WO2023130731A1 - 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法 - Google Patents

一种宽温低损耗高Bs锰锌铁氧体材料的制造方法 Download PDF

Info

Publication number
WO2023130731A1
WO2023130731A1 PCT/CN2022/112978 CN2022112978W WO2023130731A1 WO 2023130731 A1 WO2023130731 A1 WO 2023130731A1 CN 2022112978 W CN2022112978 W CN 2022112978W WO 2023130731 A1 WO2023130731 A1 WO 2023130731A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
zinc ferrite
ferrite material
manganese
manufacturing
Prior art date
Application number
PCT/CN2022/112978
Other languages
English (en)
French (fr)
Inventor
夏铭洋
王鸿健
邢冰冰
黄艳锋
张强原
Original Assignee
天通控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天通控股股份有限公司 filed Critical 天通控股股份有限公司
Publication of WO2023130731A1 publication Critical patent/WO2023130731A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention belongs to the field of preparation technology and application of high-performance power ferrite soft magnetic materials, and relates to a method for manufacturing a wide-temperature, low-loss, and high-Bs manganese-zinc ferrite material.
  • the high Bs material manufactured by the manufacturing method has lower power loss under wide temperature conditions (25°C-140°C), and its power loss-temperature curve is stable in the temperature range of 25°C-140°C.
  • manganese-zinc power ferrite materials can be applied to the transformer part of the charging pile.
  • the power of the charging pile is generally large, and it will generate a large instantaneous current during operation.
  • the internal core magnetic device will be damaged due to Heat up to about 120°C, which requires manganese-zinc power ferrite materials to have low power consumption near the operating temperature of 100°C to 140°C.
  • manganese-zinc power ferrite materials are required to have the characteristics of wide temperature and low loss at 25-140°C; and due to the large charging power, ferrite cores with high saturation magnetic flux density are required to improve The power density greatly reduces the volume of the charger and improves the charging efficiency.
  • the patent publication number CN112456996A discloses a high Bs, wide temperature Low power loss manganese zinc ferrite material and its preparation method and application, the main components in the material are Fe 2 O 3 : 55.0-57.0 mol%, Mn 3 O 4 : 33.5- 35.0mol%, the balance is ZnO; the trace additives are CaO: 400-800ppm, Co 2 O 3 : 2700-3700ppm, NiO: 6000-8000ppm.
  • the power loss of this material is low and smooth at 25-100°C, it does not mention the high-temperature loss at 120°C and above, and the Bs at 100°C is only 420mT, which is low, and its application range is limited.
  • the patent with publication number CN107459344A discloses a manganese zinc ferrite material with wide temperature, low loss and high Bs and its manufacturing method. By improving the composition and proportion of the material, the second peak temperature of the prepared material is around 100°C, which is effective To reduce the loss of operating temperature. However, at higher temperatures, the loss deterioration caused by high Bs has not been resolved.
  • the patent with the publication number CN111517776A discloses a method for preparing manganese-zinc soft magnetic ferrite material.
  • the prepared material has good wide temperature range, low power loss, and excellent saturation magnetic flux density, but the In the preparation method of the present invention, the compact is required to be prepared before the secondary calcining.
  • the preparation of the large compact will consume a lot of manpower and material resources; and the doping system uses rare earth elements and graphene components, which are expensive , will increase the production cost.
  • the patent with publication number CN111039667A provides a wide temperature low loss ferrite and its preparation method, which relates to the technical field of ferrite processing.
  • the wide-temperature low-loss ferrite is composed of the first mixture and the second mixture.
  • the ferrite produced has low power loss values at various temperatures by adopting the cooling treatment and secondary sintering process, but the saturation at a high temperature of 100°C
  • the magnetic flux density is still low at 422mT, which limits the application range of the material; and in the production process of the material, the first mixture and the second mixture need to be independently produced and involve strong acid corrosion steps, which will have certain operational difficulties in actual production .
  • the present invention provides a low-cost, wide-temperature, low-loss, and high-Bs manganese-zinc ferrite material manufacturing method that is adaptable to large-scale production by optimizing the process flow and improving the formula.
  • a wide temperature, low loss, high Bs manganese zinc ferrite material includes a main component and an auxiliary component, the composition of the main component is: 53.8-55.2 mol% Fe 2 O 3 , 9.8-13 mol% ZnO, and the balance is Mn 3 O 4 , auxiliary components include: 0.3-0.6wt% Co 2 O 3 ; 0.05-0.1wt% CaCO 3 ; 0.015-0.035wt% Nb 2 O 5 ; 0.015-0.035wt% ZrO 2 ; wt% Li 2 CO 3 ; 0.01-0.03 wt% CCTO; the above auxiliary components are calculated in weight percentage relative to the total amount of Fe 2 O 3 , Mn 3 O 4 , ZnO, wherein CaCO 3 is added during sand grinding, The rest of the auxiliary components are added during ball milling, and better results can be achieved with the secondary pre-burning process. Concrete preparation steps are:
  • Step 1 The main components Fe 2 O 3 , Mn 3 O 4 and ZnO are dosed according to the raw materials of each component, and deionized water is added at a ratio of 1:1, and an appropriate amount of dispersant is added to mix for 20-30 minutes, and then the slurry is taken out Drying, after drying, the uniform mixed powder is obtained and pre-fired once.
  • the pre-burning temperature is selected between 700-800 ° C, and the oxygen content is controlled to be 5-20vol% by controlling the ratio of air and nitrogen, and the time is 2-3 hours. Cooling with the furnace;
  • Step 2 After adding auxiliary components to the pre-fired material obtained by pre-calcination, add deionized water at a ratio of 1:1, perform sand grinding and then dry.
  • the added auxiliary components are 0.05-0.1wt% CaCO 3 , sand
  • the grinding time is 60-100min to control the particle size D90 after sand grinding: 3.0-3.3 ⁇ m;
  • Step 3 After crushing the mixture prepared in Step 2 and passing it through a 28-mesh sieve, perform secondary pre-calcination.
  • the pre-calcination temperature is selected between 850 and 950°C, and the oxygen content is controlled to be 5-20vol by controlling the ratio of air and nitrogen. %, the time is 2 ⁇ 3h, cooling with the furnace;
  • Step 4 Add auxiliary components to the powder that has been pre-fired for the second time, and then dry it after ball milling.
  • the ball milling time is 40-60 minutes, and the particle size D90 after ball milling is controlled: 2.5-2.7 ⁇ m;
  • Step 5 After crushing the dried powder through a 40-mesh sieve, add 15% PVA to granulate, sift to remove uneven granulated particles, and dry the granulated powder at 120°C to 140°C for 10-20min , obtain a powder with good fluidity and filling property, and make a 25*15*8mm green ring by bidirectional pressing at 300-350MPa;
  • Step 6 Sinter the green body ring pressed in step 5 in a bell furnace, the sintering holding temperature is 1280-1320°C, the holding time is 4-8h, and the oxygen content is 3.5-4.6vol%, and finally manganese-zinc ferrite is obtained sample ring.
  • the content of auxiliary components can be 0.05-0.07wt% CaCO 3 ; 0.35-0.5wt% Co 2 O 3 ; 0.02-0.03wt% Nb 2 O 5 ; 0.015-0.025wt% ZrO 2 ; 0.2-0.25 wt% Li2CO3 ; 0.015-0.025 wt% CCTO.
  • the ferrite preparation process it is generally necessary to mix the ferrite raw materials by wet method, then add PVA for granulation, and then enter the rotary kiln or roller kiln for pre-sintering after granulation.
  • PVA for granulation
  • roller kiln due to the irregular shape of the particles and the adhesion of the furnace wall to the powder after repeated sintering, different batches of furnace materials and even the same furnace head and tail materials have certain differences, making Due to the difference in activity during final sintering of the powder, the uniformity of the microstructure is reduced.
  • the roller kiln is used for pre-firing.
  • the present invention adopts the process of pre-burning twice to sand the primary pre-fired powder to break the structure and eliminate the large difference in the magnetic force and activity of the pre-fired material caused by insufficient pre-burning of the inner and outer layers of the powder particles or particle agglomeration.
  • the problem is to create a uniform basis for the composition and activity for the secondary calcining, which is retained after the secondary calcining, and then ball milled to obtain a relatively narrower particle size distribution range, which promotes the homogenization of the structure after sintering, and obtains Better microstructure improves initial permeability and reduces hysteresis loss.
  • the pulverization method after the secondary calcining does not use sand milling but ball milling. This is because a relatively uniform particle size distribution range has been obtained after sand milling. At this time, if sand milling is used again, the strong stirring and pulverization effect will make Agglomeration of D50 will affect the uniformity of activity, and may cause crystallization if the particle size is too fine, so the method of combining sand milling and ball milling is more reliable and stable.
  • the auxiliary component CaCO 3 is added to the sand mill after pre-burning.
  • the principle of action is that Ca 2+ has a large radius and cannot enter the spinel structure. After being dispersed by sand mill, it will segregate uniformly at the grain boundary, A high-resistance layer is formed during pre-firing. The formation of the high-resistance layer not only increases the resistivity, but also fills the gaps between the particles and improves the compactness.
  • the present invention not only simplifies the process steps, but also improves the pre-burning effect and further reduces the production cost.
  • Adding the dielectric material copper calcium titanate (CCTO) into the auxiliary component of the invention can improve the actual dielectric constant and microstructure of the manganese zinc ferrite, increase the resistivity, and further reduce hysteresis loss and eddy current loss.
  • the composite addition of Co 3+ and Li + will replace Fe 3+ and Mn 3+ on the B site, and the substituted Fe 3+ will enter the A site, thus increasing the number of Fe 3+ -O-Fe 3+ .
  • the super-exchange effect of Fe 3+ -O-Fe 3+ is the strongest, so the AB exchange effect is enhanced, so the Curie temperature increases, and the high-temperature Bs also increases.
  • the material of the present invention has the characteristics of high Bs and low power loss under wide temperature conditions (25°C-140°C), and its power retention loss-temperature curve is in the entire application temperature range of 25°C-140°C Internally stable and gentle.
  • the performance parameter that material of the present invention reaches is as follows:
  • ⁇ i(25°C) 3000 ⁇ 25%(10kHz,5mV);
  • the present invention adopts the technology of twice pre-burning, carries out sand mill crushing to primary pre-burning powder, after second pre-burning, passes through ball mill pulverization, makes particle size distribution uniform, promotes the homogenization of tissue after sintering, obtains more Good microstructure improves initial permeability and reduces hysteresis loss.
  • the auxiliary component CaCO 3 is added during the primary pre-firing, which not only helps to increase the resistivity, but also plays a role in filling the gaps between the particles, improves the compactness, improves the pre-firing effect, and simplifies the process steps, further reducing the production cost.
  • the present invention adds the auxiliary component dielectric material copper calcium titanate (CCTO) when secondary pre-firing, can improve the actual dielectric constant and the microstructure of manganese zinc ferrite, help to reduce loss, improve Curie temperature and high temperature Bs characteristics.
  • CCTO copper calcium titanate
  • Fig. 1 is the ⁇ i contrast figure of the embodiment of the present invention and comparative example
  • Fig. 2 is the Pcv (100 °C) comparative figure of the embodiment of the present invention and comparative example;
  • Fig. 3 is the Pcv (140 °C) comparative figure of the embodiment of the present invention and comparative example;
  • Fig. 4 is a metallographic microstructure diagram of Example 1 of the present invention.
  • Fig. 5 is a metallographic microstructure diagram of comparative example 6 of the present invention.
  • Fig. 6 is a metallographic microstructure diagram of comparative example 9 of the present invention.
  • Fig. 7 is a metallographic microstructure diagram of comparative example 10 of the present invention.
  • Fig. 8 is a metallographic microstructure diagram of comparative example 11 of the present invention.
  • FIG. 9 is the power loss-temperature curve (25° C. to 140° C.) of Example 1 and Comparative Example 8 at 100 kHz and 200 mT.
  • Raw materials with commercially available purity of Fe 2 O 3 (purity ⁇ 99.3%), Mn 3 O 4 (Mn content ⁇ 71%), and ZnO (purity ⁇ 99.7%) are used according to the main formula Fe 2 O 3 : 54.08mol%, ZnO It is 10.74mol%, and Mn 3 O 4 is the balance. Concrete preparation steps are:
  • Step 1 Put the prepared raw materials in a sand mill, add deionized water at a mass ratio of 1:1, add an appropriate amount of dispersant and mix for 20 minutes, take out the slurry and dry it, and use a rotary
  • the kiln is pre-fired once, the pre-fire atmosphere is air, the time is 2h, the pre-fire temperature is as shown in Table 1, and the oxygen content of the pre-fire atmosphere is 20vol%;
  • Step 2 Add auxiliary components to the primary calcined material: CaCO 3 : 500ppm; carry out sanding, add deionized water in a ratio of 1:1, sanding time is as shown in Table 1, and control the sanding particle size D90: 3.0 ⁇ 3.3 ⁇ m, put the sanded slurry into the oven to completely remove the water;
  • Step 3 crush the dried powder through a 28-mesh screen, put it into a rotary kiln for secondary pre-firing, and the pre-firing temperature is as shown in Table 1;
  • Step 4 Add auxiliary components Nb 2 O 5 : 250ppm; Co 2 O 3 : 4000ppm; ZrO 2 : 250ppm; Li 2 CO 3 : 2000ppm; As shown in Table 1, control the ball mill particle size D90: 2.5 ⁇ 2.7 ⁇ m;
  • Step 5 crush the dried powder through a 40-mesh sieve, add 15% PVA to granulate it, then dry it at 130°C for 12 minutes, and bidirectionally press it into a raw material with an inner diameter of 15mm, an outer diameter of 25mm, and a height of 8mm.
  • the blank ring has a density of about 3.1g/ cm3 ;
  • Step 6 Finally, the green body ring is sintered at a sintering temperature of 1300° C., kept for 6 hours, cooled to 120° C. under an equilibrium atmosphere with an oxygen partial pressure of 3.8 vol%, and released from the furnace.
  • the cooling process adopts an equilibrium oxygen partial pressure.
  • manganese zinc power ferrite material was prepared according to the following method.
  • Raw materials with commercially available purity of Fe 2 O 3 (purity ⁇ 99.3%), Mn 3 O 4 (Mn content ⁇ 71%), and ZnO (purity ⁇ 99.7%) are used according to the main formula Fe 2 O 3 : 54.08mol%, ZnO It is 10.74mol%, and Mn 3 O 4 is the balance. Concrete preparation steps are:
  • Step 1 Put the prepared raw materials in a sand mill, add deionized water at a mass ratio of 1:1, add an appropriate amount of dispersant and mix for 20 minutes, take out the slurry and dry it, and use a rotary
  • the kiln is pre-fired once, the pre-fire atmosphere is air, the time is 2h, the pre-fire temperature is as shown in Table 1, and the oxygen content of the pre-fire atmosphere is 20vol%;
  • Step 2 Add auxiliary components to the primary calcined material: CaCO 3 : 500ppm; carry out sanding, add deionized water in a ratio of 1:1, sanding time is as shown in Table 1, and control the sanding particle size D90: 3.0 ⁇ 3.3 ⁇ m, put the sanded slurry into the oven to completely remove the water;
  • Step 3 crush the dried powder through a 28-mesh screen, put it into a rotary kiln for secondary pre-firing, and the pre-firing temperature is as shown in Table 1;
  • Step 4 Add auxiliary components Nb 2 O 5 : 250ppm; Co 2 O 3 : 4000ppm; ZrO 2 : 250ppm; Li 2 CO 3 : 2000ppm; perform ball milling, and the ball milling time is shown in Table 1 , control ball mill particle size D90: 2.5 ⁇ 2.7 ⁇ m;
  • Step 5 crush the dried powder through a 40-mesh sieve, add 15% PVA to granulate it, then dry it at 130°C for 12 minutes, and bidirectionally press it into a raw material with an inner diameter of 15mm, an outer diameter of 25mm, and a height of 8mm.
  • the blank ring has a density of about 3.1g/ cm3 ;
  • Step 6 Finally, the green body ring is sintered at a sintering temperature of 1300° C., kept for 6 hours, cooled to 120° C. under an equilibrium atmosphere with an oxygen partial pressure of 3.8 vol%, and released from the furnace.
  • the cooling process adopts an equilibrium oxygen partial pressure.
  • manganese zinc power ferrite material was prepared according to the following method.
  • Raw materials with commercially available purity of Fe 2 O 3 (purity ⁇ 99.3%), Mn 3 O 4 (Mn content ⁇ 71%), and ZnO (purity ⁇ 99.7%) are used according to the main formula Fe 2 O 3 : 54.08mol%, ZnO It is 10.74mol%, and Mn 3 O 4 is the balance. Concrete preparation steps are:
  • Step 1 Put the prepared raw materials in a sand mill, add deionized water at a mass ratio of 1:1, add an appropriate amount of dispersant and mix for 20 minutes, take out the slurry and dry it, and use a rotary
  • the kiln is pre-fired once, the pre-fire atmosphere is air, the time is 2h, the pre-fire temperature is as shown in Table 1, and the oxygen content of the pre-fire atmosphere is 20vol%;
  • Step 2 Add auxiliary components to the primary calcined material: CaCO 3 : 500ppm; carry out sanding, add deionized water in a ratio of 1:1, sanding time is as shown in Table 1, and control the sanding particle size D90: 3.0 ⁇ 3.3 ⁇ m, put the sanded slurry into the oven to completely remove the water;
  • Step 3 crush the dried powder through a 28-mesh screen, put it into a rotary kiln for secondary pre-firing, and the pre-firing temperature is as shown in Table 1;
  • Step 4 Add auxiliary components Nb 2 O 5 : 250ppm; Co 2 O 3 : 4000ppm; ZrO 2 : 250ppm; Li 2 CO 3 : 2000ppm; As shown in Table 1, control the ball mill particle size D90: 2.5 ⁇ 2.7 ⁇ m;
  • Step 5 crush the dried powder through a 40-mesh sieve, add 15% PVA to granulate it, then dry it at 130°C for 12 minutes, and bidirectionally press it into a raw material with an inner diameter of 15mm, an outer diameter of 25mm, and a height of 8mm.
  • the blank ring has a density of about 3.1g/ cm3 ;
  • Step 6 Finally, the green body ring is sintered at a sintering temperature of 1300° C., kept for 6 hours, cooled to 120° C. under an equilibrium atmosphere with an oxygen partial pressure of 3.8 vol%, and released from the furnace.
  • the cooling process adopts an equilibrium oxygen partial pressure.
  • a manganese zinc power ferrite material was prepared according to the following method.
  • Raw materials with commercially available purity of Fe 2 O 3 (purity ⁇ 99.3%), Mn 3 O 4 (Mn content ⁇ 71%), and ZnO (purity ⁇ 99.7%) are used according to the main formula Fe 2 O 3 : 54.08mol%, ZnO It is 10.74mol%, and Mn 3 O 4 is the balance. Concrete preparation steps are:
  • Step 1 Put the prepared raw materials in a sand mill, add deionized water at a ratio of 1:1, add an appropriate amount of dispersant and mix for 20 minutes, take out the slurry and dry it, and use the rotary kiln to dry the dried powder
  • the pre-fired atmosphere is air
  • the time is 2h
  • the pre-fired temperature is as shown in Table 1
  • the oxygen content of the pre-fired atmosphere is 20vol%
  • Step 2 Add deionized water to the primary calcined material at a ratio of 1:1, and then perform sanding.
  • the sanding time is shown in Table 1. Control the sanding particle size D90: 3.0-3.3 ⁇ m, and grind the sanded material Put the slurry into the oven to completely remove the moisture;
  • Step 3 crush the dried powder through a 28-mesh screen, put it into a rotary kiln for secondary pre-firing, and the pre-firing temperature is as shown in Table 1;
  • Step 4 Add auxiliary components CaCO 3 : 500ppm; Nb 2 O 5 : 250ppm; Co 2 O 3 : 4000ppm; ZrO 2 : 250ppm; Li 2 CO 3 : 2000ppm; Ball milling, ball milling time as shown in Table 1, control ball milling particle size D90: 2.5 ⁇ 2.7 ⁇ m;
  • Step 5 crush the dried powder through a 40-mesh sieve, add 15% PVA to granulate, and then dry at 130°C for 12 minutes. Use a press to bidirectionally press it into a raw material with an inner diameter of 15mm, an outer diameter of 25mm, and a height of 8mm. Embryo ring with a density of about 3.1g/cm 3 ;
  • Step 6 Finally, the green body ring is sintered at a sintering temperature of 1300° C., kept for 6 hours, cooled to 120° C. under an equilibrium atmosphere with an oxygen partial pressure of 3.8 vol%, and released from the furnace.
  • the cooling process adopts an equilibrium oxygen partial pressure.
  • a manganese zinc power ferrite material was prepared according to the following method.
  • Raw materials with commercially available purity of Fe 2 O 3 (purity ⁇ 99.3%), Mn 3 O 4 (Mn content ⁇ 71%), and ZnO (purity ⁇ 99.7%) are used according to the main formula Fe 2 O 3 : 54.08mol%, ZnO It is 10.74mol%, and Mn 3 O 4 is the balance. Concrete preparation steps are:
  • Step 1 Put the prepared raw materials in a sand mill, add deionized water at a ratio of 1:1, add an appropriate amount of dispersant and mix for 20 minutes, take out the slurry and dry it, and use the rotary kiln to dry the dried powder
  • the pre-fired atmosphere is air
  • the time is 2h
  • the pre-fired temperature is as shown in Table 1
  • the oxygen content of the pre-fired atmosphere is 20vol%
  • Step 2 Add auxiliary components to the primary calcined material: CaCO 3 : 500ppm; carry out sanding, add deionized water in a ratio of 1:1, sanding time is as shown in Table 1, and control the sanding particle size D90: 3.0 ⁇ 3.3 ⁇ m, put the sanded slurry into the oven to completely remove the water;
  • Step 3 crush the dried powder through a 28-mesh screen, put it into a rotary kiln for secondary pre-firing, and the pre-firing temperature is as shown in Table 1;
  • Step 4 Add auxiliary components Nb 2 O 5 : 250ppm; Co 2 O 3 : 4000ppm; ZrO 2 : 250ppm; Li 2 CO 3 : 2000ppm;
  • the sanding time shall be as shown in Table 1, and the sanding particle size D90 shall be controlled: 2.5-2.7 ⁇ m;
  • Step 5 crush the dried powder through a 40-mesh sieve, add 15% PVA to granulate, and then dry at 130°C for 12 minutes. Use a press to bidirectionally press it into a raw material with an inner diameter of 15mm, an outer diameter of 25mm, and a height of 8mm. Embryo ring with a density of about 3.1g/cm 3 ;
  • Step 6 Finally, the green body ring is sintered at a sintering temperature of 1300° C., kept for 6 hours, cooled to 120° C. under an equilibrium atmosphere with an oxygen partial pressure of 3.8 vol%, and released from the furnace.
  • the cooling process adopts an equilibrium oxygen partial pressure.
  • a manganese zinc power ferrite material was prepared according to a conventional method.
  • Raw materials with commercially available purity of Fe 2 O 3 (purity ⁇ 99.3%), Mn 3 O 4 (Mn content ⁇ 71%), and ZnO (purity ⁇ 99.7%) are used according to the main formula Fe 2 O 3 : 54.08mol%, ZnO It is 10.74mol%, and Mn 3 O 4 is the balance. Concrete preparation steps are:
  • Step 1 Put the prepared raw materials in a sand mill, add deionized water at a ratio of 1:1, add an appropriate amount of dispersant, sand mill for 20 minutes, take out the slurry and dry it, and dry the dried powder
  • the material is pre-fired in a rotary kiln, the pre-fired atmosphere is air, the time is 2h, the pre-fired temperature is 900°C, and the oxygen content of the pre-fired atmosphere is 20vol%;
  • Step 2 Add auxiliary components to the calcined material: CaCO 3 : 500ppm; Nb 2 O 5 : 250ppm; Co 2 O 3 : 4000ppm; ZrO 2 : 250ppm; Li 2 CO 3 : 2000ppm; Grinding, add deionized water at a ratio of 1:1, sanding time is 100min, control the secondary sanding particle size D90: 2.5-2.7 ⁇ m, put the sanded slurry into the oven, and completely remove the water;
  • Step 3 crush the dried powder through a 40-mesh sieve, add 15% PVA to granulate it, and then dry it at 130°C for 12 minutes. Use a press to bidirectionally press it into a raw material with an inner diameter of 15mm, an outer diameter of 25mm, and a height of 8mm. Embryo ring with a density of about 3.1g/cm 3 ;
  • Step 4 Finally, sinter the green body ring at a sintering temperature of 1300° C., keep it warm for 6 hours, cool it to 120° C. under an equilibrium atmosphere with an oxygen partial pressure of 3.8 vol%, and release it from the furnace.
  • the cooling process adopts an equilibrium oxygen partial pressure.
  • the sample ring prepared through the above steps was tested for power consumption Pcv and saturation magnetic flux density Bs in the SY8218 instrument of Iwasaki Corporation, Japan.
  • the test conditions are respectively: test Pcv under the conditions of 100kHz and 200mT; test its performance under the conditions of 1kHz and 1194A/m and record them in Table 2.
  • Fig. 1, Fig. 2 and Fig. 3 are examples of the present invention and comparative examples respectively , 100°C Pcv, 140°C Pcv comparison chart.
  • Comparative Example 6 the calcining temperature exceeds the limit range of the present invention. Excessively high calcining temperature reduces the reactivity of the powder, the crystal grains are not fully grown after sintering, there are many pores (as shown in Figure 5), and the high temperature loss increases.
  • auxiliary component CCTO is 500ppm, which exceeds the limit range of the present invention. Excessive CCTO will cause the initial magnetic permeability and Bs to decrease, and will cause the resistivity to change irregularly and the loss to increase.
  • Comparative Example 11 the conventional preparation method is adopted. Compared with the secondary calcining process, the uniformity of the composition and activity of the powder is poor, the obtained microstructure is poor (as shown in Figure 8), and the loss increases.
  • the present invention selects the power consumption parameters measured in Example 1 and Comparative Example 8 to draw a power consumption-temperature curve, as shown in FIG. 9 , compared with the ideal value, the performance improvement effect of the technical solution of the present invention is more obvious.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,该材料包括主成分和辅助成分,主成分为:Fe 2O 3、ZnO、Mn 3O 4,辅助成分包括:Co 2O 3、CaCO 3、Nb 2O 5、ZrO 2、Li 2CO 3、CCTO。采用两次预烧的方式,将一次预烧后的预烧料进行破碎,消除粉料颗粒内外层预烧不充分或颗粒团聚造成的预烧料磁力及活性差异大的问题,并且在一次预烧后砂磨时加入CaCO 3,在二次预烧后球磨时加入其余辅助成分,使得最终制备的锰锌铁氧体材料晶粒大小分布均匀、密度高,且在25℃-140℃温度范围内具有低功率损耗、高磁导率、高Bs的特性。

Description

一种宽温低损耗高Bs锰锌铁氧体材料的制造方法 技术领域
本发明属于高性能功率铁氧体软磁材料制备技术与应用领域,涉及一种宽温低损耗高Bs锰锌铁氧体材料的制造方法。利用该制造方法制造的高Bs材料在宽温条件下(25℃~140℃)具有较低的功率损耗,且其功率损耗-温度曲线在25℃~140℃温度范围内稳定。
背景技术
在新能源汽车及其充电领域,锰锌功率铁氧体材料可应用于充电桩中的变压器部分,充电桩的功率一般较大,在工作时会产生瞬间的大电流,内部核心磁性器件会因发热而升温至120℃左右,这就要求锰锌功率铁氧体材料在100℃~140℃工作温度附近具有低功耗,此外,还要求在25℃左右的待机状态下依然维持低功率,以提高整体的利用率,故需要锰锌功率铁氧体材料在25~140℃具有宽温低损耗的特性;且由于充电功率较大,需采用高饱和磁通密度的铁氧体磁芯以提高功率密度,大幅度减小充电器的体积,提高充电效率。
因此,为了适应各种新能源产业的发展需求,已经有许多开发人员在研究宽温低损耗高Bs的锰锌铁氧体材料,公开号为CN112456996A的专利公开了一种高Bs、宽温性与低损耗功率型锰锌铁氧体材料及其制备方法与应用,所述材料中主成分以氧化物摩尔比计量分别为Fe 2O 3:55.0~57.0mol%、Mn 3O 4:33.5~35.0mol%、余量为ZnO;所述微量添加剂为CaO:400~800ppm、Co 2O 3:2700~3700ppm、NiO:6000~8000ppm。虽然该材料25~100℃内功率损耗低且平缓,但未提及120℃及以上的高温损耗,并且100℃条件下的Bs仅为420mT,Bs偏低,其应用范围有限。
公开号为CN107459344A的专利公开了一种宽温低损耗且高Bs的锰锌铁氧体材料及其制造方法,通过改良材料成分及配比,所制备的材料二峰温度处于100℃附近,有效地降低了工作温度的损耗。但在更高温度时,高Bs所带来的损耗恶化仍未得到解决。
公开号为CN111517776A的专利公开了一种锰锌软磁铁氧体材料的制备方法,所制备得到的材料具有良好的宽温性和较低的功率损耗,以及优异的饱和磁通密度,但所述的制备 方法中,二次预烧前需进行坯块制备,然而在大生产中,大坯块的制备将耗费大量的人力物力;且其掺杂体系中使用稀土元素及石墨烯成分,价格昂贵,会增加生产成本。
公开号为CN111039667A的专利提供一种宽温低损耗铁氧体及其制备方法,涉及铁氧体加工技术领域。所述宽温低损耗铁氧体由第一混合物与第二混合物组成,采用降温处理和二次烧结工艺,所制得的铁氧体在各个温度下功率损耗值低,但高温100℃的饱和磁通密度为422mT仍较低,限制了材料的应用范围;且材料的制作过程中,第一混合物与第二混合物需独立制作并涉及到强酸腐蚀的步骤,实际生产中会有一定的操作难度。
因此,开发一种高饱和磁通密度(Bs)、高起始磁导率(μ i)、且在宽温度范围内具有较低功率损耗特性的锰锌铁氧体材料及其制造方法具有重要的意义。
发明内容
为解决以上问题,本发明通过优化工艺流程及改良配方,提供了一种低成本、能适应大生产的宽温低损耗且高Bs的锰锌铁氧体材料的制造方法。
本发明采用的技术方案如下:
一种宽温低损耗高Bs锰锌铁氧体材料包括主成分和辅助成分,主成分的组成为:53.8-55.2mol%的Fe 2O 3,9.8-13mol%的ZnO,余量为Mn 3O 4,辅助成分包括:0.3-0.6wt%的Co 2O 3;0.05-0.1wt%的CaCO 3;0.015-0.035wt%的Nb 2O 5;0.015-0.035wt%的ZrO 2;0.15-0.25wt%的Li 2CO 3;0.01-0.03wt%的CCTO;以上辅助成分是相对于Fe 2O 3、Mn 3O 4、ZnO的总量以重量百分比计算,其中CaCO 3在砂磨时加入,其余辅助成分在球磨时加入,配合二次预烧工艺能取得更好的效果。具体制备步骤为:
步骤一:将主成分Fe 2O 3、Mn 3O 4和ZnO按照各组分原料的计量配料,按1:1加入去离子水,并加入适量的分散剂混合20-30min后,取出料浆烘干,烘干后得到均匀的混合粉料进行一次预烧,预烧温度选择700~800℃之间,通过控制空气与氮气配比控制氧含量为5-20vol%,时间为2~3h,随炉冷却;
步骤二:将一次预烧得到的预烧料加入辅助成分后,按1:1比例加入去离子水,进行砂磨后 烘干,所加入的辅助成分为0.05-0.1wt%的CaCO 3,砂磨时间60~100min控制砂磨后的粒径尺寸D90:3.0~3.3μm;
步骤三:将步骤二制得的混合料破碎过28目筛网后,进行二次预烧,预烧温度选择850~950℃之间,通过控制空气与氮气配比控制氧含量为5-20vol%,时间为2~3h,随炉冷却;
步骤四:将二次预烧完毕的粉料加入辅助成分进行球磨后烘干,球磨时间为40~60min,控制球磨后的粒径尺寸D90:2.5~2.7μm;
步骤五:将烘干的粉料破碎过40目筛网后,加入15%PVA造粒,过筛,去除造粒不均匀颗粒,将造粒粉料于120℃~140℃下烘10-20min,得到流动性、填充性良好的粉料,并在300~350MPa下通过双向压制成25*15*8mm生坯环;
步骤六:将步骤五压制的生坯环于钟罩炉中烧结,烧结保温温度在1280~1320℃,保温时间为4-8h,氧含量为3.5-4.6vol%,最终得到锰锌铁氧体样环。
作为一种优选,辅助成分的含量可以为0.05-0.07wt%的CaCO 3;0.35-0.5wt%的Co 2O 3;0.02-0.03wt%的Nb 2O 5;0.015-0.025wt%的ZrO 2;0.2-0.25wt%的Li 2CO 3;0.015-0.025wt%的CCTO。
在铁氧体制备过程中,一般需要将铁氧体原料经过湿法混合后,加入PVA进行造粒,经过造粒后入回转窑或辊道窑进行预烧结。在回转窑中由于颗粒本形状不规则及炉壁多次烧结后会对粉料起到粘附作用,造成不同批次入炉料甚至同一炉炉头料和炉尾料具有一定的差异性,使得粉料在最终烧结时由于活性差异,造成微观结构均匀性降低。采用辊道窑进行预烧,由于预烧载具的体积效应,也同样会引起预烧粉料心部及挨着盒壁外围粉料预烧程度的不同。故本发明采用两次预烧的工艺,对一次预烧料粉料进行砂磨,将结构破碎,消除粉料颗粒内外层预烧不充分或颗粒团聚造成的预烧料磁力及活性差异大的问题,为二次预烧创造一个成分和活性均匀的基础,经过二次预烧后得到保留,再经过球磨粉碎,获得一个相对更窄的粒径分布范围,促使烧结后组织的均匀化,获得较好的微观结构,提升初始磁导率,降 低磁滞损耗。
二次预烧后的粉碎方式不采用砂磨而是采用球磨,这是由于经过砂磨后已经得到一个相对均匀的粒径分布范围,此时如果再次采用砂磨,强烈的搅拌粉碎效果会使得D50出现团聚,影响到活性的均匀性,还有可能会导致粒径过细出现结晶的现象,所以将砂磨与球磨相结合使用的方法更加可靠稳定。
本发明在一次预烧后砂磨时加入辅助成分CaCO 3,其作用原理是Ca 2+的半径较大,不能进入尖晶石结构,经过砂磨分散后,会均匀的偏析于晶界,在预烧时形成一层高电阻层,高电阻层的形成不仅提高了电阻率,还能起到填充颗粒之间缝隙的作用,提高了密实性,相比于通过坯块制备来提高密实性的方法而言,本发明在简化了工艺步骤的同时,提升了预烧效果,进一步降低了生产成本。
本发明的辅助成分中加入介电材料钛酸铜钙(CCTO),可以改善锰锌铁氧体的实际介电常数和微观结构,提升电阻率,进而降低磁滞损耗和涡流损耗。Co 3+和Li +的复合加入会替代B位上的Fe 3+和Mn 3+,被替代的Fe 3+进入到A位,这样就增加了Fe 3+-O-Fe 3+的数目,而锰锌铁氧体中Fe 3+-O-Fe 3+的超交换作用最强,从而A-B交换作用增强,因此居里温度提升,高温Bs也随之增大。
与现有技术相比,本发明达到的有益效果是:
(1)本发明材料具有高Bs,同时在宽温条件下(25℃~140℃)具有较低的功率损耗的特性,且其功率保持损耗-温度曲线在25℃~140℃整个应用温度范围内稳定平缓。本发明材料达到的性能参数如下:
μi(25℃)=3000±25%(10kHz,5mV);
Bs(100℃)≥460mT;
Pcv(25℃)≤345kW/m 3,Pcv(100℃)≤290kW/m 3
Pcv(140℃)≤350kW/m 3
(2)本发明采用两次预烧的工艺,对一次预烧料粉料进行砂磨破碎,二次预烧后经过球磨粉碎,使得粒径分布均匀,促使烧结后组织的均匀化,获得较好的微观结构,提升初始磁导率,降低磁滞损耗。
(3)本发明在一次预烧时加入辅助成分CaCO 3,不仅有助于提高电阻率,还能起到填充颗粒之间缝隙的作用,提高了密实性,提升了预烧效果,并简化了工艺步骤,进一步降低了生产成本。
(4)本发明在二次预烧时加入辅助成分介电材料钛酸铜钙(CCTO),可以改善锰锌铁氧体的实际介电常数和微观结构,有助于降低损耗,提高居里温度和高温Bs特性。
附图说明
图1为本发明实施例与比较例的μi对比图;
图2为本发明实施例与比较例的Pcv(100℃)对比图;
图3为本发明实施例与比较例的Pcv(140℃)对比图;
图4为本发明实施例1金相显微结构图;
图5为本发明比较例6金相显微结构图;
图6为本发明比较例9金相显微结构图;
图7为本发明比较例10金相显微结构图;
图8为本发明比较例11金相显微结构图;
图9为实施例1与比较例8在100kHz,200mT的功率损耗-温度曲线(25℃~140℃)。
具体实施方式
下面结合具体实施例对本发明的技术方案作进一步说明。
需要说明的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1-5、比较例6,均按照以下方法制备锰锌功率铁氧体材料。
采用市售纯度为Fe 2O 3(纯度≥99.3%)、Mn 3O 4(Mn含量≥71%)、ZnO(纯度≥99.7%)的原材料按照主配方Fe 2O 3:54.08mol%,ZnO为10.74mol%,Mn 3O 4为余量。具体制备步骤为:
步骤一:将配好的原料置于砂磨机中,按1:1质量比加入去离子水,加入适量的分散剂混合20min后,取出料浆烘干,将烘干后的粉料用回转窑进行一次预烧,预烧气氛为空气,时间为2h,预烧温度按照表1所示,预烧气氛氧含量20vol%;
步骤二:向一次预烧料中掺入辅助成分:CaCO 3:500ppm;进行砂磨,按1:1比例加入去离子水,砂磨时间按照表1所示,控制砂磨粒径尺寸D90:3.0~3.3μm,将砂磨好的料浆放入烘箱中,将水分完全排除;
步骤三:将烘干好的粉料破碎过28目筛网,放入回转窑中二次预烧,预烧温度按照表1所示;
步骤四:向二次预烧料中掺入辅助成分Nb 2O 5:250ppm;Co 2O 3:4000ppm;ZrO 2:250ppm;Li 2CO 3:2000ppm;CCTO:200ppm,进行球磨,球磨时间按照表1所示,控制球磨粒径尺寸D90:2.5~2.7μm;
步骤五:将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干12min,通过压机双向压制成内径为15mm、外径为25mm、高8mm的生坯环,密度在3.1g/cm 3左右;
步骤六:最后在将生坯环在1300℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
比较例7,按照以下方法制备锰锌功率铁氧体材料。
采用市售纯度为Fe 2O 3(纯度≥99.3%)、Mn 3O 4(Mn含量≥71%)、ZnO(纯度≥99.7%)的原材料按照主配方Fe 2O 3:54.08mol%,ZnO为10.74mol%,Mn 3O 4为余量。具体制备步骤为:
步骤一:将配好的原料置于砂磨机中,按1:1质量比加入去离子水,加入适量的分散剂混合20min后,取出料浆烘干,将烘干后的粉料用回转窑进行一次预烧,预烧气氛为空气,时间 为2h,预烧温度按照表1所示,预烧气氛氧含量20vol%;
步骤二:向一次预烧料中掺入辅助成分:CaCO 3:500ppm;进行砂磨,按1:1比例加入去离子水,砂磨时间按照表1所示,控制砂磨粒径尺寸D90:3.0~3.3μm,将砂磨好的料浆放入烘箱中,将水分完全排除;
步骤三:将烘干好的粉料破碎过28目筛网,放入回转窑中二次预烧,预烧温度按照表1所示;
步骤四:向二次预烧料中掺入辅助成分Nb 2O 5:250ppm;Co 2O 3:4000ppm;ZrO 2:250ppm;Li 2CO 3:2000ppm;进行球磨,球磨时间按照表1所示,控制球磨粒径尺寸D90:2.5~2.7μm;
步骤五:将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干12min,通过压机双向压制成内径为15mm、外径为25mm、高8mm的生坯环,密度在3.1g/cm 3左右;
步骤六:最后在将生坯环在1300℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
比较例8,按照以下方法制备锰锌功率铁氧体材料。
采用市售纯度为Fe 2O 3(纯度≥99.3%)、Mn 3O 4(Mn含量≥71%)、ZnO(纯度≥99.7%)的原材料按照主配方Fe 2O 3:54.08mol%,ZnO为10.74mol%,Mn 3O 4为余量。具体制备步骤为:
步骤一:将配好的原料置于砂磨机中,按1:1质量比加入去离子水,加入适量的分散剂混合20min后,取出料浆烘干,将烘干后的粉料用回转窑进行一次预烧,预烧气氛为空气,时间为2h,预烧温度按照表1所示,预烧气氛氧含量20vol%;
步骤二:向一次预烧料中掺入辅助成分:CaCO 3:500ppm;进行砂磨,按1:1比例加入去离子水,砂磨时间按照表1所示,控制砂磨粒径尺寸D90:3.0~3.3μm,将砂磨好的料浆放入烘箱中,将水分完全排除;
步骤三:将烘干好的粉料破碎过28目筛网,放入回转窑中二次预烧,预烧温度按照表1所示;
步骤四:向二次预烧料中掺入辅助成分Nb 2O 5:250ppm;Co 2O 3:4000ppm;ZrO 2:250ppm; Li 2CO 3:2000ppm;CCTO:500ppm,进行球磨,球磨时间按照表1所示,控制球磨粒径尺寸D90:2.5~2.7μm;
步骤五:将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干12min,通过压机双向压制成内径为15mm、外径为25mm、高8mm的生坯环,密度在3.1g/cm 3左右;
步骤六:最后在将生坯环在1300℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
比较例9,按照以下方法制备锰锌功率铁氧体材料。
采用市售纯度为Fe 2O 3(纯度≥99.3%)、Mn 3O 4(Mn含量≥71%)、ZnO(纯度≥99.7%)的原材料按照主配方Fe 2O 3:54.08mol%,ZnO为10.74mol%,Mn 3O 4为余量。具体制备步骤为:
步骤一:将配好的原料置于砂磨机中,按1:1比例加入去离子水,加入适量的分散剂混合20min后,取出料浆烘干,将烘干后的粉料用回转窑进行一次预烧,预烧气氛为空气,时间为2h,预烧温度按照表1所示,预烧气氛氧含量20vol%;
步骤二:将一次预烧料按1:1比例加入去离子水后进行砂磨,砂磨时间按照表1所示,控制砂磨粒径尺寸D90:3.0~3.3μm,将砂磨好的料浆放入烘箱中,将水分完全排除;
步骤三:将烘干好的粉料破碎过28目筛网,放入回转窑中二次预烧,预烧温度按照表1所示;
步骤四:向二次预烧料中掺入辅助成分CaCO 3:500ppm;Nb 2O 5:250ppm;Co 2O 3:4000ppm;ZrO 2:250ppm;Li 2CO 3:2000ppm;CCTO:200ppm,进行球磨,球磨时间按照表1所示,控制球磨粒径尺寸D90:2.5~2.7μm;
步骤五:将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干12min,采用压机双向压制成内径为15mm,外径为25mm,高8mm的生胚环,密度在3.1g/cm 3左右;
步骤六:最后在将生坯环在1300℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
比较例10,按照以下方法制备锰锌功率铁氧体材料。
采用市售纯度为Fe 2O 3(纯度≥99.3%)、Mn 3O 4(Mn含量≥71%)、ZnO(纯度≥99.7%)的原材料按照主配方Fe 2O 3:54.08mol%,ZnO为10.74mol%,Mn 3O 4为余量。具体制备步骤为:
步骤一:将配好的原料置于砂磨机中,按1:1比例加入去离子水,加入适量的分散剂混合20min后,取出料浆烘干,将烘干后的粉料用回转窑进行一次预烧,预烧气氛为空气,时间为2h,预烧温度按照表1所示,预烧气氛氧含量20vol%;
步骤二:向一次预烧料中掺入辅助成分:CaCO 3:500ppm;进行砂磨,按1:1比例加入去离子水,砂磨时间按照表1所示,控制砂磨粒径尺寸D90:3.0~3.3μm,将砂磨好的料浆放入烘箱中,将水分完全排除;
步骤三:将烘干好的粉料破碎过28目筛网,放入回转窑中二次预烧,预烧温度按照表1所示;
步骤四:向二次预烧料中掺入辅助成分Nb 2O 5:250ppm;Co 2O 3:4000ppm;ZrO 2:250ppm;Li 2CO 3:2000ppm;CCTO:200ppm,进行二次砂磨,砂磨时间按照表1所示,控制砂磨粒径尺寸D90:2.5~2.7μm;
步骤五:将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干12min,采用压机双向压制成内径为15mm,外径为25mm,高8mm的生胚环,密度在3.1g/cm 3左右;
步骤六:最后在将生坯环在1300℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
比较例11,按照常规方法制备锰锌功率铁氧体材料。
采用市售纯度为Fe 2O 3(纯度≥99.3%)、Mn 3O 4(Mn含量≥71%)、ZnO(纯度≥99.7%)的原材料按照主配方Fe 2O 3:54.08mol%,ZnO为10.74mol%,Mn 3O 4为余量。具体制备步骤为:
步骤一:将配好的原料置于砂磨机中,按1:1比例加入去离子水,加并入适量的分散剂后砂 磨20min后,取出料浆烘干,将烘干后的粉料用回转窑进行预烧,预烧气氛为空气,时间为2h,预烧温度为900℃,预烧气氛氧含量20vol%;
步骤二:向预烧料中掺入辅助成分:CaCO 3:500ppm;Nb 2O 5:250ppm;Co 2O 3:4000ppm;ZrO 2:250ppm;Li 2CO 3:2000ppm;CCTO:200ppm,进行砂磨,按1:1比例加入去离子水,砂磨时间为100min,控制二次砂磨粒径尺寸D90:2.5~2.7μm,将砂磨好的料浆放入烘箱中,将水分完全排除;
步骤三:将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干12min,采用压机双向压制成内径为15mm,外径为25mm,高8mm的生胚环,密度在3.1g/cm 3左右;
步骤四:最后在将生坯环在1300℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
表1
Figure PCTCN2022112978-appb-000001
注:编号带*号的方案为比较例。表1中,编号为1-5的是本发明实施例,6*-11*为比较例。
将经上述步骤制得的样环在日本岩崎公司的SY8218仪器进行功耗Pcv及饱和磁通密度Bs的测试。测试条件分别为:在100kHz,200mT的条件下测试Pcv;在1kHz,1194A/m的条件下测试其性能记录于表2,图1、图2、图3分别是本发明实施例与比较例μi、100℃Pcv、140℃Pcv的比较图。
表2
Figure PCTCN2022112978-appb-000002
由表2数据可知:实施例1~5,采用合适的预烧温度,砂磨和球磨相结合的粉碎方式,所制得的材料性能:μi(25℃)=3000±25%(10kHz,5mV);Bs(100℃)≥460mT;Pcv(25℃)≤345kW/m 3,Pcv(100℃)≤290kW/m 3;Pcv(140℃)≤350kW/m 3;相较于比较例而言,该材料具有较高的Bs,且在25℃~140℃范围内损耗都较低,温度稳定性较好,其微观结构(图4所示)晶粒大小均匀,气孔率小。
比较例6,预烧温度超出本发明限定范围,过高的预烧温度使粉料反应活性降低,烧结后晶粒未完全长大,气孔多(图5所示),高温损耗上升。
比较例7,辅助成分中未加入介电材料CCTO,所得到的材料电阻率低,功率损耗上升。
比较例8,辅助成分CCTO添加量500ppm,超出本发明限定范围,过量的CCTO会导致起始磁导率和Bs下降,且会使电阻率成不规则变化,损耗上升。
比较例9,辅助成分CaCO 3未在二次预烧前加入,颗粒之间充满空隙(图6所示),内外层预烧程度不均一,预烧效果差,促使烧结后的组织不均匀。
比较例10,二次预烧后粉碎方式采用砂磨,造成了颗粒团聚,在之后的烧结中由于活 性不一致,晶粒大小不均匀,气孔多(图7所示),损耗出现恶化。
比较例11,采用常规制备方法,与二次预烧工艺相比,粉料的成分和活性的均匀性较差,得到的微观结构差(图8所示),损耗上升。
本发明选择实施例1和比较例8中所测的功耗参数画出了功耗-温度曲线,如图9所示,与理想值相比,本发明技术方案对性能的提升效果更明显。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (8)

  1. 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于:
    步骤一:按照主成分配比进行计量配料,主成分配比为:53.8-55.2mol%的Fe 2O 3、9.8-13mol%的ZnO、余量为Mn 3O 4,然后加入去离子水混合,烘干后得到均匀的混合粉料,再进行一次预烧,一次预烧温度为700~800℃;
    步骤二:将一次预烧得到的粉料加入辅助成分CaCO 3,含量为0.05-0.1wt%,然后进行砂磨后烘干;
    步骤三:将步骤二制得的混合料进行二次预烧,二次预烧温度为850~950℃;
    步骤四:将二次预烧完毕的粉料加入其余的辅助成分,即0.3-0.6wt%的Co 2O 3,0.015-0.035wt%的Nb 2O 5,0.015-0.035wt%的ZrO 2,0.15-025wt%的Li 2CO 3,001-0.03wt%的CCTO,进行球磨后烘干,球磨时间为40~60min,控制球磨后的粒径尺寸为D90:2.5~2.7μm;
    步骤五:将烘干的粉料进行造粒,得到流动性,填充性良好的粉料,并压制成生坯环;
    步骤六:将步骤五压制的生坯环进行烧结,得到锰锌铁氧体样环;
    采用该制造方法制备的宽温低损耗高Bs锰锌铁氧体材料,在10kHz,5mV,25℃条件下的μi为3000±25%,在1kHz,1194A/m,100℃条件下的Bs不低于460mT,在100kHz,200mT,25℃条件下的Pcv不高于345kW/m 3,在100kHz,200mT,100℃条件下的Pcv不高于290kW/m 3,在100kHz,200mT,140℃条件下的Pcv不高于350kW/m 3
  2. 根据权利要求1所述的一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于,所述步骤一中,按1∶1质量比在主成分中加入去离子水,混合20~30min。
  3. 根据权利要求1所述的一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于,所述步骤一中,一次预烧温度选择700~800℃之间,通过控制空气与氮气配比控制氧含量为5-20vol%,预烧时间为2~3h。
  4. 根据权利要求1所述的一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于,所述步骤二中,所加入的辅助成分为0.05-0.07wt%的CaCO 3,砂磨时间60~100min,控制砂磨后的粒径尺寸D90:3.0~3.3μm。
  5. 根据权利要求1所述的一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于,所述步骤三中,二次预烧温度选择850~950℃之间,通过控制空气与氮气配比控制氧含量为5-20vol%,预烧时间为2~3h。
  6. 根据权利要求1所述的一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于,所述步骤四中,所加入的辅助成分为0.35-0.5wt%的Co 2O 3;0.02-0.03wt%的Nb 2O 5;0.015- 0.025wt%的ZrO 2;0.2-0.25wt%的Li 2CO 3;0.015-0.025wt%的CCTO。
  7. 根据权利要求1所述的一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于,所述步骤五中,将烘干的粉料加入15%PVA进行造粒,将造粒粉料置于120℃~140℃下烘10-20min,得到流动性、填充性良好的粉料,并在300~350MPa下压制成生坯环。
  8. 根据权利要求1所述的一种宽温低损耗高Bs锰锌铁氧体材料的制造方法,其特征在于,所述步骤六中,烧结保温温度在1280~1320℃,保温时间为4-8h,氧含量为3.5-4.6vol%。
PCT/CN2022/112978 2022-01-04 2022-08-17 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法 WO2023130731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210000433.1A CN113998999B (zh) 2022-01-04 2022-01-04 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
CN202210000433.1 2022-01-04

Publications (1)

Publication Number Publication Date
WO2023130731A1 true WO2023130731A1 (zh) 2023-07-13

Family

ID=79932473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112978 WO2023130731A1 (zh) 2022-01-04 2022-08-17 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法

Country Status (2)

Country Link
CN (1) CN113998999B (zh)
WO (1) WO2023130731A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998999B (zh) * 2022-01-04 2022-04-01 天通控股股份有限公司 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
CN114195500B (zh) * 2022-02-18 2022-07-12 天通控股股份有限公司 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
CN115448714A (zh) * 2022-10-12 2022-12-09 上海宝钢磁业有限公司 锰锌铁氧体材料及制备方法和应用
CN115650718A (zh) * 2022-11-18 2023-01-31 浙江工业大学 一种兼具超宽温低功耗和磁导率温度稳定性的锰锌铁氧体材料及其制备方法
CN116444259A (zh) * 2023-03-20 2023-07-18 乳源东阳光磁性材料有限公司 一种高频高直流叠加低损耗锰锌铁氧体材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH383863A (de) * 1957-08-22 1964-10-31 Beteiligungs & Patentverw Gmbh Verfahren zur Herstellung von Mangan-Zink-Ferrit-Sinterlingen
CN111517776A (zh) * 2020-04-23 2020-08-11 眉山市宇泰电子设备有限公司 一种锰锌软磁铁氧体材料的制备方法
CN112979302A (zh) * 2021-04-29 2021-06-18 上海宝钢磁业有限公司 锰锌功率铁氧体材料及其制备方法
CN113716950A (zh) * 2021-11-01 2021-11-30 天通控股股份有限公司 一种低温烧结柔性磁片及其制备方法
CN113998999A (zh) * 2022-01-04 2022-02-01 天通控股股份有限公司 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2158781A1 (de) * 1971-11-26 1973-05-30 Siemens Ag Verfahren zur herstellung von verlustarmen mangan-zink-ferriten
WO2004063117A1 (ja) * 2003-01-10 2004-07-29 Tdk Corporation フェライト材料の製造方法及びフェライト材料
CN101290827B (zh) * 2007-04-18 2011-05-04 天通控股股份有限公司 高性能功率锰锌铁氧体材料及其制造方法
CN101236829B (zh) * 2007-12-07 2011-09-28 广东风华高新科技股份有限公司 一种锰锌软磁铁氧体磁芯的制造方法
CN103496963B (zh) * 2013-09-06 2015-09-30 江门安磁电子有限公司 一种不含Ni的兼具双重特性的MnZn铁氧体磁心及制造方法
CN103664158A (zh) * 2013-12-04 2014-03-26 江门安磁电子有限公司 一种高Bs低功耗锰锌功率铁氧体材料及其制造方法
CN105565790B (zh) * 2014-10-09 2020-06-26 桐乡市耀润电子有限公司 Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN104591712B (zh) * 2014-12-19 2017-04-19 江门安磁电子有限公司 用于‑20~140℃的低损耗锰锌铁氧体材料及其制造方法
CN109896848A (zh) * 2019-04-22 2019-06-18 南通冠优达磁业有限公司 一种低功耗锰锌铁氧体的制备方法
CN110256064A (zh) * 2019-07-09 2019-09-20 安徽龙磁科技股份有限公司 一种铁氧体预烧料制备方法
CN110444361B (zh) * 2019-09-09 2020-09-22 天通瑞宏科技有限公司 高频高饱和磁通密度铁氧体制备方法及电感器及变压器
CN112456994A (zh) * 2020-11-27 2021-03-09 天通控股股份有限公司 一种低温烧结高频低损耗MnZn软磁铁氧体及其制备方法
CN112441828B (zh) * 2020-12-08 2022-08-23 江门安磁电子有限公司 一种铁氧体材料及其制备方法
CN112979301B (zh) * 2021-02-25 2022-06-28 电子科技大学 高频高温低损耗MnZn功率铁氧体材料及其制备方法
CN113185276A (zh) * 2021-05-13 2021-07-30 湖北华磁电子科技有限公司 常温高标软磁铁氧体材料及材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH383863A (de) * 1957-08-22 1964-10-31 Beteiligungs & Patentverw Gmbh Verfahren zur Herstellung von Mangan-Zink-Ferrit-Sinterlingen
CN111517776A (zh) * 2020-04-23 2020-08-11 眉山市宇泰电子设备有限公司 一种锰锌软磁铁氧体材料的制备方法
CN112979302A (zh) * 2021-04-29 2021-06-18 上海宝钢磁业有限公司 锰锌功率铁氧体材料及其制备方法
CN113716950A (zh) * 2021-11-01 2021-11-30 天通控股股份有限公司 一种低温烧结柔性磁片及其制备方法
CN113998999A (zh) * 2022-01-04 2022-02-01 天通控股股份有限公司 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法

Also Published As

Publication number Publication date
CN113998999A (zh) 2022-02-01
CN113998999B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023130731A1 (zh) 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
WO2022000663A1 (zh) 一种宽温低损耗MnZn铁氧体材料及其制备方法
CN107473727A (zh) 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
CN108129143B (zh) 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN104230326B (zh) M型钙永磁铁氧体的制备方法
CN111470857B (zh) 一种高频锰锌铁氧体材料及其制备方法
CN108947513B (zh) 一种低压低温烧结制备的功率镍锌铁氧体及其制备方法
CN110204325B (zh) 铁氧体材料及其制备方法
CN108610037B (zh) 一种宽温高叠加高居里温度的锰锌高磁导率材料及其制备方法
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN112707723B (zh) 一种宽温超低功耗锰锌铁氧体材料及其制备方法
JP2004217452A (ja) フェライト材料およびその製造方法
CN108275994B (zh) 宽温低功耗高直流叠加特性锰锌铁氧体及其制备方法
CN114195500B (zh) 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
CN104230321A (zh) M型钙永磁铁氧体及其制备方法
CN113327736B (zh) 一种宽频、五高性能的软磁铁氧体材料及其制备方法
CN108774056B (zh) 一种NiZn铁氧体磁片及其制备方法和用途
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN103664158A (zh) 一种高Bs低功耗锰锌功率铁氧体材料及其制造方法
WO2024103757A1 (zh) 一种功率铁氧体材料及其制备方法与应用
CN111362680A (zh) 一种高频低损耗FeMnZnNi铁氧体材料及其制备方法
CN113284731B (zh) 一种高频大磁场软磁铁氧体材料及其制备方法
CN114605142A (zh) 一种ltcf变压器用复合铁氧体基板材料及其制备方法
CN113185275A (zh) 云计算用超高Bs低损耗锰锌铁氧体材料的制备方法
CN115745592B (zh) 一种宽频高Tc高磁导率锰锌铁氧体材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918187

Country of ref document: EP

Kind code of ref document: A1