WO2023106317A1 - 水系塗料 - Google Patents

水系塗料 Download PDF

Info

Publication number
WO2023106317A1
WO2023106317A1 PCT/JP2022/045036 JP2022045036W WO2023106317A1 WO 2023106317 A1 WO2023106317 A1 WO 2023106317A1 JP 2022045036 W JP2022045036 W JP 2022045036W WO 2023106317 A1 WO2023106317 A1 WO 2023106317A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
water
graft
polyorganosiloxane
polymer
Prior art date
Application number
PCT/JP2022/045036
Other languages
English (en)
French (fr)
Inventor
展祥 舞鶴
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP22904245.2A priority Critical patent/EP4446352A1/en
Priority to CN202280081302.9A priority patent/CN118369388A/zh
Priority to JP2023566332A priority patent/JPWO2023106317A1/ja
Publication of WO2023106317A1 publication Critical patent/WO2023106317A1/ja
Priority to US18/735,455 priority patent/US20240327671A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients

Definitions

  • the present invention relates to water-based paints.
  • Patent Document 1 discloses an antifouling coating composition containing a hydrolyzable resin having a silicon-containing group and a metal atom-containing group containing a divalent metal atom M, and a thermoplastic resin and/or a plasticizer. is disclosed.
  • Water-based paints are the mainstream of paints, but in recent years there has been a rapid shift to water-based paints from the perspective of environmental conservation and safety and health.
  • Water-based paints include, for example, the techniques described in Patent Documents 2 to 5.
  • an aqueous coating composition containing an aqueous dispersion of polymer (A) obtained by polymerization.
  • the glass transition temperature is in the range of -60 to 20 ° C.
  • the ethylenically unsaturated monomer is in the range of 30 to 100°C.
  • Patent Document 6 The technique described in Patent Document 6 is also known as a method for producing a graft copolymer using a non-crosslinked polyorganosiloxane latex.
  • the above conventional techniques are not sufficient from the viewpoint of the water repellency of the coating film, and there is room for further improvement. Moreover, it is preferable that the paint has excellent film-forming properties.
  • One embodiment of the present invention has been made in view of the above problems, and the object thereof is to provide a novel water-based paint that can provide a coating film with excellent water repellency and has excellent film-forming properties. .
  • the inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems.
  • a water-based paint according to one embodiment of the present invention contains a graft copolymer (A) and a polymer (B), and the graft copolymer (A) is polyorganosiloxane and , and a grafted graft portion, wherein the polyorganosiloxane comprises (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more ethylene and (b) non-crosslinked, the polymer (B) is an aromatic vinyl monomer, The graft copolymer (A) and the polymer (B ) in the total 100% by weight, the polyorganosiloxane is 55% by weight to 90% by weight, and in the total 100% by weight of the graft copolymer (A) and the polymer (B), the polymer (B ) is at least 5.0% by weight.
  • a water-based paint according to another embodiment of the present invention comprises a graft copolymer (A) and a polymer (B), wherein the graft copolymer (A) is polyorganosiloxane and the polyorganosiloxane
  • the polyorganosiloxane comprises (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more and (b) non-crosslinked, the polymer (B) is an aromatic vinyl monomer the graft copolymer (A) and the polymer
  • the polyorganosiloxane is 55% by weight to 90% by weight, and the composite of the graft copolymer (A) and the polymer (B) has a weight average molecular weight of 150, 000 or less.
  • a method for producing a water-based paint according to another embodiment of the present invention includes (a) organosiloxane, (b) (b-1) one or more hydrolyzable silyl groups in the molecule, and (b-2 ) Step 1 of polymerizing a polyorganosiloxane-forming monomer mixture containing a monomer M containing one or more ethylenically unsaturated groups and/or mercapto groups to obtain a polyorganosiloxane; and a step 2 of polymerizing the graft portion-forming monomer mixture in the presence of the polyorganosiloxane obtained in 1, wherein the polyorganosiloxane-forming monomer mixture and the graft portion-forming monomer In the total 100% by weight of the body mixture, the polyorganosiloxane-forming monomer mixture is 55% to 90% by weight, and in the step 1, in 100% by weight of the polyorganosiloxane-forming monomer mixture, The total amount of the polyfunctional alkoxys
  • a water-based paint that can provide a coating film with excellent water repellency and excellent film-forming properties.
  • repeating unit derived from X monomer may be referred to as "X unit”.
  • a repeating unit can also be called a constitutional unit.
  • Patent Documents 2 to 5 As a water-based paint, the techniques described in Patent Documents 2 to 5 are known, but there is room for further improvement in the techniques described in any of the documents from the viewpoint of the water repellency required for antifouling paints. .
  • the present inventor conducted extensive studies with the aim of providing a water-based coating that can provide a coating film with excellent water repellency.
  • the inventors of the present invention have surprisingly found that it is possible to provide a water-based coating capable of providing a coating film with excellent water repellency by configuring the following: Containing a certain amount or more of polyorganosiloxane A water-based paint containing a graft copolymer.
  • the present inventors have made further intensive studies with the aim of providing a water-based coating that can achieve both water repellency and film-forming properties, that is, a water-based coating that can provide a coating film with excellent water repellency and excellent film-forming properties. did As a result, the inventor of the present invention has surprisingly independently found that a water-based coating having excellent film-forming properties capable of providing a coating film having excellent water repellency can be provided by using the following configuration.
  • the water-based paint is such that the molecular weight of the complex with the polymer (B) is a certain amount or less, or (ii) a specific amount of the polymer (B) having a specific configuration is contained.
  • a water-based paint according to one embodiment of the present invention contains a graft copolymer (A) and a polymer (B), and the graft copolymer (A) is polyorganosiloxane and , and a grafted graft portion, wherein the polyorganosiloxane comprises (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more ethylene and (b) non-crosslinked, the polymer (B) is an aromatic vinyl monomer, The graft copolymer (A) and the polymer (B ) in the total 100% by weight, the polyorganosiloxane is 55% by weight to 90% by weight, and in the total 100% by weight of the graft copolymer (A) and the polymer (B), the polymer (B ) is at least 5.0% by weight.
  • Such a water-based paint may be referred to herein as a "first water-based paint”.
  • the first water-based paint has the above-described structure, it has the advantage of being able to provide a coating film with excellent film-forming properties and excellent water repellency. Moreover, since the first water-based paint has the structure described above, it has antifouling properties against aquatic organisms. Therefore, the first water-based paint can be suitably used as an antifouling paint for underwater structures.
  • another embodiment of the present invention comprises a graft copolymer (A) and a polymer (B), wherein the graft copolymer (A) is polyorganosiloxane and and a grafted graft portion, wherein the polyorganosiloxane comprises (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more and a structural unit U derived from a monomer containing an ethylenically unsaturated group and/or a mercapto group, and (b) is non-crosslinked, and the polymer (B) is an aromatic vinyl monomer , a vinyl cyan monomer, and a (meth) acrylate monomer, the graft copolymer (A) and the polymer ( B) in a total of 100% by weight, the polyorganosiloxane is 55% to 90% by weight, and in a total of 100% by weight of the graft copolymer (A
  • a water-based paint according to another embodiment of the present invention comprises a graft copolymer (A) and a polymer (B), wherein the graft copolymer (A) is polyorganosiloxane and the polyorganosiloxane
  • the polyorganosiloxane comprises (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more and (b) non-crosslinked, the polymer (B) is an aromatic vinyl monomer the graft copolymer (A) and the polymer
  • the polyorganosiloxane is 55% by weight to 90% by weight, and the composite of the graft copolymer (A) and the polymer (B) has a weight average molecular weight of 150, 000 or less.
  • Such a water-based paint may be referred to herein as a "second water-based paint”.
  • the second water-based paint has the above-described structure, it has the advantage of being able to provide a coating film with excellent film-forming properties and excellent water repellency. Moreover, since the second water-based paint has the structure described above, it has an antifouling property against aquatic organisms. Therefore, the second water-based paint can be suitably used as an antifouling paint for underwater structures.
  • another embodiment of the present invention comprises a graft copolymer (A) and a polymer (B), wherein the graft copolymer (A) is polyorganosiloxane and and a grafted graft portion, wherein the polyorganosiloxane comprises (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more and a structural unit U derived from a monomer containing an ethylenically unsaturated group and/or a mercapto group, and (b) is non-crosslinked, and the polymer (B) is an aromatic vinyl monomer , a vinyl cyan monomer, and a (meth) acrylate monomer, the graft copolymer (A) and the polymer (
  • the polyorganosiloxane is 55% to 90% by weight in the total 100% by weight of B), and the composite of the graft copolymer (A) and the polymer (B) has
  • the first water-based paint and the second water-based paint are collectively referred to as the "water-based paint according to one embodiment of the present invention.” Or it is called “this water-based paint”.
  • the present water-based paint contains a graft copolymer (A) and a polymer (B).
  • the graft copolymer (A) contains polyorganosiloxane and a graft portion graft-bonded to the polyorganosiloxane.
  • the polyorganosiloxane comprises (i) organosiloxane-based units, (ii) (ii-a) one or more hydrolyzable silyl groups in the molecule, and (ii-b) one or more ethylenically unsaturated groups. and/or a mercapto group, and a structural unit U derived from a monomer containing a mercapto group.
  • the water-based paint can provide a coating film with excellent water repellency.
  • the water repellency of the coating film can be correlated with the contact angle of the coating film. Therefore, in other words, when the graft copolymer (A) contains polyorganosiloxane, the water-based paint can provide a coating film with a large contact angle.
  • the coating film provided by the water-based paint has the advantage of having sufficient heat resistance and excellent impact resistance at low temperatures.
  • organosiloxane unit examples include, but are not limited to, (a) alkyl units such as dimethylsilyloxy units, diethylsilyloxy units, methylphenylsilyloxy units, diphenylsilyloxy units, and dimethylsilyloxy-diphenylsilyloxy units. Alternatively, aryl-disubstituted silyloxy units, and (b) alkyl- or aryl-monosubstituted silyloxy units such as organohydrogensilyloxy units in which some of the side chain alkyl groups are substituted with hydrogen atoms.
  • the polyorganosiloxane may contain only one of the organosiloxane units described above, or may contain two or more in combination.
  • the polyorganosiloxane contains 50 mol% or more of organosiloxane units in 100 mol% of the total structural units contained in the polyorganosiloxane. is preferably 60 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 90 mol% or more, containing 95 mol% or more is particularly preferred.
  • the polyorganosiloxane contains dimethylsilyloxy units, methylphenylsilyloxy units and It preferably contains 50 mol% or more, more preferably 60 mol% or more, and more preferably 70 mol% or more of one or more structural units selected from the group consisting of dimethylsilyloxy-diphenylsilyloxy units. , is more preferably 80 mol % or more, even more preferably 90 mol % or more, and particularly preferably 95 mol % or more.
  • Raw materials for dimethylsilyloxy units are more readily available and less expensive than other organosiloxane monomers.
  • the polyorganosiloxane more preferably contains 50 mol% or more of dimethylsilyloxy units in 100 mol% of all structural units contained in the polyorganosiloxane, and 60 mol%. more preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 90 mol% or more, and particularly preferably 95 mol% or more.
  • Constuent unit U When preparing the polyorganosiloxane, as raw materials, (a) one or more hydrolyzable silyl groups in the molecule and (b) one or more ethylenically unsaturated groups and / or mercapto groups.
  • Polyorganosiloxane containing structural unit U can be obtained by using a monomer (monomer M described later).
  • the hydrolyzable silyl group contained in the monomer M used in one embodiment of the present invention is not particularly limited.
  • the hydrolyzable silyl group include a halogenosilyl group, an acyloxysilyl group, an amidosilyl group, an aminosilyl group, an alkenyloxysilyl group, an aminoxysilyl group, an oximesilyl group, an alkoxysilyl group, a thioalkoxysilyl group, and a silanol group. etc.
  • An alkoxysilyl group is preferred as the hydrolyzable silyl group because of its high polymerization reactivity and ease of handling.
  • the plurality of hydrolyzable silyl groups may be the same or different.
  • the ethylenically unsaturated group contained in the monomer M used in one embodiment of the present invention is not particularly limited.
  • the ethylenically unsaturated groups include vinyl groups, acryloyl groups and methacryloyl groups.
  • the ethylenically unsaturated group is preferably one or more selected from the group consisting of acryloyl groups and methacryloyl groups.
  • the monomer M contains two or more ethylenically unsaturated groups in the molecule, the multiple ethylenically unsaturated groups may be the same or different. "When forming the graft portion" can also be said to be "when the monomer mixture for forming the graft portion is polymerized".
  • the monomer M include (a) vinylsilanes such as vinylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and tetramethyltetravinylcyclotetrasiloxane, and (b) ⁇ -methacryloyloxyethyl.
  • Monomer M includes ⁇ -methacryloyloxyethyldimethoxymethylsilane, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyldimethoxymethylsilane, 3-(meth)acryloyloxypropylmethoxydimethylsilane.
  • This configuration has the advantage that the graft portion-forming monomer mixture can be efficiently polymerized in the presence of the polyorganosiloxane. As a result, there is an advantage that a graft copolymer (A) having a high graft rate can be obtained.
  • the polyorganosiloxane preferably contains 0.001% by weight to 10.0% by weight, more preferably 0.001% by weight to 5.0% by weight, of the structural unit U in 100% by weight of the polyorganosiloxane. , more preferably 0.01 wt% to 5.0 wt%, even more preferably 1.0 wt% to 5.0 wt%, 1.0 wt% to 3.0 wt% Especially preferred.
  • This configuration has the advantage that the graft portion-forming monomer mixture can be efficiently polymerized in the presence of the polyorganosiloxane. As a result, there is an advantage that a graft copolymer (A) having a high graft ratio can be obtained.
  • Crosslinked structure of polyorganosiloxane A crosslinked structure can be introduced into the polyorganosiloxane by using a polyfunctional alkoxysilane compound and/or a polyfunctional monomer during preparation of the polyorganosiloxane. Therefore, polyfunctional alkoxysilane compounds and polyfunctional monomers can also be said to be cross-linking agents in polyorganosiloxane. In one embodiment of the invention, the polyorganosiloxane is non-crosslinked.
  • the polyorganosiloxane is non-crosslinked
  • the total amount of the polyfunctional alkoxysilane compound and the polyfunctional monomer used in preparing the polyorganosiloxane is the polyorganosiloxane-forming monomer. 0.50% by weight or less in 100% by weight of the body mixture.
  • the polyorganosiloxane is substantially non-crosslinked.
  • the total amount of polyfunctional alkoxysilane compounds and polyfunctional monomers used in the preparation of polyorganosiloxane is 0.50% by weight or less in 100% by weight of the polyorganosiloxane-forming monomer mixture. is preferably 0.20% by weight or less, more preferably 0.10% by weight or less, and particularly preferably 0.01% by weight or less.
  • Polyfunctional alkoxysilane compounds include tetramethoxysilane, tetraethoxysilane (TEOS), tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, methyl Examples include triisopropoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane and dimethyldimethoxysilane.
  • a polyfunctional monomer can also be said to be a monomer having two or more radically polymerizable reactive groups in the same molecule.
  • the radically polymerizable reactive group is, for example, a carbon-carbon double bond.
  • Examples of polyfunctional monomers include (meth)acrylates having an ethylenically unsaturated double bond, such as allylalkyl (meth)acrylates and allyloxyalkyl (meth)acrylates, butadiene is not included. be done.
  • Examples of monomers having two (meth)acrylic groups include ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and cyclohexanedimethanol.
  • Examples of the polyethylene glycol di(meth)acrylates include triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (600) di(meth)acrylate, and the like. are exemplified.
  • alkoxylated trimethylolpropane tri(meth)acrylates include trimethylolpropane tri(meth)acrylate and trimethylolpropane triethoxy tri(meth)acrylate.
  • examples of monomers having four (meth)acrylic groups include pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, and the like. Furthermore, dipentaerythritol penta(meth)acrylate etc. are illustrated as a monomer which has five (meth)acrylic groups. Furthermore, examples of monomers having six (meth)acrylic groups include ditrimethylolpropane hexa(meth)acrylate. Polyfunctional monomers also include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, and the like.
  • the volume average particle size of the polyorganosiloxane is preferably 0.03 ⁇ m to 50.00 ⁇ m, more preferably 0.05 ⁇ m to 10.00 ⁇ m, more preferably 0.08 ⁇ m to 2.00 ⁇ m, and more preferably 0.10 ⁇ m to 1.00 ⁇ m. More preferably, 0.10 ⁇ m to 0.80 ⁇ m is even more preferable, and 0.10 ⁇ m to 0.50 ⁇ m is particularly preferable.
  • volume average particle size of the polyorganosiloxane is (a) 0.03 ⁇ m or more, polyorganosiloxane having a desired volume average particle size can be stably obtained, and (b) when it is 50.00 ⁇ m or less. , has the advantage that the obtained water-based paint is excellent in film-forming properties.
  • the volume-average particle size of polyorganosiloxane can be measured using a dynamic light scattering particle size distribution analyzer or the like using an aqueous latex containing polyorganosiloxane as a sample. A method for measuring the volume-average particle size of polyorganosiloxane will be described in detail in Examples below.
  • the graft copolymer (A) contains polyorganosiloxane and a graft portion graft-bonded to the polyorganosiloxane.
  • the graft portion can cover at least a portion of the polyorganosiloxane, or can cover the entire polyorganosiloxane. At least part of the graft portion is preferably present on the outermost side of the graft copolymer (A). Therefore, the polyorganosiloxane can be said to be the core portion of the graft copolymer (A).
  • the graft copolymer (A) includes a core portion containing polyorganosiloxane and a graft portion graft-bonded to the core portion.
  • the core part may be composed of only one type of polyorganosiloxane having the same structural unit composition (type and content ratio), or may be composed of two or more polyorganosiloxanes having different structural unit compositions (type and content ratio). It may be composed of an organosiloxane.
  • the core may also contain one or more other rubbers in addition to one or more polyorganosiloxanes.
  • Rubbers include, for example, (a) natural rubber, (b) diene rubber containing 50% by weight or more of structural units derived from a diene monomer in 100% by weight of rubber structural units, and (c) Examples thereof include (meth)acrylate rubbers containing 50% by weight or more of structural units derived from (meth)acrylate monomers in 100% by weight of rubber structural units.
  • (Meth)acrylate as used herein means acrylate and/or methacrylate.
  • the core preferably contains 55 to 100 parts by weight, more preferably 60 to 100 parts by weight, and 65 to 100 parts by weight of polyorganosiloxane in 100 parts by weight of the core. More preferably, 70 parts by weight to 100 parts by weight, more preferably 75 parts by weight to 100 parts by weight, more preferably 80 parts by weight to 100 parts by weight, 85 parts by weight to 100 parts by weight More preferably, it contains 90 to 100 parts by weight, and particularly preferably 95 to 100 parts by weight. According to this configuration, the water-based coating has the advantage of being able to provide a coating film with more excellent water repellency.
  • the core portion may contain 100 parts by weight of polyorganosiloxane in 100 parts by weight of the core portion, that is, the core portion may be composed only of polyorganosiloxane.
  • the volume average particle diameter of the core portion is preferably 0.03 ⁇ m to 50.00 ⁇ m, more preferably 0.05 ⁇ m to 10.00 ⁇ m, more preferably 0.08 ⁇ m to 2.00 ⁇ m, and further preferably 0.10 ⁇ m to 1.00 ⁇ m. It is preferably 0.10 ⁇ m to 0.80 ⁇ m, and particularly preferably 0.10 ⁇ m to 0.50 ⁇ m.
  • the volume average particle diameter of the core portion is (a) 0.03 ⁇ m or more, a core portion having a desired volume average particle diameter can be stably obtained, and (b) when it is 50.00 ⁇ m or less, it is obtained. It has the advantage that the resulting water-based paint has excellent film-forming properties.
  • the volume average particle size of the core portion is measured by using an aqueous latex containing the core portion as a sample and using a dynamic light scattering particle size distribution analyzer or the like in the same manner as the volume average particle size of the polyorganosiloxane. be able to.
  • the graft portion is not particularly limited, but is derived from, for example, one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers. It preferably contains structural units. According to this configuration, the graft portion can have the function of solidifying the substantially non-crosslinked polyorganosiloxane. Therefore, according to this configuration, there is an advantage that the water-based paint to be obtained has excellent film-forming properties and that the strength of the coating film of the water-based paint is excellent.
  • aromatic vinyl monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, and divinylbenzene.
  • vinyl cyan monomers include acrylonitrile and methacrylonitrile.
  • (meth)acrylate monomers include (a) methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, Alkyl (meth)acrylates such as dodecyl (meth)acrylate, stearyl (meth)acrylate and behenyl (meth)acrylate; (b) aromatic ring-containing (meth)acrylates such as phenoxyethyl (meth)acrylate and benzyl (meth)acrylate (c) hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate; (d) glycidyl (meth)acrylate such as glycidyl (meth)acrylate and glycidylalkyl (meth)acrylate (meth)acrylates; (e)
  • the obtained water-based paint has excellent film-forming properties.
  • One or more selected from the group consisting of acrylate and butyl (meth)acrylate are preferred, one or more selected from the group consisting of methyl acrylate, butyl methacrylate and butyl acrylate are more preferred, and the group consisting of butyl methacrylate and butyl acrylate One or more selected from are more preferable, and butyl methacrylate is particularly preferable.
  • Methyl methacrylate is preferable as the (meth)acrylate monomer from the viewpoint of reactivity during graft portion formation.
  • methyl acrylate ethyl (meth) acrylate and butyl (meth) acrylate, in which the glass transition temperature of the homopolymer is relatively low, and the glass transition temperature of the homopolymer, which is relatively high.
  • the glass transition temperature of the resulting graft portion can be adjusted to a desired temperature.
  • One or more monomers selected from the group consisting of the above-mentioned aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers may be used alone, Two or more kinds may be used in combination.
  • the graft portion contains structural units derived from aromatic vinyl monomers, structural units derived from vinyl cyanide monomers, and structural units derived from (meth)acrylate monomers in 100% by weight of the total structural units of the graft portion.
  • the unit preferably contains 10% to 95% by weight, more preferably 30% to 92% by weight, even more preferably 50% to 90% by weight, and 60% to 87% by weight. It is particularly preferred to contain, most preferably 70% to 85% by weight.
  • the graft portion contains structural units derived from methyl methacrylate and structural units derived from butyl methacrylate.
  • the graft portion preferably contains 10% to 100% by weight, and preferably 30% to 100% by weight, of a structural unit derived from a (meth)acrylate monomer in 100% by weight of the total structural units of the graft portion. is more preferable, more preferably 50% to 100% by weight, even more preferably more than 50% by weight to 100% by weight or less, particularly preferably 70% to 100% by weight, and 90% to 100% by weight. % by weight is most preferred.
  • the glass transition temperature of the graft portion is lower (for example, lower than 80 ° C.), so that the resulting water-based paint has the advantage of being more excellent in film formability, and / or (ii ) has the advantage of being excellent in reactivity at the time of graft portion formation.
  • the graft portion may contain 100% by weight of structural units derived from a (meth)acrylate monomer in 100% by weight of the total structural units of the graft portion. It may be composed only of structural units derived from.
  • the graft portion preferably further contains a structural unit derived from a reactive emulsifier.
  • This configuration has the advantage of reducing or eliminating the generation of scale during the production of the water-based paint.
  • scale refers to the production of water-based paint (for example, production of graft copolymer (A), or production of graft copolymer (A) and polymer (B)).
  • aggregates of the graft copolymer (A) and / or the aggregates of the graft copolymer (A) and the polymer (B) aggregates of a certain size or more (for example, passing through a wire mesh of 150 mesh aggregates that cannot be formed). A method for quantifying the scale will be described in detail in later examples.
  • Reactive emulsifier as used herein means an emulsifier having an ethylenically unsaturated double bond.
  • the “reactivity” in the reactive emulsifier means the ability to have polymerizable radicals in the presence of a polymerization initiator or the like. Therefore, a “reactive emulsifier” can also be called a “polymerizable emulsifier”.
  • a “reactive emulsifier” may also be referred to as a "reactive surfactant”.
  • the type of reactive emulsifier is not particularly limited as long as it has an ethylenically unsaturated double bond.
  • the reactive emulsifier may be a nonionic reactive emulsifier, an anionic reactive emulsifier, or a nonionic reactive emulsifier.
  • a reactive emulsifier for example, the particle size of the graft copolymer (A) can be easily controlled to be fine (specifically, the volume average particle size of the graft copolymer (A) is 30 nm to 200 nm). Therefore, it is preferably an anionic reactive emulsifier.
  • the ethylenically unsaturated double bond of the reactive emulsifier is derived from a group having an ethylenically unsaturated double bond.
  • reactive emulsifiers have groups with ethylenically unsaturated double bonds.
  • groups having ethylenically unsaturated double bonds include oxyalkylene groups, (meth)acryloyl groups, vinyl groups, allyl groups, isopropenyl groups, 1-propenyl groups, allyloxy groups, styryl groups, and the like. .
  • the reactive emulsifier preferably has an oxyalkylene group.
  • a reactive emulsifier having an oxyalkylene group is excellent in copolymerizability with a monomer.
  • the oxyalkylene group include oxyalkylene groups having an alkylene group having 2 to 4 carbon atoms such as an oxyethylene group, an oxypropylene group and an oxybutylene group.
  • an oxyethylene group is preferable as the oxyalkylene group.
  • Oxyethylene groups are more hydrophilic than, for example, oxypropylene and oxybutylene groups.
  • the graft portion of the graft copolymer (A) contains a structural unit derived from a reactive emulsifier having an oxyethylene group, a hydrated layer with high density is formed on the surface of the particles of the graft copolymer (A). As a result, the dispersibility of the particles of the graft copolymer (A) in the aqueous medium tends to increase.
  • the average added mole number of oxyethylene groups in 1 mole of the reactive emulsifier is not particularly limited, but is preferably 5 to 40 moles, more preferably 10 to 30 moles, for example. According to this configuration, there is a tendency for excellent copolymerizability with the monomer. Further, when the average added mole number of oxyethylene groups is 5 mol or more, the dispersibility of the particles of the graft copolymer (A) in the aqueous medium tends to be further enhanced.
  • the reactive emulsifiers described above may be used singly or in combination of two or more.
  • the graft portion preferably contains 0.1% to 20.0% by weight, more preferably 0.1% to 15.0% by weight, of the structural units derived from the reactive emulsifier in 100% by weight of the total structural units of the graft portion. % by weight, more preferably 1.0% by weight to 15.0% by weight, more preferably 1.0% by weight to 10.0% by weight, more preferably 1.0% by weight to 8.0% by weight. More preferably 0% by weight, even more preferably 1.0% to 5.0% by weight, and particularly preferably 1.0% to 4.0% by weight. According to this configuration, there is an advantage that scale generation during production of the water-based paint is further reduced or eliminated.
  • the graft portion is further added to the monomer M containing (a) one or more hydrolyzable silyl groups in the molecule and (b) one or more ethylenically unsaturated groups and/or mercapto groups. It preferably contains a structural unit derived from. This configuration has the advantage of reducing or eliminating the occurrence of blisters when a coating film obtained from a water-based coating is immersed in water.
  • a structural unit derived from the monomer M can also be said to be a structural unit U.
  • the structural unit U contained in the polyorganosiloxane and the structural unit U contained in the graft portion may be the same or different.
  • the monomer M is the same as those described in the section (Structural unit U) above, so the description is incorporated and the description is omitted here. Also in the graft portion, the monomer M may be used singly or in combination of two or more.
  • the hydrolyzable silyl group of the monomer M in the graft portion is also not particularly limited.
  • the hydrolyzable silyl group of the monomer M in the graft portion is (a) rich in cross-linking reactivity (vinyl polymerization reactivity), (b) easy to handle, (c) inexpensive, and (d) )
  • An alkoxysilyl group is particularly preferred because blistering is further reduced or eliminated when a coating film obtained from a water-based paint is immersed in water.
  • the monomer M in the graft portion is also not particularly limited.
  • As the monomer M in the graft portion (a) it is rich in cross-linking reactivity (vinyl polymerization reactivity), (b) it is inexpensive, and (c) it exhibits a (Meth)acryloyloxyalkylsilanes are preferred due to reduced or no blistering, ⁇ -methacryloyloxyethyldimethoxymethylsilane, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth) Acryloyloxypropyldimethoxymethylsilane, 3-(meth)acryloyloxypropylmethoxydimethylsilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-(meth)acryloyloxypropyldiethoxymethylsilane, 3-(meth)acryloyl Oxypropyldiethoxyethylsilane, 3-
  • the graft portion preferably contains 0.1% to 20.0% by weight of structural units derived from the monomer M (structural unit U) in 100% by weight of all structural units of the graft portion. % to 15.0% by weight, more preferably 1.0% to 15.0% by weight, even more preferably 1.0% to 10.0% by weight; It is particularly preferred to contain from 0% to 8.0% by weight.
  • This configuration has the advantage of reducing or eliminating blistering when a coating film obtained from a water-based coating is immersed in water.
  • the graft portion may further contain a structural unit derived from a monomer having a reactive group (hereinafter also referred to as a reactive group-containing monomer).
  • the reactive group-containing monomer is selected from epoxy group, oxetane group, hydroxyl group, amino group, imide group, carboxylic acid group, carboxylic anhydride group, cyclic ester, cyclic amide, benzoxazine group, and cyanate ester group. It is preferably a monomer containing one or more reactive groups selected from the group consisting of epoxy groups, hydroxyl groups, and containing one or more reactive groups selected from the group consisting of carboxylic acid groups. It is more preferable that it is a monomer that This configuration has the advantage of improving the adhesion of the coating film of the water-based paint to the substrate.
  • epoxy group-containing monomers include glycidyl group-containing vinyl monomers such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and allyl glycidyl ether.
  • monomers having a hydroxyl group include, for example, (a) 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and other hydroxy straight-chain alkyl (meth)acrylates; Acrylates (especially hydroxy linear C1-6 alkyl (meth)acrylates); (b) caprolactone-modified hydroxy (meth)acrylates; (c) methyl ⁇ -(hydroxymethyl)acrylate, ethyl ⁇ -(hydroxymethyl)acrylate hydroxy-branched alkyl (meth)acrylates such as; (d) mono(meth)acrylates of polyester diols (especially saturated polyester diols) obtained from dihydric carboxylic acids (such as phthalic acid) and dihydric alcohols (such as propylene glycol); hydroxyl group-containing (meth)acrylates, and the like.
  • polyester diols especially saturated polyester diols obtained from dihydric carboxylic acids (such
  • monomers having a carboxylic acid group include monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid.
  • monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid
  • dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid.
  • the monocarboxylic acid is preferably used as the monocarboxylic acid.
  • the graft portion preferably contains 0.5% to 90% by weight, more preferably 1% to 50% by weight, of a structural unit derived from a reactive group-containing monomer in 100% by weight of the graft portion. Preferably, it contains 2% to 35% by weight, and particularly preferably 3% to 20% by weight.
  • the graft portion contains (a) 0.5% by weight or more of the structural unit derived from the reactive group-containing monomer in 100% by weight of the graft portion, the obtained water-based coating has sufficient adhesion to the substrate.
  • the resulting water-based coating can provide a coating film having sufficient adhesion to the substrate, and the It has the advantage of improving the storage stability of the water-based paint.
  • the structural unit derived from the reactive group-containing monomer is preferably contained in the graft portion, and more preferably contained only in the graft portion.
  • a crosslinked structure can be introduced into the grafted portion by using a polyfunctional monomer during the preparation of the grafted portion.
  • the graft portion is preferably non-crosslinked.
  • “the graft portion is non-crosslinked” means that the amount of the polyfunctional monomer used in preparing the graft portion is 0.50% by weight in 100% by weight of the monomer mixture for forming the graft portion. It is intended that: In other words, in one embodiment of the invention the graft portion is preferably substantially non-crosslinked.
  • the amount of the polyfunctional monomer used in preparing the graft portion is preferably 0.50% by weight or less, and 0.20% by weight or less, based on 100% by weight of the monomer mixture for forming the graft portion. is more preferably 0.10% by weight or less, and particularly preferably 0.01% by weight or less.
  • the graft portion may be composed of only one type of polymer having the same structural unit composition (type and content ratio), or two or more types of polymers having different structural unit compositions (type and content ratio). It may be composed of
  • the graft portion is composed of a plurality of types of graft portions.
  • the graft portion (a) may contain a composite of a plurality of polymers obtained by polymerizing them separately, and may contain one polymer (multistage polymer) obtained by polymerizing in order.
  • the core portion and the graft portion containing polyorganosiloxane may have a layered structure.
  • the core portion containing polyorganosiloxane is the innermost layer (also referred to as core layer), and the layer of the graft portion is present as the outermost layer (also referred to as the shell layer) outside the core portion.
  • core layer also referred to as core layer
  • shell layer the outermost layer outside the core portion.
  • a structure in which a core portion containing polyorganosiloxane is used as a core layer and a graft portion is used as a shell layer can be called a core-shell structure.
  • the graft copolymer (A) having a layered structure (core-shell structure) between the core portion containing polyorganosiloxane and the graft portion can be called a multilayer polymer or a core-shell polymer.
  • the graft copolymer (A) is not limited to the above structure as long as the graft portion is graft-bonded to the polyorganosiloxane.
  • At least part of the graft portion may be graft-bonded to the polyorganosiloxane, and not all of the graft portion may be graft-bonded to the polyorganosiloxane.
  • the graft portion in the production of the graft copolymer (A), when a monomer mixture capable of forming the graft portion (a monomer mixture for forming the graft portion) is polymerized in the presence of polyorganosiloxane, the graft portion A polymer having the same structure as that of the polyorganosiloxane and which is not grafted to the polyorganosiloxane may be produced.
  • a polymer having the same structure as the grafted portion and not graft-bonded to the polyorganosiloxane, which is generated during the preparation of the grafted portion is also referred to as a non-grafted polymer.
  • the non-grafted polymer may or may not be removed from the resulting aqueous latex of graft copolymer (A).
  • the water-based paint is a polymer having the same structure as the graft portion and has a polymer that is not graft-bonded to the polyorganosiloxane (non-graft polymer). You may have The non-grafted polymer contained in the water-based paint corresponds to the polymer (B) described below.
  • the ratio of the polymer graft-bonded to the polyorganosiloxane that is, the proportion of the graft portion, among the polymers obtained in the preparation step of the graft portion, is referred to as the graft ratio.
  • the graft ratio can also be said to be a value represented by (weight of grafted portion)/ ⁇ (weight of grafted portion)+(weight of non-grafted polymer) ⁇ 100.
  • soluble matter also exists in addition to the graft portion and the non-graft polymer.
  • solubles is intended unpolymerized monomers and auxiliary materials such as initiators.
  • a method for determining whether it is a graft copolymer (A), a non-graft polymer, or a soluble component for example, a method of determining solubility/insolubility in a solvent can be mentioned.
  • graft copolymer (A) if insoluble in MEK (ii) non-grafted polymer if soluble in MEK and insoluble in methanol, (iii) soluble in MEK , and if it is soluble in methanol, it can be determined as a soluble matter.
  • the method for calculating the graft ratio is as follows. First, an aqueous latex containing the graft copolymer (A) is obtained. Then, an amount of aqueous latex corresponding to 2 g of solid content in the aqueous latex and 50 ml of methyl ethyl ketone (MEK) are mixed to prepare a MEK melt. After that, the obtained MEK lysate is separated into MEK-soluble components (MEK-soluble components) and MEK-insoluble components (MEK-insoluble components) by centrifugation or the like.
  • MEK methyl ethyl ketone
  • the MEK-insoluble matter is the graft copolymer (A)
  • the MEK-soluble matter is the MEK-soluble matter
  • the methanol-insoluble matter is the non-graft polymer.
  • the graft ratio of the graft portion is preferably 85.0% or less, more preferably 80.0% or less, more preferably 75.0% or less, and 70.0% or less. is more preferably 65.0% or less, more preferably 60.0% or less, more preferably 55.0% or less, more preferably 50.0% or less It is preferably 45.0% or less, more preferably 40.0% or less, even more preferably 35.0% or less, and particularly preferably 30.0% or less.
  • the graft ratio is 85.0% or less, the water-based paint has the advantage of being excellent in film formability.
  • the graft ratio of the graft portion is preferably 30.0% or more, more preferably 35.0% or more, more preferably 40.0% or more, and 45.0% or more. is more preferably 50.0% or more, more preferably 55.0% or more, more preferably 60.0% or more, more preferably 65.0% or more It is preferably 70.0% or more, more preferably 75.0% or more, still more preferably 80.0% or more, and particularly preferably 85.0% or more.
  • the graft ratio is 30.0% or more, there are advantages that (a) the viscosity of the water-based paint does not become too high, and (b) the generation of scale during the production of the water-based paint is reduced or eliminated. .
  • the graft ratio of the graft portion can be adjusted as appropriate by changing the amount of the chain transfer agent used during the preparation of the graft portion and the amount of the monomer M used during the preparation of the polyorganosiloxane.
  • the glass transition temperature of the graft portion is not particularly limited. "Glass transition temperature” may be hereinafter referred to as "Tg".
  • the Tg of the graft portion is, for example, preferably 100°C or lower, preferably lower than 100°C, more preferably 90°C or lower, preferably 80°C or lower, more preferably 70°C or lower, more preferably 60°C or lower, and 50°C or lower. is more preferably 45° C. or lower, more preferably 40° C. or lower, more preferably 35° C. or lower, more preferably 30° C. or lower, more preferably 25° C. or lower, more preferably 20° C. or lower, and 15° C. or lower.
  • the Tg of the graft portion is, for example, preferably ⁇ 30° C. or higher, more preferably ⁇ 25° C. or higher, more preferably ⁇ 20° C. or higher, and more preferably ⁇ 15° C. or higher. , more preferably -10 ° C. or higher, more preferably -5 ° C. or higher, more preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and preferably 10 ° C. or higher. It is more preferably 15°C or higher, more preferably 20°C or higher, more preferably 25°C or higher, more preferably 30°C or higher, and preferably 35°C or higher. More preferably, it is particularly preferably 40° C. or higher.
  • the present inventors have found that when the lower limit of the Tg of the graft portion is within the range described above, surprisingly, the formation of blisters when a coating film obtained from a water-based coating is immersed in water is reduced or eliminated. found independently.
  • the Tg of the graft part can be determined by the composition of the constituent units contained in the graft part.
  • the Tg of the obtained graft portion can be adjusted by changing the composition of the graft portion-forming monomer mixture used when preparing the graft portion.
  • the glass transition temperature Tg of the graft portion is can be regarded as the Tg (° C.) of the homopolymer of
  • the numerical value described in Polymer Handbook Fourth Edition edited by J. Brandup et al., Jphn Wiley & Sons, Inc.
  • the graft portion is a copolymer of two or more monomers and the monomers used in the production (polymerization) of the graft portion are known (hereinafter referred to as Case A) will be described.
  • the glass transition temperature Tg of the graft portion can be calculated by the following FOX formula (Formula 1).
  • Tg 1 , Tg 2 , . Tg(K), w 1 , w 2 , . is the weight fraction of n.
  • the glass transition of the graft portion when calculating the temperature Tg by the FOX formula (Formula 1), the reactive emulsifier and the monomer X are excluded from the monomers used in the production of the graft portion. That is, the glass transition temperature Tg of the graft portion is calculated using the FOX formula (Formula 1), assuming that a monomer other than the reactive emulsifier and the monomer X is used in the production of the graft portion.
  • the Tg of the graft portion can also be obtained by performing viscoelasticity measurement using a flat plate made of the graft copolymer (A).
  • Tg can be measured as follows: (1) A plane plate made of the graft copolymer (A) is subjected to a dynamic viscoelasticity measuring device (for example, DVA- 200), perform dynamic viscoelasticity measurement under tensile conditions and obtain a tan ⁇ graph; Here, in the graph of tan ⁇ , when a plurality of peaks are obtained, the highest peak temperature is taken as the glass transition temperature of the graft portion.
  • a dynamic viscoelasticity measuring device for example, DVA- 200
  • the volume average particle diameter (Mv) of the graft copolymer (A) is preferably from 0.05 ⁇ m to 60.00 ⁇ m, since a highly stable water-based paint having a desired viscosity can be obtained. , more preferably 0.10 ⁇ m to 20.00 ⁇ m, more preferably 0.10 ⁇ m to 8.00 ⁇ m, more preferably 0.10 ⁇ m to 6.00 ⁇ m, more preferably 0.10 ⁇ m to 4.00 ⁇ m more preferably 0.10 ⁇ m to 2.00 ⁇ m, still more preferably 0.10 ⁇ m to 1.00 ⁇ m, and particularly preferably 0.10 ⁇ m to 0.80 ⁇ m.
  • the "volume average particle size (Mv) of the graft copolymer (A)” means the volume average particle size of the primary particles of the graft copolymer (A), unless otherwise specified. intended to The volume average particle size of the graft copolymer (A) is measured by using a water-based paint or an aqueous latex containing the graft copolymer (A) as a sample, using a dynamic light scattering particle size distribution analyzer or the like. be able to.
  • the volume-average particle size of the graft copolymer (A) will be described in detail in Examples below.
  • the number distribution of the particle size of the graft copolymer (A) in the water-based paint preferably has a half width of 0.5 to 1 time the volume average particle size. This configuration has the advantage that the water-based paint has a low viscosity and is easy to handle.
  • the water-based paint contains the polymer (B).
  • the polymer (B) in the water-based paint can contribute to improving the film-forming properties of the water-based paint.
  • the polymer (B) can be mixed mainly in the process of producing the graft copolymer (A). Specifically, in the step of preparing the graft portion in the production of the graft copolymer (A), a polymer (non-graft polymer) that does not bond with the polyorganosiloxane is generated. By not removing the non-grafted polymer from the obtained aqueous latex of the graft copolymer (A), the non-grafted polymer can become the polymer (B) in the resulting water-based paint.
  • the polymer (B) is not limited to those mixed in during the production process of the graft copolymer (A) described above, and also includes polymers added separately.
  • the polymer separately added as the polymer (B) is obtained, for example, by polymerizing a monomer mixture for forming the polymer (B) separately from the production of the graft copolymer (A).
  • the polymer (B) contains structural units derived from one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers. This configuration has the advantage that the obtained water-based paint has excellent film formability.
  • aromatic vinyl monomer the vinyl cyanide monomer, and the (meth)acrylate monomer are the same as those described in the above section (graft portion), so the description is incorporated here. We omit the explanation here.
  • the polymer (B) contains structural units derived from aromatic vinyl monomers, structural units derived from vinyl cyanide monomers and (meth)acrylate units in 100% by weight of all structural units of the polymer (B).
  • the constituent units derived from the polymer preferably contain 10% to 95% by weight, more preferably 30% to 92% by weight, more preferably 50% to 90% by weight, and 60 It is particularly preferred to contain from 70% to 85% by weight, most preferably from 70% to 85% by weight. This configuration has the advantage that the obtained water-based paint has excellent film formability.
  • the polymer (B) can be designed to have a low glass transition temperature (e.g., 80° C. or lower), so that the resulting water-based paint has excellent film formability. At least one selected from the group consisting of (meth)acrylate and butyl (meth)acrylate is preferred, and at least one selected from the group consisting of methyl acrylate, butyl methacrylate and butyl acrylate is more preferred, and butyl methacrylate and butyl acrylate. One or more selected from the group consisting of is more preferable, and butyl methacrylate is particularly preferable.
  • a low glass transition temperature e.g. 80° C. or lower
  • the (meth)acrylate monomer is preferably methyl methacrylate.
  • the "reactivity upon formation (polymerization) of the polymer (B)” means “reactivity upon formation of the graft portion”.
  • the polymer (B) contains a structural unit derived from methyl methacrylate and a structural unit derived from butyl methacrylate. Including units.
  • the polymer (B) preferably contains 10% to 100% by weight of structural units derived from a (meth)acrylate monomer in 100% by weight of the total structural units of the polymer (B), and 30% by weight. It is more preferable to contain ⁇ 100% by weight, more preferably 50% to 100% by weight, even more preferably more than 50% by weight to 100% by weight or less, and particularly preferably 70% to 100% by weight. , 90% to 100% by weight.
  • the glass transition temperature of the polymer (B) is lower (for example, lower than 80 ° C.), so that the resulting water-based paint has the advantage of further excellent film-forming properties, and / or and (ii) the advantage of excellent reactivity during the formation (polymerization) of the polymer (B).
  • the polymer (B) may contain 100% by weight of structural units derived from a (meth)acrylate monomer in 100% by weight of the total structural units of the polymer (B), that is, the polymer (B ) may consist only of structural units derived from (meth)acrylate monomers.
  • the glass transition temperature (Tg) of polymer (B) is not particularly limited.
  • Tg of the polymer (B) is, for example, preferably 100°C or lower, preferably lower than 100°C, more preferably 90°C or lower, preferably 80°C or lower, more preferably 70°C or lower, more preferably 60°C or lower, 50° C. or less is more preferable, 45° C. or less is more preferable, 40° C. or less is more preferable, 35° C. or less is more preferable, 30° C. or less is more preferable, 25° C. or less is more preferable, 20° C. or less is more preferable, 15 ° C. or lower is more preferred, 10 ° C.
  • the Tg of the polymer (B) is, for example, preferably ⁇ 30° C. or higher, more preferably ⁇ 25° C. or higher, more preferably ⁇ 20° C. or higher, and ⁇ 15° C. or higher. is more preferably ⁇ 10° C. or higher, more preferably ⁇ 5° C. or higher, more preferably 0° C. or higher, more preferably 5° C. or higher, and 10° C. or higher. more preferably 15° C. or higher, more preferably 20° C. or higher, more preferably 25° C. or higher, more preferably 30° C. or higher, and 35° C. or higher A temperature of 40° C. or higher is particularly preferable.
  • the lower limit of the Tg of the polymer (B) is within the range described above, the present inventors have surprisingly found that blistering is reduced when a coating film obtained from a water-based coating is immersed in water. Or independently discovered that it disappears.
  • the Tg of the polymer (B) can be determined by the composition of the constituent units contained in the polymer (B). In other words, the composition of the graft portion-forming monomer mixture used when preparing the graft portion or the polymer (B)-forming monomer mixture used when separately preparing the polymer (B) is By changing it, the Tg of the obtained polymer (B) can be adjusted.
  • the glass of the polymer (B) can be regarded as Tg (°C) of a homopolymer of the above monomers.
  • Tg the transition temperature of the homopolymer
  • the numerical value described in Polymer Handbook Fourth Edition edited by J. Brandup et al., Jphn Wiley & Sons, Inc.
  • the numerical value described in Polymer Handbook Fourth Edition edited by J. Brandup et al., Jphn Wiley & Sons, Inc.
  • the glass transition temperature Tg of the polymer (B) can be calculated by the FOX formula (Formula 1) described above.
  • the amount of the reactive emulsifier and the monomer X used is 20% in the total 100% by weight of the monomer mixture for forming the graft portion and the monomer mixture for forming the polymer (B). .0% by weight or less, when calculating the glass transition temperature Tg of the polymer (B) by the FOX formula (Formula 1), the reactive emulsifier and the monomer used in the production of the polymer (B) It is calculated by excluding the monomer X. That is, the glass transition temperature Tg Calculate
  • the content of the polymer (B) is not particularly limited in this water-based paint.
  • the polymer (B) is preferably 5.0% by weight or more, preferably 6.0% by weight or more, in the total 100% by weight of the graft copolymer (A) and the polymer (B). more preferably 7.0 wt% or more, more preferably 8.0 wt% or more, more preferably 9.0 wt% or more, 10.0 wt% It is more preferably 11.0% by weight or more, more preferably 12.0% by weight or more, more preferably 13.0% by weight or more, and 14.0% by weight or more.
  • % by weight or more more preferably 15.0% by weight or more, more preferably 16.0% by weight or more, even more preferably 17.0% by weight or more, and 18 0% by weight or more is particularly preferred.
  • This configuration has the advantage that the water-based paint is more excellent in film formability.
  • the polymer (B) accounts for 30% of the total 100% by weight of the graft copolymer (A) and the polymer (B). % by weight or less, more preferably 28.0% by weight or less, more preferably 26.0% by weight or less, more preferably 24.0% by weight or less; It is more preferably 0% by weight or less, more preferably 20.0% by weight or less, more preferably 19.0% by weight or less, more preferably 18.0% by weight or less, It is more preferably 17.0% by weight or less, more preferably 16.0% by weight or less, more preferably 15.0% by weight or less, and more preferably 14.0% by weight or less.
  • it is 13.0% by weight or less, more preferably 12.0% by weight or less, more preferably 11.0% by weight or less, and 10.0% by weight or less is more preferably 9.0% by weight or less, more preferably 8.0% by weight or less, even more preferably 7.0% by weight or less, and 6.0% by weight or less It is particularly preferred to have This configuration has the advantage of reducing or eliminating the generation of scale during the production of the water-based paint.
  • case C A case where the non-grafted polymer obtained during the production of the graft copolymer (A) is not removed from the aqueous latex of the graft copolymer (A) and a separately prepared polymer is not blended (hereinafter referred to as case C) will be explained.
  • polymer (B) is derived exclusively from non-grafted polymers.
  • the composition (kind and content ratio) of the structural units of the graft portion and the composition of the structural units of the polymer (B) are the same. Therefore, the Tg of the graft portion and the Tg of the polymer (B) are the same value.
  • the polymer (B) in the total 100% by weight of the graft portion and the polymer (B) The sum of the content (%) and graft rate is 100%.
  • the content (%) of the polymer (B) in the total 100% by weight of the graft portion and the polymer (B) depends on the amount of chain transfer agent used during the preparation of the graft portion and the preparation of the polyorganosiloxane. It can be appropriately adjusted by changing the amount of the monomer M to be used.
  • a polymer prepared separately from the graft copolymer (A) is added to the water-based latex or water-based paint of the graft copolymer (A) to form the polymer (B). good too.
  • the non-grafted polymer obtained during the production of the graft copolymer (A) is not removed from the aqueous latex of the graft copolymer (A) and a separately prepared polymer is blended, the polymer (B) is non-grafted. Derived from polymers and separately prepared and compounded polymers.
  • the polymer (B) is prepared separately. Derived from the blended polymer only.
  • the polyorganosiloxane is preferably 55% to 95% by weight in the total 100% by weight of the graft copolymer (A) and the polymer (B), and 55% to 90% by weight. more preferably 60% to 90% by weight, even more preferably 65% to 85% by weight, and particularly preferably 70% to 85% by weight.
  • the advantage is that the water-based paint can provide a coating film with excellent water repellency. and (b) when it is 95% by weight or less, there is an advantage that the water-based paint is more excellent in film-forming properties.
  • the weight average molecular weight of the composite of the graft copolymer (A) and the polymer (B) is preferably 150,000 or less, more preferably 120,000 or less, and 100,000 or less. is more preferred, and 90,000 or less is particularly preferred.
  • This configuration has the advantage that the water-based paint is more excellent in film formability.
  • the weight-average molecular weight of the composite of the graft copolymer (A) and the polymer (B) is preferably 5,000 or more, more preferably 10,000 or more, and 15,000 or more. is more preferable, and 20,000 or more is particularly preferable. This configuration has the advantage that the obtained water-based paint has excellent film formability.
  • weight average molecular weight of the composite of graft copolymer (A) and polymer (B) is referred to as "weight average molecular weight of the composite of graft copolymer (A) and polymer (B)": (1) graft copolymer ( Obtaining an aqueous latex containing A) and polymer (B); (2) Mixing an amount of aqueous latex corresponding to 20 mg of solid content in the aqueous latex with 10 mL of tetrahydrofuran to prepare a mixed solution; (3) (4) The filtrate obtained in (3) above is subjected to HLC-82201 (manufactured by Tosoh Corporation) to measure the weight average molecular weight.
  • HLC-82201 manufactured by Tosoh Corporation
  • the graft copolymer (A) and the polymer (B) are composites. can form Therefore, in the present specification, regardless of the origin of the polymer (B), the value obtained by measuring by the above method is referred to as "the weight of the composite of the graft copolymer (A) and the polymer (B). "average molecular weight”.
  • aqueous latex containing the graft copolymer (A) and the polymer (B)" in the method for measuring the weight-average molecular weight is referred to as "aqueous latex of a composite of the graft copolymer (A) and the polymer (B). ” can also be said.
  • the "aqueous latex containing the graft copolymer (A) and the polymer (B)” in the method for measuring the weight average molecular weight is an aqueous latex of the graft copolymer (A) or a water-based paint. is.
  • the water-based paint may further contain an antifouling agent.
  • This water-based paint does not contain an antifouling agent and has antifouling properties against aquatic organisms. Therefore, the present water-based paint can be suitably used as an antifouling paint for underwater structures without containing an antifouling agent. Since the water-based paint can provide a coating film with excellent antifouling properties against aquatic organisms and/or a coating film with long-lasting antifouling properties against aquatic organisms, the water-based paint further contains an antifouling agent. is preferred.
  • a coating film obtained from a water-based paint containing no antifouling agent is less susceptible to damage than a coating film obtained from a water-based paint containing an antifouling agent. Therefore, a coating film obtained from a water-based paint containing no antifouling agent has the advantage of higher durability than a coating film obtained from a water-based paint containing an antifouling agent.
  • the antifouling agent is not particularly limited, and known antifouling agents can be used.
  • antifouling agents include inorganic compounds, metal-containing organic compounds, and metal-free organic compounds.
  • antifouling agents include metal salts such as zinc oxide, cuprous oxide, 2-pyridinethiol-1-oxide zinc salt (also known as zinc pyrithione) and copper salts, pyrithione salt compounds, p-isopropylpyridinemethyldiphenylborane, Pyridine triphenylborane, tetramethylthiuram disulfide, carbamate compounds (e.g., zinc dimethyldithiocarbamate, zinc ethylenebisdithiocarbamate, 3-iodo-2-propylbutylcarbamate, bisdimethyldithiocarbamoyl zinc ethylenebisdithiocarbamate and manganese-2 ethylenebisdithiocarbamate, etc.), 2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine, 2,4,5,6-tetrachloroisophthalonitrile, N,N- dimethyldichlorophenylure
  • the water-based paint may contain an organic solvent.
  • This water-based paint has the advantage of being excellent in film-forming properties without containing an organic solvent.
  • the water-based paint contains an organic solvent, the water-based paint has the advantage of being more excellent in film-forming properties.
  • organic solvents include hydrocarbons, halogenated hydrocarbons, ethers, esters, ketones, and alcohols.
  • Hydrocarbon organic solvents include n-hexane, isohexane, n-heptane, n-octane, isooctane, n-decane, n-dodecane, cyclohexane, methylcyclohexane, cyclopentane, toluene, xylene, benzene, ethylbenzene, and decalin. , white spirit, naphtha and the like.
  • Organic solvents for halogenated hydrocarbons include methylene chloride, chloroform, tetrachloroethane, trichlorethylene and the like.
  • Ether organic solvents include dioxane, ethyl ether, diethyl ether, butyl diglycol, 2-butoxyethanol, tetrahydrofuran, tetrahydropyran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol diethyl ether.
  • ethylene glycol dibutyl ether diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate (also known as PMAC), propylene glycol methyl ether, dipropylene glycol methyl ether, tripropylene glycol methyl ether, propylene glycol -n-propyl ether, dipropylene glycol-n-propyl ether, propylene glycol-n-butyl ether, dipropylene glycol-n-butyl ether, tripropylene glycol-n-butyl ether, propylene glycol methyl ether acetate, dipropylene glycol methyl ether Acetate, propylene glycol diacetate, propylene glycol phenyl ether, dipropylene glycol dimethyl ether and the like.
  • Organic solvents for esters include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, benzyl acetate, methoxypropyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, n-butyl acetate, and 2-ethoxyethyl acetate. etc.
  • Organic solvents of ketones include acetone, methyl ethyl ketone, diethyl ketone, ethyl isobutyl ketone, methyl isobutyl ketone (also known as MIBK), methyl isoamyl ketone, diacetone alcohol and the like.
  • Organic solvents of alcohols include methanol, ethanol, n-propanol, (iso)propanol, n-butanol, isobutanol, benzyl alcohol, ethylene glycol, propylene glycol and the like.
  • organic solvent a mixture of the alcohol and water described above can also be used.
  • Organic solvents also include dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, and the like. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of organic solvents in this water-based paint is as low as possible.
  • the content of the organic solvent in the water-based paint is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and even more preferably 10 parts by weight or less per 100 parts by weight of the water-based paint. 5 parts by weight or less is particularly preferred.
  • the present water-based paint may contain other optional components other than the components described above, if necessary.
  • Other optional components include curing agents, colorants such as pigments and dyes, extenders, pigment dispersants, ultraviolet absorbers, antioxidants, heat stabilizers (anti-gelling agents), stabilizers, plasticizers, Leveling agents, antifoaming agents, silane coupling agents, antistatic agents, flame retardants, lubricants, viscosity reducers, thickeners, viscosity modifiers, thixotropic agents, low shrinkage agents, inorganic fillers, organic fillers, Thermoplastic resins, desiccants, wetting agents, dispersants, anti-sagging agents, anti-separation agents, anti-settling agents, paint film consumption control agents, surface control agents, film-forming aids, antibacterial agents, anti-mold agents, preservatives , antifreeze agents, tackifiers, rust inhibitors, and the like.
  • a method for producing a water-based paint according to one embodiment of the present invention includes (a) organosiloxane, (b) (b-1) one or more hydrolyzable silyl groups in the molecule, and (b-2) 1 Step 1 to obtain a polyorganosiloxane by polymerizing a monomer mixture for forming a polyorganosiloxane containing a monomer M containing at least one ethylenically unsaturated group and/or a mercapto group; and a step 2 of polymerizing the graft portion-forming monomer mixture in the presence of the obtained polyorganosiloxane, wherein the polyorganosiloxane-forming monomer mixture and the graft portion-forming monomer mixture In the total 100% by weight, the polyorganosiloxane-forming monomer mixture is 55% to 90% by weight, and in step 1, the polyorganosiloxane-forming monomer mixture 100% by weight, polyfunctional the total
  • the method for producing a water-based paint according to one embodiment of the present invention has the above configuration, it is possible to provide a water-based paint with excellent film-forming properties that can provide a coating film with excellent water repellency.
  • Step 1 is a step of preparing polyorganosiloxane.
  • the organosiloxane contained in the polyorganosiloxane-forming monomer mixture is not particularly limited.
  • step 1 it is preferable to use a known organosiloxane so as to obtain, for example, a polyorganosiloxane having the structural unit (organosiloxane-based unit) described in the section (organosiloxane-based unit).
  • step 1 for example, (a) dimethyldialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane, (b) hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexa
  • Various organosiloxane-based cyclic bodies having three or more-membered rings such as siloxane, trimethyltriphenylcyclotrisiloxane, tetradecamethylcycloheptasiloxane, dimethylcyclics (mixture of tri- to heptamer dimethylsiloxane cyclic oligomers), and (c) Dimethyldichlorosilane or the like can be used as the starting organosiloxane.
  • linear or branched organosiloxanes can also be used as starting organosiloxanes.
  • pre-polymerized polyorganosiloxane may be used as the organosiloxane.
  • the molecular chain ends of the polyorganosiloxane may be blocked with a hydroxyl group, an alkoxy group, a trimethylsilyl group, a dimethylvinylsilyl group, a methylphenylvinylsilyl group, a methyldiphenylsilyl group, or the like.
  • Hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane are used as raw material organosiloxanes in Step 1 because they are readily available and easy to prepare polyorganosiloxane. , trimethyltriphenylcyclotrisiloxane, tetradecamethylcycloheptasiloxane, and dimethylcyclics (mixture of tri- to heptamer dimethylsiloxane cyclic oligomers).
  • the monomer M contained in the polyorganosiloxane-forming monomer mixture is the same as that described in the above section (Structural unit U), so the description is incorporated and the description is omitted here.
  • the amount of monomer M used in step 1 correlates with the content of structural unit U in the resulting polyorganosiloxane.
  • the amount of the monomer M used in step 1 is not particularly limited, but the amount used is such that the content of the structural unit U is 0.001% by weight to 10.0% by weight in 100% by weight of the polyorganosiloxane.
  • the amount of the monomer M used in step 1 is, for example, 0.001% by weight to 10.0% by weight in 100% by weight of the polyorganosiloxane-forming monomer mixture, preferably 0.001% by weight. It is more preferably up to 5.0% by weight, even more preferably 0.01% to 5.0% by weight, and particularly preferably 1.0% to 5.0% by weight.
  • This configuration has the advantage that (a) the graft portion-forming monomer mixture can be efficiently polymerized in the presence of the polyorganosiloxane.
  • step 1 the method for polymerizing the organosiloxane and the monomer M is not particularly limited, but for example, a known emulsion polymerization method in the presence of an acidic emulsifier can be mentioned.
  • the acidic emulsifier is not particularly limited, but when an organosiloxane-based cyclic body is used, an acid emulsifier capable of ring-opening the organosiloxane-based cyclic body is preferable. Suitable examples of acidic emulsifiers include dodecylbenzenesulfonic acid.
  • the amount of the acidic emulsifier to be used is not particularly limited, and (a) the desired volume average particle size of the polyorganosiloxane and the graft copolymer (A), (b) the solid content (monomer mixture) concentration in the reaction solution , (c) polymerization conditions such as polymerization temperature, and (d) the presence or absence and amount of additives such as surfactants used.
  • the volume average particle size of the resulting polyorganosiloxane can be controlled by (a) the degree of preliminary dispersion of the raw materials, (b) the amount of emulsifier used, (c) the polymerization temperature, and (d) the method of supplying the raw materials.
  • the resulting aqueous latex is strongly acidic, so it is preferable to neutralize it after the polymerization reaction is completed.
  • the basic compound used for neutralization is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, ammonia, triethylamine and the like.
  • An aqueous latex can be neutralized by adding these basic compounds directly or in an aqueous solution to an aqueous latex containing polyorganosiloxane.
  • step 1 the total amount of polyfunctional alkoxysilane compounds and polyfunctional monomers used is 0.50% by weight or less in 100% by weight of the polyorganosiloxane-forming monomer mixture. With this configuration, a non-crosslinked polyorganosiloxane is obtained.
  • Step 2 is a step of preparing a graft portion graft-bonded to polyorganosiloxane.
  • the graft portion can be formed by polymerizing the monomers used for forming the graft portion (monomer mixture for forming the graft portion) by known radical polymerization in the presence of the polyorganosiloxane.
  • the polyorganosiloxane is obtained by emulsion polymerization in the presence of the above-mentioned acidic emulsifier (that is, when the polyorganosiloxane is obtained as an aqueous latex)
  • the polymerization of the graft portion is preferably carried out by an emulsion polymerization method.
  • the graft portion can be manufactured, for example, according to the method described in International Publication WO2005/028546.
  • the graft portion-forming monomer mixture contains one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers. This configuration has the advantage that the obtained water-based paint has excellent film formability.
  • the types and amounts of the constituent units of the obtained graft section can be determined by the types and amounts of the monomers contained in the graft-forming monomer mixture. Therefore, the types and amounts of the monomers contained in the mixture of monomers for forming the graft portion may be appropriately set so as to obtain the graft portion described in the above section (Graft Portion).
  • thermal decomposition initiator When employing an emulsion polymerization method in step 2, a thermal decomposition initiator can be used as the radical polymerization initiator.
  • the thermal decomposition type initiator include known initiators such as 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, and ammonium persulfate.
  • a redox initiator can also be used as the radical polymerization initiator.
  • the redox type initiator comprises (a) peroxides such as organic and inorganic peroxides, (b) optionally a reducing agent such as sodium formaldehyde sulfoxylate, glucose, and optionally It is an initiator used in combination with a transition metal salt such as iron (II) sulfate, a chelating agent such as disodium ethylenediaminetetraacetate as necessary, and a phosphorus-containing compound such as sodium pyrophosphate as necessary.
  • a transition metal salt such as iron (II) sulfate
  • a chelating agent such as disodium ethylenediaminetetraacetate
  • a phosphorus-containing compound such as sodium pyrophosphate as necessary.
  • Examples of the organic peroxide include t-butyl peroxyisopropyl carbonate, paramenthane hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, and t- and hexyl peroxide.
  • Examples of the inorganic peroxides include hydrogen peroxide, potassium persulfate, and ammonium persulfate.
  • step 2 0.01 to 5.00 parts by weight of the chain transfer agent is used with respect to 100 parts by weight of the monomer mixture for forming the graft part.
  • this production method has the advantage of being able to provide a water-based paint with excellent film-forming properties.
  • the chain transfer agent is not particularly limited, and known chain transfer agents such as t-dodecylmercaptan, n-dodecylmercaptan, normal octylmercaptan and 2-ethylhexyl thioglycolate can be used.
  • the amount of the chain transfer agent to be used with respect to 100 parts by weight of the monomer mixture for forming the graft part is preferably 0.01 part by weight to 5.00 parts by weight, more preferably 0.01 part by weight to 3.00 parts by weight. 0.01 to 1.00 parts by weight is more preferred, and 0.10 to 1.00 parts by weight is particularly preferred.
  • This configuration has the advantage of being able to provide a water-based paint that is more excellent in film formability.
  • the polyorganosiloxane-forming monomer mixture is 55% to 90% by weight in a total of 100% by weight of the polyorganosiloxane-forming monomer mixture and the graft portion-forming monomer mixture. be.
  • This configuration has the advantage of providing a water-based coating that can provide a coating film with excellent water repellency.
  • the total amount of the polyorganosiloxane-forming monomer mixture is 55% to 95% by weight in 100% by weight of the total amount of the polyorganosiloxane-forming monomer mixture and the graft portion-forming monomer mixture. % by weight, more preferably 60% to 90% by weight, even more preferably 65% to 85% by weight, particularly preferably 70% to 85% by weight.
  • This configuration has the advantage of being able to provide a water-based paint that is more excellent in film-forming properties.
  • the aspect (including preferred aspects) of the graft ratio of the graft portion formed by polymerizing the monomer mixture for forming the graft portion is the same as the aspect described in the section (Graft ratio of the graft portion). The description is used, and the description is omitted here.
  • the aspect (including preferred aspects) of the glass transition temperature of the graft portion obtained by polymerizing the graft portion-forming monomer mixture is the same as the aspect described in the section (Glass Transition Temperature of the Graft Portion). , the description is used, and the description is omitted here.
  • a non-grafted polymer is obtained along with the grafted portion.
  • an aqueous latex containing the graft copolymer (A) and the polymer (B) can be obtained.
  • the ratio of the grafted part and the non-grafted polymer obtained in step 2 is determined by (a) the amount of monomer M in the polyorganosiloxane-forming monomer mixture in step 1, and (b) the chain transfer agent in step 2 can be adjusted as appropriate depending on the amount used, etc.
  • the polymer (B) separately prepared may be further added to the aqueous latex of the graft copolymer (A) or the aqueous latex containing the graft copolymer (A) and the non-graft polymer.
  • the graft portion-forming monomer mixture in step 2 preferably contains a reactive emulsifier.
  • the reactive emulsifier is the same as described in the above section (Structural Unit Derived from Reactive Emulsifier), so the description is incorporated and the description is omitted here.
  • the amount of the reactive emulsifier used in step 2 is preferably 0.1% by weight to 20.0% by weight, preferably 0.1% by weight to 15% by weight, based on 100% by weight of the monomer mixture for forming the graft portion.
  • wt% 0 wt%, more preferably 1.0 wt% to 15.0 wt%, more preferably 1.0 wt% to 10.0 wt%, 1.0 wt% It is more preferably from 1.0 wt% to 8.0 wt%, even more preferably from 1.0 wt% to 5.0 wt%, particularly from 1.0 wt% to 4.0 wt%. preferable. According to this configuration, there is an advantage that scale generation during production of the water-based paint is further reduced or eliminated.
  • the graft portion-forming monomer mixture in step 2 contains (a) one or more hydrolyzable silyl groups in the molecule and (b) one or more ethylenically unsaturated groups and/or mercapto groups. It is preferable to include the contained monomer M. Since the monomer M is the same as described in the above (Structural unit U) and (2-1-3. Graft portion) sections, the above descriptions are incorporated and the description is omitted here. do.
  • the amount of the monomer M used in Step 2 is preferably 0.1% by weight to 20.0% by weight, and 0.1% by weight to It is more preferably 15.0% by weight, more preferably 1.0% to 15.0% by weight, even more preferably 1.0% to 10.0% by weight. 0% to 8.0% by weight is particularly preferred. This configuration has the advantage of reducing or eliminating blistering when a coating film obtained from a water-based coating is immersed in water.
  • an emulsifier and a surfactant can be used for the polymerization of each monomer mixture in the production of water-based paint.
  • the types and amounts of the emulsifier and surfactant are within known ranges.
  • conditions such as polymerization temperature, pressure, and deoxidation in the polymerization of each monomer mixture can be applied within a known range.
  • the aqueous latex containing the graft copolymer (A) and the polymer (B) obtained by the production method described above is used as a water-based paint as it is or after being diluted with water (for example, deionized water) as necessary. good too.
  • An antifouling agent and/or other optional components may be further added to the water-based latex containing the graft copolymer (A) and the polymer (B) obtained by the production method described above to obtain a water-based paint. .
  • the production method may further include the step of adding an antifouling agent.
  • the antifouling agent and other optional components are the same as those described in (2-3. Antifouling agent) and (2-5. Other optional components), respectively. Description is omitted here.
  • Method for using water-based paint (method for producing water-based coating film)]
  • the method of using the water-based paint can also be said to be a method of applying a coating film (for example, an antifouling coating film) using the water-based paint.
  • a method of using the present water-based paint includes applying the water-based paint to an underwater structure. Specifically, the method for using the water-based paint according to one embodiment of the present invention is described in [2. water-based paint], or the water-based paint according to one embodiment of the present invention described in the above [3. Method for producing water-based paint] above.
  • the method of using the water-based paint can also be said to be a method of producing a water-based coating film.
  • a water-repellent coating film can be formed on the surface or inner surface of the underwater structure.
  • a coating film made of the present water-based paint has antifouling properties against aquatic organisms. Therefore, by carrying out the step of applying the water-based paint to the underwater structure, it is possible to form a coating film having antifouling properties on the surface or inner surface of the underwater structure.
  • the water-based paint has excellent film-forming properties. Therefore, by applying a water-based paint to an underwater structure, a coating film having water repellency (and antifouling properties) can be easily formed on the surface or inner surface of the underwater structure.
  • the method of applying the water-based paint in the application step is not particularly limited, and a known method can be used.
  • coating methods that can be used include casting, dipping, spraying, brushing and brushing, rollers, dip coaters, electrostatic coating, and electrodeposition coating.
  • a coating robot may be used in the coating process.
  • Application robots can also be used to extrude and apply water-based paint onto underwater structures in a bead, monofilament or swirl.
  • Water-based paints can also be applied onto underwater structures using jet spraying or streaming techniques.
  • the water-based paint applied on the underwater structure may be dried.
  • a water-repellent (and antifouling) coating can be formed on an underwater structure by applying the water-based paint onto the underwater structure and optionally drying the water-based paint.
  • the method for producing a water-based coating film according to one embodiment of the present invention may have the following configuration.
  • a method for producing a water-based coating comprising the step of applying a water-based coating to an underwater structure:
  • the water-based coating film is including a graft copolymer (A) and a polymer (B)
  • the graft copolymer (A) includes polyorganosiloxane and a graft portion graft-bonded to the polyorganosiloxane,
  • the polyorganosiloxane has (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more ethylenically unsaturated groups and/or mercapto groups.
  • the polymer (B) contains structural units derived from one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers.
  • the polyorganosiloxane is 55% to 90% by weight in the total 100% by weight of the graft copolymer (A) and the polymer (B),
  • the polymer (B) accounts for 5.0% by weight or more of the total 100% by weight of the graft copolymer (A) and the polymer (B).
  • the method for producing a water-based coating film according to one embodiment of the present invention may have the following configuration.
  • a method for producing a water-based coating comprising the step of applying a water-based coating to an underwater structure:
  • the water-based coating film is including a graft copolymer (A) and a polymer (B)
  • the graft copolymer (A) includes polyorganosiloxane and a graft portion graft-bonded to the polyorganosiloxane,
  • the polyorganosiloxane has (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more ethylenically unsaturated groups and/or mercapto groups.
  • the polymer (B) contains structural units derived from one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers.
  • the polyorganosiloxane is 55% to 90% by weight in the total 100% by weight of the graft copolymer (A) and the polymer (B)
  • the weight average molecular weight of the composite of the graft copolymer (A) and the polymer (B) is 150,000 or less.
  • This coating film has the advantage of being excellent in water repellency. As a result, the present coating film also has the advantage of being excellent in antifouling properties against aquatic organisms.
  • the coating film is excellent in water repellency.
  • the water repellency of the present coating film (for example, a coating film having a thickness of 100 ⁇ m made of the present water-based coating material) is preferably 92 or more, more preferably 94 or more, more preferably 96 or more, and 98. It is more preferably 100 or more, and particularly preferably 100 or more. According to this configuration, the coating film has the advantage of being more excellent in antifouling properties against aquatic organisms. A method for measuring the water repellency of the coating film will be described in detail in Examples below.
  • the coating film hardness of the present coating film is preferably less than 70, more preferably 60 or less, and more preferably 50 or less. , is more preferably 40 or less, more preferably 35 or less, and particularly preferably 30 or less. According to this configuration, the coating film has the advantage of being more excellent in antifouling properties against aquatic organisms. A method for measuring the coating film hardness of the coating film will be described in detail in Examples below.
  • the polyorganosiloxane and the graft portion of the graft copolymer (A) contained in the water-based paint are preferably non-substantially non-crosslinked.
  • the crosslink density of the graft copolymer (A) correlates with the elasticity of the graft copolymer (A), and as a result, the coating film obtained from a water-based paint (for example, a 100 ⁇ m-thick coating film made of a water-based paint) It can be correlated with dynamic storage modulus.
  • the crosslink density calculated from the dynamic storage modulus of the coating film can reflect the crosslink density of the polyorganosiloxane and the graft portion of the graft copolymer (A) contained in the water-based paint.
  • the crosslink density calculated from the dynamic storage elastic modulus of the present coating film is preferably 1.0 ⁇ 10 ⁇ 4 mol/cm 3 or less, It is more preferably 1.0 ⁇ 10 ⁇ 5 mol/cm 3 or less, more preferably 1.0 ⁇ 10 ⁇ 6 mol/cm 3 or less, and 1.0 ⁇ 10 ⁇ 7 mol/cm 3 or less.
  • the crosslink density calculated from the dynamic storage modulus of the coating film is 1.0 ⁇ 10 ⁇ 4 mol/cm 3 or less, the polyorganosiloxane and the graft portion of the graft copolymer (A) contained in the water-based paint are It can be said that the probability of being non-crosslinked is high. Methods for measuring the storage elastic modulus and crosslink density of the coating film will be described in detail in Examples below.
  • the water-based paint can be suitably used as an antifouling paint for antifouling the surfaces or inner surfaces of various underwater structures.
  • Underwater structures include ships, materials for aquaculture and fishing (e.g. ropes, fishing nets, fishing gear, floats, buoys, tetrapods, etc.), oil fences, water supply outlets for thermal or nuclear power plants, and cooling water pipes. and piping for seawater utilization equipment, undersea tunnels, undersea bases, mega-floats, harbor facilities, canals, various marine engineering works such as waterways, industrial water system facilities, bridges, buoys, and the like.
  • An embodiment of the present invention may have the following configuration.
  • a graft copolymer (A) and a polymer (B) are included, wherein the graft copolymer (A) is a polyorganosiloxane, a graft portion graft-bonded to the polyorganosiloxane, and the polyorganosiloxane has (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more ethylenically unsaturated groups and/or mercapto groups and (b) is non-crosslinked, and the polymer (B) comprises an aromatic vinyl monomer, a vinyl cyanide monomer, and (meth ) contains a structural unit derived from one or more monomers selected from the group consisting of acrylate monomers, and the graft copolymer (A) and the polymer (B) total 100% by weight, Polyorganosiloxane is 55% by weight to 90% by weight, and the polymer (B) is 5.0% by weight or more in the
  • a graft copolymer (A) and a polymer (B) are included, wherein the graft copolymer (A) is a polyorganosiloxane, a graft portion graft-bonded to the polyorganosiloxane, and the polyorganosiloxane has (a) (a-1) one or more hydrolyzable silyl groups in the molecule and (a-2) one or more ethylenically unsaturated groups and/or mercapto groups and (b) is non-crosslinked, and the polymer (B) comprises an aromatic vinyl monomer, a vinyl cyanide monomer, and (meth ) contains a structural unit derived from one or more monomers selected from the group consisting of acrylate monomers, and the graft copolymer (A) and the polymer (B) total 100% by weight, A water-based paint, wherein the polyorganosiloxane is 55% to 90% by weight, and the composite of the graft copoly
  • the graft portion further comprises (a) one or more hydrolyzable silyl groups in the molecule and (b) one or more ethylenically unsaturated groups and/or mercapto groups.
  • the water-based paint according to any one of [1] to [8], which contains a structural unit derived from the monomer M.
  • a method for producing a water-based coating film comprising the step of applying the water-based coating according to any one of [1] to [14] to an underwater structure.
  • step 1 of polymerizing a polyorganosiloxane-forming monomer mixture containing a monomer M containing a group to obtain a polyorganosiloxane, and grafting in the presence of the polyorganosiloxane obtained in step 1 and a step 2 of polymerizing a part-forming monomer mixture, wherein the polyorganosiloxane-forming polymer
  • the monomer mixture for is 55% by weight to 90% by weight, and in step 1, in 100% by weight of the polyorganosiloxane-forming monomer mixture, a polyfunctional alkoxysilane compound and a polyfunctional monomer is 0.50% by weight or less, and in step 2, the monomer mixture for forming the graft portion comprises an aromatic vinyl monomer,
  • the amount of the monomer M used in the step 1 is 0.001% by weight to 10.0% by weight in 100% by weight of the polyorganosiloxane-forming monomer mixture. Water-based paint as described.
  • the amount of the reactive emulsifier used in the step 2 is 0.1% by weight to 20.0% by weight based on 100% by weight of the monomer mixture for forming the graft portion, according to [19]. water-based paint.
  • the graft portion-forming monomer mixture further contains (a) one or more hydrolyzable silyl groups in the molecule and (b) one or more ethylenically unsaturated groups. and/or the water-based paint according to any one of [16] to [20], comprising a monomer M containing a mercapto group.
  • the amount of the monomer M used in the step 2 is 0.1% by weight to 20.0% by weight based on 100% by weight of the monomer mixture for forming the graft portion. water-based paint.
  • the volume average particle size (Mv) of the polyorganosiloxane or graft copolymer dispersed in the aqueous latex was measured using Nanotrac WaveII-EX150 (manufactured by Microtrack Bell Co., Ltd.). An aqueous latex diluted with deionized water was used as a measurement sample. For the measurement, the refractive index of water and the polyorganosiloxane or graft copolymer obtained in each production example was entered, the measurement time was 120 seconds, and the sample concentration was adjusted so that the loading index was within the range of 1 to 10. I did.
  • the Tg of the graft portion was calculated according to the FOX formula (formula 1) described above using the Tg values of homopolymers of the following monomers.
  • the graft ratio (%) was calculated by the following method: (1) An aqueous latex containing a graft copolymer was obtained; 50 mL of methyl ethyl ketone (MEK) was mixed to prepare a MEK lysate; separated into an insoluble component (MEK-insoluble matter).
  • MEK methyl ethyl ketone
  • CP60E manufactured by Hitachi Koki Co., Ltd.
  • the weight of the graft copolymer (A) (MEK-insoluble
  • the weight of the graft copolymer (A) and the weight of the non-grafted polymer were calculated so that the sum of the weight of the non-grafted polymer (the weight of the portion insoluble in methanol) and the weight of the non-grafted polymer (weight of the methanol-insoluble portion) was 100%. Repaired. The obtained value was used to calculate the graft ratio.
  • aqueous latexes containing graft copolymers aqueous latexes (L-1) to (L-11) obtained in Production Examples 1 to 11 described later and comparative production Aqueous latexes (CL-1) to (CL-2) obtained in Examples 1 and 2 were used.
  • water-based paints were obtained without removing the non-grafted polymer that may have been generated during the preparation of the graft portion from the water-based latex obtained after preparing the graft copolymer. Therefore, the weight of the non-grafted polymer, ie, the weight of the methanol-insoluble matter, becomes the weight of the polymer (B) contained in the water-based paint. Therefore, the content (%) of the polymer (B) in the total 100% by weight of the graft portion and the polymer (B) is a value obtained by subtracting the graft rate (%) from 100.
  • the weight average molecular weight of the composite of the graft copolymer and polymer (B) was measured by the following method: (1) an aqueous latex containing the graft copolymer and polymer (B) was obtained; (2) An amount of aqueous latex corresponding to 20 mg of solid content in the aqueous latex was mixed with 10 mL of tetrahydrofuran to prepare a mixed solution; (3) the mixed solution was filtered through a PTFE filter (0.2 ⁇ m); The filtrate obtained in (3) was subjected to HLC-82201 (manufactured by Tosoh Corporation) to measure the weight average molecular weight.
  • HLC-82201 manufactured by Tosoh Corporation
  • the aqueous latexes (L-1) to (L-11) can be said to be aqueous latexes of a composite of the graft copolymer (A) and the polymer (B), and the aqueous latexes (CL-1) to (CL- 2) can be said to be an aqueous latex of a composite of the graft copolymer and polymer (B).
  • the film formability of the water-based paint was evaluated by the following method: (1) each water-based paint was applied to an aluminum plate with an applicator so that the film thickness after drying was 100 ⁇ m; The plate was allowed to stand overnight at 25°C to prepare a coating film of the water-based paint; (3) The state of the coated surface of the obtained aluminum plate was visually confirmed, and the film formability was evaluated according to the following criteria. bottom. ⁇ (good): no cracks, x (defective): cracks present.
  • the amount of scale generated during the production of the water-based paint was evaluated by the following method: (1) each water-based paint was filtered through a 150-mesh wire mesh; (2) the substance (scale) remaining on the wire mesh was dried, After drying, the weight of the scale was measured; (3) The weight of the scale was determined based on the solid content of the water-based latex of the composite of the graft copolymer (A) and the polymer (B) and the amount of raw materials added during the production of the water-based paint. The weight was divided by the total weight, and the obtained value was multiplied by 100 to calculate the amount of scale generated (%); (4) The amount of scale generated was evaluated according to the following criteria. ⁇ (good): the amount of scale generation is less than 0.3%, x (defective): The amount of scale generation is 0.3% or more.
  • the amount of blisters generated when the coating film of the water-based paint was immersed in water was evaluated by the following method: (1) A glass plate was coated with an epoxy-based heavy anti-corrosion paint; (2) the resulting glass plate Furthermore, each water-based paint was applied with an applicator so that the film thickness after drying was 100 ⁇ m; (3) the obtained glass plate was left at 25 ° C. (4) The obtained glass plate was immersed in water and allowed to stand still for 1 week; to evaluate the amount of blisters generated. ⁇ (good): no blisters on the painted surface; ⁇ (Pass): Blisters are observed on part of the painted surface, ⁇ (bad): Blisters are observed on the entire coated surface.
  • the water repellency of the coating film of the water-based paint was evaluated by the following method: (1) A glass plate was coated with an epoxy-based heavy anti-corrosion paint; (2) Each water-based paint was further applied to the obtained glass plate. (3) The resulting glass plate was allowed to stand overnight at 25°C to prepare a coating film of the epoxy-based heavy anti-corrosion paint and the water-based paint. (4) The obtained glass plate was immersed in water and allowed to stand still for 1 week; (DropMaster, manufactured by Kyowa Interface Science Co., Ltd.). In the examples, when the water repellency of the coating film obtained by measuring by the method described above is greater than 90, the coating film is judged to be excellent in water repellency.
  • the coating film hardness of the water-based paint film was evaluated by the following method: (1) A glass plate was coated with an epoxy-based heavy anti-corrosion paint; (2) Each water-based paint was applied to the obtained glass plate. was applied with an applicator so that the film thickness after drying was 100 ⁇ m. (4) The obtained glass plate was immersed in water and allowed to stand for one week; (5) After standing, the coating film hardness of the coating film on the glass plate was measured using a pendulum hardness meter (manufactured by Erichsen). was measured using
  • Step 1 251 parts by weight of deionized water, 0.5 parts by weight of SDS, and a monomer mixture for forming polyorganosiloxane (100 parts by weight of octamethylcyclotetrasiloxane and 2 parts by weight of ⁇ -acryloyloxypropyldimethoxymethylsilane as monomer M A mixture consisting of The resulting mixture was stirred at 10000 rpm for 5 minutes using a homomixer to prepare an emulsion. The obtained emulsion was put into a 5-necked glass container all at once.
  • the glass vessel had a thermometer, stirrer, reflux condenser, nitrogen inlet, and monomer and emulsifier addition ports.
  • a 10% dodecylbenzenesulfonic acid (DSA) aqueous solution was added to a glass container in an amount corresponding to 1 part by weight of the solid content in the aqueous solution, and then (ii) the glass container.
  • the temperature inside was raised to 80° C. over about 40 minutes, and (iii) the mixture in the glass vessel was then reacted at 80° C. for 6 hours.
  • DSA dodecylbenzenesulfonic acid
  • aqueous latex (R-1) containing polyorganosiloxane was obtained by the above operation.
  • the polymerization conversion rate of the monomer component was 97%.
  • the volume average particle size of the polyorganosiloxane contained in the obtained aqueous latex (R-1) was 280 nm.
  • Step 2 Subsequently, a glass reactor was charged with 275.5 parts by weight of aqueous polyorganosiloxane latex (R-1) (containing 70 parts by weight of polyorganosiloxane) and 121 parts by weight of deionized water.
  • the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device.
  • the charged raw materials were stirred at 60° C. while replacing the gas in the glass reactor with nitrogen.
  • 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.13 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • a mixture of a monomer mixture for forming a graft portion consisting of only 30 parts by weight of BMA, 0.24 parts by weight of t-dodecylmercaptan as a chain transfer agent, and 0.085 parts by weight of BHP was placed in a glass reactor for 120 minutes. was added continuously over a period of time. After that, 0.013 parts by weight of BHP was added into the glass reactor, and the mixture in the glass reactor was stirred for another hour to complete the polymerization.
  • an aqueous latex (L-1) containing the graft copolymer (A) and the polymer (B) was obtained.
  • the polymerization conversion rate of the monomer component was 97% or more.
  • the volume average particle size of the graft copolymer (A) contained in the obtained aqueous latex (L-1) was 293 nm.
  • Production example 2 A mixture of 29 parts by weight of BMA as a monomer mixture for forming a graft part and 1 part by weight of an ether sulfate type anionic surfactant (having an allyloxy group) (ADEKA Co., Ltd., Adekaria Soap SR1025) as a reactive emulsifier.
  • An aqueous latex (L-2) containing the graft copolymer (A) and the polymer (B) was obtained in the same manner as in Production Example 1, except that the polymer (B) was used.
  • the volume average particle size of the graft copolymer (A) was 294 nm.
  • Comparative production example 1 A water-based latex (CL-1) containing a graft copolymer and a polymer was obtained in the same manner as in Production Example 1, except that no chain transfer agent was used in step 2. In Comparative Production Example 1, the volume average particle size of the graft copolymer was 295 nm.
  • Comparative production example 2 (a) The amount of aqueous latex (R-1) used was changed to 196.8 parts by weight (including 50 parts by weight of polyorganosiloxane), and (b) the amount of BMA used in the monomer mixture for forming the graft part. was changed to 49 parts by weight, and (c) a water-based latex containing a graft copolymer and a polymer (CL-2 ). In Comparative Production Example 2, the volume average particle size of the graft copolymer was 296 nm.
  • the core portion of the graft copolymer (A) was composed only of polyorganosiloxane.
  • the core portion of the graft copolymer was composed only of polyorganosiloxane. That is, the volume average particle size of the polyorganosiloxane contained in the aqueous latex (R-1) can be said to be the volume average particle size of the core portion.
  • Aqueous latexes (L-1) to (L-11) obtained in Production Examples 1 to 11 and aqueous latexes (CL-1) to (CL-2) obtained in Comparative Production Examples 1 to 2 were used to measure (a) the graft ratio and polymer content (%), and (b) the weight average molecular weight of the graft copolymer and polymer composite. Table 2 shows the results.
  • Table 2 shows the compositions of the graft copolymers in Production Examples 1-11 and Comparative Production Examples 1-2.
  • polyorganosiloxane content (%) means “polyorganosiloxane content (%)” used in step 2 with respect to a total of 100 parts by weight of the polyorganosiloxane-forming monomer mixture and the graft portion-forming monomer mixture.
  • amount (%) of siloxane is intended, that is, “the content (%) of polyorganosiloxane in 100% by weight of the total of graft copolymer and polymer” is intended.
  • amount of chain transfer agent means “amount of chain transfer agent used (weight parts) per 100 parts by weight in total of the polyorganosiloxane-forming monomer mixture and the graft portion-forming monomer mixture.
  • “parts)”, and “the amount of reactive emulsifier (parts by weight)” is “the amount of reactive emulsifier in the total 100 parts by weight of the polyorganosiloxane-forming monomer mixture and the graft part-forming monomer mixture.
  • the amount used (parts by weight)" is intended, and “monomer M (parts by weight)” is the amount of The amount (parts by weight) of the monomer M used in the preparation of the graft portion in step 2 is intended, and the “weight average molecular weight” is the “weight average molecular weight of the graft copolymer and polymer composite”.
  • “amount (%) of graft copolymer” intends “amount (%) of graft copolymer in total 100% by weight of graft copolymer and polymer”
  • “amount of polymer (%)” intends "the amount (%) of the polymer in 100% by weight of the total of the graft copolymer and the polymer”.
  • Example 1-11 and Comparative Examples 1-2 Using water-based latexes (L-1) to (L-11), respectively, water-based paints of Examples 1 to 11 were prepared according to Formulation Example 1 and Formulation Example 2 shown in Table 1. Using water-based latexes (CL-1) to (CL-2), respectively, water-based paints of Comparative Examples 1 and 2 were prepared according to Formulation Example 1 and Formulation Example 2 shown in Table 1.
  • the water-based paint according to one embodiment of the present invention it is possible to provide a water-based paint excellent in film-forming properties that can provide a coating film excellent in water repellency. Moreover, the water-based paint according to one embodiment of the present invention can provide a coating film having excellent antifouling properties against aquatic organisms.
  • the water-based paint according to one embodiment of the present invention can be used for ships, materials for aquaculture and fishing, oil fences, water supply and drain ports of thermal or nuclear power plants, cooling water conduits and It is suitable for underwater structures such as piping for seawater utilization equipment, undersea tunnels, undersea bases, mega-floats, harbor facilities, canals, various marine civil engineering works such as waterways, industrial water system facilities, bridges, buoys, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)

Abstract

撥水性に優れる塗膜を提供し得る、製膜性に優れた水系塗料を提供することを課題とする。(a)特定量の非架橋ポリオルガノシロキサンおよびグラフト部を含むグラフト共重合体(A)と、(b)特定の構成を有する重合体(B)とを含み、(i)重合体(B)の量が特定量であるか、または(ii)グラフト共重合体(A)および重合体(B)の複合体の重量平均分子量が特定の値以下である、水系塗料とする。

Description

水系塗料
 本発明は、水系塗料に関する。
 防汚塗料としては様々なものが開発されている。例えば、特許文献1には、シリコン含有基および2価の金属原子Mを含有する金属原子含有基を有する加水分解性樹脂と、熱可塑性樹脂および/または可塑剤とを含有する防汚塗料組成物が開示されている。
 また、塗料の主流は溶剤系塗料であるが、近年、環境保全およびや安全衛生の観点から、水系塗料への移行が急速に進んでいる。水系塗料としては、例えば、特許文献2~5に記載の技術が挙げられる。
 例えば、特許文献2には、オルガノシロキサン(I)とグラフト交叉剤(II)を共縮合して得られるポリオルガノシロキサン重合体(III)1~50質量%と、エチレン性不飽和単量体(IV)19~69質量%を共重合した後、さらにエチレン性不飽和単量体(V)30~80質量%(ただし、(III)+(IV)+(V)=100質量%)を共重合して得られる重合体(A)の水性分散体を含有する水性被覆組成物が開示されている。特許文献2の技術において、特許文献2の技術において、エチレン性不飽和単量体(IV)を共重合した場合のガラス転移温度は-60~20℃の範囲であり、エチレン性不飽和単量体(V)を共重合した場合のガラス転移温度は30~100℃の範囲である。
 また、非架橋のポリオルガノシロキサンラテックスを用いるグラフト共重合体の製造方法として、特許文献6に記載の技術も知られている。
国際公開公報WO2011/046086号 日本国特開2004-137374号公報 日本国特開平9-137123号公報 日本国特開平9-208642号公報 日本国特開平07-286129号公報 日本国特開平07-033836号公報
 しかしながら、上述のような従来技術は、塗膜の撥水性という観点からは、十分なものでなく、さらなる改善の余地があった。また、塗料は、製膜性に優れることが好ましい。
 本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、撥水性に優れる塗膜を提供し得る、製膜性に優れた新規の水系塗料を提供することである。
 本発明者らは、前記課題を解決するため鋭意検討した結果、本発明を完成させるに至った。
 本発明の一実施形態に係る水系塗料は、グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である。
 本発明の別の一実施形態に係る水系塗料は、グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である。
 本発明の別の一実施形態に係る水系塗料の製造方法は、(a)オルガノシロキサン、および(b)(b-1)分子内に1個以上の加水分解性シリル基と、(b-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体M、を含むポリオルガノシロキサン形成用単量体混合物を重合してポリオルガノシロキサンを得る工程1と、工程1で得られた前記ポリオルガノシロキサンの存在下でグラフト部形成用単量体混合物を重合する工程2と、を有し、前記ポリオルガノシロキサン形成用単量体混合物および前記グラフト部形成用単量体混合物の合計100重量%中、前記ポリオルガノシロキサン形成用単量体混合物は55重量%~90重量%であり、前記工程1では、前記ポリオルガノシロキサン形成用単量体混合物100重量%中、多官能性のアルコキシシラン化合物および多官能性単量体の合計使用量が0.50重量%以下であり、前記工程2では、前記グラフト部形成用単量体混合物は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体を含み、前記工程2では、前記グラフト部形成用単量体混合物100重量部に対して、連鎖移動剤0.01重量部~5.00重量部を使用する。
 本発明の一実施形態によれば、撥水性に優れる塗膜を提供し得る、製膜性に優れた水系塗料を提供することができるという効果を奏する。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 本明細書において、X単量体に由来する繰り返し単位を「X単位」と称する場合がある。繰り返し単位は、構成単位ともいえる。
 〔1.本発明の一実施形態の技術的思想〕
 上述したように、水中構造物に防汚塗料を塗布することが一般的である。塗料としては、溶剤系塗料および水系塗料が知られており、環境保全および安全衛生の観点から、水系塗料への移行が急速に進んでいる。しかしながら、防汚塗料に限って言えば溶剤系塗料のみが知られており(例えば特許文献1)、水系の防汚塗料の開発が求められている。
 水系塗料として、上述した特許文献2~5に記載の技術が知られているが、何れの文献に記載の技術においても、防汚塗料として求められる撥水性の観点からさらに改善の余地があった。
 そこで、本発明者は、撥水性に優れる塗膜を提供し得る水系塗料の提供を目的として鋭意検討を行った。その結果、本発明者は、以下の構成とすることで、驚くべきことに、撥水性に優れる塗膜を提供し得る水系塗料を提供できることを独自に見出した:ポリオルガノシロキサンを一定量以上含むグラフト共重合体を含む水系塗料とする。
 しかしながら、かかる水系塗料は、製膜性に劣るものであった。本発明者は、製膜性に劣る原因は、ポリオルガノシロキサンの含有量が一定量以上であるためであると推測した。すなわち、撥水性と製膜性とは、トレードオフの関係にあると推測された。
 そこで、本発明者は、撥水性と製膜性とを両立し得る水系塗料、すなわち、撥水性に優れる塗膜を提供し得る製膜性に優れた水系塗料の提供を目的として、さらに鋭意検討を行った。その結果、本発明者は、以下の構成とすることで、驚くべきことに、撥水性に優れる塗膜を提供し得る製膜性に優れた水系塗料を提供できることを独自に見出し、本発明を完成させるに至った:ポリオルガノシロキサンを一定量以上含むグラフト共重合体(A)を含み、かつ、(i)特定の構成を有する重合体(B)を含み、グラフト共重合体(A)と重合体(B)との複合体の分子量が一定量以下であるか、または(ii)特定の構成を有する重合体(B)を特定量含む、水系塗料とする。
 〔2.水系塗料〕
 本発明の一実施形態に係る水系塗料は、グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である。かかる水系塗料を、本明細書において、「第1の水系塗料」と称する場合もある。
 第1の水系塗料は、上述した構成を有するため、製膜性に優れ、かつ撥水性に優れる塗膜を提供できるという利点を有する。また、第1の水系塗料は、上述した構成を有するため、水中生物に対する防汚性を有する。そのため、第1の水系塗料は、水中構造物用防汚塗料として好適に利用できる。
 換言すれば本発明の別の一実施形態は、グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である、水中構造物用水系防汚塗料、である。
 本発明の別の一実施形態に係る水系塗料は、グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である。かかる水系塗料を、本明細書において、「第2の水系塗料」と称する場合もある。
 第2の水系塗料は、上述した構成を有するため、製膜性に優れ、かつ撥水性に優れる塗膜を提供できるという利点を有する。また、第2の水系塗料は、上述した構成を有するため、水中生物に対する防汚性を有する。そのため、第2の水系塗料は、水中構造物用防汚塗料として好適に利用できる。
 換言すれば本発明の別の一実施形態は、グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である、水中構造物用水系防汚塗料、である。
 本明細書において、上述した第1の水系塗料および第2の水系塗料を特に区別しない場合、第1の水系塗料および第2の水系塗料を合わせて「本発明の一実施形態に係る水系塗料」または「本水系塗料」と称する。
 本発明の一実施形態における、水系塗料の製膜性の評価方法、並びに、水系塗料の塗膜の撥水性の測定方法については、後の実施例にて詳説する。
 (2-1.グラフト共重合体(A))
 本水系塗料は、グラフト共重合体(A)および重合体(B)を含む。グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含む。
 (2-1-1.ポリオルガノシロキサン)
 ポリオルガノシロキサンは、(i)オルガノシロキサン系単位と、(ii)(ii-a)分子内に1個以上の加水分解性シリル基と、(ii-b)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uと、を含む。
 グラフト共重合体(A)がポリオルガノシロキサンを含むことにより、水系塗料は撥水性に優れる塗膜を提供することができる。塗膜の撥水性と、塗膜の接触角とは相関し得る。それ故、換言すれば、グラフト共重合体(A)がポリオルガノシロキサンを含むことにより、水系塗料は接触角が大きい塗膜を提供することができる。また、グラフト共重合体(A)がポリオルガノシロキサンを含むことにより、水系塗料が提供する塗膜は、十分な耐熱性を有し、かつ低温での耐衝撃性に優れるという利点も有する。
 (オルガノシロキサン系単位)
 オルガノシロキサン系単位としては、特に限定されないが、例えば、(a)ジメチルシリルオキシ単位、ジエチルシリルオキシ単位、メチルフェニルシリルオキシ単位、ジフェニルシリルオキシ単位、ジメチルシリルオキシ-ジフェニルシリルオキシ単位などの、アルキルもしくはアリール2置換シリルオキシ単位、並びに(b)側鎖のアルキルの一部が水素原子に置換されたオルガノハイドロジェンシリルオキシ単位などの、アルキルもしくはアリール1置換シリルオキシ単位、などが挙げられる。ポリオルガノシロキサンは、上述したオルガノシロキサン系単位のうち、1種類のみを含んでいてもよく、2種以上を組み合わせて含んでいてもよい。
 得られる水系塗料が耐熱性に優れる塗膜を提供することができることから、ポリオルガノシロキサンは、当該ポリオルガノシロキサンに含まれる全構成単位100モル%中、オルガノシロキサン系単位を50モル%以上含むことが好ましく、60モル%以上含むことがより好ましく、70モル%以上含むことがより好ましく、80モル%以上含むことがさらに好ましく、90モル%以上含むことがよりさらに好ましく、95モル%以上含むことが特に好ましい。
 得られる水系塗料が耐熱性により優れる塗膜を提供することができることから、ポリオルガノシロキサンは、当該ポリオルガノシロキサンに含まれる全構成単位100モル%中、ジメチルシリルオキシ単位、メチルフェニルシリルオキシ単位およびジメチルシリルオキシ-ジフェニルシリルオキシ単位からなる群より選択される1種以上の構成単位を50モル%以上含むことが好ましく、60モル%以上含むことがより好ましく、70モル%以上含むことがより好ましく、80モル%以上含むことがさらに好ましく、90モル%以上含むことがよりさらに好ましく、95モル%以上含むことが特に好ましい。ジメチルシリルオキシ単位の原料は、他のオルガノシロキサン系単量体と比較して、入手がより容易であり、より安価である。それ故、入手性および経済的な観点から、ポリオルガノシロキサンは、当該ポリオルガノシロキサンに含まれる全構成単位100モル%中、ジメチルシリルオキシ単位を50モル%以上含むことがより好ましく、60モル%以上含むことがより好ましく、70モル%以上含むことがより好ましく、80モル%以上含むことがさらに好ましく、90モル%以上含むことがよりさらに好ましく、95モル%以上含むことが特に好ましい。
 (構成単位U)
 ポリオルガノシロキサンの調製時に、原料として、(a)分子内に1個以上の加水分解性シリル基と、(b)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体(後述する単量体Mである。)を用いることにより、構成単位Uを含むポリオルガノシロキサンを得ることができる。
 本発明の一実施形態で使用される単量体Mに含まれる加水分解性シリル基としては、特に限定されない。当該加水分解性シリル基としては、例えば、ハロゲノシリル基、アシロキシシリル基、アミドシリル基、アミノシリル基、アルケニルオキシシリル基、アミノキシシリル基、オキシムシリル基、アルコキシシリル基、チオアルコキシシリル基、シラノール基等が挙げられる。重合反応性に富み、かつ取り扱いが容易であることから、加水分解性シリル基としてはアルコキシシリル基が好ましい。単量体Mが分子内に2個以上の加水分解性シリル基を含む場合、複数の加水分解性シリル基は、同一であってもよく、それぞれ異なっていてもよい。
 本発明の一実施形態で使用される単量体Mに含まれるエチレン性不飽和基としては、特に限定されない。当該エチレン性不飽和基としては、例えば、ビニル基、アクリロイル基およびメタクリロイル基等が挙げられる。グラフト部形成時の反応性の観点から、エチレン性不飽和基としてはアクリロイル基およびメタクリロイル基からなる群から選択される1種以上が好ましい。単量体Mが分子内に2個以上のエチレン性不飽和基を含む場合、複数のエチレン性不飽和基は、同一であってもよく、それぞれ異なっていてもよい。「グラフト部形成時」とは、「グラフト部形成用単量体混合物の重合時」ともいえる。
 単量体Mの具体例としては、例えば、(a)ビニルメチルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、テトラメチルテトラビニルシクロテトラシロキサン等のビニルシラン類、(b)β-メタクリロイルオキシエチルジメトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルジメトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルメトキシジメチルシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルジエトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルジエトキシエチルシラン、3-(メタ)アクリロイルオキシプロピルエトキシジメチルシラン、3-(メタ)アクリロイルオキシプロピルエトキシジエチルシラン、δ-(メタ)アクリロイルオキシブチルジエトキシメチルシラン等の(メタ)アクリロイルオキシアルキルシラン類、および(c)3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルメトキシメチジルシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジエトキシメチルシラン、3-メルカプトプロピルジエトキシエチルシラン、等のメルカプトアルキルシラン類、等を挙げることができる。また、単量体Mの具体例として、p-ビニルフェニルメチルジメトキシシラン、2-(m-ビニルフェニル)エチルメチルジメトキシシラン、1-(m-ビニルフェニル)メチルジメチルイソプロポキシシラン、2-(p-ビニルフェニル)エチルメチルジメトキシシラン、3-(p-ビニルフェノキシ)プロピルメチルジエトキシシラン、3-(p-ビニルベンゾイロキシ)プロピルメチルジメトキシシラン、1-(o-ビニルフェニル)-1,1,2-トリメチル-2,2-ジメトキシジシラン、1-(p-ビニルフェニル)-1,1-ジフェニル-3-エチル-3,3-ジエトキシジシロキサン、m-ビニルフェニル-[3-(トリエトキシシリル)プロピル]ジフェニルシランおよび[3-(p-イソプロペニルベンゾイルアミノ)プロピル]フェニルジプロポキシシラン等も挙げられる。これらの単量体Mは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 単量体Mとしては、β-メタクリロイルオキシエチルジメトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルジメトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルメトキシジメチルシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルジエトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルジエトキシエチルシラン、3-(メタ)アクリロイルオキシプロピルエトキシジメチルシラン、3-(メタ)アクリロイルオキシプロピルエトキシジエチルシランおよびδ-(メタ)アクリロイルオキシブチルジエトキシメチルシラン等の(メタ)アクリロイルオキシアルキルシラン類からなる群から選択される1種以上が好ましく、3-(メタ)アクリロイルオキシプロピルトリメトキシシランおよび3-(メタ)アクリロイルオキシプロピルジメトキシメチルシランからなる群から選択される1種以上がより好ましい。当該構成によると、ポリオルガノシロキサンの存在下におけるグラフト部形成用単量体混合物の重合を効率的に実施できるという利点を有する。その結果、グラフト率が高いグラフト共重合体(A)を得ることができるという利点を有する。
 ポリオルガノシロキサンは、当該ポリオルガノシロキサン100重量%中、構成単位Uを0.001重量%~10.0重量%含むことが好ましく、0.001重量%~5.0重量%含むことがより好ましく、0.01重量%~5.0重量%含むことがさらに好ましく、1.0重量%~5.0重量%含むことがよりさらに好ましく、1.0重量%~3.0重量%含むことが特に好ましい。当該構成によると、ポリオルガノシロキサンの存在下におけるグラフト部形成用単量体混合物の重合を効率的に実施できるという利点を有する。その結果、グラフト率が高いグラフト共重合体(A)を得ることができるという利点を有する。
 (ポリオルガノシロキサンの架橋構造)
 ポリオルガノシロキサンの調製時に多官能性のアルコキシシラン化合物および/または多官能性単量体を使用することにより、ポリオルガノシロキサンに架橋構造を導入することができる。それ故、多官能性のアルコキシシラン化合物および多官能性単量体は、ポリオルガノシロキサンにおける架橋剤ともいえる。本発明の一実施形態において、ポリオルガノシロキサンは非架橋である。ここで、「ポリオルガノシロキサンは非架橋である」とは、ポリオルガノシロキサンの調製時に使用する多官能性のアルコキシシラン化合物および多官能性単量体の合計量が、ポリオルガノシロキサン形成用単量体混合物100重量%中、0.50重量%以下であることを意図する。換言すれば、本発明の一実施形態において、ポリオルガノシロキサンは実質的に非架橋である。ポリオルガノシロキサンの調製時に使用する多官能性のアルコキシシラン化合物および多官能性単量体の合計量は、ポリオルガノシロキサン形成用単量体混合物100重量%中、0.50重量%以下であることが好ましく、0.20重量%以下であることがより好ましく、0.10重量%以下であることがさらに好ましく、0.01重量%以下であることが特に好ましい。
 多官能性のアルコキシシラン化合物としては、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトライソプロポキシシラン、テトラブトキシシラン、テトラオクチルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、メチルトリイソプロポキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシランおよびジメチルジメトキシシラン等が挙げられる。
 多官能性単量体は、同一分子内にラジカル重合性反応基を2つ以上有する単量体ともいえる。前記ラジカル重合性反応基は、例えば炭素-炭素二重結合である。多官能性単量体としては、ブタジエンは含まれず、アリルアルキル(メタ)アクリレート類およびアリルオキシアルキル(メタ)アクリレート類のような、エチレン性不飽和二重結合を有する(メタ)アクリレートなどが例示される。(メタ)アクリル基を2つ有する単量体としては、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。前記ポリエチレングリコールジ(メタ)アクリレート類としては、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレートなどが例示される。また、3つの(メタ)アクリル基を有する単量体として、アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類、グリセロールプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレートなどが例示される。アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレートなどが挙げられる。さらに、4つの(メタ)アクリル基を有する単量体として、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、などが例示される。またさらに、5つの(メタ)アクリル基を有する単量体として、ジペンタエリスリトールペンタ(メタ)アクリレートなどが例示される。またさらに、6つの(メタ)アクリル基を有する単量体として、ジトリメチロールプロパンヘキサ(メタ)アクリレートなどが例示される。多官能性単量体としては、また、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等も挙げられる。
 (ポリオルガノシロキサンの体積平均粒子径)
 ポリオルガノシロキサンの体積平均粒子径は、0.03μm~50.00μmが好ましく、0.05μm~10.00μmがより好ましく、0.08μm~2.00μmがより好ましく、0.10μm~1.00μmがさらに好ましく、0.10μm~0.80μmがよりさらに好ましく、0.10μm~0.50μmが特に好ましい。ポリオルガノシロキサンの体積平均粒子径が(a)0.03μm以上である場合、所望の体積平均粒子径を有するポリオルガノシロキサンを安定的に得ることができ、(b)50.00μm以下である場合、得られる水系塗料が製膜性に優れるという利点を有する。ポリオルガノシロキサンの体積平均粒子径は、ポリオルガノシロキサンを含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。ポリオルガノシロキサンの体積平均粒子径の測定方法については、下記実施例にて詳述する。
 (2-1-2.コア部)
 グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対してグラフト結合されたグラフト部と、を含む。グラフト共重合体(A)において、グラフト部はポリオルガノシロキサンの少なくとも一部を被覆し得るか、またはポリオルガノシロキサンの全体を被覆し得る。グラフト部の少なくとも一部分は、グラフト共重合体(A)の最も外側に存在することが好ましい。それ故、ポリオルガノシロキサンは、グラフト共重合体(A)のコア部ともいえる。換言すれば、グラフト共重合体(A)は、ポリオルガノシロキサンを含むコア部と、当該コア部に対してグラフト結合されたグラフト部と、を含む。
 コア部は、構成単位の組成(種類および含有比率)が同一である1種のポリオルガノシロキサンのみから構成されていてもよく、構成単位の組成(種類および含有比率)が異なる2種以上のポリオルガノシロキサンから構成されていてもよい。また、コア部は、1種または2種以上のポリオルガノシロキサンに加えて、1種または2種以上のその他のゴムを含んでいてもよい。
 その他のゴムとしては、例えば、(a)天然ゴム、(b)ゴムの構成単位100重量%中、ジエン系単量体に由来する構成単位を50重量%以上含むジエン系ゴム、および(c)ゴムの構成単位100重量%中、(メタ)アクリレート系単量体に由来する構成単位を50重量%以上含む(メタ)アクリレート系ゴム、などが挙げられる。本明細書において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。
 コア部は、当該コア部100重量部中、ポリオルガノシロキサンを55重量部~100重量部含むことが好ましく、60重量部~100重量部含むことがより好ましく、65重量部~100重量部含むことがより好ましく、70重量部~100重量部含むことがより好ましく、75重量部~100重量部含むことがより好ましく、80重量部~100重量部含むことがより好ましく、85重量部~100重量部含むことがより好ましく、90重量部~100重量部含むことがさらに好ましく、95重量部~100重量部含むことが特に好ましい。当該構成によると、水系塗料は、撥水性により優れる塗膜を提供できるという利点を有する。コア部は、当該コア部100重量部中、ポリオルガノシロキサンを100重量部含んでいてもよく、すなわち、コア部はポリオルガノシロキサンのみから構成されていてもよい。
 (コア部の体積平均粒子径)
 コア部の体積平均粒子径は、0.03μm~50.00μmが好ましく、0.05μm~10.00μmがより好ましく、0.08μm~2.00μmがより好ましく、0.10μm~1.00μmがさらに好ましく、0.10μm~0.80μmがよりさらに好ましく、0.10μm~0.50μmが特に好ましい。コア部の体積平均粒子径が(a)0.03μm以上である場合、所望の体積平均粒子径を有するコア部を安定的に得ることができ、(b)50.00μm以下である場合、得られる水系塗料が製膜性に優れるという利点を有する。コア部の体積平均粒子径は、コア部を含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置などを用いて、ポリオルガノシロキサンの体積平均粒子径と同様の方法にて測定することができる。
 (2-1-3.グラフト部)
 グラフト部としては、特に限定されないが、例えば、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含むことが好ましい。当該構成によると、グラフト部は、実質的に非架橋であるポリオルガノシロキサンを固体化する機能を担い得る。それ故、当該構成によると、得られる水系塗料が製膜性に優れ、かつ当該水系塗料の塗膜が強度に優れるという利点を有する。
 芳香族ビニル単量体の具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、およびジビニルベンゼンなどが挙げられる。
 ビニルシアン単量体の具体例としては、アクリロニトリル、およびメタクリロニトリルなどが挙げられる。
 (メタ)アクリレート単量体の具体例としては、例えば、(a)メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;(b)フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環含有(メタ)アクリレート類;(c)2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;(d)グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレートなどのグリシジル(メタ)アクリレート類;(e)アルコキシアルキル(メタ)アクリレート類;(f)アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレートなどのアリルアルキル(メタ)アクリレート類;(g)モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどの多官能性(メタ)アクリレート類などが挙げられる。
 グラフト部のガラス転移温度を低く(例えば80℃以下に)設計できることにより、得られる水系塗料が製膜性に優れるという観点から、(メタ)アクリレート単量体としては、メチルアクリレート、エチル(メタ)アクリレートおよびブチル(メタ)アクリレートからなる群から選択される1種以上が好ましく、メチルアクリレート、ブチルメタクリレートおよびブチルアクリレートからなる群から選択される1種以上がより好ましく、ブチルメタクリレートおよびブチルアクリレートからなる群から選択される1種以上がさらに好ましく、ブチルメタクリレートが特に好ましい。グラフト部形成時の反応性の観点から、(メタ)アクリレート単量体としては、メチルメタクリレートが好ましい。また、単独重合体のガラス転移温度が比較的低いメチルアクリレート、エチル(メタ)アクリレートおよびブチル(メタ)アクリレートからなる群から選択される1種以上と、単独重合体のガラス転移温度が比較的高いメチルメタクリレートと、を混合して、グラフト部形成用単量体混合物とすることにより、得られるグラフト部のガラス転移温度を所望の温度に調節することができる。
 上述した、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
 グラフト部は、当該グラフト部の全構成単位100重量%中、芳香族ビニル単量体に由来する構成単位、ビニルシアン単量体に由来する構成単位および(メタ)アクリレート単量体に由来する構成単位を合計で、10重量%~95重量%含むことが好ましく、30重量%~92重量%含むことがより好ましく、50重量%~90重量%含むことがさらに好ましく、60重量%~87重量%含むことが特に好ましく、70重量%~85重量%含むことが最も好ましい。
 水系塗料の製膜性とグラフト部形成時の反応性との両立の観点から、グラフト部は、メチルメタクリレートに由来する構成単位、およびブチルメタクリレートに由来する構成単位を含む。
 グラフト部は、当該グラフト部の全構成単位100重量%中、(メタ)アクリレート単量体に由来する構成単位を10重量%~100重量%含むことが好ましく、30重量%~100重量%含むことがより好ましく、50重量%~100重量%含むことがさらに好ましく、50重量%超100重量%以下含むことがよりさらに好ましく、70重量%~100重量%含むことが特に好ましく、90重量%~100重量%含むことが最も好ましい。当該構成によると、(i)グラフト部のガラス転移温度がより低くなる(例えば80℃よりも低くなる)ことにより、得られる水系塗料がより製膜性に優れるという利点、および/または、(ii)グラフト部形成時の反応性に優れるという利点、を有する。グラフト部は、当該グラフト部の全構成単位100重量%中、(メタ)アクリレート単量体に由来する構成単位を100重量%含んでいてもよく、すなわち、グラフト部は(メタ)アクリレート単量体に由来する構成単位のみから構成されていてもよい。
 (反応性乳化剤に由来する構成単位)
 グラフト部は、さらに、反応性乳化剤に由来する構成単位を含むことが好ましい。当該構成によると、水系塗料の製造時のスケールの発生が低減されるかまたは無くなるという利点を有する。本明細書において「スケール」とは、水系塗料の製造時(例えば、グラフト共重合体(A)の製造時、またはグラフト共重合体(A)および重合体(B)の製造時)に発生する、グラフト共重合体(A)の凝集体および/またはグラフト共重合体(A)と重合体(B)との凝集体のうち、一定の大きさ以上の凝集体(例えば150メッシュの金網を通過し得ない凝集体)を意図する。スケールの定量方法については、後の実施例にて詳説する。
 本明細書において「反応性乳化剤」とは、エチレン性不飽和二重結合を有する乳化剤を意図する。また、反応性乳化剤における「反応性」とは、重合開始剤の存在下などで、重合性を有するラジカルを有し得る性能を意図する。それ故、「反応性乳化剤」は、「重合性乳化剤」ともいえる。「反応性乳化剤」は、「反応性界面活性剤」と称される場合もある。
 反応性乳化剤としては、エチレン性不飽和二重結合を有している限り、その種類は特に限定されない。反応性乳化剤は、非イオン性反応性乳化剤であってもよく、アニオン型反応性乳化剤であってもよく、ノニオン型反応性乳化剤であってもよい。反応性乳化剤としては、例えば、グラフト共重合体(A)の粒子径を微細なもの(具体的には、グラフト共重合体(A)の体積平均粒子径を30nm~200nm)に制御しやすいことから、アニオン型反応性乳化剤であることが好ましい。
 反応性乳化剤のエチレン性不飽和二重結合は、エチレン性不飽和二重結合を有する基に由来する。換言すれば、反応性乳化剤はエチレン性不飽和二重結合を有する基を、有する。エチレン性不飽和二重結合を有する基の具体例としては、オキシアルキレン基、(メタ)アクリロイル基、ビニル基、アリル基、イソプロペニル基、1-プロペニル基、アリルオキシ基、スチリル基等が挙げられる。
 反応性乳化剤は、オキシアルキレン基を有することが好ましい。オキシアルキレン基を有する反応性乳化剤は、単量体との共重合性に優れる。オキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基等の炭素数2~4のアルキレン基を有するオキシアルキレン基が挙げられる。これらの中でも、オキシアルキレン基としては、オキシエチレン基が好ましい。オキシエチレン基は、例えば、オキシプロピレン基およびオキシブチレン基よりも親水性が高い。そのため、グラフト共重合体(A)のグラフト部がオキシエチレン基有する反応性乳化剤に由来する構成単位を含む場合、グラフト共重合体(A)の粒子の表面に密度の高い水和層が形成され得、その結果、水性媒体中におけるグラフト共重合体(A)の粒子の分散性がより高まる傾向にある。
 反応性乳化剤1モル中のオキシエチレン基の平均付加モル数は、特に制限されないが、例えば、5モル以上40モル以下が好ましく、10モル以上30モル以下がより好ましい。当該構成によると、単量体との共重合性が優れる傾向にある。また、オキシエチレン基の平均付加モル数が5モル以上であると、水性媒体中におけるグラフト共重合体(A)の粒子の分散性がより高まる傾向にある。
 上述した反応性乳化剤は、1種を単独で使用してもよく、2種以上を組み合わせて用いてもよい。
 グラフト部は、当該グラフト部の全構成単位100重量%中、反応性乳化剤に由来する構成単位を0.1重量%~20.0重量%含むことが好ましく、0.1重量%~15.0重量%含むことがより好ましく、1.0重量%~15.0重量%含むことがより好ましく、1.0重量%~10.0重量%含むことがより好ましく、1.0重量%~8.0重量%含むことがさらに好ましく、1.0重量%~5.0重量%含むことがよりさらに好ましく、1.0重量%~4.0重量%含むことが特に好ましい。当該構成によると、水系塗料の製造時のスケールの発生がより低減されるかまたは無くなるという利点を有する。
 (単量体Mに由来する構成単位(構成単位U))
 グラフト部は、さらに、(a)分子内に1個以上の加水分解性シリル基と、(b)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体Mに由来する構成単位を含むことが好ましい。当該構成によると、水系塗料から得られる塗膜を水に浸漬した際のブリスター発生が低減されるかまたは無くなるという利点を有する。
 単量体Mに由来する構成単位は、構成単位Uともいえる。グラフト部が構成単位Uを含む場合、ポリオルガノシロキサンに含まれる構成単位Uと、グラフト部に含まれる構成単位Uは、同じであってもよく、異なっていてもよい。
 単量体Mの具体例については、前記(構成単位U)の項で説明したものと同じであるため、当該記載を援用し、ここでは説明を省略する。なお、グラフト部においても、単量体Mは、1種を単独で使用してもよく、2種以上を組み合わせて用いてもよい。
 グラフト部における単量体Mの加水分解性シリル基もまた、特に限定されない。グラフト部における単量体Mの加水分解性シリル基としては、(a)架橋反応性(ビニル重合反応性)に富み、(b)取扱いが容易であり、(c)安価であり、かつ(d)水系塗料から得られる塗膜を水に浸漬した際のブリスター発生がより低減されるかまたは無くなることから、アルコキシシリル基が特に好ましい。
 グラフト部における単量体Mもまた、特に限定されない。グラフト部における単量体Mとしては、(a)架橋反応性(ビニル重合反応性)に富み、(b)安価であり、かつ(c)水系塗料から得られる塗膜を水に浸漬した際のブリスター発生がより低減されるかまたは無くなることから、(メタ)アクリロイルオキシアルキルシラン類が好ましく、β-メタクリロイルオキシエチルジメトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルジメトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルメトキシジメチルシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルジエトキシメチルシラン、3-(メタ)アクリロイルオキシプロピルジエトキシエチルシラン、3-(メタ)アクリロイルオキシプロピルエトキシジメチルシラン、3-(メタ)アクリロイルオキシプロピルエトキシジエチルシランおよびδ-(メタ)アクリロイルオキシブチルジエトキシメチルシランより好ましい。
 グラフト部は、当該グラフト部の全構成単位100重量%中、単量体Mに由来する構成単位(構成単位U)を0.1重量%~20.0重量%含むことが好ましく、0.1重量%~15.0重量%含むことがより好ましく、1.0重量%~15.0重量%含むことがより好ましく、1.0重量%~10.0重量%含むことがさらに好ましく、1.0重量%~8.0重量%含むことが特に好ましい。当該構成によると、水系塗料から得られる塗膜を水に浸漬した際のブリスター発生がより低減されるかまたは無くなるという利点を有する。
 グラフト部は、さらに、反応性基を有する単量体(以下、反応性基含有単量体とも称する。)に由来する構成単位を含んでいてもよい。前記反応性基含有単量体は、エポキシ基、オキセタン基、水酸基、アミノ基、イミド基、カルボン酸基、カルボン酸無水物基、環状エステル、環状アミド、ベンズオキサジン基、およびシアン酸エステル基からなる群から選択される1種以上の反応性基を含有する単量体であることが好ましく、エポキシ基、水酸基、およびカルボン酸基からなる群から選択される1種以上の反応性基を含有する単量体であることがより好ましい。当該構成によると、水系塗料の塗膜の基材に対する密着性が向上するという利点を有する。
 エポキシ基を有する単量体の具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、およびアリルグリシジルエーテルなどのグリシジル基含有ビニル単量体が挙げられる。
 水酸基を有する単量体の具体例としては、例えば、(a)2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシ直鎖アルキル(メタ)アクリレート(特に、ヒドロキシ直鎖C1-6アルキル(メタ)アクリレート);(b)カプロラクトン変性ヒドロキシ(メタ)アクリレート;(c)α-(ヒドロキシメチル)アクリル酸メチル、α-(ヒドロキシメチル)アクリル酸エチルなどのヒドロキシ分岐アルキル(メタ)アクリレート;(d)二価カルボン酸(フタル酸など)と二価アルコール(プロピレングリコールなど)とから得られるポリエステルジオール(特に飽和ポリエステルジオール)のモノ(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリレート類、などが挙げられる。
 カルボン酸基を有する単量体の具体例としては、例えば、アクリル酸、メタクリル酸およびクロトン酸などのモノカルボン酸、並びに、マレイン酸、フマル酸およびイタコン酸などのジカルボン酸などが挙げられる。カルボン酸基を有する単量体としては、前記モノカルボン酸が好適に用いられる。
 上述した反応性基含有単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
 グラフト部は、グラフト部100重量%中、反応性基含有単量体に由来する構成単位を、0.5重量%~90重量%含むことが好ましく、1重量%~50重量%含むことがより好ましく、2重量%~35重量%含むことがさらに好ましく、3重量%~20重量%含むことが特に好ましい。グラフト部が、グラフト部100重量%中、反応性基含有単量体に由来する構成単位を、(a)0.5重量%以上含む場合、得られる水系塗料は、十分な基材への密着性を有する塗膜を提供することができ、(b)90重量%以下含む場合、得られる水系塗料は、十分な基材への密着性を有する塗膜を提供することができ、かつ、当該水系塗料の貯蔵安定性が良好となるという利点を有する。
 反応性基含有単量体に由来する構成単位は、グラフト部に含まれることが好ましく、グラフト部にのみ含まれることがより好ましい。
 (グラフト部の架橋構造)
 グラフト部の調製時に多官能性単量体を使用することにより、グラフト部に架橋構造を導入することができる。本発明の一実施形態において、グラフト部は非架橋であることが好ましい。ここで、「グラフト部は非架橋である」とは、グラフト部の調製時に使用する多官能性単量体の量が、グラフト部形成用単量体混合物100重量%中、0.50重量%以下であることを意図する。換言すれば、本発明の一実施形態において、グラフト部は実質的に非架橋であることが好ましい。グラフト部の調製時に使用する多官能性単量体の量は、グラフト部形成用単量体混合物100重量%中、0.50重量%以下であることが好ましく、0.20重量%以下であることがより好ましく、0.10重量%以下であることがさらに好ましく、0.01重量%以下であることが特に好ましい。
 グラフト部は、構成単位の組成(種類および含有比率)が同一である1種の重合体のみから構成されていてもよく、構成単位の組成(種類および含有比率)が異なる2種以上の重合体から構成されていてもよい。
 本発明の一実施形態において、グラフト部が複数種のグラフト部からなる場合について説明する。この場合、グラフト部は、(a)それぞれ別々に重合されて得られる複数の重合体の複合体を含んでいてもよく、順に重合して得られる1つの重合体(多段重合体)を含んでいてもよい。
 ポリオルガノシロキサンを含むコア部とグラフト部とは、層構造を有していてもよい。例えば、ポリオルガノシロキサンを含むコア部を最内層(コア層とも称する。)とし、当該コア部の外側にグラフト部の層が最外層(シェル層とも称する。)として存在する態様も、本発明の一態様である。ポリオルガノシロキサンを含むコア部をコア層とし、グラフト部をシェル層とする構造はコアシェル構造ともいえる。このように、ポリオルガノシロキサンを含むコア部とグラフト部とが層構造(コアシェル構造)を有するグラフト共重合体(A)は、多層重合体またはコアシェル重合体ともいえる。ただし、グラフト部がポリオルガノシロキサンにグラフト結合している限り、グラフト共重合体(A)は前記構成に限定されるわけではない。
 (グラフト部のグラフト率)
 グラフト部の少なくとも一部がポリオルガノシロキサンに対してグラフト結合されていればよく、グラフト部の全てがポリオルガノシロキサンに対してグラフト結合されていなくてもよい。グラフト共重合体(A)の製造におけるグラフト部の調製において、グラフト部を構成し得る単量体混合物(グラフト部形成用単量体混合物)をポリオルガノシロキサンの存在下で重合するとき、グラフト部と同じ構成を有する重合体であり、かつポリオルガノシロキサンに対してグラフト結合されていない重合体が生じる場合がある。本明細書において、グラフト部の調製時に発生する、グラフト部と同じ構成を有する重合体であり、かつポリオルガノシロキサンに対してグラフト結合されていない重合体を、非グラフト重合体とも称する。当該非グラフト重合体は、得られたグラフト共重合体(A)の水性ラテックスから、取り除かれてもよく、取り除かれなくてもよい。換言すれば、本発明の一実施形態において、水系塗料は、グラフト部と同じ構成を有する重合体であり、かつポリオルガノシロキサンに対してグラフト結合されていない重合体(非グラフト重合体)を有していてもよい。水系塗料に含まれる非グラフト重合体は、後述する重合体(B)に相当する。
 本明細書において、グラフト部の調製工程において得られた重合体のうち、ポリオルガノシロキサンに対してグラフト結合された重合体、すなわちグラフト部の割合を、グラフト率と称する。グラフト率は、(グラフト部の重量)/{(グラフト部の重量)+(非グラフト重合体の重量)}×100で表される値、ともいえる。
 また、グラフト部の調製工程では、グラフト部および非グラフト重合体以外に、可溶分も存在する。この可溶分は、重合しなかった単量体および開始剤などの副原料を意図する。
 グラフト共重合体(A)であるか、非グラフト重合体であるか、または可溶分であるかを判定する方法としては、例えば、溶剤の可溶/不溶で判定する方法が挙げられる。例えば、(i)MEKに不溶である場合はグラフト共重合体(A)、(ii)MEKに可溶で、かつメタノールに不溶である場合は非グラフト重合体、(iii)MEKに可溶で、かつメタノールに可溶な場合は可溶分、と判定する方法を挙げることができる。
 本明細書において、グラフト率の算出方法は下記の通りである。先ず、グラフト共重合体(A)を含有する水性ラテックスを得る。次いで、水性ラテックス中の固形分2gに相当する量の水性ラテックスとメチルエチルケトン(MEK)50mlとを混合し、MEK溶解物を調製する。その後、得られたMEK溶解物を、遠心分離等によって、MEKに可溶な成分(MEK可溶分)とMEKに不溶な成分(MEK不溶分)とに分離する。次に、MEK可溶分20mlをメタノール200mlと混合し、当該混合物に塩化カルシウム0.01gを水に溶かした塩化カルシウム水溶液を添加し1時間攪拌する。その後、得られた混合物をメタノール可溶分とメタノール不溶分に分離する。
 次式よりグラフト率を算出する。
グラフト率(%)=100-[(メタノール不溶分の重量)/{(メタノール不溶分の重量)+(MEK不溶分の重量)}]/(グラフト部の調製に使用したグラフト部形成用単量体混合物の全量)×10000。
 上述したグラフト率の算出方法において、(a)MEK不溶分はグラフト共重合体(A)であり、(b)MEK可溶分であり、かつメタノール不溶分は非グラフト重合体である。
 グラフト部のグラフト率は、85.0%以下であることが好ましく、80.0%以下であることがより好ましく、75.0%以下であることがより好ましく、70.0%以下であることがより好ましく、65.0%以下であることがより好ましく、60.0%以下であることがより好ましく、55.0%以下であることがより好ましく、50.0%以下であることがより好ましく、45.0%以下であることがより好ましく、40.0%以下であることがより好ましく、35.0%以下であることがさらに好ましく、30.0%以下であることが特に好ましい。グラフト率が85.0%以下である場合、水系塗料が製膜性に優れるという利点を有する。
 グラフト部のグラフト率は、30.0%以上であることが好ましく、35.0%以上であることがより好ましく、40.0%以上であることがより好ましく、45.0%以上であることがより好ましく、50.0%以上であることがより好ましく、55.0%以上であることがより好ましく、60.0%以上であることがより好ましく、65.0%以上であることがより好ましく、70.0%以上であることがより好ましく、75.0%以上であることがより好ましく、80.0%以上であることがさらに好ましく、85.0%以上であることが特に好ましい。グラフト率が30.0%以上である場合、(a)水系塗料の粘度が高くなりすぎない、および(b)水系塗料の製造時のスケールの発生が低減されるかまたは無くなる、という利点を有する。
 グラフト部のグラフト率は、グラフト部の調製時の連鎖移動剤の使用量およびポリオルガノシロキサンの調製時の単量体Mの使用量などを変化させることで適宜調節することができる。
 (グラフト部のガラス転移温度)
 グラフト部のガラス転移温度は、特に限定されない。「ガラス転移温度」を、以下「Tg」と称する場合もある。グラフト部のTgは、例えば、100℃以下が好ましく、100℃未満が好ましく、90℃以下がより好ましく、80℃以下が好ましく、70℃以下がより好ましく、60℃以下がより好ましく、50℃以下がより好ましく、45℃以下がより好ましく、40℃以下がより好ましく、35℃以下がより好ましく、30℃以下がより好ましく、25℃以下がより好ましく、20℃以下がより好ましく、15℃以下がより好ましく、10℃以下がより好ましく、5℃以下がより好ましく、0℃以下がより好ましく、-5℃以下がより好ましく、-10℃以下がより好ましく、-15℃以下がさらに好ましく、-20℃以下が特に好ましい。当該構成によると、水系塗料が製膜性に優れるという利点を有する。また、本発明者は、グラフト部のTgの上限値が100℃未満である場合、驚くべきことに、水系塗料の製造時のスケールの発生が低減されるかまたは無くなることを独自に見出した。
 グラフト部のTgは、例えば、-30℃以上であることが好ましく、-25℃以上であることがより好ましく、-20℃以上であることがより好ましく、-15℃以上であることがより好ましく、-10℃以上であることがより好ましく、-5℃以上であることがより好ましく、0℃以上であることがより好ましく、5℃以上であることがより好ましく、10℃以上であることがより好ましく、15℃以上であることがより好ましく、20℃以上であることがより好ましく、25℃以上であることがより好ましく、30℃以上であることがより好ましく、35℃以上であることがより好ましく、40℃以上であることが特に好ましい。本発明者は、グラフト部のTgの下限値が上述した範囲内である場合、驚くべきことに、水系塗料から得られる塗膜を水に浸漬した際のブリスター発生が低減されるかまたは無くなることを独自に見出した。
 グラフト部のTgは、グラフト部に含まれる構成単位の組成などによって、決定され得る。換言すれば、グラフト部を調製するときに使用するグラフト部形成用単量体混合物の組成を変化させることにより、得られるグラフト部のTgを調整することができる。
 グラフト部が1種の単量体の単独重合体であり、かつグラフト部の製造(重合)に使用した単量体が既知である場合、当該グラフト部のガラス転移温度Tgは、前記単量体の単独重合体のTg(℃)と見做すことができる。単独重合体のTgは、例えば、Polymer Handbook Fourth Edition(J.Brandupら編、Jphn Wiley & Sons,Inc)に記載されている数値などを用いることができる。
 グラフト部が2種以上の単量体の共重合体であり、かつグラフト部の製造(重合)に使用した単量体が既知である場合(以下、場合Aと称する)について、説明する。場合Aにおいて、当該グラフト部のガラス転移温度Tgは以下に示すFOX式(数式1)で算出することが可能である。
 1/Tg=w/Tg+w/Tg+・・・+w/Tg(数式1)
 ここで、Tg、Tg、・・・、Tgは、それぞれ、グラフト部を構成する成分(すなわちグラフト部の製造で使用した単量体)1、2、・・・、nの単独重合体のTg(K)、w、w、・・・、wは、それぞれ、グラフト部を構成する成分(すなわちグラフト部の製造で使用した単量体)1、2、・・・、nの重量分率である。
 なお、場合Aであり、かつ反応性乳化剤および単量体Xの使用量がグラフト部形成用単量体混合物100重量%中、それぞれ、20.0重量%以下である場合、グラフト部のガラス転移温度Tgを前記FOX式(数式1)で算出する際、グラフト部の製造で使用した単量体から反応性乳化剤および単量体Xを除外して算出する。すなわち、反応性乳化剤および単量体X以外の単量体をグラフト部の製造で使用した単量体として、FOX式(数式1)を用いてグラフト部のガラス転移温度Tgを算出する。
 グラフト部の製造(重合)に使用した単量体が未知である場合、グラフト部のTgは、グラフト共重合体(A)からなる平面板を用いて、粘弾性測定を行うことによって得ることもできる。具体的には、以下のようにしてTgを測定できる:(1)グラフト共重合体(A)からなる平面板について、動的粘弾性測定装置(例えば、アイティー計測制御株式会社製、DVA-200)を用いて、引張条件で動的粘弾性測定を行い、tanδのグラフを得る;(2)得られたtanδのグラフについて、tanδのピーク温度をガラス転移温度とする。ここで、tanδのグラフにおいて、複数のピークが得られた場合には、最も高いピーク温度をグラフト部のガラス転移温度とする。
 (グラフト共重合体(A)の物性)
 以下、グラフト共重合体(A)の物性について説明する。
 (グラフト共重合体(A)の体積平均粒子径)
 グラフト共重合体(A)の体積平均粒子径(Mv)は、所望の粘度を有し、かつ高度に安定した水系塗料を得ることができることから、0.05μm~60.00μmであることが好ましく、0.10μm~20.00μmであることがより好ましく、0.10μm~8.00μmであることがより好ましく、0.10μm~6.00μmであることがより好ましく、0.10μm~4.00μmであることがより好ましく、0.10μm~2.00μmであることがより好ましく、0.10μm~1.00μmであることがさらに好ましく、0.10μm~0.80μmであることが特に好ましい。当該構成によると、グラフト共重合体(A)の重合安定性に優れ、かつ水系塗料が貯蔵安定性に優れるという利点を有する。なお、本明細書において、「グラフト共重合体(A)の体積平均粒子径(Mv)」とは、特に言及する場合を除き、グラフト共重合体(A)の1次粒子の体積平均粒子径を意図する。グラフト共重合体(A)の体積平均粒子径は、水系塗料、またはグラフト共重合体(A)を含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。グラフト共重合体(A)の体積平均粒子径については、下記実施例にて詳述する。
 水系塗料におけるグラフト共重合体(A)の粒子径の個数分布は、体積平均粒子径の0.5倍以上1倍以下の半値幅を有することが好ましい。当該構成によると、水系塗料が低粘度であり、かつ取り扱い易いという利点を有する。
 グラフト共重合体(A)の製造方法については、後述の〔水系塗料の製造方法〕の項において詳説する。
 (2-2.重合体(B))
 本水系塗料は、重合体(B)を含む。水系塗料における重合体(B)は、水系塗料の製膜性の向上に寄与し得る。重合体(B)は、主として、グラフト共重合体(A)を製造する過程において混入し得る。具体的には、グラフト共重合体(A)の製造におけるグラフト部の調製工程において、ポリオルガノシロキサンと結合しない重合体(非グラフト重合体)が発生する。得られたグラフト共重合体(A)の水性ラテックスから、前記非グラフト重合体を除去しないことにより、得られる水系塗料において、当該非グラフト重合体が重合体(B)になり得る。なお、重合体(B)としては、上述したグラフト共重合体(A)の製造過程において混入するものに限定されず、別途追加される重合体も含まれる。重合体(B)として別途追加される重合体は、例えばグラフト共重合体(A)の製造とは別に、重合体(B)形成用単量体混合物を重合して得られる。
 重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含む。当該構成によると、得られる水系塗料が製膜性に優れるという利点を有する。
 芳香族ビニル単量体、ビニルシアン単量体および(メタ)アクリレート単量体の具体例については、前記(グラフト部)の項で説明したものと同じであるため、当該記載を援用し、ここでは説明を省略する。
 重合体(B)は、当該重合体(B)の全構成単位100重量%中、芳香族ビニル単量体に由来する構成単位、ビニルシアン単量体に由来する構成単位および(メタ)アクリレート単量体に由来する構成単位を合計で、10重量%~95重量%含むことが好ましく、30重量%~92重量%含むことがより好ましく、50重量%~90重量%含むことがさらに好ましく、60重量%~87重量%含むことが特に好ましく、70重量%~85重量%含むことが最も好ましい。当該構成によると、得られる水系塗料が製膜性により優れるという利点を有する。
 重合体(B)のガラス転移温度を低く(例えば80℃以下に)設計できることにより、得られる水系塗料が製膜性に優れるという観点から、(メタ)アクリレート単量体としては、メチルアクリレート、エチル(メタ)アクリレートおよびブチル(メタ)アクリレートからなる群から選択される1種以上が好ましく、メチルアクリレート、ブチルメタクリレートおよびブチルアクリレートからなる群から選択される1種以上がより好ましく、ブチルメタクリレートおよびブチルアクリレートからなる群から選択される1種以上がさらに好ましく、ブチルメタクリレートが特に好ましい。重合体(B)の形成(重合)時の反応性の観点から、(メタ)アクリレート単量体としては、メチルメタクリレートが好ましい。なお、重合体(B)がグラフト部に由来する場合、「重合体(B)の形成(重合)時の反応性」とは、「グラフト部形成時の反応性」を意図する。また、単独重合体のガラス転移温度が比較的低いメチルアクリレート、エチル(メタ)アクリレートおよびブチル(メタ)アクリレートからなる群から選択される1種以上と、単独重合体のガラス転移温度が比較的高いメチルメタクリレートと、を混合して、グラフト部形成用単量体混合物または重合体(B)形成用単量体混合物とすることにより、得られる重合体(B)のガラス転移温度を所望の温度に調節することができる。
 水系塗料の製膜性と重合体(B)の形成(重合)時の反応性との両立の観点から、重合体(B)は、メチルメタクリレートに由来する構成単位、およびブチルメタクリレートに由来する構成単位を含む。
 重合体(B)は、当該重合体(B)の全構成単位100重量%中、(メタ)アクリレート単量体に由来する構成単位を10重量%~100重量%含むことが好ましく、30重量%~100重量%含むことがより好ましく、50重量%~100重量%含むことがさらに好ましく、50重量%超100重量%以下含むことがよりさらに好ましく、70重量%~100重量%含むことが特に好ましく、90重量%~100重量%含むことが最も好ましい。当該構成によると、(i)重合体(B)のガラス転移温度がより低くなる(例えば80℃よりも低くなる)ことにより、得られる水系塗料が製膜性にさらに優れるという利点、および/または、(ii)重合体(B)の形成(重合)時の反応性に優れるという利点、を有する。重合体(B)は、当該重合体(B)の全構成単位100重量%中、(メタ)アクリレート単量体に由来する構成単位を100重量%含んでいてもよく、すなわち、重合体(B)は(メタ)アクリレート単量体に由来する構成単位のみから構成されていてもよい。
 (重合体(B)のガラス転移温度)
 重合体(B)のガラス転移温度(Tg)は、特に限定されない。重合体(B)のTgは、例えば、100℃以下が好ましく、100℃未満が好ましく、90℃以下がより好ましく、80℃以下が好ましく、70℃以下がより好ましく、60℃以下がより好ましく、50℃以下がより好ましく、45℃以下がより好ましく、40℃以下がより好ましく、35℃以下がより好ましく、30℃以下がより好ましく、25℃以下がより好ましく、20℃以下がより好ましく、15℃以下がより好ましく、10℃以下がより好ましく、5℃以下がより好ましく、0℃以下がより好ましく、-5℃以下がより好ましく、-10℃以下がより好ましく、-15℃以下がさらに好ましく、-20℃以下が特に好ましい。当該構成によると、水系塗料が製膜性に優れるという利点を有する。また、本発明者は、重合体(B)のTgの上限値が100℃未満である場合、驚くべきことに、水系塗料の製造時のスケールの発生が低減されるかまたは無くなることを独自に見出した。
 重合体(B)のTgは、例えば、-30℃以上であることが好ましく、-25℃以上であることがより好ましく、-20℃以上であることがより好ましく、-15℃以上であることがより好ましく、-10℃以上であることがより好ましく、-5℃以上であることがより好ましく、0℃以上であることがより好ましく、5℃以上であることがより好ましく、10℃以上であることがより好ましく、15℃以上であることがより好ましく、20℃以上であることがより好ましく、25℃以上であることがより好ましく、30℃以上であることがより好ましく、35℃以上であることがより好ましく、40℃以上であることが特に好ましい。本発明者は、重合体(B)のTgの下限値が上述した範囲内である場合、驚くべきことに、水系塗料から得られる塗膜を水に浸漬した際のブリスター発生が低減されるかまたは無くなることを独自に見出した。
 重合体(B)のTgは、重合体(B)に含まれる構成単位の組成などによって、決定され得る。換言すれば、グラフト部を調製するときに使用するグラフト部形成用単量体混合物、または重合体(B)を別途調製するときに使用する重合体(B)形成用単量体混合物の組成を変化させることにより、得られる重合体(B)のTgを調整することができる。
 重合体(B)が1種の単量体の単独重合体であり、かつ重合体(B)の製造(重合)に使用した単量体が既知である場合、当該重合体(B)のガラス転移温度Tgは、前記単量体の単独重合体のTg(℃)と見做すことができる。単独重合体のTgは、例えば、Polymer Handbook Fourth Edition(J.Brandupら編、Jphn Wiley & Sons,Inc)に記載されている数値などを用いることができる。
 重合体(B)が2種以上の単量体の共重合体であり、かつ重合体(B)の製造(重合)に使用した単量体が既知である場合(以下、場合Bと称する)について、説明する。場合Bにおいて、当該重合体(B)のガラス転移温度Tgは上述したFOX式(数式1)で算出することが可能である。
 なお、場合Bであり、かつ反応性乳化剤および単量体Xの使用量がグラフト部形成用単量体混合物および重合体(B)形成用単量体混合物の合計100重量%中、それぞれ、20.0重量%以下である場合、重合体(B)のガラス転移温度Tgを前記FOX式(数式1)で算出する際、重合体(B)の製造で使用した単量体から反応性乳化剤および単量体Xを除外して算出する。すなわち、反応性乳化剤および単量体X以外の単量体を重合体(B)の製造で使用した単量体として、FOX式(数式1)を用いて重合体(B)のガラス転移温度Tgを算出する。
 本水系塗料において、重合体(B)の含有量は特に限定されない。本水系塗料において、グラフト共重合体(A)および重合体(B)の合計100重量%中、重合体(B)は5.0重量%以上であることが好ましく、6.0重量%以上であることがより好ましく、7.0重量%以上であることがより好ましく、8.0重量%以上であることがより好ましく、9.0重量%以上であることがより好ましく、10.0重量%以上であることがより好ましく、11.0重量%以上であることがより好ましく、12.0重量%以上であることがより好ましく、13.0重量%以上であることがより好ましく、14.0重量%以上であることがより好ましく、15.0重量%以上であることがより好ましく、16.0重量%以上であることがより好ましく、17.0重量%以上であることがさらに好ましく、18.0重量%以上であることが特に好ましい。当該構成によると、水系塗料がより製膜性に優れるという利点を有する。
 本水系塗料において、グラフト共重合体(A)および重合体(B)の合計100重量%中、重合体(B)は30.重量%以下であることが好ましく、28.0重量%以下であることがより好ましく、26.0重量%以下であることがより好ましく、24.0重量%以下であることがより好ましく、22.0重量%以下であることがより好ましく、20.0重量%以下であることがより好ましく、19.0重量%以下であることがより好ましく、18.0重量%以下であることがより好ましく、17.0重量%以下であることがより好ましく、16.0重量%以下であることがより好ましく、15.0重量%以下であることがより好ましく、14.0重量%以下であることがより好ましく、13.0重量%以下であることがより好ましく、12.0重量%以下であることがより好ましく、11.0重量%以下であることがより好ましく、10.0重量%以下であることがより好ましく、9.0重量%以下であることがより好ましく、8.0重量%以下であることがより好ましく、7.0重量%以下であることがさらに好ましく、6.0重量%以下であることが特に好ましい。当該構成によると、水系塗料の製造時のスケールの発生が低減されるかまたは無くなるという利点を有する。
 グラフト共重合体(A)の製造時に得られる非グラフト重合体を、グラフト共重合体(A)の水性ラテックスから取り除かず、かつ別途調製した重合体を配合しない場合(以下、場合Cと称する)について説明する。場合Cにおいて、重合体(B)は非グラフト重合体のみに由来する。場合Cでは、グラフト部の構成単位の組成(種類および含有比率)と重合体(B)の構成単位の組成とが同一となる。それ故、グラフト部のTgと重合体(B)のTgは同じ値となる。また、場合Cであり、かつグラフト共重合体(A)の製造時の重合転化率が100%である場合、グラフト部および重合体(B)の合計100重量%中における重合体(B)の含有量(%)と、グラフト率との合計が100%となる。場合Cにおいて、グラフト部および重合体(B)の合計100重量%中における重合体(B)の含有量(%)は、グラフト部の調製時の連鎖移動剤の使用量およびポリオルガノシロキサンの調製時の単量体Mの使用量などを変化させることで適宜調節することができる。
 なお、本発明の一実施形態において、グラフト共重合体(A)とは別途に調製した重合体を、グラフト共重合体(A)の水性ラテックスまたは水系塗料に添加し、重合体(B)としてもよい。グラフト共重合体(A)の製造時に得られる非グラフト重合体をグラフト共重合体(A)の水性ラテックスから取り除かず、かつ別途調製した重合体を配合する場合、重合体(B)は非グラフト重合体および別途調製し配合された重合体に由来する。グラフト共重合体(A)の製造時に得られる非グラフト重合体をグラフト共重合体(A)の水性ラテックスから取り除き、かつ別途調製した重合体を配合する場合、重合体(B)は別途調製し配合された重合体のみに由来する。
 本水系塗料において、グラフト共重合体(A)および重合体(B)の合計100重量%中、ポリオルガノシロキサンは55重量%~95重量%であることが好ましく、55重量%~90重量%であることがより好ましく、60重量%~90重量%であることがより好ましく、65重量%~85重量%であることがさらに好ましく、70重量%~85重量%であることが特に好ましい。グラフト共重合体(A)および重合体(B)の合計100重量%中、ポリオルガノシロキサンが、(a)55重量%以上である場合、水系塗料が撥水性により優れる塗膜を提供できるという利点を有し、(b)95重量%以下である場合、水系塗料がより製膜性に優れるという利点を有する。
 グラフト共重合体(A)および重合体(B)の複合体の重量平均分子量は、150,000以下であることが好ましく、120,000以下であることがより好ましく、100,000以下であることがさらに好ましく、90,000以下であることが特に好ましい。当該構成によると、水系塗料がより製膜性に優れるという利点を有する。グラフト共重合体(A)および重合体(B)の複合体の重量平均分子量は、5,000以上であることが好ましく、10,000以上であることがより好ましく、15,000以上であることがさらに好ましく、20,000以上であることが特に好ましい。当該構成によると、得られる水系塗料が製膜性に優れるという利点を有する。
 本明細書において、以下の方法で測定して得られる値を、「グラフト共重合体(A)および重合体(B)の複合体の重量平均分子量」とする:(1)グラフト共重合体(A)および重合体(B)を含む水性ラテックスを得る;(2)水性ラテックス中の固形分20mgに相当する量の水性ラテックスと、テトラヒドロフラン10mLとを混合し、混合液を調製する;(3)混合液をPTFEフィルター(0.2μm)で濾過する;(4)前記(3)で得られる濾液を、HLC-82201(東ソー株式会社製)に供し、重量平均分子量を測定する。
 重合体(B)の由来に関わらず、グラフト共重合体(A)の水性ラテックス、または当該水性ラテックスおよび水系塗料の両方において、グラフト共重合体(A)と重合体(B)とは複合体を形成し得る。それ故、本明細書では、重合体(B)の由来に関わらず、上述の方法で測定して得られる値を、「グラフト共重合体(A)および重合体(B)の複合体の重量平均分子量」とする。また、重量平均分子量の測定方法における「グラフト共重合体(A)および重合体(B)を含む水性ラテックス」は、「グラフト共重合体(A)および重合体(B)の複合体の水性ラテックス」ともいえる。また、上述した場合Cにおいて、重量平均分子量の測定方法における「グラフト共重合体(A)および重合体(B)を含む水性ラテックス」とは、グラフト共重合体(A)の水性ラテックスまたは水系塗料である。
 (2-3.防汚剤)
 本水系塗料は、さらに防汚剤を含んでいてもよい。本水系塗料は、防汚剤を含むことなく、水中生物に対する防汚性を有する。それ故、本水系塗料は、防汚剤を含むことなく、水中構造物用防汚塗料として好適に利用できる。水系塗料が、水中生物に対する防汚性により優れる塗膜、および/または、水中生物に対する防汚性がより長期間持続する塗膜を提供できることから、本水系塗料は、さらに防汚剤を含むことが好ましい。一方、防汚剤を含まない水系塗料から得られる塗膜は、防汚剤を含む水系塗料から得られる塗膜と比較して、ダメージをより受け難い。そのため、防汚剤を含まない水系塗料から得られる塗膜は、防汚剤を含む水系塗料から得られる塗膜と比較して、耐久性がより高いという利点を有する。
 防汚剤としては特に限定されず、公知の防汚剤を使用することができる。防汚剤としては、例えば、無機化合物、金属を含む有機化合物、および金属を含まない有機化合物、などを挙げることができる。
 防汚剤としては、例えば、酸化亜鉛、亜酸化銅、2-ピリジンチオール-1-オキシド亜鉛塩(別名;ジンクピリチオン)および銅塩等の金属塩、ピリチオン塩化合物、p-イソプロピルピリジンメチルジフェニルボラン、ピリジントリフェニルボラン、テトラメチルチウラムジサルファイド、カーバメート系の化合物(例えば、ジンクジメチルジチオカーバメート、ジンクエチレンビスジチオカーバーメート、3-ヨード-2-プロピルブチルカーバーメート、ビスジメチルジチオカルバモイルジンクエチレンビスジチオカーバメートおよびマンガン-2エチレンビスジチオカーバメートなど)、2-メチルチオ-4-t-ブチルアミノ-6-シクロプロピルアミノ-s-トリアジン、2,4,5,6-テトラクロロイソフタロニトリル、N,N-ジメチルジクロロフェニル尿素、ロダン銅、4,5,-ジクロロ-2-n-オクチル-3(2H)イソチアゾロン(別名;4,5-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン)、N-(フルオロジクロロメチルチオ)フタルイミド、N,N’-ジメチル-N’-フェニル-(N-フルオロジクロロメチルチオ)スルファミド、テトラメチルチウラムジサルファイド、2,4,6-トリクロロフェニルマレイミド、2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン、ジヨードメチルパラトリスルホン、フェニル(ビスピリジル)ビスマスジクロライド、2-(4-チアゾリル)-ベンズイミダゾール、トリフェニルボロンピリジン塩、ステアリルアミン-トリフェニルボロン、ラウリルアミン-トリフェニルボロン、1,1-ジクロロ-N-[(ジメチルアミノ)スルホニル]-1-フルオロ-N-フェニルメタンスルフェンアミド、1,1-ジクロロ-N-[(ジメチルアミノ)スルホニル]-1-フルオロ-N-(4-メチルフェニル)メタンスルフェンアミド、N’-(3,4-ジクロロフェニル)-N,N’-ジメチル尿素、N’-tert-ブチル-N-シクロプロピル-6-(メチルチオ)-1,3,5-トリアジン-2,4-ジアミン、4-ブロモ-2-(4-クロロフェニル)-5-(トリフルオロメチル)-1H-ピロール-3-カルボニトリル、などが挙げられる。
 (2-4.有機溶剤)
 本水系塗料は、有機溶剤を含んでいてもよい。本水系塗料は、有機溶剤を含むことなく、製膜性に優れるという利点を有する。水系塗料が有機溶剤を含む場合、当該水系塗料はより製膜性に優れるという利点を有する。有機溶剤としては、例えば、炭化水素類、ハロゲン化炭化水素類、エーテル類、エステル類、ケトン類、アルコール類等を挙げることができる。炭化水素類の有機溶剤としては、n-ヘキサン、イソヘキサン、n-ヘプタン、n-オクタン、イソオクタン、n-デカン、n-ドデカン、シクロヘキサン、メチルシクロヘキサン、シクロペンタン、トルエン、キシレン、ベンゼン、エチルベンゼン、デカリン、ホワイトスピリット、ナフサ等が挙げられる。ハロゲン化炭化水素類の有機溶剤としては、塩化メチレン、クロロホルム、テトラクロロエタン、トリクロロエチレン等が挙げられる。エーテル類の有機溶剤としては、ジオキサン、エチルエーテル、ジエチルエーテル、ブチルジグリコール、2-ブトキシエタノール、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(別名;PMAC)、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコール-n-プロピルエーテル、ジプロピレンングリコール-n-プロピルエーテル、プロピレングリコール-n-ブチルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、プロピレングリコールメチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、プロピレングリコールフェニルエーテル、ジプロピレングリコールジメチルエーテル等が挙げられる。エステル類の有機溶剤としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ベンジル、メトキシプロピルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、n-ブチルアセテート、2-エトキシエチルアセテート等が挙げられる。ケトン類の有機溶剤としては、アセトン、メチルエチルケトン、ジエチルケトン、エチルイソブチルケトン、メチルイソブチルケトン(別名;MIBK)、メチルイソアミルケトン、ダイアセトンアルコール等が挙げられる。アルコール類の有機溶剤としては、メタノール、エタノール、n-プロパノール、(イソ)プロパノール、n-ブタノール、イソブタノール、ベンジルアルコール、エチレングリコール、プロピレングリコール等が挙げられる。有機溶剤としては、上述したアルコールと水との混合物を用いることもできる。有機溶剤としては、ジメチルホルムアミド、ジメチルスルホキシドおよびN-メチルピロリドン等も挙げられる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 環境保全および安全衛生の観点から、本水系塗料における有機溶剤の含有量は、少ないほど好ましい。本水系塗料における有機溶剤の含有量は、水系塗料100重量部中、20重量部以下であることが好ましく、15重量部以下であることがより好ましく、10重量部以下であることがさらに好ましく、5重量部以下であることが特に好ましい。
 (2-5.その他の任意成分)
 本水系塗料は、必要に応じて、前述した成分以外の、その他の任意成分を含有してもよい。その他の任意成分としては、硬化剤、顔料および染料などの着色剤、体質顔料、顔料分散剤、紫外線吸収剤、酸化防止剤、熱安定化剤(ゲル化防止剤)、安定剤、可塑剤、レベリング剤、消泡剤、シランカップリング剤、帯電防止剤、難燃剤、滑剤、減粘剤、増粘剤、粘度調整剤、チクソトロピー性付与剤、低収縮剤、無機質充填剤、有機質充填剤、熱可塑性樹脂、乾燥剤、湿潤剤、分散剤、タレ止め剤、色別れ防止剤、沈降防止剤、塗膜消耗調整剤、表面調整剤、製膜助剤、抗菌剤、防カビ剤、防腐剤、凍結防止剤、粘着付与剤、防さび剤などが挙げられる。
 〔3.水系塗料の製造方法〕
 本発明の一実施形態に係る水系塗料の製造方法は、(a)オルガノシロキサン、および(b)(b-1)分子内に1個以上の加水分解性シリル基と、(b-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体M、を含むポリオルガノシロキサン形成用単量体混合物を重合してポリオルガノシロキサンを得る工程1と、工程1で得られた前記ポリオルガノシロキサンの存在下でグラフト部形成用単量体混合物を重合する工程2と、を有し、前記ポリオルガノシロキサン形成用単量体混合物および前記グラフト部形成用単量体混合物の合計100重量%中、前記ポリオルガノシロキサン形成用単量体混合物は55重量%~90重量%であり、前記工程1では、前記ポリオルガノシロキサン形成用単量体混合物100重量%中、多官能性のアルコキシシラン化合物および多官能性単量体の合計使用量が0.50重量%以下であり、前記工程2では、前記グラフト部形成用単量体混合物は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体を含み、前記工程2では、前記グラフト部形成用単量体混合物100重量部に対して、連鎖移動剤0.01重量部~5.00重量部を使用する。
 本発明の一実施形態に係る水系塗料の製造方法は、前記構成を有するため、撥水性に優れる塗膜を提供し得る、製膜性に優れた水系塗料を提供することができる。
 本明細書において、「本発明の一実施形態に係る水系塗料の製造方法」を「本製造方法」と称する場合もある。
 以下、本製造方法の各工程について詳説するが、以下に説明する以外の事項(例えば、各種成分およびその添加量など)は特に限定されず、上述の〔2.水系塗料〕の項の説明を適宜援用する。
 (3-1.工程1)
 工程1は、ポリオルガノシロキサンを調製する工程である。
 ポリオルガノシロキサン形成用単量体混合物に含まれるオルガノシロキサンとしては特に限定されない。工程1では、例えば、前記(オルガノシロキサン系単位)の項に記載の構成単位(オルガノシロキサン系単位)を有するポリオルガノシロキサンが得られるように、公知のオルガノシロキサンを用いることが好ましい。
 工程1では、例えば、(a)ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジメチルジアルコキシシラン類、(b)ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラデカメチルシクロヘプタシロキサン、ジメチルサイクリックス(ジメチルシロキサン環状オリゴマー3~7量体混合物)等の3員環以上の各種のオルガノシロキサン系環状体、および(c)ジメチルジクロロシラン等を原料のオルガノシロキサンとして使用できる。その他、直鎖状または分岐状のオルガノシロキサンも、原料のオルガノシロキサンとして使用できる。
 工程1では、オルガノシロキサンとして、あらかじめ重合されたポリオルガノシロキサンを使用してもよい。この場合、ポリオルガノシロキサンの分子鎖末端は、水酸基、アルコキシ基、トリメチルシリル基、ジメチルビニルシリル基、メチルフェニルビニルシリル基、メチルジフェニルシリル基等で封鎖されていてもよい。
 入手し易く、かつポリオルガノシロキサンを調製し易いことから、工程1で使用する原料のオルガノシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラデカメチルシクロヘプタシロキサン、ジメチルサイクリックス(ジメチルシロキサン環状オリゴマー3~7量体混合物)等の3員環以上の各種のオルガノシロキサン系環状体が好ましい。
 ポリオルガノシロキサン形成用単量体混合物に含まれる単量体Mは、前記(構成単位U)の項で説明したものと同じであるため、当該記載を援用し、ここでは説明を省略する。
 工程1における単量体Mの使用量は、得られるポリオルガノシロキサンにおける構成単位Uの含有量と相関する。工程1における単量体Mの使用量は、特に限定されないが、ポリオルガノシロキサン100重量%中、構成単位Uの含有量が0.001重量%~10.0重量%となるような使用量であることが好ましい。工程1における単量体Mの使用量は、例えば、ポリオルガノシロキサン形成用単量体混合物100重量%中、0.001重量%~10.0重量%であることが好ましく、0.001重量%~5.0重量%であることがより好ましく、0.01重量%~5.0重量%であることがさらに好ましく、1.0重量%~5.0重量%であることが特に好ましい。当該構成によると、(a)ポリオルガノシロキサンの存在下におけるグラフト部形成用単量体混合物の重合を効率的に実施できる、という利点を有する。
 工程1において、オルガノシロキサンと単量体Mとの重合方法としては特に限定されないが、例えば、酸性乳化剤の存在下で行う公知の乳化重合法が挙げられる。
 酸性乳化剤としては、特に限定されないが、オルガノシロキサン系環状体を使用する場合は、オルガノシロキサン系環状体を開環できるものが好ましい。酸性乳化剤としては、例えば、ドデシルベンゼンスルホン酸が好適に挙げられる。酸性乳化剤の使用量としては特に限定されず、(a)ポリオルガノシロキサンおよびグラフト共重合体(A)の所望する体積平均粒子径、(b)反応溶液中の固形分(単量体混合物)濃度、(c)重合温度などの重合条件、並びに(d)界面活性剤など添加剤の使用の有無および使用量、などに応じて適宜設定すればよい。
 得られるポリオルガノシロキサンの体積平均粒子径は、(a)原料の予備分散の程度、(b)乳化剤の使用量、(c)重合温度、および(d)原料の供給方法などによって制御できる。
 酸性乳化剤の存在下で行う乳化重合によりポリオルガノシロキサンを得る場合、得られる水性ラテックスは強い酸性であるので、重合反応終了後に中和することが好ましい。中和に使用される塩基性化合物としては、特に限定されず、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、トリエチルアミン等が挙げられる。これら塩基性化合物を直接、又は水溶液で、ポリオルガノシロキサンを含む水性ラテックスに添加することにより、水性ラテックスを中和できる。
 工程1において、ポリオルガノシロキサン形成用単量体混合物100重量%中、多官能性のアルコキシシラン化合物および多官能性単量体の合計使用量は0.50重量%以下である。当該構成により、非架橋であるポリオルガノシロキサンが得られる。
 (3-2.工程2)
 工程2は、ポリオルガノシロキサンに対してグラフト結合したグラフト部を調製する工程である。
 グラフト部は、ポリオルガノシロキサンの存在下、グラフト部の形成に用いる単量体(グラフト部形成用単量体混合物)を、公知のラジカル重合により重合することによって形成することができる。ポリオルガノシロキサンを上述した酸性乳化剤の存在下の乳化重合で得た場合(すなわち、ポリオルガノシロキサンを水性ラテックスとして得た場合)には、グラフト部の重合は乳化重合法により行うことが好ましい。グラフト部は、例えば、国際公開公報WO2005/028546号に記載の方法に従って製造することができる。
 グラフト部形成用単量体混合物は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体を含む。当該構成によると、得られる水系塗料が製膜性に優れるという利点を有する。
 グラフト部形成用単量体混合物に含まれる単量体の種類および量により、得られるグラフト部の構成単位の種類および量が決定され得る。それ故、グラフト部形成用単量体混合物に含まれる単量体の種類および量は、前記(グラフト部)の項に記載のグラフト部が得られるように、適宜設定すればよい。
 工程2において、乳化重合法を採用する場合、ラジカル重合開始剤として、熱分解型開始剤を用いることができる。前記熱分解型開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウム、および過硫酸アンモニウムなどの公知の開始剤を挙げることができる。
 ラジカル重合開始剤としては、レドックス型開始剤を使用することもできる。前記レドックス型開始剤は、(a)有機過酸化物および無機過酸化物などの過酸化物と、(b)必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸鉄(II)などの遷移金属塩、さらに必要に応じてエチレンジアミン四酢酸二ナトリウムなどのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有化合物などと、を併用した開始剤である。前記有機過酸化物としては、t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、およびt-ヘキシルパーオキサイドなどが挙げられる。前記無機過酸化物としては、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどが挙げられる。
 工程2では、グラフト部形成用単量体混合物100重量部に対して、連鎖移動剤0.01重量部~5.00重量部を使用する。当該構成によると、重合体(B)を、例えばグラフト共重合体(A)および前記重合体(B)の合計100重量%中5.0重量%以上、含む水系塗料を得ることができる。その結果、本製造方法は、製膜性に優れる水系塗料を提供できるという利点を有する。
 連鎖移動剤としては特に限定されず、t-ドデシルメルカプタン、n-ドデシルメルカプタン、ノルマルオクチルメルカプタンおよびチオグリコール酸2-エチルヘキシルなどの公知の連鎖移動剤を使用できる。
 グラフト部形成用単量体混合物100重量部に対する連鎖移動剤の使用量は、0.01重量部~5.00重量部が好ましく、0.01重量部~3.00重量部がより好ましく、0.01重量部~1.00重量部がさらに好ましく、0.10重量部~1.00重量部が特に好ましい。当該構成によると、製膜性により優れる水系塗料を提供できるという利点を有する。
 また、本製造方法において、ポリオルガノシロキサン形成用単量体混合物およびグラフト部形成用単量体混合物の合計100重量%中、ポリオルガノシロキサン形成用単量体混合物は55重量%~90重量%である。当該構成によると、撥水性に優れる塗膜を提供し得る水系塗料が得られるという利点を有する。本製造方法において、ポリオルガノシロキサン形成用単量体混合物およびグラフト部形成用単量体混合物の合計量100重量%中、ポリオルガノシロキサン形成用単量体混合物の合計量は、55重量%~95重量%であってもよく、60重量%~90重量%であることがより好ましく、65重量%~85重量%であることがさらに好ましく、70重量%~85重量%であることが特に好ましい。当該構成によると、製膜性により優れる水系塗料を提供できるという利点を有する。
 グラフト部形成用単量体混合物を重合してなるグラフト部のグラフト率の態様(好ましい態様を含む)については、前記(グラフト部のグラフト率)の項で説明した態様と同じであるため、当該記載を援用し、ここでは説明を省略する。
 グラフト部形成用単量体混合物を重合してなるグラフト部のガラス転移温度の態様(好ましい態様を含む)については、前記(グラフト部のガラス転移温度)の項で説明した態様と同じであるため、当該記載を援用し、ここでは説明を省略する。
 上述したように、工程2において、グラフト部とともに、非グラフト重合体が得られる。工程2において得られる水性ラテックスから非グラフト重合体を取り除かないことにより、グラフト共重合体(A)および重合体(B)を含む水性ラテックスを得ることができる。工程2において得られるグラフト部および非グラフト重合体の割合は、(a)工程1におけるポリオルガノシロキサン形成用単量体混合物中の単量体Mの量、および(b)工程2における連鎖移動剤の使用量、等により適宜調整することができる。なお、グラフト共重合体(A)の水性ラテックス、またはグラフト共重合体(A)および非グラフト重合体を含む水性ラテックスに対して、別途調製した重合体(B)をさらに添加してもよい。
 工程2におけるグラフト部形成用単量体混合物は、反応性乳化剤を含むことが好ましい。反応性乳化剤については、前記(反応性乳化剤に由来する構成単位)の項に記載したものと同じであるため、当該記載を援用し、ここでは説明を省略する。例えば、工程2における反応性乳化剤の使用量は、グラフト部形成用単量体混合物100重量%中、0.1重量%~20.0重量%であることが好ましく、0.1重量%~15.0重量%であることがより好ましく、1.0重量%~15.0重量%であることがより好ましく、1.0重量%~10.0重量%であることがより好ましく、1.0重量%~8.0重量%であることがさらに好ましく、1.0重量%~5.0重量%であることがよりさらに好ましく、1.0重量%~4.0重量%であることが特に好ましい。当該構成によると、水系塗料の製造時のスケールの発生がより低減されるかまたは無くなるという利点を有する。
 工程2におけるグラフト部形成用単量体混合物は、(a)分子内に1個以上の加水分解性シリル基と、(b)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体Mを含むことが好ましい。単量体Mについては、前記(構成単位U)の項および前記(2-1-3.グラフト部)の項に記載したものと同じであるため、当該記載を援用し、ここでは説明を省略する。例えば、工程2における単量体Mの使用量は、グラフト部形成用単量体混合物100重量%中、0.1重量%~20.0重量%であることが好ましく、0.1重量%~15.0重量%であることがより好ましく、1.0重量%~15.0重量%であることがより好ましく、1.0重量%~10.0重量%であることがさらに好ましく、1.0重量%~8.0重量%であることが特に好ましい。当該構成によると、水系塗料から得られる塗膜を水に浸漬した際のブリスター発生がより低減されるかまたは無くなるという利点を有する。
 水系塗料の製造における各単量体混合物の重合には、上述した成分に加えて、さらに、乳化剤および界面活性剤を用いることができる。前記乳化剤および界面活性剤の種類および使用量は、公知の範囲である。
 水系塗料の製造において、各単量体混合物の重合における重合温度、圧力、および脱酸素などの条件は、公知の範囲のものを適用することができる。
 上述した製造方法により得られる、グラフト共重合体(A)および重合体(B)を含む水性ラテックスを、そのまま、または必要に応じて水(例えば脱イオン水)で希釈して水系塗料として用いてもよい。上述した製造方法により得られる、グラフト共重合体(A)および重合体(B)を含む水性ラテックスに対して、さらに、防汚剤および/またはその他の任意成分を添加し、水系塗料としてもよい。換言すれば、本製造方法は、さらに防汚剤を添加する工程を含んでいてもよい。防汚剤およびその他の任意成分については、それぞれ、前記(2-3.防汚剤)および(2-5.その他の任意成分)で説明したものと同じであるため、当該記載を援用し、ここでは説明を省略する。
 〔4.水系塗料の使用方法(水系塗膜の製造方法)〕
 本水系塗料の使用方法は、水系塗料を使用した塗膜(例えば防汚塗膜)の施工方法ともいえる。本水系塗料の使用方法は、水系塗料を水中構造物に塗布する工程を有する。具体的に、本発明の一実施形態に係る水系塗料の使用方法は、前記〔2.水系塗料〕の項に記載の本発明の一実施形態に係る水系塗料、または前記〔3.水系塗料の製造方法〕の項に記載の本発明の一実施形態に係る水系塗料の製造方法によって得られた水系塗料、を水中構造物に塗布する工程を含む。水系塗料の使用方法は、水系塗膜の製造方法ともいえる。具体的に、具体的に、本発明の一実施形態に係る水系塗膜の製造方法は、前記〔2.水系塗料〕の項に記載の本発明の一実施形態に係る水系塗料、または前記〔3.水系塗料の製造方法〕の項に記載の本発明の一実施形態に係る水系塗料の製造方法によって得られた水系塗料、を水中構造物に塗布する工程を含む。当該構成によると、水中構造物の表面または内表面に撥水性を有する塗膜を形成することができる。本水系塗料からなる塗膜は、水中生物に対する防汚性を有する。それ故、水系塗料を水中構造物に塗布する工程を実施することにより、水中構造物の表面または内表面に防汚性を有する塗膜を形成することができる。また、本水系塗料は製膜性に優れる。それ故、水系塗料を水中構造物に塗布することで、水中構造物の表面または内表面に撥水性(および防汚性)を有する塗膜を容易に形成することができる。
 塗布する工程における、水系塗料の塗布方法としては特に限定されず、公知の方法を用いることができる。塗布方法としては、例えば、流延法、浸漬法、スプレー法、刷毛およびハケ塗り、ローラー、ディップコーター、静電塗装、電着塗装などの方法を採用することができる。
 塗布する工程では、塗布ロボットを使用してもよい。塗布ロボットを使用して、ビード状、モノフィラメント状またはスワール(swirl)状に、水系塗料を水中構造物上に押出して塗布することもできる。また、ジェットスプレー法またはストリーミング法を用いて水系塗料を水中構造物上に塗布することもできる。
 水中構造物上に塗布された水系塗料は、乾燥されてもよい。上述したように、水系塗料を水中構造物上に塗布し、任意で水系塗料を乾燥させることにより、水中構造物上に撥水性(および防汚性)を有する塗膜を形成することができる。
 本発明の一実施形態に係る水系塗膜の製造方法は、以下のような構成であってもよい。
 水系塗料を水中構造物に塗布する工程を含む、水系塗膜の製造方法:
 ここで、前記水系塗膜は、
 グラフト共重合体(A)および重合体(B)を含み、
 前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、
 前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、
 前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、
 前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、
 前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である。
 本発明の一実施形態に係る水系塗膜の製造方法は、以下のような構成であってもよい。
 水系塗料を水中構造物に塗布する工程を含む、水系塗膜の製造方法:
 ここで、前記水系塗膜は、
 グラフト共重合体(A)および重合体(B)を含み、
 前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、
 前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、
 前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、
 前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、
 前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である。
 〔5.塗膜〕
 前記〔4.水系塗料の使用方法(水系塗膜の製造方法)〕の項に記載した方法により、形成された塗膜も、本発明の一実施形態である。すなわち、(a)前記〔2.水系塗料〕の項に記載の本水系塗料からなる塗膜、または(b)前記〔3.水系塗料の製造方法〕の項に記載の本製造方法により製造された水系塗料からなる塗膜、もまた、本発明の一実施形態である。以下、「本発明の一実施形態に係る塗膜」を、「本塗膜」と称する場合がある。
 本塗膜は、撥水性に優れるという利点を有する。その結果、本塗膜は、水中生物に対する防汚性に優れるという利点も有する。
 本塗膜(例えば、本水系塗料からなる厚さ100μmの塗膜)の撥水性が90より大きい場合、当該塗膜は撥水性に優れるといえる。本塗膜(例えば、本水系塗料からなる厚さ100μmの塗膜)の撥水性は、92以上であることが好ましく、94以上であることがより好ましく、96以上であることがより好ましく、98以上であることがさらに好ましく、100以上であることが特に好ましい。当該構成によると、塗膜は、水中生物に対する防汚性により優れるという利点を有する。塗膜の撥水性の測定方法は、後述の実施例にて詳説する。
 また、本塗膜(例えば、本水系塗料からなる厚さ100μmの塗膜)の塗膜硬度は、70より小さいことが好ましく、60以下であることがより好ましく、50以下であることがより好ましく、40以下であることがより好ましく、35以下であることがさらに好ましく、30以下であることが特に好ましい。当該構成によると、塗膜は、水中生物に対する防汚性により優れるという利点を有する。塗膜の塗膜硬度の測定方法は、後述の実施例にて詳説する。
 上述したように、本水系塗料に含まれるグラフト共重合体(A)のポリオルガノシロキサンおよびグラフト部は、非実質的に非架橋であることが好ましい。グラフト共重合体(A)の架橋密度は、グラフト共重合体(A)の弾性と相関し、その結果、水系塗料から得られる塗膜(例えば、水系塗料からなる厚さ100μmの塗膜)の動的貯蔵弾性率と相関し得る。換言すれば、塗膜の動的貯蔵弾性率から算出される架橋密度は、水系塗料に含まれるグラフト共重合体(A)のポリオルガノシロキサンおよびグラフト部の架橋密度を反映し得る。本塗膜(例えば、本水系塗料からなる厚さ100μmの塗膜)の動的貯蔵弾性率から算出される架橋密度は、1.0×10-4mol/cm以下であることが好ましく、1.0×10-5mol/cm以下であることがより好ましく、1.0×10-6mol/cm以下であることがより好ましく、1.0×10-7mol/cm以下であることがより好ましく、1.0×10-8mol/cm以下であることがより好ましく、1.0×10-9mol/cm以下であることがさらに好ましく、1.0×10-10mol/cm以下であることが特に好ましい。塗膜動的貯蔵弾性率から算出される架橋密度が1.0×10-4mol/cm以下である場合、水系塗料に含まれるグラフト共重合体(A)のポリオルガノシロキサンおよびグラフト部は非架橋である蓋然性が高いと言える。塗膜の貯蔵弾性率および架橋密度の測定方法は、後述の実施例にて詳説する。
 〔6.用途〕
 本水系塗料は、様々な水中構造物の表面または内表面を防汚するための防汚塗料として好適に用いることができる。水中構造物としては、船舶、養殖および漁のための資材(例えば、ロープ、漁網、漁具、浮き子、ブイ、テトラポットなど)、オイルフェンス、火力または原子力発電所の給排水口、冷却用導水管および海水利用機器などの配管、海底トンネル、海底基地、メガフロート、港湾設備、運河および水路等の各種海洋土木工事、工業用水系施設、橋梁、浮標、などが挙げられる。
 本発明の一実施形態は、以下の様な構成であってもよい。
 〔1〕グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である、水系塗料。
 〔2〕前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である、〔1〕に記載の水系塗料。
 〔3〕グラフト共重合体(A)および重合体(B)を含み、前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である、水系塗料。
 〔4〕前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である、〔3〕に記載の水系塗料。
 〔5〕前記ポリオルガノシロキサンは、当該ポリオルガノシロキサン100重量%中、前記構成単位Uを0.001重量%~10.0重量%含む、〔1〕~〔4〕の何れか1つに記載の水系塗料。
 〔6〕前記グラフト部のガラス転移温度は80℃以下である、〔1〕~〔5〕の何れか1つに記載の水系塗料。
 〔7〕前記グラフト部は、さらに、反応性乳化剤に由来する構成単位を含む、〔1〕~〔6〕の何れか1つに記載の水系塗料。
 〔8〕前記グラフト部は、当該グラフト部の全構成単位100重量%中、前記反応性乳化剤に由来する構成単位を0.1重量%~20.0重量%含む、〔7〕に記載の水系塗料。
 〔9〕前記グラフト部は、さらに、(a)分子内に1個以上の加水分解性シリル基と、(b)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体Mに由来する構成単位を含む、〔1〕~〔8〕の何れか1つに記載の水系塗料。
 〔10〕前記グラフト部は、当該グラフト部の全構成単位100重量%中、前記単量体Mに由来する構成単位を0.1重量%~20.0重量%含む、〔9〕に記載の水系塗料。
 〔11〕さらに防汚剤を含む、〔1〕~〔10〕の何れか1つに記載の水系塗料。
 〔12〕前記ポリオルガノシロキサンの体積平均粒子径は、0.03μm~50.00μmである、〔1〕~〔11〕の何れか1つに記載の水系塗料。
 〔13〕前記グラフト部のグラフト率は、75.0%以上である、〔1〕~〔12〕の何れか1つに記載の水系塗料。
 〔14〕前記グラフト部のガラス転移温度は、-25℃以上である、〔1〕~〔13〕の何れか1つに記載の水系塗料。
 〔15〕〔1〕~〔14〕の何れか1つに記載の水系塗料を水中構造物に塗布する工程を含む、水系塗膜の製造方法。
 〔16〕(a)オルガノシロキサン、および(b)(b-1)分子内に1個以上の加水分解性シリル基と、(b-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体M、を含むポリオルガノシロキサン形成用単量体混合物を重合してポリオルガノシロキサンを得る工程1と、工程1で得られた前記ポリオルガノシロキサンの存在下でグラフト部形成用単量体混合物を重合する工程2と、を有し、前記ポリオルガノシロキサン形成用単量体混合物および前記グラフト部形成用単量体混合物の合計100重量%中、前記ポリオルガノシロキサン形成用単量体混合物は55重量%~90重量%であり、前記工程1では、前記ポリオルガノシロキサン形成用単量体混合物100重量%中、多官能性のアルコキシシラン化合物および多官能性単量体の合計使用量が0.50重量%以下であり、前記工程2では、前記グラフト部形成用単量体混合物は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体を含み、前記工程2では、前記グラフト部形成用単量体混合物100重量部に対して、連鎖移動剤0.01重量部~5.00重量部を使用する、水系塗料の製造方法。
 〔17〕前記工程1において、単量体Mの使用量は、前記ポリオルガノシロキサン形成用単量体混合物100重量%中、0.001重量%~10.0重量%である、〔16〕に記載の水系塗料。
 〔18〕前記グラフト部形成用単量体混合物を重合してなるグラフト部のガラス転移温度は80℃以下である、〔16〕または〔17〕に記載の水系塗料。
 〔19〕前記工程2において、前記グラフト部形成用単量体混合物は、反応性乳化剤を含む、〔16〕~〔18〕の何れか1つに記載の水系塗料。
 〔20〕前記工程2において、前記反応性乳化剤の使用量は、前記グラフト部形成用単量体混合物100重量%中、0.1重量%~20.0重量%である、〔19〕に記載の水系塗料。
 〔21〕前記工程2において、前記グラフト部形成用単量体混合物は、さらに、(a)分子内に1個以上の加水分解性シリル基と、(b)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体Mを含む、〔16〕~〔20〕の何れか1つに記載の水系塗料。
 〔22〕前記工程2において、単量体Mの使用量は、前記グラフト部形成用単量体混合物100重量%中、0.1重量%~20.0重量%である、〔21〕に記載の水系塗料。
 〔23〕さらに防汚剤を添加する工程を含む、〔16〕~〔22〕の何れか1つに記載の水系塗料。
 〔24〕前記ポリオルガノシロキサンの体積平均粒子径は、0.03μm~50.00μmである、〔16〕~〔23〕の何れか1つに記載の水系塗料。
 〔25〕前記グラフト部形成用単量体混合物を重合してなるグラフト部のグラフト率は、75.0%以上である、〔16〕~〔24〕の何れか1つに記載の水系塗料。
 〔26〕前記グラフト部形成用単量体混合物を重合してなるグラフト部のガラス転移温度は、-25℃以上である、〔16〕~〔25〕の何れか1つに記載の水系塗料。
 以下、実施例および比較例によって本発明の一実施形態をより詳細に説明するが、本発明はこれらに限定されるものではない。本発明の一実施形態は、前記または後記の趣旨に適合し得る範囲で適宜変更して実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。なお下記実施例および比較例において「部」および「%」とあるのは、重量部または重量%を意味する。
 <評価方法>
 先ず、実施例および比較例によって製造したグラフト共重合体、重合体(B)および水系塗料の評価方法について、以下に説明する。
 (体積平均粒子径の測定)
 水性ラテックス中に分散しているポリオルガノシロキサンまたはグラフト共重合体の体積平均粒子径(Mv)は、Nanotrac WaveII-EX150(マイクロトラックベル株式会社製)を用いて測定した。脱イオン水で水性ラテックスを希釈したものを測定試料として用いた。測定は、水、および、各製造例で得られたポリオルガノシロキサンまたはグラフト共重合体の屈折率を入力し、計測時間120秒、ローディングインデックス1~10の範囲内になるように試料濃度を調整して行った。
 (グラフト部のガラス転移温度の算出方法)
 グラフト部のTgは、以下の単量体の単独重合体のTg値を用い、上述のFOX式(数式1)に従い算出した。
 メチルメタクリレート(MMA)         105℃
 ブチルメタクリレート(BMA)         20℃
 n-ブチルアクリレート(BA)         -54℃。
 (グラフト率および重合体(重合体(B))の含有量(%)の測定方法)
 以下の方法により、グラフト率(%)を算出した:(1)グラフト共重合体を含有する水性ラテックスを得た;(2)次いで、水性ラテックス中の固形分2gに相当する量の水性ラテックスとメチルエチルケトン(MEK)50mLとを混合し、MEK溶解物を調製した;(3)その後、得られたMEK溶解物を、遠心分離等によって、MEKに可溶な成分(MEK可溶分)とMEKに不溶な成分(MEK不溶分)とに分離した。ここで、遠心分離機としては、CP60E(日立工機(株)社製)を用い、遠心条件は、回転数30000rpmおよび1時間とした;(4)得られたMEK可溶分にMEKを添加し、得られた混合物を、再度同じ条件で遠心分に供し、MEK可溶分とMEK不溶分とに分離した。同じ操作をさらに1回行った;(5)次に、得られたMEK可溶分20mlをメタノール200mlと混合し、当該混合物に塩化カルシウム0.01gを水に溶かした塩化カルシウム水溶液を添加し1時間攪拌した;(6)その後、得られた混合物をメタノール可溶分とメタノール不溶分に分離した;(7)次いで、MEK不溶分の重量およびメタノール不溶分の重量を測定した;(8)下記式より、グラフト率を算出した;
グラフト率(%)=100-[(メタノール不溶分の重量)/{(メタノール不溶分の重量)+(MEK不溶分の重量)}]/(グラフト部の調製に使用したグラフト部形成用単量体混合物の全量)×10000。
 ここで、実施例および比較例においては、グラフト率(%)の算出に先立ち、可溶分の重量(すなわちメタノール可溶分の重量)を除く、グラフト共重合体(A)の重量(MEK不溶分の重量)と、非グラフト重合体の重量(メタノール不溶分の重量)との合計が100%となるように、グラフト共重合体(A)の重量と非グラフト重合体の重量とを計算し直した。得られた値をグラフト率の算出に用いた。
 また、実施例および比較例においては、「グラフト共重合体を含有する水性ラテックス」として、後述する製造例1~11で得られた水性ラテックス(L-1)~(L-11)並びに比較製造例1~2で得られた水性ラテックス(CL-1)~(CL-2)を使用した。
 また、実施例および比較例では、グラフト共重合体を調製した後、得られた水性ラテックスからグラフト部の調製時に生じ得た非グラフト重合体を取り除くことなく、水系塗料を得た。それ故、非グラフト重合体の重量、すなわちメタノール不溶分の重量が、水系塗料中に含まれている重合体(B)の重量となる。従って、グラフト部および重合体(B)の合計100重量%中における重合体(B)の含有量(%)は、100からグラフト率(%)を引いて得られた値となる。
 (グラフト共重合体および重合体(B)の複合体の重量平均分子量の測定方法)
 グラフト共重合体および重合体(B)の複合体の重量平均分子量は、以下の方法で測定した:(1)グラフト共重合体および重合体(B)を含む水性ラテックスを得た;(2)水性ラテックス中の固形分20mgに相当する量の水性ラテックスと、テトラヒドロフラン10mLとを混合し、混合液を調製した;(3)混合液をPTFEフィルター(0.2μm)で濾過した;(4)前記(3)で得られる濾液を、HLC-82201(東ソー株式会社製)に供し、重量平均分子量を測定した。
 ここで、実施例および比較例においては、「グラフト共重合体および重合体(重合体(B))を含む水性ラテックス」として、後述する製造例1~11で得られた水性ラテックス(L-1)~(L-11)並びに比較製造例1~2で得られた水性ラテックス(CL-1)~(CL-2)を使用した。
 上述したように、実施例および比較例では、グラフト共重合体を調製した後、得られた水性ラテックスからグラフト部の調製時に生じ得た非グラフト重合体を取り除かなかった。それ故、水性ラテックス(L-1)~(L-11)はグラフト共重合体(A)および重合体(B)の複合体の水性ラテックスといえ、水性ラテックス(CL-1)~(CL-2)はグラフト共重合体および重合体(B)の複合体の水性ラテックスといえる。
 (水系塗料の製膜性の評価方法)
 水系塗料の製膜性は、以下の方法で評価した:(1)各水系塗料を、乾燥後の膜厚が100μmになるように、アルミ板にアプリケーターで塗装した;(2)得られたアルミ板を、25℃にて一晩静置し、水系塗料の塗膜を作製した;(3)得られたアルミ板の塗面状態を目視で確認し、下記の基準にて製膜性を評価した。
○(良好):クラックなし、
×(不良):クラックあり。
 (水系塗料の製造時のスケール発生量の測定および評価方法)
 水系塗料の製造時のスケール発生量は、以下の方法で評価した:(1)各水系塗料を150メッシュの金網にてろ過した;(2)金網上に残った物質(スケール)を乾燥させ、乾燥後に当該スケールの重量を測定した;(3)スケールの重量を、グラフト共重合体(A)および重合体(B)の複合体の水性ラテックスの固形分量および水系塗料の製造時に添加した原料の合計重量で除し、得られた値に100を乗じて、スケール発生量(%)を算出した;(4)下記基準にてスケール発生量を評価した。
○(良好):スケール発生量が0.3%未満である、
×(不良):スケール発生量が0.3%以上である。
 (水系塗料の塗膜を水に浸漬した際のブリスター発生量の測定および評価方法)
 水系塗料の塗膜を水に浸漬した際のブリスター発生量は、以下の方法で評価した:(1)ガラス板にエポキシ系重防食塗料を塗布した;(2)得られたガラス板に対して、さらに、各水系塗料を乾燥後の膜厚が100μmになるようにアプリケーターで塗装した;(3)得られたガラス板を、25℃にて一晩静置し、エポキシ系重防食塗料および水系塗料の塗膜を作製した;(4)得られたガラス板を水に浸漬させ、1週間静置した;(5)静置後、ガラス板の塗面状態を目視で確認し、下記基準にてブリスター発生量を評価した。
◎(良好):塗面にブリスターなし、
〇(合格):ブリスターが塗面の一部に観察される、
△(不良):ブリスターが塗面の全面にみられる。
 (水系塗料の塗膜の撥水性の測定方法)
 水系塗料の塗膜の撥水性は、以下の方法で評価した:(1)ガラス板にエポキシ系重防食塗料を塗布した;(2)得られたガラス板に対して、さらに、各水系塗料を乾燥後の膜厚が100μmになるようにアプリケーターで塗装した;(3)得られたガラス板を、25℃にて一晩静置し、エポキシ系重防食塗料および水系塗料の塗膜を作製した;(4)得られたガラス板を水に浸漬させ、1週間静置した;(5)静置後、ガラス板の塗膜の撥水性を、JIS R 3257に基づく静滴法により、接触角計(DropMaster、協和界面科学株式会社製)を用いて測定した。実施例において、上述の方法により測定して得られた塗膜の撥水性が90より大きい場合、当該塗膜は撥水性に優れると判定する。
 (水系塗料の塗膜の塗膜硬度の測定方法)
 水系塗料の塗膜の塗膜硬度は、以下の方法で評価した:(1)ガラス板にエポキシ系重防食塗料を塗布した;(2)得られたガラス板に対して、さらに、各水系塗料を乾燥後の膜厚が100μmになるようにアプリケーターで塗装した;(3)得られたガラス板を、25℃にて一晩静置し、エポキシ系重防食塗料および水系塗料の塗膜を作製した;(4)得られたガラス板を水に浸漬させ、1週間静置した;(5)静置後、ガラス板の塗膜の塗膜硬度を、振り子式硬度計(エリクセン社製)を用いて測定した。
 (グラフト共重合体および重合体(B)を含む水性ラテックスの製造)
 (製造例1)
 (工程1)
 脱イオン水251重量部、SDS0.5重量部、並びにポリオルガノシロキサン形成用単量体混合物(オクタメチルシクロテトラシロキサン100重量部、および単量体Mとしてγ-アクリロイルオキシプロピルジメトキシメチルシラン2重量部からなる混合物)を混合した。得られた混合液を、ホモミキサーを使用し、10000rpmで5分間撹拌して、エマルジョンを調製した。得られたエマルジョンを、5口のガラス容器に、一度に全量投入した。ここで、前記ガラス容器は、温度計、撹拌機、還流冷却器、窒素流入口、並びに、単量体および乳化剤の添加口を有していた。投入した原料を撹拌しながら、(i)10%のドデシルベンゼンスルホン酸(DSA)水溶液の、当該水溶液中の固形分1重量部に相当する量をガラス容器に添加し、次いで(ii)ガラス容器内の温度を約40分かけて80℃まで昇温し、(iii)その後、ガラス容器内の混合物を80℃で6時間反応させた。その後、ガラス容器内の温度を25℃まで冷却し、ガラス容器内の温度が25℃に達した後、ガラス容器内の反応溶液を20時間放置した。その後、反応溶液のpHを、水酸化ナトリウムを使用してpH6.8に調整することにより、重合を終了した。以上の操作により、ポリオルガノシロキサンを含む水性ラテックス(R-1)を得た。単量体成分の重合転化率は97%であった。得られた水性ラテックス(R-1)に含まれるポリオルガノシロキサンの体積平均粒子径は280nmであった。
 (工程2)
 続いて、ガラス製反応器に、ポリオルガノシロキサンの水性ラテックス(R-1)275.5重量部(ポリオルガノシロキサン70重量部を含む)、および、脱イオン水121重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器内の気体を窒素で置換しながら、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.13重量部をガラス製反応器内に加え、10分間撹拌した。その後、グラフト部形成用単量体混合物(BMA30重量部のみからなる)、連鎖移動剤としてt-ドデシルメルカプタン0.24重量部およびBHP0.085重量部の混合物をガラス製反応器内に、120分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-1)を得た。単量体成分の重合転化率は97%以上であった。得られた水性ラテックス(L-1)に含まれるグラフト共重合体(A)の体積平均粒子径は293nmであった。
 (製造例2)
 グラフト部形成用単量体混合物として、BMA29重量部、および反応性乳化剤としてエーテルサルフェート型のアニオン性界面活性剤(アリルオキシ基を有する)(ADEKA社製、アデカリアソープSR1025)1重量部からなる混合部を使用したこと以外は、製造例1と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-2)を得た。製造例2において、グラフト共重合体(A)の体積平均粒子径は294nmであった。
 (製造例3)
 (a)水性ラテックス(R-1)の使用量を314.9重量部(ポリオルガノシロキサン80重量部を含む)に変更し、(b)グラフト部形成用単量体混合物中のBMAの使用量を19重量部に変更し、かつ(c)連鎖移動剤であるt-ドデシルメルカプタンの使用量を0.16重量部に変更したこと以外は、製造例2と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-3)を得た。製造例3において、グラフト共重合体(A)の体積平均粒子径は294nmであった。
 (製造例4)
 (a)水性ラテックス(R-1)の使用量を334.5重量部(ポリオルガノシロキサン85重量部を含む)に変更し、(b)グラフト部形成用単量体混合物中のBMAの使用量を14重量部に変更し、かつ(c)連鎖移動剤であるt-ドデシルメルカプタンの使用量を0.12重量部に変更したこと以外は、製造例2と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-4)を得た。製造例4において、グラフト共重合体(A)の体積平均粒子径は294nmであった。
 (製造例5)
 グラフト部形成用単量体混合物として、BMA28.7重量部、反応性乳化剤としてエーテルサルフェート型のアニオン性界面活性剤(アリルオキシ基を有する)(ADEKA社製、アデカリアソープSR1025)1重量部、および単量体Mとして3-メタクリロキシプロピルメチルジメトキシシランを0.3重量部からなる混合部を使用したこと以外は、製造例1と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-5)を得た。製造例5において、グラフト共重合体(A)の体積平均粒子径は292nmであった。
 (製造例6)
 グラフト部形成用単量体混合物中のBMAの使用量を28.4重量部に変更し、かつ単量体Mである3-メタクリロキシプロピルメチルジメトキシシランの使用量を0.6重量部に変更したこと以外は、製造例5と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-6)を得た。製造例6において、グラフト共重合体(A)の体積平均粒子径は290nmであった。
 (製造例7)
 グラフト部形成用単量体混合物中のBMAの使用量を27.5重量部に変更し、かつ単量体Mである3-メタクリロキシプロピルメチルジメトキシシランの使用量を1.5重量部に変更したこと以外は、製造例5と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-7)を得た。製造例7において、グラフト共重合体(A)の体積平均粒子径は290nmであった。
 (製造例8)
 グラフト部形成用単量体混合物中のBMAの使用量を26重量部に変更し、かつ単量体Mである3-メタクリロキシプロピルメチルジメトキシシランの使用量を3.0重量部に変更したこと以外は、製造例5と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-8)を得た。製造例8において、グラフト共重合体(A)の体積平均粒子径は291nmであった。
 (製造例9)
 グラフト部形成用単量体混合物において、BMA27.5重量部の代わりに、MMA27.5重量部を使用したこと以外は、製造例7と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-9)を得た。製造例9において、グラフト共重合体(A)の体積平均粒子径は294nmであった。
 (製造例10)
 グラフト部形成用単量体混合物において、BMA27.5重量部の代わりに、MMA21重量部およびBA6.5重量部の混合物を使用したこと以外は、製造例7と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-10)を得た。製造例10において、グラフト共重合体(A)の体積平均粒子径は290nmであった。
 (製造例11)
 グラフト部形成用単量体混合物において、BMA30重量部の代わりに、MMA6.5重量部およびBA21重量部の混合物を使用したこと以外は、製造例7と同じ方法により、グラフト共重合体(A)および重合体(B)を含む水性ラテックス(L-11)を得た。製造例11において、グラフト共重合体(A)の体積平均粒子径は291nmであった。
 (比較製造例1)
 工程2において連鎖移動剤を使用しなかったこと以外は、製造例1と同じ方法により、グラフト共重合体および重合体を含む水性ラテックス(CL-1)を得た。比較製造例1において、グラフト共重合体の体積平均粒子径は295nmであった。
 (比較製造例2)
 (a)水性ラテックス(R-1)の使用量を196.8重量部(ポリオルガノシロキサン50重量部を含む)に変更し、(b)グラフト部形成用単量体混合物中のBMAの使用量を49重量部に変更し、かつ(c)工程2において連鎖移動剤を使用しなかったこと以外は、製造例2と同じ方法により、グラフト共重合体および重合体を含む水性ラテックス(CL-2)を得た。比較製造例2において、グラフト共重合体の体積平均粒子径は296nmであった。
 製造例1~11で得られた水性ラテックス(L-1)~(L-11)において、グラフト共重合体(A)のコア部はポリオルガノシロキサンのみから構成されていた。また、比較製造例1~2で得られたで得られた水性ラテックス(CL-1)~(CL-2)において、グラフト共重合体のコア部はポリオルガノシロキサンのみから構成されていた。すなわち、水性ラテックス(R-1)に含まれるポリオルガノシロキサンの体積平均粒子径は、コア部の体積平均粒子径といえる。
 製造例1~11で得られた水性ラテックス(L-1)~(L-11)および比較製造例1~2で得られたで得られた水性ラテックス(CL-1)~(CL-2)を用いて、(a)グラフト率および重合体の含有量(%)の測定、並びに(b)グラフト共重合体および重合体の複合体の重量平均分子量の測定を行った。結果を表2に示す。
 また、製造例1~11および比較製造例1~2におけるグラフト共重合体の組成を表2に示す。なお、表2において、「ポリオルガノシロキサン含有量(%)」は、「ポリオルガノシロキサン形成用単量体混合物およびグラフト部形成用単量体混合物の合計100重量部に対する工程2で使用したポリオルガノシロキサンの量(%)」を意図し、すなわち「グラフト共重合体および重合体の合計100重量%中の、ポリオルガノシロキサンの含有量(%)」を意図する。また、表2において、「連鎖移動剤量(重量部)」は「ポリオルガノシロキサン形成用単量体混合物およびグラフト部形成用単量体混合物の合計100重量部に対する連鎖移動剤の使用量(重量部)」を意図し、「反応性乳化剤量(重量部)」は、「ポリオルガノシロキサン形成用単量体混合物およびグラフト部形成用単量体混合物の合計100重量部中の、反応性乳化剤の使用量(重量部)」を意図し、「単量体M(重量部)」は、「ポリオルガノシロキサン形成用単量体混合物およびグラフト部形成用単量体混合物の合計100重量部中の、工程2においてグラフト部の調製時に使用した単量体Mの使用量(重量部)」を意図し、「重量平均分子量」は、「グラフト共重合体および重合体の複合体の重量平均分子量」を意図し、「グラフト共重合体の量(%)」は、「グラフト共重合体および重合体の合計100重量%中のグラフト共重合体の量(%)」を意図し、「重合体の量(%)」は、「グラフト共重合体および重合体の合計100重量%中の重合体の量(%)」を意図する。
 (実施例1~11および比較例1~2)
 水性ラテックス(L-1)~(L-11)をそれぞれ用い、表1に示す配合例1および配合例2で実施例1~11の水系塗料を作成した。水性ラテックス(CL-1)~(CL-2)をそれぞれ用い、表1に示す配合例1および配合例2で比較例1~2の水系塗料を作成した。
 配合例1の実施例および配合例1の比較例で得られた水系塗料を用いて、上述の各測定および評価を行った。また、配合例2の実施例および配合例2の比較例で得られた水系塗料を用いて、水系塗料の製膜性の評価を行った。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の一実施形態によると、撥水性に優れる塗膜を提供し得る、製膜性に優れた水系塗料を提供することができる。また、本発明の一実施形態に係る水系塗料は、水中生物に対する防汚性に優れる塗膜を提供できる。そのため、本発明の一実施形態に係る水系塗料、および当該水系塗料からなる塗膜は、船舶、養殖および漁のための資材、オイルフェンス、火力または原子力発電所の給排水口、冷却用導水管および海水利用機器などの配管、海底トンネル、海底基地、メガフロート、港湾設備、運河および水路等の各種海洋土木工事、工業用水系施設、橋梁、浮標、などの水中構造物に好適に利用できる。

 

Claims (15)

  1.  グラフト共重合体(A)および重合体(B)を含み、
     前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、
     前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、
     前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、
     前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、
     前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である、水系塗料。
  2.  前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である、請求項1に記載の水系塗料。
  3.  グラフト共重合体(A)および重合体(B)を含み、
     前記グラフト共重合体(A)は、ポリオルガノシロキサンと、当該ポリオルガノシロキサンに対して、グラフト結合されたグラフト部と、を含み、
     前記ポリオルガノシロキサンは、(a)(a-1)分子内に1個以上の加水分解性シリル基と、(a-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体に由来する構成単位Uを含み、かつ(b)非架橋であり、
     前記重合体(B)は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する構成単位を含み、
     前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記ポリオルガノシロキサンは55重量%~90重量%であり、
     前記グラフト共重合体(A)および前記重合体(B)の複合体の重量平均分子量は150,000以下である、水系塗料。
  4.  前記グラフト共重合体(A)および前記重合体(B)の合計100重量%中、前記重合体(B)は5.0重量%以上である、請求項3に記載の水系塗料。
  5.  前記ポリオルガノシロキサンは、当該ポリオルガノシロキサン100重量%中、前記構成単位Uを0.001重量%~10.0重量%含む、請求項1~4の何れか1項に記載の水系塗料。
  6.  前記グラフト部のガラス転移温度は80℃以下である、請求項1~4の何れか1項に記載の水系塗料。
  7.  前記グラフト部は、さらに、反応性乳化剤に由来する構成単位を含む、請求項1~4の何れか1項に記載の水系塗料。
  8.  前記グラフト部は、当該グラフト部の全構成単位100重量%中、前記反応性乳化剤に由来する構成単位を0.1重量%~20.0重量%含む、請求項7に記載の水系塗料。
  9.  前記グラフト部は、さらに、(a)分子内に1個以上の加水分解性シリル基と、(b)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体Mに由来する構成単位を含む、請求項1~4の何れか1項に記載の水系塗料。
  10.  前記グラフト部は、当該グラフト部の全構成単位100重量%中、前記単量体Mに由来する構成単位を0.1重量%~20.0重量%含む、請求項9に記載の水系塗料。
  11.  さらに防汚剤を含む、請求項1~4の何れか1項に記載の水系塗料。
  12.  前記ポリオルガノシロキサンの体積平均粒子径は、0.03μm~50.00μmである、請求項1~4の何れか1項に記載の水系塗料。
  13.  前記グラフト部のグラフト率は、75.0%以上である、請求項1~4の何れか1項に記載の水系塗料。
  14.  請求項1~4の何れか1項に記載の水系塗料を水中構造物に塗布する工程を含む、水系塗膜の製造方法。
  15.  (a)オルガノシロキサン、および(b)(b-1)分子内に1個以上の加水分解性シリル基と、(b-2)1個以上のエチレン性不飽和基および/またはメルカプト基と、を含有する単量体M、を含むポリオルガノシロキサン形成用単量体混合物を重合してポリオルガノシロキサンを得る工程1と、
     工程1で得られた前記ポリオルガノシロキサンの存在下でグラフト部形成用単量体混合物を重合する工程2と、を有し、
     前記ポリオルガノシロキサン形成用単量体混合物および前記グラフト部形成用単量体混合物の合計100重量%中、前記ポリオルガノシロキサン形成用単量体混合物は55重量%~90重量%であり、
     前記工程1では、前記ポリオルガノシロキサン形成用単量体混合物100重量%中、多官能性のアルコキシシラン化合物および多官能性単量体の合計使用量が0.50重量%以下であり、
     前記工程2では、前記グラフト部形成用単量体混合物は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体を含み、
     前記工程2では、前記グラフト部形成用単量体混合物100重量部に対して、連鎖移動剤0.01重量部~5.00重量部を使用する、水系塗料の製造方法。
PCT/JP2022/045036 2021-12-07 2022-12-07 水系塗料 WO2023106317A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22904245.2A EP4446352A1 (en) 2021-12-07 2022-12-07 Water-based coating
CN202280081302.9A CN118369388A (zh) 2021-12-07 2022-12-07 水性涂料
JP2023566332A JPWO2023106317A1 (ja) 2021-12-07 2022-12-07
US18/735,455 US20240327671A1 (en) 2021-12-07 2024-06-06 Water-based coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021198736 2021-12-07
JP2021-198736 2021-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/735,455 Continuation US20240327671A1 (en) 2021-12-07 2024-06-06 Water-based coating

Publications (1)

Publication Number Publication Date
WO2023106317A1 true WO2023106317A1 (ja) 2023-06-15

Family

ID=86730509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045036 WO2023106317A1 (ja) 2021-12-07 2022-12-07 水系塗料

Country Status (5)

Country Link
US (1) US20240327671A1 (ja)
EP (1) EP4446352A1 (ja)
JP (1) JPWO2023106317A1 (ja)
CN (1) CN118369388A (ja)
WO (1) WO2023106317A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733836A (ja) 1993-07-22 1995-02-03 Mitsubishi Rayon Co Ltd グラフト共重合体の製法および熱可塑性樹脂組成物
JPH07286129A (ja) 1994-04-18 1995-10-31 Japan Synthetic Rubber Co Ltd コーティング用水系分散体
JPH0881524A (ja) * 1994-09-13 1996-03-26 Nippon Paint Co Ltd 水性防汚塗料組成物
JPH09137123A (ja) 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd 塗料用樹脂組成物及び塗料用エマルションの製造方法
JPH09176437A (ja) * 1995-12-25 1997-07-08 Japan Synthetic Rubber Co Ltd 架橋型水性重合体分散液
JPH09208642A (ja) 1996-02-07 1997-08-12 Toshiba Silicone Co Ltd 変性ポリオルガノシロキサン系エマルジョン
JPH09208888A (ja) * 1996-02-07 1997-08-12 Toshiba Silicone Co Ltd 塗膜用保護撥水性組成物
JP2004137374A (ja) 2002-10-17 2004-05-13 Mitsubishi Rayon Co Ltd 水性被覆組成物
WO2005028546A1 (ja) 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
JP2007191531A (ja) * 2006-01-18 2007-08-02 Mitsubishi Rayon Co Ltd 水性防汚塗料組成物
WO2011046086A1 (ja) 2009-10-13 2011-04-21 日本ペイントマリン株式会社 防汚塗料組成物、ならびに防汚塗膜、複合塗膜および水中構造物
WO2017155064A1 (ja) * 2016-03-10 2017-09-14 旭化成株式会社 水性被覆組成物及び塗膜

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733836A (ja) 1993-07-22 1995-02-03 Mitsubishi Rayon Co Ltd グラフト共重合体の製法および熱可塑性樹脂組成物
JPH07286129A (ja) 1994-04-18 1995-10-31 Japan Synthetic Rubber Co Ltd コーティング用水系分散体
JPH0881524A (ja) * 1994-09-13 1996-03-26 Nippon Paint Co Ltd 水性防汚塗料組成物
JPH09137123A (ja) 1995-11-17 1997-05-27 Mitsubishi Rayon Co Ltd 塗料用樹脂組成物及び塗料用エマルションの製造方法
JPH09176437A (ja) * 1995-12-25 1997-07-08 Japan Synthetic Rubber Co Ltd 架橋型水性重合体分散液
JPH09208642A (ja) 1996-02-07 1997-08-12 Toshiba Silicone Co Ltd 変性ポリオルガノシロキサン系エマルジョン
JPH09208888A (ja) * 1996-02-07 1997-08-12 Toshiba Silicone Co Ltd 塗膜用保護撥水性組成物
JP2004137374A (ja) 2002-10-17 2004-05-13 Mitsubishi Rayon Co Ltd 水性被覆組成物
WO2005028546A1 (ja) 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
JP2007191531A (ja) * 2006-01-18 2007-08-02 Mitsubishi Rayon Co Ltd 水性防汚塗料組成物
WO2011046086A1 (ja) 2009-10-13 2011-04-21 日本ペイントマリン株式会社 防汚塗料組成物、ならびに防汚塗膜、複合塗膜および水中構造物
WO2017155064A1 (ja) * 2016-03-10 2017-09-14 旭化成株式会社 水性被覆組成物及び塗膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Polymer Handbook", JPHN WILEY 8S SONS, INC

Also Published As

Publication number Publication date
EP4446352A1 (en) 2024-10-16
CN118369388A (zh) 2024-07-19
JPWO2023106317A1 (ja) 2023-06-15
US20240327671A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
JP3239645B2 (ja) 含フッ素系重合体水性分散液
JP2007514861A (ja) ペルフルオロポリエーテル側基を有する反応性フッ素化コポリマーを用いたコーティング組成物
JP2008007653A (ja) 水性樹脂組成物及び該水性樹脂組成物を含む水性塗料組成物
JP2019099728A (ja) 共重合体、レベリング剤、塗料組成物及び塗装物品
JP3423830B2 (ja) 水性塗料用樹脂組成物および耐汚染性に優れた塗膜の形成方法
JPH07228820A (ja) 被覆用防汚性組成物
US20220010124A1 (en) Granular body and use thereof
WO2023106317A1 (ja) 水系塗料
JP5122137B2 (ja) グラフト共重合体、コーティング剤、及びコーティング膜の形成方法
JP6152720B2 (ja) フッ素系グラフト共重合体及びこれを用いたコーティング剤
JP2004059813A (ja) 水系樹脂分散体
JP2024143794A (ja) 水系塗料
JPH1160646A (ja) 粉体塗料用組成物
JP5089049B2 (ja) 水性防汚塗料組成物
WO2022070978A1 (ja) 防汚塗料組成物
US20230203317A1 (en) Aqueous coating composition and process for preparing the same
JP6540972B2 (ja) フッ素系グラフト共重合体及びこれを用いたコーティング剤
JP2010138256A (ja) エマルションの製造方法、及び水性被覆材
JP2010059267A (ja) 重合体エマルションの製造方法および水性塗料
JP6102972B2 (ja) エマルションの製造方法、及び水性被覆材の製造方法
JP2015166436A (ja) 水系防錆塗料及びalc防錆塗膜
JP7573638B2 (ja) 防汚塗料組成物
JP2000119355A (ja) グラフト共重合体及び塗料
JPH1036755A (ja) 塗料用組成物
JP2024128283A (ja) 積層体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566332

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022904245

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022904245

Country of ref document: EP

Effective date: 20240708