WO2023108745A1 - 双面显示面板及双面显示拼接屏 - Google Patents

双面显示面板及双面显示拼接屏 Download PDF

Info

Publication number
WO2023108745A1
WO2023108745A1 PCT/CN2021/140365 CN2021140365W WO2023108745A1 WO 2023108745 A1 WO2023108745 A1 WO 2023108745A1 CN 2021140365 W CN2021140365 W CN 2021140365W WO 2023108745 A1 WO2023108745 A1 WO 2023108745A1
Authority
WO
WIPO (PCT)
Prior art keywords
led light
micro led
emitting unit
substrate
double
Prior art date
Application number
PCT/CN2021/140365
Other languages
English (en)
French (fr)
Inventor
张银峰
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/623,547 priority Critical patent/US20240047434A1/en
Publication of WO2023108745A1 publication Critical patent/WO2023108745A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to the field of display technology, in particular to a double-sided display panel and a double-sided display splicing screen.
  • double-sided display is a method that can effectively save the space occupancy rate of the display screen.
  • the application method is used in many scenarios, and the rapid development of liquid crystal display has accelerated the expansion of this application method.
  • the liquid crystal display requires the backlight module, this directly increases the thickness of the module for double-sided display.
  • Micro LED Micro Light-Emitting Diode, micron light-emitting diode
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • Micro LED display is mainly based on PCB (printed Circuit board) as the substrate, using IC PM drive (power management drive), LED chips and ICs are distributed on both sides of the PCB board, plus accessories such as input control unit, the thickness of a single PCB-based MLED display module is even greater than that of an LCD display module
  • the thickness of the OLED display is double-sided display through double-glass pairing. Compared with LCD, Micro LED and other display modules, the thickness of its module has been significantly reduced, but it is still thick and increases the difficulty of module production. High requirements are also placed on the flatness of the glass after the process.
  • Embodiments of the present invention provide a double-sided display panel and a double-sided display splicing screen to solve the technical problems of thicker thickness and poor flatness of the existing double-sided display panel.
  • An embodiment of the present invention provides a double-sided display panel, including:
  • a substrate comprising opposing first and second sides
  • a plurality of first Micro LED light-emitting units distributed in an array are arranged on the first side or the second side;
  • a plurality of second Micro LED light-emitting units distributed in an array are arranged on the first side or the second side, and the second Micro LED The light emitting direction of the LED light emitting unit is opposite to the light emitting direction of the first Micro LED light emitting unit.
  • the double-sided display panel further includes a pixel driving circuit layer, and the pixel driving circuit layer is arranged between the first Micro LED light-emitting unit and the substrate, and/or, the The pixel driving circuit layer is disposed between the second Micro LED light emitting unit and the substrate.
  • the first Micro LED light emitting unit and the second Micro LED light emitting unit are located on the same side of the substrate, and the first Micro LED light emitting unit LED lighting unit with the second Micro
  • the LED light-emitting units are arranged on the pixel driving circuit layer in the same layer, and the orthographic projection of the first Micro LED light-emitting unit on the substrate is different from the orthographic projection of the second Micro LED light-emitting unit on the substrate. overlapping.
  • the double-sided display panel also includes:
  • the first black matrix is arranged on the light-emitting side of the first Micro LED light-emitting unit, and the front projection of the first black matrix on the substrate covers the front of the second Micro LED light-emitting unit on the substrate. projection;
  • the second black matrix is arranged on the light-emitting side of the second Micro LED light-emitting unit, and the orthographic projection of the second black matrix on the substrate covers the front of the first Micro LED light-emitting unit on the substrate. projection.
  • the first Micro LED light emitting unit is arranged on the first side, and the second Micro LED The LED light emitting unit is disposed on the second side, the pixel driving circuit layer includes a first pixel driving circuit disposed between the first Micro LED light emitting unit and the substrate, and a pixel driving circuit disposed on the second Micro LED A second pixel driving circuit between the light emitting unit and the substrate.
  • the double-sided display panel further includes a light shielding layer disposed between the first Micro LED light emitting unit and the second Micro LED light emitting unit.
  • the orthographic projection of the light-shielding layer on the substrate covers the orthographic projection of the first Micro LED light-emitting unit on the substrate and covers the orthographic projection of the second Micro LED light-emitting unit on the substrate. Orthographic projection on the substrate described above.
  • At least one end of the double-sided display panel is electrically connected to at least one COF substrate, and a driving chip is bound and connected to the COF substrate.
  • the COF substrate extends parallel to the double-sided display panel, one end of the COF substrate is bonded to the double-sided display panel, and the other end of the COF substrate is bonded to A control circuit board.
  • the driving chip is a source driving chip or a gate driving chip.
  • An embodiment of the present invention also provides a double-sided display splicing screen, including a plurality of mutually spliced double-sided display panels in the above embodiments.
  • the first Micro LED light-emitting unit and the second Micro LED light-emitting unit with opposite light emitting directions share the same substrate, which can reduce the overall film layer of the double-sided display panel Thickness, the overall film thickness can be less than 1 mm, so as to realize ultra-thin double-sided display.
  • FIG. 1 is a schematic structural diagram of a double-sided display panel provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a double-sided display panel provided by another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of the binding of a double-sided display panel and a COF substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of the binding of a double-sided display panel and a COF substrate according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of the binding of a double-sided display panel and a COF substrate according to yet another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of the binding of a double-sided display panel and a COF substrate according to yet another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of binding pins of a COF substrate provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a double-sided display splicing screen provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a double-sided display splicing screen provided by another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a double-sided display splicing screen provided by another embodiment of the present invention.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the embodiment of the present invention provides a double-sided display panel 100
  • the double-sided display panel 100 includes a substrate 10, a plurality of first Micro LED (micron light-emitting diode) light-emitting units 40 distributed in an array , and a plurality of second Micro LED light-emitting units 50 distributed in an array
  • the substrate 10 includes opposite first sides 11 and second sides 12
  • the first Micro LED light-emitting units 40 can be arranged on the first side of the substrate 10
  • One side 11 can also be arranged on the second side 12 of the substrate 10
  • the second Micro LED light-emitting unit 50 can be arranged on the first side 11 of the substrate 10, or can be arranged on the second side of the substrate 10.
  • the two sides 12 that is, the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 can be arranged on the same side or on different sides relative to the substrate 10 .
  • the first Micro The light emitting direction of the LED light emitting unit 40 is opposite to the light emitting direction of the second Micro LED light emitting unit 50 .
  • the first Micro LED light emitting unit 40 can emit light upwards to realize front display
  • the second Micro LED The LED light emitting unit 50 can emit light downward to realize rear display.
  • the first Micro LED light-emitting unit 40 and the second Micro LED light-emitting unit 50 of the embodiment of the present invention share the same substrate 10 to realize the double-sided display function, which can reduce the overall film thickness of the double-sided display panel 100 , and its overall film thickness can be less than 1 mm, realizing ultra-thin double-sided display.
  • the substrate 10 may be a glass substrate, and in other embodiments, the substrate 10 may also be a substrate of other transparent materials.
  • Both the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 include at least one Micro LED chip, and any Micro LED chip is used to form a sub-pixel.
  • the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 both include a red Micro LED chip, a green Micro LED chip, and a blue Micro LED chip, so as to realize Red, green, blue three primary color light-emitting display.
  • the double-sided display panel 100 further includes a pixel driving circuit layer 30, and the pixel driving circuit layer 30 is disposed between the first Micro LED light emitting unit 40 and the substrate 10, And/or, the pixel driving circuit layer 30 is disposed between the second Micro LED light emitting unit 50 and the substrate 10 .
  • the pixel driving circuit layer 30 includes a plurality of pixel driving circuits distributed in an array, and any of the pixel driving circuits at least drives one of the first Micro LED light emitting units 40 to emit light, or at least drives one of the second Micro LED light emitting units 50 glows.
  • the pixel driving circuit includes a plurality of thin film transistors electrically connected to each other.
  • the first Micro The LED light emitting unit 40 and the second Micro LED light emitting unit 50 may be located on the same side of the substrate 10 .
  • the present invention is described by taking the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 both located on the first side 11 as an example.
  • the first Micro LED light emitting unit Both the LED light emitting unit 40 and the second Micro LED light emitting unit 50 may be located on the second side 12 .
  • the pixel driving circuit layer 30 can also be connected to the first Micro LED light emitting unit 40 And the second Micro LED light emitting unit 50 is disposed on the same side.
  • the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 are disposed on the pixel driving circuit layer 30 in the same layer. Setting the first Micro LED light-emitting unit 40 and the second Micro LED light-emitting unit 50 on the same layer can save a binding process. In a specific manufacturing process, the Micro LED chip and The substrate 10 prepared with the pixel driving circuit layer 30 is bound.
  • the double-sided display panel further includes an encapsulation layer 60 covering the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 . After the Micro LED chip is bound to the substrate 10, the encapsulation layer 60 is formed on the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 for protection.
  • the orthographic projection of the first Micro LED light emitting unit 40 on the substrate 10 does not overlap with the orthographic projection of the second Micro LED light emitting unit 50 on the substrate 10, that is, the first Micro LED light emitting unit 40 and the second Micro LED light-emitting unit 50 need to be staggered in order to avoid optical interference between the Micro LED chips that emit light from the front and the Micro LED chips that emit light from the back.
  • the double-sided display panel 100 of the embodiment of the present invention further includes a first black matrix 70 and a second black matrix 20.
  • the first black matrix 70 is disposed on the light emitting side of the first Micro LED light emitting unit 40, and the orthographic projection of the first black matrix 70 on the substrate 10 covers the second Micro LED light emitting unit 50 on the Orthographic projection on the substrate 10, the first black matrix 70 is used to shield the second Micro LED light emitting unit 50, so as to prevent the light leakage of the second Micro LED light emitting unit 50 from causing the first Micro LED light emitting unit 40 Influence.
  • the second black matrix 20 is arranged on the light-emitting side of the second Micro LED light emitting unit 50, and the orthographic projection of the second black matrix 20 on the substrate 10 covers the first Micro LED light emitting unit 40 on the Orthographic projection on the substrate 10, the second black matrix 20 is used to block the first Micro LED light-emitting unit 40, so as to prevent the light leakage of the first Micro LED light-emitting unit 40 from affecting the second Micro LED light-emitting unit 50 make an impact.
  • the orthographic projection of the first black matrix 70 on the substrate 10 does not overlap with the orthographic projection of the first Micro LED light emitting unit 40 on the substrate 10, so as to avoid blocking the first Micro The light output of the LED light-emitting unit 40; the orthographic projection of the second black matrix 20 on the substrate 10 does not overlap with the orthographic projection of the second Micro LED light-emitting unit 50 on the substrate 10, so as to avoid blocking the Second Micro The light output of the LED light emitting unit 50 .
  • the first Micro The LED light emitting unit 40 and the second Micro LED light emitting unit 50 can be arranged on different sides. Specifically, the first Micro LED light emitting unit 40 is disposed on the first side 11 of the substrate 10 , and the second Micro LED light emitting unit 50 is disposed on the second side 12 of the substrate 10 . Compared with the embodiment shown in FIG. 1 , under the same display area, the pixel density of the first Micro LED light emitting unit 40 and the second Micro LED light emitting unit 50 respectively disposed on two opposite sides of the substrate 10 can be compared. Increased to increase pixel resolution.
  • the pixel driving circuit layer can be designed in two layers, which are separately arranged on the first side 11 of the substrate 10 and the second side 12 .
  • the pixel driving circuit layer includes a first pixel driving circuit 31 and a second pixel driving circuit 32, wherein the first pixel driving circuit 31 is arranged between the first Micro LED light emitting unit 40 and the second pixel driving circuit 32.
  • the second pixel driving circuit 32 is arranged between the second Micro LED light emitting unit 50 and the between the substrates 10 to facilitate the bonding connection between the second pixel driving circuit 32 and the second Micro LED light emitting unit 50 .
  • the double-sided display panel 100 also includes a light-shielding layer, and the light-shielding layer is arranged on the first Micro Between the LED light-emitting unit 40 and the second Micro LED light-emitting unit 50, the light leakage of the first Micro LED light-emitting unit 40 and the second Micro LED light-emitting unit 50 is prevented from affecting each other.
  • the orthographic projection of the shading layer on the substrate 10 covers the orthographic projection of the first Micro LED light-emitting unit 40 on the substrate 10 and covers the orthographic projection of the second Micro LED light-emitting unit 50 on the substrate 10. orthographic projection.
  • the light-shielding layer can be arranged in multiple layers, such as a first light-shielding layer 21 and a second light-shielding layer 22 .
  • the first light shielding layer 21 is disposed on the first side 11 of the substrate 10
  • the second light shielding layer 22 is disposed on the second side 12 of the substrate 10 .
  • the first light-shielding layer 21 can be disposed on the surface of the first side 11 of the substrate 10, and the orthographic projection of the first light-shielding layer 21 on the substrate 10 at least covers the first Micro LED to emit light.
  • the orthographic projection of the unit 40 on the substrate 10 is used to block the downward light leakage of the first Micro LED light emitting unit 40 .
  • the second light-shielding layer 22 can be disposed on the surface of the second side 12 of the substrate 10, and the orthographic projection of the second light-shielding layer 22 on the substrate 10 at least covers the second Micro LED light-emitting unit 50 on the surface. Orthographic projection on the substrate 10 to block upward light leakage from the second Micro LED light emitting unit 50 .
  • the double-sided display panel may also include a first encapsulation layer 81 disposed on the first side 11 and covering the first Micro LED light emitting unit 40, and disposed on the second side 12 and covering the second The second encapsulation layer 82 of the Micro LED light emitting unit 50 .
  • the Micro LED chips are respectively bound to the first side 11 and the second side 12 of the substrate 10 having the above-mentioned light-shielding layer and the pixel driving circuit layer in two steps to form the first Micro LED light-emitting units 40 respectively. and the second Micro LED light emitting unit 50 .
  • the first encapsulation layer 81 is formed on the first Micro LED light emitting unit 40
  • the second encapsulation layer 82 is formed on the second Micro LED light emitting unit 40 .
  • At least one end of the double-sided display panel 100 is electrically connected to at least one COF substrate 90 , and a driving chip 120 is bound and connected to the COF substrate.
  • the driving chip 120 protrudes parallel to the double-sided display panel 100 and does not need to be bent to avoid blocking the display on the front and back sides of the double-sided display panel 100 .
  • One end of the COF substrate 90 is bonded to the double-sided display panel 100 , and the other end is bonded to a control circuit board 110 , so that the driver chip 120 electrically connects the pixel drive circuit layer to the control circuit board 110 .
  • the driver chip 120 can be a source driver chip or a gate driver chip, and correspondingly, the COF substrate 90 electrically connected to the source driver chip is a source COF substrate, and the COF substrate 90 electrically connected to the gate driver chip
  • the substrate 90 is a gate COF substrate.
  • the double-sided display panel 100 also includes a gate driver and a source driver (not shown in the figure), the source driver is used to provide data signals to each sub-pixel in the pixel array, and the source driver is electrically connected to On the source COF substrate, the gate driver is used to provide gate scanning signals to each sub-pixel in the pixel array, and the gate driver is electrically connected to the gate COF substrate. Both the gate driver and the source driver are located at the ends of the double-sided display panel 100 .
  • the double-sided display panel 100 includes opposite first end portions 101 and second end portions 102, and opposite third end portions 103 and fourth end portions 104, wherein the The third end portion 103 and the fourth end portion 104 are located between the first end portion 101 and the second end portion 102 .
  • the gate driver includes controlling the first Micro The first gate driver displayed by the LED light-emitting unit 40 and the second gate driver that controls the display of the second Micro LED light-emitting unit 50
  • the source driver includes control of the first Micro The first source driver displayed by the LED light emitting unit 40 and the second source driver used to control the display of the second Micro LED light emitting unit 50
  • the first source driver, the second source driver, the first gate driver and the second source driver are respectively located at the first end 101, the second end 102, the The third end portion 103 and the fourth end portion 104 are provided with binding pins at the respective corresponding ends for binding connection with the binding pins on the corresponding COF substrate 90 . That is, the COF substrate 90 is bound to the first end 101 , the second end 102 , the third end 103 and the fourth end 104 of the display panel.
  • the first source driver and the second source driver may be located at ends of the same side of the double-sided display panel 100, and the first gate driver and the second gate driver may be It is located at the other end of the same side of the double-sided display panel 100 .
  • the first source driver and the second source driver can both be located at the first end 101, and all the COF substrates 90 bound and connected to the first end 101 can share the same control circuit plate 110.
  • the first gate driver and the second gate driver can both be located at the third end 103, and all the COF substrates 90 bound and connected to the third end 103 can share the same control circuit board 110 .
  • first source driver and the second source driver may be located at ends of the same side of the double-sided display panel 100, and the first gate driver and the second gate driver may be It is located at the other end of the same side of the double-sided display panel 100 .
  • first source driver and the second source driver can both be located at the first end portion 101, and the first gate driver and the second gate driver can both be located at the second end portion 101. end 102 .
  • the first source driver and the second source driver can share the same driver chip 120, and the first gate driver and the second gate driver can share the same driver chip 120, except that the driver chip 120 and the COF substrate can be saved.
  • it can also save bonding space and bonding process.
  • the first source driver and the second source The drivers are respectively located on two opposite sides of the substrate 10
  • the first gate driver and the second gate driver are respectively located on two opposite sides of the substrate 10 .
  • the COF substrate 90 needs to be bonded to the front and back sides of the double-sided display panel, so the binding pins on one surface of the COF substrate 90 need to be transferred to the other side through the side metal wiring. side surface.
  • the COF substrate 90 includes a first binding pin 91 disposed on a first side surface of the COF substrate, and a second binding pin 92 disposed on an opposite second side surface of the COF substrate 90 .
  • the COF substrate 90 is a gate COF substrate
  • the first binding pin 91 is bound and connected to the first gate driver
  • the second binding pin 92 is connected to the second gate driver Bind the connection.
  • the COF substrate 90 is a source COF substrate
  • the first binding pin 91 is bound and connected to the first source driver
  • the second binding pin 92 is connected to the second source driver Bind the connection.
  • the COF substrate 90 also includes a transfer line 93 located on the side of the COF substrate and a third binding pin 94 located on the first side surface, the first The three binding pins 94 correspond to the second binding pins 92 on the second side surface, and the transfer line 93 is electrically connected to the second binding pins 92 and the third binding pins 94, The transfer line 93 is used to transfer the second binding pin 92 on the second side surface to the first side surface, so as to connect the first binding pin 91 on the first side surface and the second binding pin 91 on the second side surface.
  • the two binding pins 92 are bound and connected to the same driving chip 120, and the same driving chip 120 controls the display of the front and back sides simultaneously.
  • the present invention also provides a double-sided display splicing screen 1000 , the double-sided display splicing screen 1000 includes the above-mentioned multiple mutually spliced double-sided display panels 100 .
  • the splicing number of the double-sided display panels 100 depends on the binding and splicing methods of the double-sided display panels 100 .
  • the splicing number of double-sided display panels 100 in the double-sided display splicing screen 1000 can be four, and the adjacent two sides (ends) of the double-sided display panels 100 are bound with COF substrate.
  • the double-sided display splicing screen 1000 can be formed by splicing a plurality of double-sided display panels 100 bound with COF substrates 90 on two opposite sides (ends).
  • the double-sided display splicing screen 1000 can be formed by splicing a plurality of double-sided display panels 100 bound with a COF substrate 90 at only one end.
  • double-sided display panels 100 with different numbers of binding ends can be used to form double-sided spliced display panels 1000 of various shapes.
  • the double-sided display panel 100 and the double-sided display splicing screen 1000 provided by the embodiment of the present invention share the same substrate 10 with the first Micro LED light-emitting unit 40 and the second Micro LED light-emitting unit 50 with opposite light emitting directions, which can reduce the cost of double-sided display.
  • the overall thickness of the film layer of the panel 100 can be less than 1 mm to achieve ultra-thin double-sided display.
  • a double-sided display panel and a double-sided display splicing screen provided by the embodiments of the present invention have been described above in detail.
  • specific examples are used to illustrate the principle and implementation of the present invention.
  • the description of the above embodiments is only used To help understand the technical solutions and core ideas of the present invention; those skilled in the art should understand that they can still modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some of the technical features; and these Modification or substitution does not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种双面显示面板(100)及双面显示拼接屏(1000),双面显示面板(100)包括基板(10)、第一MICRO LED发光单元(40)、第二MICRO LED发光单元(50),第一MICRO LED发光单元(40)和第二MICRO LED发光单元(50)设于基板(10)的同侧或异侧,第二MICRO LED发光单元(50)与第一MICRO LED发光单元(40)的出光方向相反。将出光方向相反的第一MICRO LED发光单元(40)和第二MICRO LED发光单元(50)共用一块基板(10),可降低双面显示面板(100)整体的膜层厚度。

Description

双面显示面板及双面显示拼接屏 技术领域
本发明涉及显示技术领域,尤其涉及一种双面显示面板及双面显示拼接屏。
背景技术
随着显示技术的快速发展,液晶显示、发光二极管显示等显示技术均拓展出更多的应用方式,如透明显示、反射显示等,其中双面显示作为一种可有效节约显示屏空间占用率的应用方式在很多场景都有应用,液晶显示的快速发展更是加速了这一应用方式的扩展。但由于液晶显示需要借助背光模组,这直接增加了双面显示的模组厚度。尽管发光二极管显示技术中Micro LED(Micro Light-Emitting Diode,微米发光二极管)显示、OLED(Organic Light-Emitting Diode,有机发光二极管)显示具有自发光优势,但目前Micro LED显示主要以PCB(印制电路板)为基板,采用IC PM驱动(电源管理驱动),LED芯片与IC分别分布在PCB板两侧,加上输入控制单元等附件,单一PCB基MLED显示模组厚度甚至大于LCD显示模组的厚度;OLED显示通过双玻璃对组实现双面显示功能,其模组厚度相较于LCD、Micro LED等显示模组厚度虽然有了明显降低,但仍然较厚且增加了模组制作难度,对制程后玻璃平整度也提出了很高的要求。
因此,如何实现低模组厚度、平整度良好的双面显示成为行业研究的重要内容。
技术问题
本发明实施例提供一种双面显示面板及双面显示拼接屏,以解决现有的双面显示面板的厚度较厚、平整度不佳的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明实施例提供一种双面显示面板,包括:
一基板,包括相对的第一侧和第二侧;
阵列分布的多个第一Micro LED发光单元,设置于所述第一侧或所述第二侧;以及
阵列分布的多个第二Micro LED发光单元,设置于所述第一侧或所述第二侧,所述第二Micro LED发光单元的出光方向与所述第一Micro LED发光单元的出光方向相反。
在本发明的一些实施例中,所述双面显示面板还包括像素驱动电路层,所述像素驱动电路层设置于所述第一Micro LED发光单元与所述基板之间,和/或,所述像素驱动电路层设置于所述第二Micro LED发光单元与所述基板之间。
在本发明的一些实施例中,所述第一Micro LED发光单元与所述第二Micro LED发光单元位于所述基板的同侧,所述第一Micro LED发光单元与所述第二Micro LED发光单元同层设置于所述像素驱动电路层上,且所述第一Micro LED发光单元在所述基板上的正投影与所述第二Micro LED发光单元在所述基板上的正投影不重叠。
在本发明的一些实施例中,所述双面显示面板还包括:
第一黑矩阵,设置于所述第一Micro LED发光单元的出光侧,且所述第一黑矩阵在所述基板上的正投影覆盖所述第二Micro LED发光单元在所述基板上的正投影;
第二黑矩阵,设置于所述第二Micro LED发光单元的出光侧,且所述第二黑矩阵在所述基板上的正投影覆盖所述第一Micro LED发光单元在所述基板上的正投影。
在本发明的一些实施例中,所述第一Micro LED发光单元设置于所述第一侧,所述第二Micro LED发光单元设置于所述第二侧,所述像素驱动电路层包括设置于所述第一Micro LED发光单元与所述基板之间的第一像素驱动电路,以及设置于所述第二Micro LED发光单元与所述基板之间的第二像素驱动电路。
在本发明的一些实施例中,所述双面显示面板还包括遮光层,所述遮光层设置于所述第一Micro LED发光单元与所述第二Micro LED发光单元之间。
在本发明的一些实施例中,所述遮光层在所述基板上的正投影覆盖所述第一Micro LED发光单元在所述基板上的正投影以及覆盖所述第二Micro LED发光单元在所述基板上的正投影。
在本发明的一些实施例中,所述双面显示面板的至少一端部电连接至少一COF基板,所述COF基板上绑定连接有驱动芯片。
在本发明的一些实施例中,所述COF基板平行于所述双面显示面板伸出,所述COF基板的一端绑定连接所述双面显示面板,所述COF基板的另一端绑定连接一控制电路板。
在本发明的一些实施例中,所述驱动芯片为源极驱动芯片或栅极驱动芯片。
本发明实施例还提供一种双面显示拼接屏,包括上述实施例中的多个相互拼接的双面显示面板。
有益效果
本发明实施例提供的双面显示面板及双面显示拼接屏,将出光方向相反的第一Micro LED发光单元和第二Micro LED发光单元共用同一块基板,可降低双面显示面板整体的膜层厚度,其整体膜层厚度可做到1毫米以下,从而实现超薄双面显示。
附图说明
图1为本发明实施例提供的双面显示面板的结构示意图。
图2为本发明其他实施例提供的双面显示面板的结构示意图。
图3为本发明实施例提供的双面显示面板与COF基板绑定的结构示意图。
图4为本发明另一实施例提供的双面显示面板与COF基板绑定的结构示意图。
图5为本发明又一实施例提供的双面显示面板与COF基板绑定的结构示意图。
图6为本发明再一实施例提供的双面显示面板与COF基板绑定的结构示意图。
图7为本发明实施例提供的COF基板的绑定引脚的结构示意图。
图8为本发明实施例提供的双面显示拼接屏的结构示意图。
图9为本发明另一实施例提供的双面显示拼接屏的结构示意图。
图10为本发明又一实施例提供的双面显示拼接屏的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
请参阅图1或图2,本发明实施例提供一种双面显示面板100,所述双面显示面板100包括一基板10、阵列分布的多个第一Micro LED(微米发光二极管)发光单元40,以及阵列分布的多个第二Micro LED发光单元50,所述基板10包括相对的第一侧11和第二侧12,所述第一Micro LED发光单元40可设置于所述基板10的第一侧11,也可设置于所述基板10的第二侧12,所述第二Micro LED发光单元50可设置于所述基板10的第一侧11,也可设置于所述基板10的第二侧12,即所述第一Micro LED发光单元40和所述第二Micro LED发光单元50相对于所述基板10,既可同侧设置,也可异侧设置。其中,所述第一Micro LED发光单元40的出光方向与所述第二Micro LED发光单元50的出光方向相反。例如,所述第一Micro LED发光单元40可向上出光,以实现正面显示,所述第二Micro LED发光单元50可向下出光,以实现背面显示。相比于现有的Micro LED双面显示面板,本发明实施例的第一Micro LED发光单元40和第二Micro LED发光单元50共用同一块基板10以实现双面显示功能,可降低双面显示面板100整体的膜层厚度,其整体膜层厚度可做到1毫米以下,实现超薄双面显示。
在本发明的实施例中,所述基板10可为玻璃基板,在其他实施例中,所述基板10还可为其他透明材质的基板。
所述第一Micro LED发光单元40和所述第二Micro LED发光单元50均包括至少一Micro LED芯片,任一Micro LED芯片用于形成一子像素。在一具体的实施例中,所述第一Micro LED发光单元40和所述第二Micro LED发光单元50均包括一红色Micro LED芯片、一绿色Micro LED芯片、一蓝色Micro LED芯片,以实现红、绿、蓝三基色发光显示。
如图1或图2所示,所述双面显示面板100还包括像素驱动电路层30,所述像素驱动电路层30设置于所述第一Micro LED发光单元40与所述基板10之间,和/或,所述像素驱动电路层30设置于所述第二Micro LED发光单元50与所述基板10之间。所述像素驱动电路层30包括阵列分布的多个像素驱动电路,任一所述像素驱动电路至少驱动一所述第一Micro LED发光单元40发光,或至少驱动一所述第二Micro LED发光单元50发光。所述像素驱动电路包括多个相互电连接的薄膜晶体管。
如图1所示,在本发明的一些实施例中,所述第一Micro LED发光单元40与所述第二Micro LED发光单元50可位于所述基板10的同侧。本发明以第一Micro LED发光单元40与第二Micro LED发光单元50均位于所述第一侧11为例进行说明,在其他实施例中,第一Micro LED发光单元40与第二Micro LED发光单元50可均位于所述第二侧12。
为方便所述像素驱动电路层30与所述第一Micro LED发光单元40与第二Micro LED发光单元50的电连接,所述像素驱动电路层30亦可与所述第一Micro LED发光单元40以及所述第二Micro LED发光单元50同侧设置。
所述第一Micro LED发光单元40与所述第二Micro LED发光单元50同层设置于所述像素驱动电路层30上。将所述第一Micro LED发光单元40与所述第二Micro LED发光单元50同层设置,可节省一道绑定制程,在具体的制备工艺中,可通过巨量转移工艺,将Micro LED芯片与制备有所述像素驱动电路层30的基板10绑定。
所述双面显示面板还包括封装层60,所述封装层60覆盖所述第一Micro LED发光单元40和所述第二Micro LED发光单元50。在所述Micro LED芯片绑定至所述基板10上后,在所述第一Micro LED发光单元40和所述第二Micro LED发光单元50上形成所述封装层60,以起到保护作用。
所述第一Micro LED发光单元40在所述基板10上的正投影与所述第二Micro LED发光单元50在所述基板10上的正投影不重叠,即所述第一Micro LED发光单元40和所述第二Micro LED发光单元50需错开分布,避免正面出光的Micro LED芯片与反面出光的Micro LED芯片产生光学干涉。
如图1所示,为进一步避免正面出光的Micro LED芯片与反面出光的Micro LED芯片之间产生光学干涉,本发明实施例的双面显示面板100还包括第一黑矩阵70和第二黑矩阵20。所述第一黑矩阵70设置于所述第一Micro LED发光单元40的出光侧,且所述第一黑矩阵70在所述基板10上的正投影覆盖所述第二Micro LED发光单元50在所述基板10上的正投影,所述第一黑矩阵70用以遮挡所述第二Micro LED发光单元50,避免第二Micro LED发光单元50的漏光对所述第一Micro LED发光单元40产生影响。所述第二黑矩阵20设置于所述第二Micro LED发光单元50的出光侧,且所述第二黑矩阵20在所述基板10上的正投影覆盖所述第一Micro LED发光单元40在所述基板10上的正投影,所述第二黑矩阵20用以遮挡所述第一Micro LED发光单元40,以避免第一Micro LED发光单元40的漏光对所述第二Micro LED发光单元50产生影响。
可以理解的是,所述第一黑矩阵70在所述基板10上的正投影与所述第一Micro LED发光单元40在所述基板10上的正投影不重叠,以避免阻挡所述第一Micro LED发光单元40的出光;所述第二黑矩阵20在所述基板10上的正投影与所述第二Micro LED发光单元50在所述基板10上的正投影不重叠,以避免阻挡所述第二Micro LED发光单元50的出光。
如图2所示,在本发明的其他实施例中,所述第一Micro LED发光单元40和所述第二Micro LED发光单元50可异侧设置。具体地,所述第一Micro LED发光单元40设置于所述基板10的第一侧11,所述第二Micro LED发光单元50设置于所述基板10的第二侧12。与图1所示实施例相比,在相同的显示面积下,分别设置于所述基板10两相对侧的第一Micro LED发光单元40和所述第二Micro LED发光单元50的像素密度可相对增加,提高像素分辨率。
为方便像素驱动电路层与第一Micro LED发光单元40以及第二Micro LED发光单元50的绑定,可将所述像素驱动电路层分两层设计,分设于所述基板10的第一侧11和第二侧12。具体地,所述像素驱动电路层包括第一像素驱动电路31和所述第二像素驱动电路32,其中,所述第一像素驱动电路31设置于所述第一Micro LED发光单元40与所述基板10之间,以便于所述第一像素驱动电路31与所述第一Micro LED发光单元40的绑定连接;所述第二像素驱动电路32设置于所述第二Micro LED发光单元50与所述基板10之间,以便于所述第二像素驱动电路32与所述第二Micro LED发光单元50的绑定连接。
如图2所示,所述双面显示面板100还包括遮光层,所述遮光层设置于所述第一Micro LED发光单元40与所述第二Micro LED发光单元50之间,避免所述第一Micro LED发光单元40以及所述第二Micro LED发光单元50的漏光对彼此产生影响。
所述遮光层在所述基板10上的正投影覆盖所述第一Micro LED发光单元40在所述基板10上的正投影以及覆盖所述第二Micro LED发光单元50在所述基板10上的正投影。
具体地,所述遮光层可设置为多层,如第一遮光层21和第二遮光层22。所述第一遮光层21设置于所述基板10的第一侧11,所述第二遮光层22设置于所述基板10的第二侧12。更进一步地,所述第一遮光层21可设置于所述基板10的第一侧11表面,所述第一遮光层21在所述基板10上的正投影至少覆盖所述第一Micro LED发光单元40在所述基板10上的正投影,以遮挡所述第一Micro LED发光单元40向下的漏光。所述第二遮光层22可设置于所述基板10的第二侧12表面,所述第二遮光层22在所述基板10上的正投影至少覆盖所述第二Micro LED发光单元50在所述基板10上的正投影,以遮挡所述第二Micro LED发光单元50向上的漏光。
所述双面显示面板还可包括设置于所述第一侧11且覆盖所述第一Micro LED发光单元40的第一封装层81,以及设置于所述第二侧12且覆盖所述第二Micro LED发光单元50的第二封装层82。通过巨量转移工艺,分两次将Micro LED芯片分别绑定至具有上述遮光层和像素驱动电路层的基板10的第一侧11和第二侧12,以分别形成第一Micro LED发光单元40和第二Micro LED发光单元50。之后再分别在所述第一Micro LED发光单元40上形成所述第一封装层81,在所述第二Micro LED发光单元40上形成第二封装层82。
如图3~图5所示,所述双面显示面板100的至少一端部电连接至少一COF基板90,所述COF基板上绑定连接有驱动芯片120。
具体地,所述驱动芯片120平行于所述双面显示面板100伸出,不必弯折,以避免遮挡双面显示面板100的正、反面显示。所述COF基板90的一端绑定连接所述双面显示面板100,其另一端绑定连接一控制电路板110,以实现驱动芯片120将像素驱动电路层与控制电路板110电连接。所述驱动芯片120可为源极驱动芯片或栅极驱动芯片,对应地,与所述源极驱动芯片电连接的COF基板90为源极COF基板,与所述栅极驱动芯片电连接的COF基板90为栅极COF基板。
所述双面显示面板100还包括栅极驱动器和源极驱动器(图中未示出),所述源极驱动器用于向像素阵列中的各个子像素提供数据信号,所述源极驱动器电连接于所述源极COF基板,所述栅极驱动器用于向像素阵列中的各个子像素提供栅极扫描信号,所述栅极驱动器电连接于所述栅极COF基板。所述栅极驱动器和所述源极驱动器均位于所述双面显示面板100的端部。
具体地,如图3所示,所述双面显示面板100包括相对的第一端部101和第二端部102,以及相对的第三端部103和第四端部104,其中,所述第三端部103和所述第四端部104位于所述第一端部101和所述第二端部102之间。
在图3所示的实施例中,所述栅极驱动器包括控制第一Micro LED发光单元40显示的第一栅极驱动器以及控制第二Micro LED发光单元50显示的第二栅极驱动器,所述源极驱动器包括控制第一Micro LED发光单元40显示的第一源极驱动器以及控制第二Micro LED发光单元50显示的第二源极驱动器。所述第一源极驱动器、所述第二源极驱动器、所述第一栅极驱动器以及所述第二源极驱动器分别位于所述第一端部101、所述第二端部102、所述第三端部103以及所述第四端部104,且各自对应的端部设置有绑定引脚,以用于与对应的COF基板90上的绑定引脚绑定连接。即在所述显示面板的第一端部101、第二端部102、第三端部103以及第四端部104均绑定有所述COF基板90。
在其他实施例中,如图4所示,所述显示面板的仅两相邻的端部绑定有COF基板90。具体地,所述第一源极驱动器和所述第二源极驱动器可位于所述双面显示面板100的同侧的端部,所述第一栅极驱动器和所述第二栅极驱动器可位于所述双面显示面板100的同侧的另一端部。例如,所述第一源极驱动器和所述第二源极驱动器可均位于所述第一端部101,与所述第一端部101绑定连接的所有COF基板90可共用同一张控制电路板110。所述第一栅极驱动器和所述第二栅极驱动器可均位于所述第三端部103,与所述第三端部103绑定连接的所有COF基板90可共用同一张控制电路板110。
在其他实施例中,如图5所示,所述双面显示面板的仅两相对的端部绑定有COF基板90。具体地,所述第一源极驱动器和所述第二源极驱动器可位于所述双面显示面板100的同侧的端部,所述第一栅极驱动器和所述第二栅极驱动器可位于所述双面显示面板100的同侧的另一端部。例如,所述第一源极驱动器和所述第二源极驱动器可均位于所述第一端部101,所述第一栅极驱动器和所述第二栅极驱动器可均位于所述第二端部102。
进一步地,如图6所示,所述双面显示面板的仅一端部绑定有COF基板90。本发明实施例的第一源极驱动器和第二源极驱动器可共用同一驱动芯片120,第一栅极驱动器和第二栅极驱动器可共用同一驱动芯片120,除了可节省驱动芯片120和COF基板90以外,也能节省绑定空间和绑定制程。
当所述第一Micro LED发光单元40和所述第二Micro LED发光单元50分别设置于所述基板10的两相对侧时,相应地,所述第一源极驱动器和所述第二源极驱动器分别位于所述基板10的两相对侧,所述第一栅极驱动器和所述第二栅极驱动器分别位于所述基板10的两相对侧。对应地,所述COF基板90需要与双面显示面板的正、反两面绑定连接,因此所述COF基板90的其中一侧表面的绑定引脚需要通过侧面金属走线转接至另一侧表面。
具体地,如图7所示,图7的(A)为正面俯视示意图,图7的(B)为侧视示意图,图7的(C)为正面俯视的另一示意图。所述COF基板90包括设于所述COF基板的第一侧表面的第一绑定引脚91,以及设于所述COF基板90的相对的第二侧表面的第二绑定引脚92。所述COF基板90为栅极COF基板时,所述第一绑定引脚91与所述第一栅极驱动器绑定连接,所述第二绑定引脚92与所述第二栅极驱动器绑定连接。所述COF基板90为源极COF基板时,所述第一绑定引脚91与所述第一源极驱动器绑定连接,所述第二绑定引脚92与所述第二源极驱动器绑定连接。
请参阅图7的(B)和(C),所述COF基板90还包括位于所述COF基板侧面的转接线93以及位于所述第一侧表面的第三绑定引脚94,所述第三绑定引脚94与第二侧表面的第二绑定引脚92相对应,所述转接线93与所述第二绑定引脚92和所述第三绑定引脚94电连接,所述转接线93用于将第二侧表面的第二绑定引脚92转接至第一侧表面来,从而将第一侧表面的第一绑定引脚91和第二侧表面的第二绑定引脚92绑定连接至同一驱动芯片120,由同一驱动芯片120同时控制正、反面的显示。
请参阅图8至图10,本发明还提供一种双面显示拼接屏1000,所述双面显示拼接屏1000包括上述多个相互拼接的双面显示面板100。双面显示面板100的拼接个数视双面显示面板100的绑定方式及拼接方式而定。
如图8所示,所述双面显示拼接屏1000中的双面显示面板100的拼接数量可为四个,所述双面显示面板100的相邻两侧边(端部)均绑定有COF基板。又如图9所示,所述双面显示拼接屏1000可采用两相对侧边(端部)均绑定有COF基板90的多个双面显示面板100拼接而成。再如图10所示,所述双面显示拼接屏1000可采用仅一端绑定有COF基板90的多个双面显示面板100拼接而成。在其他实施例中,可采用具有数量不同的绑定端部的双面显示面板100拼接而成,以形成各种形态的双面拼接显示屏1000。
本发明实施例提供的双面显示面板100及双面显示拼接屏1000,将出光方向相反的第一Micro LED发光单元40和第二Micro LED发光单元50共用同一块基板10,可降低双面显示面板100整体的膜层厚度,其整体膜层厚度可做到1毫米以下,实现超薄双面显示。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本发明实施例所提供的一种双面显示面板及双面显示拼接屏进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

Claims (20)

  1. 一种双面显示面板,其中,包括:
    一基板,包括相对的第一侧和第二侧;
    阵列分布的多个第一Micro LED发光单元,设置于所述第一侧或所述第二侧;以及
    阵列分布的多个第二Micro LED发光单元,设置于所述第一侧或所述第二侧,所述第二Micro LED发光单元的出光方向与所述第一Micro LED发光单元的出光方向相反。
  2. 根据权利要求1所述的双面显示面板,其中,所述双面显示面板还包括像素驱动电路层,所述像素驱动电路层设置于所述第一Micro LED发光单元与所述基板之间,和/或,所述像素驱动电路层设置于所述第二Micro LED发光单元与所述基板之间。
  3. 根据权利要求2所述的双面显示面板,其中,所述第一Micro LED发光单元与所述第二Micro LED发光单元位于所述基板的同侧,所述第一Micro LED发光单元与所述第二Micro LED发光单元同层设置于所述像素驱动电路层上,且所述第一Micro LED发光单元在所述基板上的正投影与所述第二Micro LED发光单元在所述基板上的正投影不重叠。
  4. 根据权利要求3所述的双面显示面板,其中,所述双面显示面板还包括:
    第一黑矩阵,设置于所述第一Micro LED发光单元的出光侧,且所述第一黑矩阵在所述基板上的正投影覆盖所述第二Micro LED发光单元在所述基板上的正投影;
    第二黑矩阵,设置于所述第二Micro LED发光单元的出光侧,且所述第二黑矩阵在所述基板上的正投影覆盖所述第一Micro LED发光单元在所述基板上的正投影。
  5. 根据权利要求2所述的双面显示面板,其中,所述第一Micro LED发光单元设置于所述第一侧,所述第二Micro LED发光单元设置于所述第二侧,所述像素驱动电路层包括设置于所述第一Micro LED发光单元与所述基板之间的第一像素驱动电路,以及设置于所述第二Micro LED发光单元与所述基板之间的第二像素驱动电路。
  6. 根据权利要求5所述的双面显示面板,其中,所述双面显示面板还包括遮光层,所述遮光层设置于所述第一Micro LED发光单元与所述第二Micro LED发光单元之间。
  7. 根据权利要求6所述的双面显示面板,其中,所述遮光层在所述基板上的正投影覆盖所述第一Micro LED发光单元在所述基板上的正投影以及覆盖所述第二Micro LED发光单元在所述基板上的正投影。
  8. 根据权利要求1所述的双面显示面板,其中,所述双面显示面板的至少一端部电连接至少一COF基板,所述COF基板上绑定连接有驱动芯片。
  9. 根据权利要求8所述的双面显示面板,其中,所述COF基板平行于所述双面显示面板伸出,所述COF基板的一端绑定连接所述双面显示面板,所述COF基板的另一端绑定连接一控制电路板。
  10. 根据权利要求9所述的双面显示面板,其中,所述驱动芯片为源极驱动芯片或栅极驱动芯片。
  11. 一种双面显示拼接屏,其中,包括多个相互拼接的双面显示面板,所述双面显示面板包括:
    一基板,包括相对的第一侧和第二侧;
    阵列分布的多个第一Micro LED发光单元,设置于所述第一侧或所述第二侧;以及
    阵列分布的多个第二Micro LED发光单元,设置于所述第一侧或所述第二侧,所述第二Micro LED发光单元的出光方向与所述第一Micro LED发光单元的出光方向相反。
  12. 根据权利要求11所述的双面显示拼接屏,其中,所述双面显示面板还包括像素驱动电路层,所述像素驱动电路层设置于所述第一Micro LED发光单元与所述基板之间,和/或,所述像素驱动电路层设置于所述第二Micro LED发光单元与所述基板之间。
  13. 根据权利要求12所述的双面显示拼接屏,其中,所述第一Micro LED发光单元与所述第二Micro LED发光单元位于所述基板的同侧,所述第一Micro LED发光单元与所述第二Micro LED发光单元同层设置于所述像素驱动电路层上,且所述第一Micro LED发光单元在所述基板上的正投影与所述第二Micro LED发光单元在所述基板上的正投影不重叠。
  14. 根据权利要求13所述的双面显示拼接屏,其中,所述双面显示面板还包括:
    第一黑矩阵,设置于所述第一Micro LED发光单元的出光侧,且所述第一黑矩阵在所述基板上的正投影覆盖所述第二Micro LED发光单元在所述基板上的正投影;
    第二黑矩阵,设置于所述第二Micro LED发光单元的出光侧,且所述第二黑矩阵在所述基板上的正投影覆盖所述第一Micro LED发光单元在所述基板上的正投影。
  15. 根据权利要求12所述的双面显示拼接屏,其中,所述第一Micro LED发光单元设置于所述第一侧,所述第二Micro LED发光单元设置于所述第二侧,所述像素驱动电路层包括设置于所述第一Micro LED发光单元与所述基板之间的第一像素驱动电路,以及设置于所述第二Micro LED发光单元与所述基板之间的第二像素驱动电路。
  16. 根据权利要求15所述的双面显示拼接屏,其中,所述双面显示面板还包括遮光层,所述遮光层设置于所述第一Micro LED发光单元与所述第二Micro LED发光单元之间。
  17. 根据权利要求16所述的双面显示拼接屏,其中,所述遮光层在所述基板上的正投影覆盖所述第一Micro LED发光单元在所述基板上的正投影以及覆盖所述第二Micro LED发光单元在所述基板上的正投影。
  18. 根据权利要求11所述的双面显示拼接屏,其中,所述双面显示面板的至少一端部电连接至少一COF基板,所述COF基板上绑定连接有驱动芯片。
  19. 根据权利要求18所述的双面显示拼接屏,其中,所述COF基板平行于所述双面显示面板伸出,所述COF基板的一端绑定连接所述双面显示面板,所述COF基板的另一端绑定连接一控制电路板。
  20. 根据权利要求19所述的双面显示拼接屏,其中,所述驱动芯片为源极驱动芯片或栅极驱动芯片。
PCT/CN2021/140365 2021-12-13 2021-12-22 双面显示面板及双面显示拼接屏 WO2023108745A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,547 US20240047434A1 (en) 2021-12-13 2021-12-22 Double-surface display panel and double-surface spliced display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111514385.X 2021-12-13
CN202111514385.XA CN114170919A (zh) 2021-12-13 2021-12-13 双面显示面板及双面显示拼接屏

Publications (1)

Publication Number Publication Date
WO2023108745A1 true WO2023108745A1 (zh) 2023-06-22

Family

ID=80485827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140365 WO2023108745A1 (zh) 2021-12-13 2021-12-22 双面显示面板及双面显示拼接屏

Country Status (3)

Country Link
US (1) US20240047434A1 (zh)
CN (1) CN114170919A (zh)
WO (1) WO2023108745A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822273B (zh) * 2022-05-07 2022-12-23 Tcl华星光电技术有限公司 拼接面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107680989A (zh) * 2017-07-26 2018-02-09 友达光电股份有限公司 双面显示器及其制造方法
CN109285858A (zh) * 2017-07-19 2019-01-29 上海和辉光电有限公司 一种双面显示面板和显示装置
CN109461744A (zh) * 2018-11-06 2019-03-12 上海天马微电子有限公司 一种双面显示面板、制作方法以及显示装置
CN110164322A (zh) * 2019-05-22 2019-08-23 深圳市华星光电半导体显示技术有限公司 一种显示面板及电子装置
CN110824696A (zh) * 2019-11-26 2020-02-21 京东方科技集团股份有限公司 双面显示装置及其控制方法
CN111063711A (zh) * 2019-12-10 2020-04-24 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法
CN113555379A (zh) * 2021-07-26 2021-10-26 北京京东方光电科技有限公司 显示面板及其制备方法、显示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152612A (ja) * 2002-10-30 2004-05-27 Shoen Kagi Kofun Yugenkoshi 両面表示画面装置
JP5368751B2 (ja) * 2008-08-28 2013-12-18 株式会社ジャパンディスプレイ 液晶表示装置用バックライト及びそれを用いた液晶表示装置
JP2011059339A (ja) * 2009-09-09 2011-03-24 Toshiba Mobile Display Co Ltd 液晶表示装置
CN103094312B (zh) * 2013-01-11 2015-08-19 京东方科技集团股份有限公司 有机发光显示面板
CN104765157B (zh) * 2015-05-06 2017-12-08 京东方科技集团股份有限公司 显示面板及其显示方法、显示装置
KR102403205B1 (ko) * 2015-10-21 2022-05-30 엘지디스플레이 주식회사 디스플레이 패널 및 디스플레이 디바이스
KR102430809B1 (ko) * 2017-09-29 2022-08-09 엘지디스플레이 주식회사 양면 디스플레이
CN108492771B (zh) * 2018-04-03 2020-07-07 京东方科技集团股份有限公司 双面显示装置及其控制方法
CN109273518A (zh) * 2018-11-26 2019-01-25 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置及其控制方法
CN110112183A (zh) * 2019-04-12 2019-08-09 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法
CN110265437A (zh) * 2019-05-31 2019-09-20 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法、显示装置
CN110224008A (zh) * 2019-06-06 2019-09-10 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110828528A (zh) * 2019-11-21 2020-02-21 长安大学 一种oled双面显示面板及其使用方法
CN111192912B (zh) * 2020-02-26 2023-12-01 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN111584578A (zh) * 2020-05-14 2020-08-25 深圳市华星光电半导体显示技术有限公司 一种双面显示面板及其制备方法
CN111613652A (zh) * 2020-05-19 2020-09-01 深圳市华星光电半导体显示技术有限公司 显示面板
CN112786668A (zh) * 2021-01-08 2021-05-11 武汉华星光电半导体显示技术有限公司 一种双面显示面板
CN113031280A (zh) * 2021-04-13 2021-06-25 上海天马微电子有限公司 显示装置和成像系统
CN113299703B (zh) * 2021-05-08 2022-09-09 武汉华星光电技术有限公司 显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285858A (zh) * 2017-07-19 2019-01-29 上海和辉光电有限公司 一种双面显示面板和显示装置
CN107680989A (zh) * 2017-07-26 2018-02-09 友达光电股份有限公司 双面显示器及其制造方法
CN109461744A (zh) * 2018-11-06 2019-03-12 上海天马微电子有限公司 一种双面显示面板、制作方法以及显示装置
CN110164322A (zh) * 2019-05-22 2019-08-23 深圳市华星光电半导体显示技术有限公司 一种显示面板及电子装置
CN110824696A (zh) * 2019-11-26 2020-02-21 京东方科技集团股份有限公司 双面显示装置及其控制方法
CN111063711A (zh) * 2019-12-10 2020-04-24 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法
CN113555379A (zh) * 2021-07-26 2021-10-26 北京京东方光电科技有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN114170919A (zh) 2022-03-11
US20240047434A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US11092849B2 (en) LED backlight device and display device
WO2021012458A1 (zh) 无缝拼接屏
US20230096807A1 (en) Display device
WO2023065488A1 (zh) 一种显示模组及无缝拼接显示装置
TW200823538A (en) Electro-optical device, illumination device, electronic apparatus, and production method of electro-optical device
CN104620040A (zh) 照明装置、显示装置以及电视接收装置
WO2023082318A1 (zh) 拼接显示面板及拼接显示装置
CN216718864U (zh) 一种显示装置
US20210366881A1 (en) Array substrate, method of manufacturing the same, and display device
CN113764455B (zh) 拼接显示面板及拼接显示装置
US20220085000A1 (en) Light-emitting module and manufacturing method thereof and display device
WO2022027726A1 (zh) Led灯板、拼接式led灯板及显示装置
US11181777B2 (en) Backlight unit and display device using the same
WO2021031389A1 (zh) 柔性微发光二极管显示面板及微发光二极管显示装置
WO2023082317A1 (zh) 混接面板及拼接面板
TW202010120A (zh) 微型發光二極體顯示裝置
WO2023108745A1 (zh) 双面显示面板及双面显示拼接屏
WO2023159686A1 (zh) 背光模组及显示装置
CN1841445A (zh) 显示装置
TW202127703A (zh) 雙面顯示封裝結構
KR20100080079A (ko) 백라이트장치 및 이를 구비한 액정표시소자
CN114299828B (zh) 显示单元、拼接屏以及显示装置
US20240160058A1 (en) Splicing display panel and splicing display device
WO2023138645A1 (zh) 一种显示装置
KR101370967B1 (ko) 발광다이오드 어셈블리 및 이를 포함하는 액정표시장치용백라이트 유닛

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17623547

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967876

Country of ref document: EP

Kind code of ref document: A1