum dot composition described in the third aspect.
  • the quantum dot material 30 and quantum dot composition provided in this application can be applied to any device that requires quantum dots, and those skilled in the art can choose according to actual needs.
  • the quantum dot materials prepared by the above-mentioned examples and comparative examples were tested for optical properties respectively, the curves of the luminous intensity of the examples 1-3 with the wavelength are shown in Figure 2-4 respectively, and the luminous intensity of the comparative examples 1-2 The variation curves with wavelength are shown in Figure 5-6, and the test results of the half-peak width are shown in Table 1.
  • the half-peak width of the quantum dot material 30 obtained by the embodiment of the method of the present application is narrower, indicating that the quantum dot size The distribution is more uniform, and at the same time, the luminous intensity of the quantum dots prepared by the method of the present application is obviously better.
  • Example 1 and Example 2 it can be known from Example 1 and Example 2 that the average single volume of the preferred precursor capsule 10 of the present application and/or the preferred number of 10 precursor capsules are used, the half-peak width is narrower, and the luminous intensity is greater .
  • Example 1 and Example 3 it can be seen from Example 1 and Example 3 that the core-shell quantum dot material prepared by the method of the present application can achieve a half-peak width similar to that of a single-layer quantum dot material, and its luminous intensity is greater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请属于纳米材料合成技术领域,具体涉及一种通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件,通过前体胶囊制备量子点材料的方法包括:将前体胶囊和第二前体、溶剂混合,得到混合液;其中,所述前体胶囊包括壳体和被所述壳体包覆的第一前体;将所述混合液进行升温,所述升温使得所述壳体发生破裂而释放出所述第一前体,并使得所述第一前体和所述第二前体进行反应,得到量子点材料。本申请提供的方法,能够提高所得量子点材料的单分散性、尺寸均一性,可控性佳,仅需单次投料即可大规模制备高性质的量子点材料,批间差更小,还方便存储及运输,更有益于工业化生产。

Description

通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件
本申请要求于2022年1月12日提交至中国国家知识产权局、申请号为2022100313265,发明名称为“通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件”的专利申请的优先权。
技术领域
本申请属于纳米材料合成技术领域,具体涉及一种通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件。
背景技术
量子点,是尺寸半径小于或约等于其波尔激子半径的准零维半导体纳米晶体。因其荧光发射波长连续可调、量子产率高、半峰宽窄等性质,被广泛应用于生物医学标记、太阳能电池、照明和显示等领域。
目前,在量子点材料的成核过程中,溶液法合成量子点材料主要有“热注法”(高温注射法)和“非注射法”两种。
“非注射法”又称一锅法或一步法,该方法将各类前体、配体,在低温下加入溶剂中,之后进行加热反应生成量子点。该方法的合成过程中,随着温度的升高,单体释放的速度变快,当单体浓度升高至成核浓度以上,会形成量子点的晶核。该方法操作十分简单,对设备要求低,适合大规模生产。但由于合成过程中,随着温度不断升高,单体释放速度加快,单体浓度持续维持在成核浓度以上,不断生成新的量子点晶核,由于反应过程中不同时间温度条件下形成的量子点晶核粒径各不相同,因此该方法制备得到的量子点粒径分布较宽,导致得到的量子点材料半峰宽较宽。
“注射法”是指先将溶液与部分前体升至高温,再将其他前体快速注入到 溶剂内,在注射界面处的局部形成较高的过饱和度,在短时间内形成大量晶核,该方法得到的量子点粒径分布较“非注射法”更为均一。但在该方法的成核过程是在注射的局部完成,可控性较差,难以实现工业放大。且在该过程中,被注入的前体多处于室温状态,而待注入的前体溶液温度通常在300℃左右,导致了局部存在大量的热交换过程,上述无序的热交换过程也导致了晶核粒径分布不均匀,并且使得该反应过程放大到工业生产过程中重复性差;若要将被注入的前体也升至与溶液相同的温度,则设备过于复杂。
由此,现阶段亟需一种提升量子点产物粒径均一性,且可控性好、易重复、适合大规模工业化的量子点生产方法。
申请内容
本申请的目的是为了克服现有技术存在的制备所得量子点材料粒径分布较宽,制备过程可控性差、难以实现工业放大、设备过于复杂的缺陷,提供一种通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件,该方法仅需单次投料,就能够实现大规模、高质量的量子点材料制备,整个工艺过程可控性佳,适宜工业放大应用,对设备要求相对较低。
为了实现上述目的,第一方面,本申请提供了一种通过前体胶囊制备量子点材料的方法,包括:
将前体胶囊和第二前体、溶剂混合,得到混合液;其中,所述前体胶囊包括壳体和被所述壳体包覆的第一前体;
将所述混合液进行升温,所述升温使得所述壳体发生破裂而释放出所述第一前体,并使得所述第一前体和所述第二前体进行反应,得到量子点材料。
在一些实施方式中,所述壳体基本不溶于所述溶剂,且所述壳体的熔 点不小于所述反应的温度。
在一些实施方式中,所述壳体的熔点与该壳体所包覆的第一前体所参与的反应的温度的差值为0-20℃。
在一些实施方式中,所述混合液中含有未被所述壳体包覆的配体和/或配体前体;和/或
所述混合液中含有包含配体和/或配体前体的前体胶囊。
在一些实施方式中,所述前体胶囊的平均单个容积与所述反应的反应体系总体积的比值在1∶50-1∶1000,优选的,所述比值为1∶100-1∶700。
在一些实施方式中,相对于100mL的反应体系,所述前体胶囊的个数在2-100,优选的,所述个数为2-10。
在一些实施方式中,所述前体胶囊通过以下过程制备得到:
将至少一种第一前体与形成对应壳体的单体进行乳液聚合,生成前体胶囊;
或,通过塑料成型工艺制作壳体,再将至少一种前体注入所述壳体中,得到前体胶囊。
本申请还提供一种量子点材料的制备方法,包括:
将前体胶囊和含第二元素的第二前体、溶剂混合,得到混合液;其中,所述前体胶囊包括壳体和被所述壳体包覆的含第一元素的第一前体;
将所述混合液进行升温,所述升温使得所述前体胶囊发生破裂而释放出所述第一前体,并使得所述第一前体和所述第二前体进行反应,得到含所述第一元素和第二元素的量子点材料。
在一些实施方式中,所述量子点材料的制备方法还包括:
所述混合液中还包括掺杂元素前体胶囊,其中掺杂元素前体胶囊包括壳体和被所述壳体包覆的掺杂元素前体,和/或
所述混合液中还包括未被所述壳体包覆的掺杂元素前体;
且,所述升温还使得所述掺杂元素前体参与所述反应,得到含所述第一元素和第二元素以及掺杂元素的量子点材料。
本申请还提供一种核壳量子点材料的制备方法,包括:
将核层前体胶囊、第n壳层前体胶囊、核层第二前体、第n壳层第二前体与溶剂混合,得到混合液;其中,所述核层前体胶囊包括第一壳体和被所述第一壳体包覆的核层第一前体,所述第n壳层前体胶囊包括第n+1壳体和被所述第n+1壳体包覆的第n壳层第一前体,其中n≥1;
将所述混合液依次进行第一升温、第n+1升温,其中,所述第一升温使得所述第一壳体发生破裂而释放出所述核层第一前体,并使得所述核层第一前体和所述核层第二前体进行第一反应;所述第n+1升温使得所述第n+1壳体发生破裂而释放出所述第n壳层第一前体,并使得所述第n壳层第一前体和所述第n壳层第二前体进行反应,得到核壳量子点材料。
第二方面,本申请还提供一种量子点材料,由前述第一方面所述的制备方法制得,所述量子点材料的半峰宽在25nm以下。
第三方面,本申请提供一种量子点组合物,包括前述第二方面所述的量子点材料。
第四方面,本申请提供一种量子点器件,包括第二方面所述的量子点材料,或第三方面所述的量子点组合物。
本申请提供了一种在前体外包覆壳体的前体胶囊作为反应物的量子点制备方法。在升温过程中,升温前期,第一前体由于包覆在壳体内,无法参与反应,避免了升温过程中形成不同粒径大小的量子点晶核,当温度升温至适宜反应温度时,同时也达到了壳体的熔点,此时,前体胶囊壳体破裂,释放出里面的第一前体,在局部形成较高的过饱和度,第一前体和第二前体迅反应速成核,得到量子点材料。
本申请提供的制备方法,能够提高所得量子点材料的单分散性、尺寸均一性,可控性佳,仅需单次投料即可大规模制备尺寸均一的量子点材料,所述量子点材料具有高的发光强度和相对于现有技术制备方法更窄的半峰宽。该制备方法所用的前体胶囊能够大批量的合成、存储及运输,整个工艺批间差小,易放大生产,适于工业化,且对设备要求相对较低。
附图说明
图1是本申请制备方法的原理流程图。
图2是本申请实施例1所得量子点材料的发光强度随波长的变化曲线图。
图3是本申请实施例2所得量子点材料的发光强度随波长的变化曲线图。
图4是本申请实施例3所得量子点材料的发光强度随波长的变化曲线图。
图5是对比例1所得量子点材料的发光强度随波长的变化曲线图。
图6是对比例2所得量子点材料的发光强度随波长的变化曲线图。
其中,上述附图包括以下附图标记:
10、前体胶囊;11、第一前体;12、壳体;20、第二前体;30、量子点材料。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值 范围应被视为在本文中具体公开。
本申请提供了一种通过前体胶囊制备量子点材料的方法,包括:
将前体胶囊10和第二前体20、溶剂混合,得到混合液;其中,所述前体胶囊10包括壳体12和被所述壳体12包覆的第一前体11;
将所述混合液进行升温,所述升温使得所述壳体12发生破裂而释放出所述第一前体11,并使得所述第一前体11和所述第二前体20进行反应,得到量子点材料30。
本申请提供的方法,如图1所示,将第一前体11以前体胶囊10的结构形式参与所述混合、升温至壳体12熔点之前,壳体12不被破坏,第一前体11无法参与到反应过程中,升温至壳体12熔点之后,体系温度也达到了量子点形成反应的适宜温度,第一前体11被释放,第一前体11的注入的温度与第二前体20温度相同,第一前体11迅速与第二前体20发生反应形成量子点材料30。上述反应过程既避免了升温过程中形成不同大小的量子点晶核,也避免了现有的注射法中不同前体具有温差导致重复性差、量子点晶核粒径分布宽的问题。相比于现有技术制备方法,本申请能得到粒径分布更加均一的量子点材料30,获得了更优的量子点光学性能。同时,由于仅需要一次投料,无需辅助预热系统,前体胶囊10能够批量制备,稳定保存,相比于现有技术,本申请的制备方法更有利于工业化放大生产,工艺简单且重复稳定性好,有利于进行大批量高质量的量子点材料30合成。
本申请对所述第一前体11、第二前体20的各自种类没有特殊限制,可以理解的是,所述第一前体11、所述第二前体20相互对应,其能够发生反应,形成量子点材料30。
在本申请中,第一前体11、第二前体20各自独立的含有包含形成量子点材料30的一种或多种元素的前体材料,所述前体材料含有至少一种相应元素的前体。示例性的,对于形成CdSe量子点材料,那么,第一前体11 可以为含有Se元素的前体材料,第二前体20可以为含有Cd元素的前体材料;其中,Se元素的前体材料可以选自Se粉、TOP-Se、TBP-Se、ODE-Se等含硒前体中的一种或多种,Cd元素的前体材料可以选自氧化镉、硬脂酸镉、油酸镉等含镉前体中的一种或多种。本领域技术人员可以依据不同目标材料选择所述第一前体11、第二前体20包含的具体物质。
在一些实施方式中,所述壳体12基本不溶于所述溶剂,且所述壳体12的熔点不小于所述反应的温度。
所述“壳体12基本不溶于所述溶剂”是指,在所述混合液的温度到达所述壳体12的熔点之前,在所述溶剂中,所述壳体12不会由于溶解而发生破裂,不会释放壳体12内包覆的第一前体11。
本申请对所述溶剂的种类没有限制,只要能满足所述壳体12基本不溶于所述溶剂,且能够充分分散前体材料使得不同前体材料能够反应得到量子点材料30即可;示例性的,所述溶剂可选自液体石蜡,ODE,TOPO等。
在一些实施方式中,所述壳体12的熔点与该壳体12所包覆的第一前体11所参与的反应的温度的差值为0-20℃。将壳体12熔点与所述反应温度的差值控制在上述范围内,能够在确保壳体12内包覆的前体不提前释放的基础上,获得合适粒径大小的量子点产物,以及确保量子点的光学性能和避免过多的能耗。
本申请对所述壳体12的材料没有任何限制,只要能够满足基本不溶于所述溶剂以及熔点接近量子点反应所需温度,在升温过程中能够发生破裂释放出包覆在其中的前体即可;本领域技术人员还可以进一步基于保存、稳定性和使用便捷性等方面的考虑,根据第一前体11选择所述壳体12的材料。在一些实施方式中,所述壳体12的材料包括高分子材料和/或胶体材料,可以列举的实例包括但不限于PS、PMMA等材质。
本申请中,所述反应的温度和时间没有特定的限制,只要能够使得不 同的对应前体发生反应形成量子点材料30即可。本领域技术人员可以根据所述反应的温度、所述壳体12的破裂温度进行所述升温,使得在接近或高于所述反应的温度下壳体12发生破裂,从而释放第一前体11进行所述反应。
在一些实施方式中,所述混合液中含有未被所述壳体12包覆的配体和/或配体前体;和/或,所述混合液中含有包含配体和/或配体前体的前体胶囊10。其中配体前体和/或配体在反应的温度下与第一前体11、第二前体20反应形成具有配体的量子点材料30。
本申请对所述配体和/或配体前体没有特别的限制,只要其能够参与反应形成相应的表面连接配体的量子点材料30即可。示例性的,所形成的配体包括羧酸基、氨基、硅(氧)烷基、巯基、(氧)膦基配体中的一种或多种。
本领域技术人员可以根据不同的反应体系,选择所述溶剂和/或配体(或配体前体)及其用量。本申请所述反应中采用的各前体、配体、溶剂的种类及其各用量比,以及反应的温度和时间,均可以依据目标量子点进行调节,本申请对此没有特殊限制。
本申请中,所述前体胶囊10可以为一个或多个,其容积也可以为至少部分相同或不同。本领域技术人员可以根据第一前体11释放后在所述混合液中的分散情况,反应体系的体积,以及加工成本、能耗等因素,优化所述前体胶囊10的容积和个数。
在一些优选实施方式中,所述前体胶囊10的平均单个容积与所述反应的反应体系总体积的比值在1∶50-1∶1000,优选的,所述比值为1∶100-1∶700,进一步优选比值为1∶200-1∶700。采用本申请优选的方案,根据不同的反应体系体积具有适宜容积的前体胶囊10,使得包覆在壳体12内的第一前体11被释放后,能够更加均匀地分散在所述混合液中,更利于使得在同一温度下第一前体11和第二前体20分别在壳体12破裂边界 形成适当的局部过饱和度,进行充分的、均匀的快速反应,从而进一步提升量子点材料30的尺寸分布均匀性,半峰宽更窄,发光强度更优;同时避免前体胶囊10过多而引起加工成本、能耗等增加。
在一些优选实施方式中,相对于100mL的反应体系,所述前体胶囊10的个数可以为2-100,优选的,所述个数为2-10。在本申请的优选方案下,根据不同的反应体系体积选择适宜个数的前体胶囊10,可控性更好,更利于形成粒径分布均一的量子点材料30。在相同条件下,若前体胶囊10个数太少,则可能会增加工业生产的偶然性,批间差相对不容易控制;若前体胶囊10的个数太多,则可能造成局部过饱和度不够,影响成核,在一定程度上也会降低量子点材料30的粒径分布均一性,且增加加工成本和能耗。
本申请中,本领域技术人员可以根据不同的目标量子点产物优化在该反应体系所需的前体的量,从而进一步优化所述前体胶囊10的个数和/或单个胶囊体积;其中,单个胶囊体积*胶囊个数可以视为加入的前体总体积。
本申请中,第一前体11可以均匀地或非均匀地分散封装在多个壳体12中,其中“均匀地或非均匀地”可以理解为不同壳体12中第一前体11的量和/或组分为“均匀地或非均匀地”。其中第一前体11的量为“均匀地或非均匀地”指的是不同壳体12中含有第一前体11的质量和/或体积是均匀的或非均匀的,第一前体11的组分为“均匀地或非均匀地”指的是当第一前体11包括多个组分时,不同壳体12中可以含有相同或不相同的第一壳体12前体的组分。
本申请中,本领域技术人员对前体胶囊10的制备方法没有特殊的限定,只要能够使得壳体12包覆相应的前体即可。
在一些实施方式中,所述前体胶囊10通过以下过程制备得到:将至少一种第一前体11与形成对应壳体12的单体进行乳液聚合,生成前体胶 囊10。
在另外一些实施方式中,所述前体胶囊10通过以下过程制备得到:通过塑料成型工艺制作壳体12,再将前体材料注入到所述壳体12中,得到前体胶囊10。
优选的,所述成型工艺选自挤出、注塑工艺。
本申请提供的上述制备方法适用于制备多种结构的量子点材料30,包括含或不含掺杂元素的单层量子点材料和核壳量子点材料。本领域技术人员可以根据所需制备的目标量子点材料,调整所述前体胶囊10和/或混合液的组成。
本申请还提供一种量子点材料的制备方法,包括:
将前体胶囊10和含第二元素的第二前体20、溶剂混合,得到混合液;其中,所述前体胶囊10包括壳体12和被所述壳体12包覆的含第一元素的第一前体11;
将所述混合液进行升温,所述升温使得所述前体胶囊10发生破裂而释放出所述第一前体11,并使得所述第一前体11和所述第二前体20进行反应,得到含所述第一元素和第二元素的量子点材料30。
可以理解的是,所述第一元素和第二元素相对应,参与同一个成核反应,得到量子点材料30。
本申请还可以制备含一种或多种含掺杂元素的量子点材料,所述掺杂元素以前体胶囊10的形式引入,或直接将掺杂元素前体引入至所述混合液中。
在本申请所述量子点材料的制备方法中,上述掺杂元素可以为一个,也可以为多个,其与所述第一元素和第二元素共同参与反应,得到掺杂量子点材料。上述掺杂元素前体可以被壳体12包覆在含有第一元素的第一前体11的同一前体胶囊10中,也可以全部或部分分别被掺杂元素壳体包覆在不含有第一元素的第一前体11的掺杂元素前体胶囊中,不同前体胶 囊10与不同掺杂元素前体胶囊含有的掺杂元素前体组分可以相同或不同,本领域技术人员可以根据实际需求自由选择。
本申请还提供一种核壳量子点材料的制备方法,包括:
将核层前体胶囊、第n壳层前体胶囊、核层第二前体、第n壳层第二前体与溶剂混合,得到混合液;其中,所述核层前体胶囊包括第一壳体和被所述第一壳体包覆的核层第一前体,所述第n壳层前体胶囊包括第n+1壳体和被所述第n+1壳体包覆的第n壳层第一前体,其中n≥1;
将所述混合液依次进行第一升温、第n+1升温,其中,所述第一升温使得所述第一壳体发生破裂而释放出所述核层第一前体,并使得所述核层第一前体和所述核层第二前体进行第一反应;所述第n+1升温使得所述第n+1壳体发生破裂而释放出所述第n壳层第一前体,并使得所述第n壳层第一前体和所述第n壳层第二前体进行反应,得到核壳量子点材料。
可以理解的是,所述核层第一前体、核层第二前体相对应,参与同一用于成核的第一反应;所述第n壳层第一前体、第n壳层第二前体相对应,参与相对应的用于成壳的反应;得到核壳量子点材料。
本领域技术人员可以根据所需壳层的个数,相应的引入第n壳层前体胶囊、第n壳层第二前体,进行相应的升温和相应的反应,得到多壳的核壳量子点材料。
示例性的,在一些实施方式中,将核层前体胶囊、第1壳层前体胶囊、第2壳层前体胶囊、第3壳层前体胶囊、核层第二前体、第1壳层第二前体、第2壳层第二前体、第3壳层第二前体与溶剂混合,得到混合液;其中,所述核层前体胶囊包括第一壳体和被所述第一壳体包覆的核层第一前体,所述第1壳层前体胶囊包括第二壳体和被所述第二壳体包覆的第1壳层第一前体,所述第2壳层前体胶囊包括第三壳体和被所述第三壳体包覆的第2壳层第一前体,所述第3壳层前体胶囊包括第四壳体和被所述第四壳体包覆的第3壳层第一前体;将所述混合液依次进行第一升温、第2升 温、第3升温、第4升温,其中,所述第一升温使得所述第一壳体发生破裂而释放出所述核层第一前体,并使得所述核层第一前体和所述核层第二前体进行第一反应;所述第2升温使得所述第二壳体发生破裂而释放出所述第1壳层第一前体,并使得所述第1壳层第一前体和所述第1壳层第二前体进行反应,在核层外形成第1壳层;所述第3升温使得所述第三壳体发生破裂而释放出所述第2壳层第一前体,并使得所述第2壳层第一前体和所述第2壳层第二前体进行反应,在第1壳层外形成第2壳层;所述第4升温使得所述第四壳体发生破裂而释放出所述第3壳层第一前体,并使得所述第3壳层第一前体和所述第3壳层第二前体进行反应,在第2壳层外形成第3壳层,得到具有3个壳层的核壳量子点材料。
第二方面,本申请还提供一种量子点材料30,由第一方面所述的制备方法制备得到,所述量子点材料30的半峰宽在25nm以下。
其中,量子点材料30的类型没有任何限制,只要能够由不同前体反应得到即可,示例性的,所述量子点材料30可以选自:元素周期表II-IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族半导体化合物中的至少一种;和/或,II-IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、IIIV-V族半导体化合物中至少两种组成的核壳结构的半导体化合物中的至少一种;和/或,钙钛矿纳米粒子材料、金属氧化物纳米粒子材料中的至少一种。本申请提供的量子点材料30相比于现有技术的方法制得的量子点材料30,尺寸分布更均一,表现出更优的光学性质,尤其是半峰宽更窄。
第三方面,本申请提供一种量子点组合物,所述量子点组合物包括前述第二方面所述的量子点材料30。
本领域技术人员可以根据实际需求,将本申请的量子点材料30与其他现有材料进行组合或混合,得到所需的量子点组合物。
第四方面,本申请提供一种量子点器件,所述量子点器件包括第二方 面所述的量子点材料30,或第三方面所述的量子点组合物。
本申请提供的量子点材料30和量子点组合物,可以应用于任何需要量子点的器件中,本领域技术人员可以根据实际需求选择。
下面结合实施例对本申请进行更详细的阐述。
实施例1
先将1mL的TOP-Se(Se浓度为1mmol/mL)均匀地分散封装在5个容积为0.2mL PS材质的胶囊中,得到前体胶囊10。
将0.5mmol的CdO,10mL油酸,与该前体胶囊10加入到100mL ODE溶液中,升温至280℃,保温10min,得到CdSe量子点溶液。
实施例2
先将1mL的TOP-Se(Se浓度为1mmol/mL)封装在1个容积为1mL PS材质的胶囊中,得到前体胶囊10。
将0.5mmol的CdO,10mL油酸,与该前体胶囊10加入到100mL ODE溶液中,升温至280℃,保温10min,得到CdSe量子点溶液。
实施例3
先将1mL的TOP-Se(Se浓度为1mmol/mL)均匀地分散封装在5个容积为0.2mL PS材质的胶囊中,得到第一种前体胶囊。
将5mL的TOP-S(S浓度为1mmol/mL)均匀地分散封装在5个容积为1mL的PMMA材质的胶囊中,得到第二种前体胶囊。
将1mmol的CdO,5mmol的ZnO,30mL油酸,与上述两种前体胶囊加入到100mL ODE溶液中,升温至280℃,保温10min,得到CdSe量子点,继续升温至300℃,保温10min,得到CdSe/ZnS量子点材料。
对比例1
将0.5mmol的CdO,10mL油酸与1mL的TOP-Se(Se浓度为 1mmol/mL)加入到100mL ODE溶液中,升温至280℃,保温10min,得到CdSe量子点溶液。
对比例2
将0.5mmol的CdO,10mL油酸加入到100mL ODE溶液中,升温至280℃,然后注入1mL的TOP-Se(Se浓度为1mmol/mL),保温10min,得到CdSe量子点溶液。
测试例
将上述实施例和对比例制得的量子点材料分别进行光学性能测试,其实施例1-3的发光强度随波长的变化曲线分别如图2-4所示,对比例1-2的发光强度随波长的变化曲线分别如图5-6所示,其半峰宽测试结果如表1所示。
表1
实例编号 波长(nm) 半峰宽(nm)
实施例1 624.5 20.3
实施例2 625 23.3
实施例3 528 20.7
对比例1 612 43.4
对比例2 626 30.2
从表1和图2-6可以看出,与现有技术的对比例1-2相比,采用本申请方法的实施例所得的量子点材料30的半峰宽更窄,说明其量子点尺寸分布更均一,同时,本申请方法制备所得的量子点发光强度明显更优。
进一步的,通过实施例1和实施例2可知,采用本申请优选的前体胶囊10的平均单个容积和/或优选的前体胶囊10个数的方案,半峰宽更窄,发光强度更大。
进一步的,通过实施例1和实施例3可知,采用本申请的方法制得的核壳量子点材料,能够达到与单层量子点材料相近的半峰宽,且其发光强度更大。

Claims (12)

  1. 一种通过前体胶囊制备量子点材料的方法,其特征在于,包括:
    将前体胶囊和第二前体、溶剂混合,得到混合液;其中,所述前体胶囊包括壳体和被所述壳体包覆的第一前体;
    将所述混合液进行升温,所述升温使得所述壳体发生破裂而释放出所述第一前体,并使得所述第一前体和所述第二前体进行反应,得到量子点材料。
  2. 根据权利要求1所述的方法,其中,所述壳体基本不溶于所述溶剂,且所述壳体的熔点不小于所述反应的温度。
  3. 根据权利要求2所述的方法,其中,所述壳体的熔点与所述壳体所包覆的第一前体所参与的反应的温度的差值为0-20℃。
  4. 根据权利要求1所述的方法,其中,
    所述混合液中含有未被所述壳体包覆的配体和/或配体前体;和/或
    所述混合液中含有包含配体和/或配体前体的前体胶囊。
  5. 根据权利要求1所述的方法,其中,
    所述前体胶囊的平均单个容积与所述反应的反应体系总体积的比值在1∶50-1∶1000,优选的,所述比值为1∶100-1∶700;和/或,相对于100mL的反应体系,所述前体胶囊的个数在2-100,优选的,所述个数为2-10。
  6. 根据权利要求1所述的方法,其中,所述前体胶囊通过以下过程 制备得到:
    将至少一种所述第一前体与形成对应壳体的单体进行乳液聚合,生成所述前体胶囊;
    或,通过塑料成型工艺制作壳体,再将至少一种所述第一前体注入所述壳体中,得到所述前体胶囊。
  7. 一种量子点材料的制备方法,其特征在于,包括:
    将前体胶囊和含第二元素的第二前体、溶剂混合,得到混合液;其中,所述前体胶囊包括壳体和被所述壳体包覆的含第一元素的第一前体;
    将所述混合液进行升温,所述升温使得所述前体胶囊发生破裂而释放出所述第一前体,并使得所述第一前体和所述第二前体进行反应,得到含所述第一元素和第二元素的量子点材料。
  8. 根据权利要求7所述的制备方法,其中,所述制备方法还包括:
    所述混合液中还包括掺杂元素前体胶囊,其中掺杂元素前体胶囊包括掺杂元素壳体和被其包覆的掺杂元素前体,和/或
    所述混合液中还包括未被所述壳体包覆的掺杂元素前体;
    且,所述升温还使得所述掺杂元素前体参与所述反应,得到含所述第一元素和第二元素以及掺杂元素的量子点材料。
  9. 一种核壳量子点材料的制备方法,其特征在于,包括:
    将核层前体胶囊、第n壳层前体胶囊、核层第二前体、第n壳层第二前体与溶剂混合,得到混合液;其中,所述核层前体胶囊包括第一壳体和被所述第一壳体包覆的核层第一前体,所述第n壳层前体胶囊包括第n+1 壳体和被所述第n+1壳体包覆的第n壳层第一前体,其中n≥1;
    将所述混合液依次进行第一升温、第n+1升温,其中,所述第一升温使得所述第一壳体发生破裂而释放出所述核层第一前体,并使得所述核层第一前体和所述核层第二前体进行第一反应;所述第n+1升温使得所述第n+1壳体发生破裂而释放出所述第n壳层第一前体,并使得所述第n壳层第一前体和所述第n壳层第二前体进行反应,得到核壳量子点材料。
  10. 一种量子点材料,其特征在于,由权利要求1-9中任一项所述的制备方法制得,所述量子点材料的半峰宽在25nm以下。
  11. 一种量子点组合物,其特征在于,包括如权利要求10所述的量子点材料。
  12. 一种量子点器件,其特征在于,包括如权利要求10所述的量子点材料,或如权利要求11所述的量子点组合物。
PCT/CN2022/132970 2022-01-12 2022-11-18 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件 WO2023134300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210031326.5 2022-01-12
CN202210031326.5A CN114316950B (zh) 2022-01-12 2022-01-12 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件

Publications (1)

Publication Number Publication Date
WO2023134300A1 true WO2023134300A1 (zh) 2023-07-20

Family

ID=81026198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132970 WO2023134300A1 (zh) 2022-01-12 2022-11-18 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件

Country Status (2)

Country Link
CN (1) CN114316950B (zh)
WO (1) WO2023134300A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316950B (zh) * 2022-01-12 2022-08-26 广东粤港澳大湾区国家纳米科技创新研究院 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1657589A (zh) * 2004-02-20 2005-08-24 财团法人工业技术研究院 ZnX(X=S,Se,Te)量子点的制备方法
CN107680900A (zh) * 2017-09-22 2018-02-09 纳晶科技股份有限公司 量子点膜及其制作方法、量子点器件
US20180179441A1 (en) * 2016-12-27 2018-06-28 Samsung Electronics Co., Ltd. Process for preparing a quantum dot, a quantum dot prepared therefrom, and an electronic device including the same
CN111690410A (zh) * 2019-03-14 2020-09-22 纳晶科技股份有限公司 量子点以及量子点的制备方法
CN112126430A (zh) * 2020-09-28 2020-12-25 天津卓达科技发展有限公司 磷化铟核壳结构量子点及其制备方法和应用
CN112824478A (zh) * 2019-11-21 2021-05-21 纳晶科技股份有限公司 核壳量子点、其制备方法、及含其的光电器件和量子点组合物
CN114316950A (zh) * 2022-01-12 2022-04-12 广东粤港澳大湾区国家纳米科技创新研究院 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088159A1 (en) * 2010-01-15 2011-07-21 Eastman Kodak Company Optoelectronic device containing large-sized emitting colloidal nanocrystals
CN101851498B (zh) * 2010-06-08 2013-06-12 济南大学 一种可降低有机相合成发光量子点生物毒性的水溶性转换方法
AU2012326203B2 (en) * 2011-10-17 2017-11-30 Massachusetts Institute Of Technology Intracellular delivery
JP2016518468A (ja) * 2013-03-14 2016-06-23 ナノコ テクノロジーズ リミテッド 多層コーティングされた量子ドットビーズ
CN108096214B (zh) * 2017-12-26 2021-01-26 曲阜师范大学 一种趋磁细菌量子点微胶囊及其制备方法
US11603314B2 (en) * 2018-11-28 2023-03-14 Instituto Tecnológico y de Estudios Superiores de Monterrey Noble nanometals embedded carbon composites, a bottom-up fabrication process and different applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1657589A (zh) * 2004-02-20 2005-08-24 财团法人工业技术研究院 ZnX(X=S,Se,Te)量子点的制备方法
US20180179441A1 (en) * 2016-12-27 2018-06-28 Samsung Electronics Co., Ltd. Process for preparing a quantum dot, a quantum dot prepared therefrom, and an electronic device including the same
CN107680900A (zh) * 2017-09-22 2018-02-09 纳晶科技股份有限公司 量子点膜及其制作方法、量子点器件
CN111690410A (zh) * 2019-03-14 2020-09-22 纳晶科技股份有限公司 量子点以及量子点的制备方法
CN112824478A (zh) * 2019-11-21 2021-05-21 纳晶科技股份有限公司 核壳量子点、其制备方法、及含其的光电器件和量子点组合物
CN112126430A (zh) * 2020-09-28 2020-12-25 天津卓达科技发展有限公司 磷化铟核壳结构量子点及其制备方法和应用
CN114316950A (zh) * 2022-01-12 2022-04-12 广东粤港澳大湾区国家纳米科技创新研究院 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件

Also Published As

Publication number Publication date
CN114316950A (zh) 2022-04-12
CN114316950B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
TWI790375B (zh) Ii-ii-vi合金量子點、包括其的器件和量子點組合物及其製備方法
CN106479482B (zh) InP量子点及其制备方法
TWI620342B (zh) 塗布半導體奈米晶體之方法、半導體奈米晶體及其產物
Yen et al. A continuous‐flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals
US7229497B2 (en) Method of preparing nanocrystals
TWI237314B (en) Doping method for forming quantum dots
WO2023134300A1 (zh) 通过前体胶囊制备量子点材料的方法和量子点材料、量子点组合物以及量子点器件
KR101180980B1 (ko) 다중껍질 양자점의 제조장치 및 제조방법
CN110951477B (zh) 一种核壳量子点及其制备方法
CN110028970B (zh) CdZnSe/CdSe/ZnSe绿光量子点制备方法
CN111139060B (zh) 具有周期核壳结构的超大尺寸磷化铟量子点的制备方法
CN109370564A (zh) 一种蓝光量子点及其制备方法、电子器件
Tian et al. Intensification of nucleation stage for synthesizing high quality CdSe quantum dots by using preheated precursors in microfluidic devices
EP1977992B1 (en) Nanosemiconductor particle
US8937373B2 (en) Highly luminescent II-V semiconductor nanocrystals
CN109941977B (zh) 一种硒化镉量子点的合成方法
KR102602906B1 (ko) 퀀텀닷의 제조 방법
Cheng et al. Magnetothermal microfluidic-directed synthesis of quantum dots
CN111303882B (zh) 无镉量子点及其制备方法
KR20190073130A (ko) 스크류 반응관을 이용한 양자점 합성 장치
CN112940712B (zh) 一种蓝色荧光核壳结构量子点及其制备方法
CN106206878B (zh) 一种白光合金量子点及其制备方法、电致发光二极管和光致发光二极管
KR102137824B1 (ko) 양자점 및 이의 제조방법
KR20130022640A (ko) 양자점 제조 장치 및 그를 이용한 양자점 제조 방법
WO2023040991A1 (zh) 前驱体组合物及其制备方法、无机纳米晶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919933

Country of ref document: EP

Kind code of ref document: A1