WO2023095775A1 - ナトリウムイオン二次電池 - Google Patents

ナトリウムイオン二次電池 Download PDF

Info

Publication number
WO2023095775A1
WO2023095775A1 PCT/JP2022/043133 JP2022043133W WO2023095775A1 WO 2023095775 A1 WO2023095775 A1 WO 2023095775A1 JP 2022043133 W JP2022043133 W JP 2022043133W WO 2023095775 A1 WO2023095775 A1 WO 2023095775A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
ion secondary
secondary battery
electrode active
Prior art date
Application number
PCT/JP2022/043133
Other languages
English (en)
French (fr)
Inventor
啓 角田
歩 田中
英郎 山内
太地 坂本
勇太 池内
孝志 向井
博 妹尾
Original Assignee
日本電気硝子株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日本電気硝子株式会社
Publication of WO2023095775A1 publication Critical patent/WO2023095775A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to sodium ion secondary batteries.
  • Lithium-ion secondary batteries have established themselves as high-capacity, lightweight power sources essential for mobile devices and electric vehicles.
  • current lithium-ion secondary batteries mainly use a combustible organic electrolyte as an electrolyte, and there is concern about the danger of ignition and the like.
  • secondary batteries for power sources for electric vehicles are required to have high energy density and high capacity for long-distance driving.
  • high safety is also required, so development of a high-performance power storage device that satisfies both high energy density and high safety is required.
  • NCA Li(Ni—Co—Al)O 2 system
  • NCM Li(Ni— A ternary positive electrode active material such as Co—Mn)O 2 system
  • LFP LiFePO 4
  • LFP is still inadequate in safety, and further improvements in safety are required.
  • LFP contains Li, which is a rare metal, it is unclear whether it can be stably supplied.
  • an object of the present invention is to provide a sodium-ion secondary battery with high capacity and excellent safety.
  • the sodium ion secondary battery according to aspect 1 of the present invention has the general formula Na x M y P 2 O z (1 ⁇ x ⁇ 2.8, 0.95 ⁇ y ⁇ 1.6, 6.5 ⁇ z ⁇ 8 , M is at least one selected from Fe, Ni, Co, Mn and Cr). , and a non-aqueous electrolyte.
  • the LFP containing P in the crystal structure has relatively high thermal stability, but the positive electrode active material made of crystallized glass containing crystals represented by the general formula Na x My P 2 O z , contains a pyrophosphate skeleton in the crystal, and the P element and the O element are more strongly bonded to oxygen, so it is a material that is more thermally stable than LFP.
  • the surface of the positive electrode active material made of crystallized glass is composed of a glass layer with low electrical conductivity, energy is gradually released without causing a sudden reaction when a short circuit occurs, and the internal temperature of the battery rises. hard to do. For example, when exposed to a high temperature of 600 ° C.
  • the glass layer on the surface of the positive electrode active material melts and becomes an insulating glass melt, so the battery reaction occurs. It is possible to prevent thermal runaway due to
  • a positive electrode active material containing pyrophosphoric acid can operate at high voltage, and by combining it with hard carbon that can operate at an extremely low potential and high capacity as a negative electrode active material, a safe and high energy density battery can be constructed.
  • stable supply is possible because Na ions, which are abundant in resources, are used as carriers.
  • crystallized glass means a product obtained by heating (firing) a precursor glass containing an amorphous phase to deposit (crystallize) crystals. All of the amorphous phase may be transformed into the crystalline phase, or the amorphous phase may remain. Also, one type of crystal may be precipitated, or two or more types of crystals may be precipitated. For example, crystallized glass can be determined whether it is crystallized glass by the peak angle indicated by powder X-ray diffraction (XRD).
  • XRD powder X-ray diffraction
  • the hard carbon is preferably coated with a coating layer containing beta-alumina crystals or NASICON crystals. Since hard carbon has excellent electronic conductivity, most of the negative electrode active material reacts rapidly in the event of a short circuit, causing current to concentrate at the short circuit location and causing a temperature rise. Therefore, by covering hard carbon with a coating layer containing a solid electrolyte such as beta-alumina crystals or NASICON crystals, it is possible to suppress current crowding by reducing electronic conductivity in the negative electrode while maintaining ionic conductivity. can. As a result, the temperature rise at the time of short circuit can be suppressed, so that the safety can be further improved.
  • a coating layer containing beta-alumina crystals or NASICON crystals Since hard carbon has excellent electronic conductivity, most of the negative electrode active material reacts rapidly in the event of a short circuit, causing current to concentrate at the short circuit location and causing a temperature rise. Therefore, by covering hard carbon with a coating layer containing a solid electrolyte
  • the positive electrode active material has the general formula Na x MP 2 O 7 (1 ⁇ x ⁇ 2, M is Fe, Ni, Co, Mn and It is preferably made of crystallized glass containing crystals represented by at least one selected from Cr).
  • the positive electrode active material is crystallized glass containing crystals represented by the general formula Na x FeP 2 O 7 (1 ⁇ x ⁇ 2) It is preferable to be
  • the positive electrode active material is preferably coated with a carbon material.
  • coating is a concept different from mixing, and while the mixed powder is simply an assembly of the positive electrode active material and the carbon material, the coated powder is the positive electrode active material particles that constitute the powder.
  • carbon material is present on the surface of For example, it means that the periphery (surface) of the positive electrode active material particles as a nucleus is partially or completely covered with a carbon material.
  • the positive electrode active material preferably consists of secondary particles.
  • the particle size of the positive electrode active material is small, so the cohesion of the paste coating is large when the paste coating is dried, and the electrode tends to crack when the paste coating is dried.
  • the particle size of the primary particles is increased, the specific surface area is decreased, resulting in a problem of reduced electronic conductivity and ionic conductivity.
  • the positive electrode active material composed of secondary particles has a relatively large specific surface area and can have a large particle diameter, cracks in the electrode when the paste coating is dried as described above, and electronic conductivity and ion A decrease in conductivity can be suppressed.
  • secondary particles mean particles in which primary particles having an average particle diameter of 50 nm or more aggregate (aggregate).
  • the non-aqueous electrolyte preferably contains an organic electrolyte and/or a gel polymer electrolyte.
  • An electrical device is characterized by using the sodium ion secondary battery according to any one of aspects 1 to 7.
  • FIG. 1 is a schematic plan view of the positive electrode produced in Example 1.
  • FIG. 2 is a schematic side view of the positive electrode produced in Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a laminate of a negative electrode, a separator, and a positive electrode in the test battery of Example 1.
  • FIG. 4 is a schematic plan view showing a laminate of a negative electrode, a separator, and a positive electrode in the test battery of Example 1.
  • FIG. FIG. 5 is a schematic plan view showing an aluminum ribbon welded to tabs of the positive and negative electrodes in the test battery of Example 1.
  • FIG. FIG. 6 is a graph showing temperature changes inside the test battery of Example 1 when a nail penetration test was performed.
  • FIG. 7 is a graph showing temperature changes inside the test battery of Comparative Example 1 when a nail penetration test was performed.
  • the sodium ion secondary battery of the present invention includes at least a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the nonaqueous electrolyte is interposed between the positive electrode and the negative electrode, and plays a role of conducting sodium ions serving as carriers to the positive electrode and the negative electrode.
  • the non-aqueous electrolyte is preferably impregnated inside the positive electrode and/or the negative electrode, thereby improving the ionic conductivity of the positive electrode and/or the negative electrode.
  • an ion conduction path is formed between the positive electrode and the negative electrode while preventing contact between the positive electrode and the negative electrode.
  • the sodium-ion secondary battery of the present invention may have only one set of positive electrode and negative electrode, or may have a structure in which multiple sets of positive electrodes and negative electrodes are laminated as shown in Examples described later. You may have By having a structure in which a plurality of sets of positive electrodes and negative electrodes are stacked, the capacity of the battery can be increased.
  • the positive electrode of the present invention has the general formula Na x My P 2 O z (1 ⁇ x ⁇ 2.8, 0.95 ⁇ y ⁇ 1.6, 6.5 ⁇ z ⁇ 8, M is Fe, Ni, Co , at least one selected from Mn and Cr).
  • x which is the number of sodium atoms, is preferably 1 to 2.8, 1.2 to 2.8, 1.3 to 2.3, particularly 1.7 to 1.85.
  • an active material with high charge/discharge capacity can be obtained. That is, if x is too small, the amount of sodium ions involved in storage and release decreases, so the charge/discharge capacity tends to decrease.
  • x is too large, dissimilar crystals such as Na 3 PO 4 that do not participate in charge/discharge tend to precipitate, and charge/discharge capacity tends to decrease.
  • y which is the number of M atoms, is preferably 0.95 to 1.6, 0.95 to 1.4, particularly 1.0 to 1.2.
  • an active material with high charge/discharge capacity can be obtained. That is, if y is too small, the amount of transition metal elements that cause redox reactions decreases, and the amount of sodium ions involved in absorption and release decreases, so the charge/discharge capacity tends to decrease.
  • heterogeneous crystals such as NaFePO 4 that do not participate in charge/discharge tend to precipitate, and charge/discharge capacity tends to decrease.
  • P 2 O z has the effect of forming a three-dimensional network structure and stabilizing the structure of the positive electrode active material.
  • the number of oxygen atoms, z is preferably 6.5-8, 7-7.8, 7-7.5, especially 7-7.3. Within this range, an active material with a long life and a high capacity can be obtained. That is, if z is too small, the valence of M becomes smaller than 2, and the metal tends to precipitate during charging and discharging. The deposited metal is eluted into the electrolyte, possibly causing deterioration of the battery. On the other hand, if z is too large, the valence of M becomes greater than 2, making it difficult for the redox reaction to occur during charging and discharging of the battery. As a result, less sodium ions are occluded and released, and the charge/discharge capacity tends to decrease.
  • a specific example of the positive electrode active material made of crystallized glass containing crystals represented by the general formula Na x M y P 2 O z is represented by the general formula Na x MP 2 O 7 (1 ⁇ x ⁇ 2, M is Fe , Ni, Co, Mn and Cr).
  • crystallized glass containing crystals represented by the general formula Na x FeP 2 O 7 (1 ⁇ x ⁇ 2) has a strong pyrophosphate skeleton, so it is safe because it does not release oxygen during overcharging. It is preferable because it has excellent properties and cycle characteristics.
  • Fe is used as a transition metal element that causes a redox reaction, it is preferable from the viewpoint of resources because it does not contain rare metals.
  • the glass from which the crystals are precipitated is stable in vitrification, and thus has the advantage of being easy to manufacture.
  • the shape of the positive electrode active material made of crystallized glass containing crystals represented by the general formula Na x My P 2 O z is not particularly limited, it is preferably in the form of powder.
  • the average particle size of the positive electrode active material is preferably 0.01 to 30 ⁇ m, 0.05 to 12 ⁇ m, particularly 0.1 to 10 ⁇ m.
  • the powder can be adjusted to this range by passing the powder through a mesh with an opening of 50 ⁇ m or less. Within this range, an electrode with excellent surface smoothness can be easily produced, and a battery with low resistance can be obtained. That is, if the average particle size of the positive electrode active material powder is too small, the cohesive force between the powders becomes strong, and the dispersibility tends to be poor when made into a paste.
  • the electrodes tend to crack when the paste coating dries. As a result, the internal resistance of the battery increases and the operating voltage tends to decrease. In addition, the electrode density tends to decrease and the capacity per unit volume of the battery tends to decrease. On the other hand, if the average particle size of the positive electrode active material powder is too large, it becomes difficult for sodium ions to diffuse and the internal resistance tends to increase. Moreover, the surface smoothness of the electrode tends to be inferior.
  • the positive electrode active material preferably consists of secondary particles. By doing so, as described above, it is possible to suppress the cracking of the electrode and the deterioration of the electronic conductivity and the ionic conductivity when the paste coating is dried.
  • the positive electrode active material is secondary particles
  • the average particle size of the secondary particles preferably satisfies the preferred range of the average particle size of the positive electrode active material described above.
  • the shape of the positive electrode secondary particles is not particularly limited. That is, it may be a powder containing spherical, elliptical, facet-shaped, belt-shaped, fiber-shaped, flake-shaped, doughnut-shaped, or hollow particles.
  • the average particle size means D 50 (volume-based average particle size), and refers to a value measured by a laser diffraction scattering method.
  • a positive electrode active material made of crystallized glass containing crystals represented by the general formula Na x My P 2 O z is prepared by melting, molding, and optionally pulverizing raw materials adjusted to have a predetermined composition.
  • the precursor glass can be heat-treated at a predetermined temperature to crystallize it.
  • the precursor glass preferably contains 25 to 55% Na 2 O, 20 to 60% FeO+NiO+CoO+MnO+CrO, and 25 to 55% P 2 O 5 in terms of mol % in terms of the following oxides. The reason for limiting the composition as described above will be explained below.
  • Na 2 O is a component that constitutes Na x My P 2 O z crystals.
  • the content of Na 2 O is preferably 25-55%, especially 30-50%. If the content of Na 2 O is too low or too high, Na x My P 2 O z crystals are less likely to precipitate.
  • FeO, NiO, CoO, MnO and CrO are also constituents of Na x My P 2 O z crystals.
  • the total content of FeO, NiO, CoO, MnO and CrO is preferably 20-60%, more preferably 30-50%. If the content of these components is too low, Na x My P 2 O z crystals are difficult to precipitate, and if it is too high, Na x My P 2 O z crystals are hard to precipitate, and undesirable FeO, NiO, Crystals of CoO, MnO, CrO, etc. are likely to precipitate. In particular, it is preferable to positively contain FeO in order to improve cycle characteristics and rapid charge/discharge characteristics.
  • the preferable range of the content of each component of FeO, NiO, CoO, MnO and CrO is 0 to 60%, 10 to 60%, 20 to 60%, particularly preferably 30 to 50%.
  • P 2 O 5 is also a component constituting Na x My P 2 O z crystals.
  • the content of P 2 O 5 is preferably 25-55%, especially 30-50%. If the content of P 2 O 5 is too low or too high, it becomes difficult for Na x My P 2 O z crystals to precipitate.
  • the precursor glass may contain Nb 2 O 5 , MgO, Al 2 O 3 , TiO 2 , ZrO 2 or Sc 2 O 3 in addition to the above components. These components are incorporated into the Na x My P 2 O z crystals to increase the electron conductivity, thereby facilitating the improvement of rapid charge-discharge characteristics.
  • the total content of the above components is preferably 0 to 25%, more preferably 0.2 to 10%. If the content of the above component is too high, heterogeneous crystals are generated, and the amount of precipitated Na x My P 2 O z crystals tends to decrease.
  • the precursor glass may also contain SiO2 , B2O3 , GeO2 , Ga2O3 , Sb2O3 or Bi2O3 . These components enhance the glass-forming ability, making it easier to obtain a homogeneous amorphous body.
  • the total content of the above components is preferably 0 to 25%, more preferably 0.2 to 10%. If the content of the above component is too high, the amount of precipitated Na x My P 2 O z crystals tends to decrease.
  • composition of the obtained crystallized glass is the same as the composition of the precursor glass, so the explanation thereof is omitted.
  • the average particle size of the negative electrode active material is preferably 0.1 to 30 ⁇ m, 0.5 to 15 ⁇ m, particularly 1 to 10 ⁇ m. Within this range, a battery with high charge/discharge efficiency and low resistance can be obtained. That is, when the average particle size of the negative electrode active material is too small, the surface area of the active material tends to be large, and the non-aqueous electrolyte tends to be reductively decomposed on the surface to form a film. As a result, the initial charge/discharge efficiency of the battery is low. In addition, the formed film tends to inhibit ion conduction and increase the internal resistance of the battery. On the other hand, if the average particle size of the negative electrode active material powder is too large, the internal resistance tends to increase. Moreover, the surface smoothness of the electrode tends to be inferior.
  • hard carbon can also be produced by firing a hard carbon precursor.
  • Hard carbon precursors include sugars such as sucrose, cellulose, D-glucose, fructose; Biomass such as cotton, kelp, and endocarp of coconut; Polymers such as PAN (polyacrylonitrile), pitch, PVC (polyvinyl chloride) nanofiber, polyaniline, sodium polyacrylate, tire (polymer for tires), phosphorus-doped PAN; mentioned.
  • the hard carbon is preferably covered with a coating layer containing beta-alumina crystals or NASICON crystals. In this way, as described above, the temperature rise at the time of short circuit can be suppressed, so that the safety can be further improved.
  • Beta-alumina crystals come in two crystal types: ⁇ -alumina (theoretical composition formula: Na 2 O.11Al 2 O 3 ) and ⁇ ′′-alumina (theoretical composition formula: Na 2 O.5.3Al 2 O 3 ). Since ⁇ ′′-alumina is a metastable substance, ⁇ ′′-alumina is usually added with Li 2 O or MgO as a stabilizer.
  • ⁇ ′′-alumina Since ⁇ ′′-alumina has higher sodium ion conductivity than ⁇ -alumina, it is preferable to use ⁇ ′′-alumina alone or a mixture of ⁇ ′′-alumina and ⁇ -alumina, and Li 2 O stabilized ⁇ using "-alumina ( Na1.7Li0.3Al10.7O17 ) or MgO -stabilized ⁇ "-alumina ( ( Al10.32Mg0.68O16 )( Na1.68O ) ) is more preferable.
  • the NASICON crystal has the general formula Na 1+x X 2 P 3-x Si x O 12 (X is at least one transition metal element selected from Group 4 elements, and 0 ⁇ x ⁇ 3).
  • X is at least one transition metal element selected from Group 4 elements, and 0 ⁇ x ⁇ 3).
  • the compound represented by is mentioned. In particular, it preferably contains at least one of the following first compound and second compound.
  • the first compound is a compound represented by the general formula Na 1+x Zr 2 P 3-x Si x O 12 (0 ⁇ x ⁇ 3).
  • part of Zr in the first compound is at least one element selected from the group consisting of Ca, Mg, Ba, Sr, Al, Nb, Ta, In, Ga and Group 3 elements is a compound substituted with
  • at least 1 type selected from the group which consists of Sc, Y, and La is mentioned as a 3rd group element.
  • Examples of the first and second compounds include Na3Zr2Si2PO12 , Na3Zr1.6Ti0.4Si2PO12 , Na3Zr1.88Y0.12Si2 PO 12 and the like can be mentioned.
  • Other examples of NASICON - type crystals include Na3.2Zr1.3Si2.2P0.7O10.5 , Na3Hf2Si2PO12 , Na3.4Zr0.9Hf1 .4 Al0.6Si1.2P1.8O12 , Na3Zr1.7Nb0.24Si2PO12 , Na3.6Ti0.2Y0.7Si2.8O9 _ _ _ _ _ _ _ _ _ _ _ _ , Na3.12Zr1.88Y0.12Si2PO12 , Na3.6Zr0.13Yb1.67Si0.11P2.9O12 , Na3.12Zr1.88Y _ _ _ _ _ _ 0.12 Si 2 PO 12 and the like can be mentioned.
  • Hard carbon coated with a coating layer containing beta-alumina crystals or NASICON crystals can be produced by mixing, drying, and pulverizing the precursor of the coating layer and hard carbon powder. Precursors for coating layers containing beta-alumina crystals or NASICON crystals are described below. In the present disclosure, “coating” is a concept different from “mixing.” Mixed powder is simply an aggregate of beta-alumina crystals or NASICON crystals and hard carbon, whereas “coating powder” refers to a herb that constitutes the powder. Beta-alumina crystals or NASICON crystals are present on the surface of the carbon particles. For example, it means that the peripheries (surfaces) of herbocarbon particles as nuclei are partially or completely covered with beta-alumina crystals or NASICON crystals.
  • the shape of the hard carbon coated with the coating layer containing beta-alumina crystals or NASICON crystals is not particularly limited. That is, it may be a powder containing spherical, elliptical, facet-shaped, belt-shaped, fiber-shaped, flake-shaped, doughnut-shaped, or hollow particles. Moreover, it is preferable that the negative electrode active material satisfies the preferred range of the average particle size described above.
  • the precursor of the coat layer can be obtained, for example, by mixing aluminum nitrate, sodium nitrate, and lithium nitrate. At this time, the ratio of each material is adjusted so as to achieve the desired composition ratio of the beta-alumina crystal.
  • examples of the precursor of the coat layer include a solution containing alkali metal elements and transition metal elements that constitute the NASICON crystal, and carbonate ions.
  • the sodium metal element is contained in the state of sodium ion
  • the transition metal element is contained in the state of transition metal ion.
  • the precursor of the coat layer is composed of a gelled product or a dried product of the solution as well as the solution.
  • the transition metal element is, for example, at least one selected from the group consisting of Group 3 elements and Group 4 elements.
  • the transition metal element is preferably Ti, Zr, Hf, Sc, Y, La, Sm, Dy or Gd, more preferably Zr, Hf, Sc, Y, La, Sm, Dy or Gd, still more preferably is Zr, Hf, Sc, Y, La or Sm, particularly preferably Zr, Hf, Y, La or Sm.
  • at least one selected from the group consisting of Ca, Mg, Ba, Sr, Al, Nb, Ta, In and Ga may be included.
  • carbonate ions may be contained as carbonates (transition metal carbonates) or as a mixture of carbonate ions and carbonates.
  • a solution containing nitrate ions instead of carbonate ions can also be used as the precursor of the coating layer.
  • the precursor of the coating layer preferably contains carbonate ions for the following reasons.
  • nitrate ions When a solution containing nitrate ions is used as a precursor for the coating layer, the components in the solution precipitate unevenly during the mixing and drying of the solution, resulting in the formation of a heterogeneous phase that causes a decrease in ionic conductivity after firing. tend to be formed.
  • nitrate ions are decomposed during the baking process, resulting in significant weight loss, making it difficult to form a uniform thin film layer.
  • the solution containing nitrate ions is strongly acidic, the production equipment is required to have a high level of chemical durability, which may also increase the production cost.
  • transition metal elements in transition metal oxides such as ZrO 2 and Y 2 O 3 that are normally dissolved only in the acidic region are coordinated by carbonate ions. It is possible to prepare a neutral to weakly basic (pH 7 or higher, 7.5 or higher, 8 or higher, 8.5 or higher, especially 9 or higher) metal salt solution by forming a complex. In this case, the sodium metal component that constitutes the coating layer becomes soluble in the solution as a carbonate or a hydroxide. • nSiO 2 ). Therefore, the precursor of the coat layer can be easily prepared.
  • the carbonate ion is bidentately coordinated with the transition metal element in the precursor solution of the coating layer.
  • the transition metal element tends to stably exist in the solution.
  • each R is independently selected from the group consisting of H, CH 3 , C 2 H 5 and CH 2 CH 2 OH) as a counter ion for the carbonate ion. is a substituent). This makes it easier for the transition metal element to stably exist in the solution.
  • a precursor solution for the coating layer can be obtained, for example, by mixing water glass (sodium silicate), sodium tripolyphosphate, and an aqueous solution of zirconium carbonate ammonia.
  • the coat layer may contain hard carbon. By doing so, it is possible to increase the capacity of the battery while improving the electronic conductivity.
  • the coat layer containing hard carbon can be produced, for example, by mixing the precursor solution of the coat layer with the hard carbon precursor described above and baking the mixture.
  • Non-aqueous electrolytes include organic electrolytes and gel polymer electrolytes. Moreover, the non-aqueous electrolyte functions as an electrolyte for sodium secondary batteries by containing a sodium salt (sodium supporting salt).
  • organic electrolytes examples include propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), and 2-methyltetrahydrofuran (2-MeTHF).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DME 1,2-dimethoxyethane
  • GBL ⁇ -butyrolactone
  • THF tetrahydrofuran
  • 2-MeTHF 2-methyltetrahydrofuran
  • N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide [abbreviation: TMPA-TFSI], N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide [abbreviation: PP13 -TFSI], N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide [abbreviation: P13-TFSI], N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide [abbreviation: P14 -TFSI], 1-methyl-3-ethylimidazolium tetrafluoroborate [abbreviation: EMIBF 4 ], 1-methyl-3-ethylimidazolium bis(trifluoromethanesulfonyl)imide [abbreviation: EMIBF
  • Gel polymer electrolytes include polyacrylonitrile (PAN), polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyethyleneimine (PEI), polymethylmethacrylic acid (PMMA), vinylidene fluoride (VDF). and propylene hexafluoride (HFP) (PVDF-HFP), and polymers combining these.
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEG polyethylene glycol
  • PEI polyethyleneimine
  • PMMA polymethylmethacrylic acid
  • VDF vinylidene fluoride
  • HFP propylene hexafluoride
  • Sodium salts include PF 6 ⁇ , BF 4 ⁇ , (CF 3 SO 2 ) 2 N ⁇ (bistrifluoromethanesulfonylimide; commonly known as TFSI), CF 3 SO 3 — (commonly known as TFS), (C 2 F 5 SO 2 ) 2 N ⁇ (bispentafluoroethanesulfonylamide; commonly known as BETI), ClO 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , bisoxalatoboric acid (B(C 2 O 4 ) 2 ⁇ ; commonly known as BOB), difluoro (tri sodium salts of fluoro-2-oxide-2-trifluoro-methylpropionato(2-)-0,0)boronic acid (BF 2 OCOOC(CF 3 ) 3 ⁇ , commonly known as B(HHIB)); These electrolyte salts may be used alone or in combination of two or more. In particular, inexpensive sodium salts of PF 6
  • the non-aqueous electrolyte may contain additives such as vinylene carbonate (VC), vinylene acetate (VA), vinylene butyrate, vinylene hexanate, vinylene crotonate, and catechol carbonate. These additives have the role of forming a protective film on the surface of the active material.
  • concentration of the additive is preferably 0.1 to 3 parts by mass, particularly preferably 0.5 to 1 part by mass, per 100 parts by mass of the non-aqueous electrolyte.
  • the positive electrode and the negative electrode may contain a conductive aid and a binder.
  • a conductive aid is a component that forms a conductive path in the positive and negative electrodes.
  • Conductive carbon for example, can be used as the conductive aid.
  • powdery or fibrous conductive carbon such as highly conductive carbon black such as acetylene black or ketjen black is preferable.
  • the binder is a material that integrates the raw materials (raw material powders) of the positive and negative electrodes.
  • Binders include cellulose derivatives such as carboxymethyl cellulose, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, ethyl cellulose, hydroxyethyl cellulose and hydroxymethyl cellulose; water-soluble polymers such as polyvinyl alcohol; thermosetting resins such as melamine resins, unsaturated polyester resins and polyurethane; polycarbonate resins such as polypropylene carbonate; polyvinylidene fluoride and the like.
  • the collector layer is made of metal foil, for example.
  • the material of the metal foil includes at least one selected from Al, Ti, Fe, Ni, Sn, Bi, Cu, Pb, Mo, Ag and Au.
  • Al is preferable because of its excellent conductivity and light weight.
  • the thickness of the current collector layer is preferably 0.1-1000 ⁇ m, 0.1-500 ⁇ m, particularly 0.2-20 ⁇ m. Within this range, a battery with excellent output characteristics and high energy density can be obtained. That is, if the current collector layer is too thin, the resistance tends to increase, and if it is too thick, the energy density per unit volume and the energy density per unit weight of the sodium secondary battery tend to decrease.
  • the sodium ion secondary battery of the present disclosure is excellent in safety, it can be , CRT monitor, computer rack, printer, 3D printer, all-in-one computer, mouse, hard disk, computer peripherals, iron, clothes dryer, window fan, transceiver, blower, ventilation fan, TV, music recorder, music player, oven, microwave , toilet seat with washing function, warm air heater, car component, car navigation system, flashlight, humidifier, portable karaoke machine, ventilation fan, dryer, air purifier, mobile phone, emergency light, game machine, blood pressure monitor, coffee mill, coffee Manufacturers, kotatsu, copy machines, disk changers, radios, shavers, juicers, shredders, water purifiers, lighting fixtures, dehumidifiers, dish dryers, rice cookers, stereos, stoves, speakers, trouser presses, vacuum cleaners, body fat scales, Weight scale, health meter, movie player, electric carpet, electric kettle, rice cooker, electric shaver, desk lamp, electric kettle, electronic game machine, portable game machine,
  • Tables 1 and 2 show Examples 1-7 and Comparative Examples 1-3.
  • Example 1 Fabrication of Positive Electrode
  • Raw materials prepared so as to have a glass composition of 40Na 2 O-20Fe 2 O 3 -40P 2 O 5 in molar ratio were melted in the air at 1200° C. for 1 hour and cooled with twin rollers. By doing so, a glass film was produced.
  • the resulting glass film was ground for 60 hours in a ball mill using a mixture of ⁇ 5 mm ZrO2 cobbles, ⁇ 3 mm ZrO2 cobbles, and ⁇ 1 mm ZrO2 cobbles in ethanol, resulting in a specific surface area of 11.1 m 2 . /g of glass powder was obtained.
  • the resulting glass powder was further pulverized in ethanol with ZrO 2 cobbles of ⁇ 0.3 mm in a planetary ball mill at 300 rpm for 5 hours to obtain a glass powder having a specific surface area of 32.1 m 2 /g. .
  • the obtained positive electrode active material powder was pulverized with an alumina mortar and passed through a mesh with an opening of 50 ⁇ m. 5 parts by mass of acetylene black as a conductive additive was added to 95 parts by mass of the obtained powder to obtain a positive electrode mixture powder. Furthermore, 5 parts by mass of polyvinylidene fluoride was added, and N-methyl-2-pyrrolidone was added as a solvent so that the concentration of the positive electrode mixture powder was 50% by mass.
  • the positive electrode paste was produced by mixing this with a rotation-revolution mixer.
  • the prepared positive electrode paste was applied to both surfaces of the current collector layer 11 made of an aluminum foil having a thickness of 20 ⁇ m using a doctor blade so that each had a capacity of 2.5 mAh/cm 2 . After that, it was dried in a dryer at 80° C. for 1 hour and pressed by a roll press to form the positive electrode layer 12 . Ten pieces of the obtained laminate were punched out using a Thomson blade so that the positive electrode layer forming portion was 55 mm ⁇ 40 mm and the tab 15 without the positive electrode layer 12 was 10 mm ⁇ 10 mm (see FIGS. 1 and 2). ). Thus, a positive electrode was produced.
  • the prepared negative electrode paste was applied to both surfaces of a 20 ⁇ m thick aluminum current collector foil using a doctor blade so that each surface had a capacity of 2.5 mAh/cm 2 . Then, it was dried in a dryer at 80° C. for 1 hour and pressed by a roll press to form a negative electrode layer. Using a Thomson blade, 9 tabs were punched out of the obtained laminate so that the negative electrode layer forming portion was 60 mm ⁇ 45 mm and the aluminum tab without the negative electrode layer was 10 mm ⁇ 10 mm. Thus, a negative electrode was produced. Separately, two negative electrodes each having a negative electrode layer formed on only one surface were prepared.
  • the aluminum tabs of the positive electrode and the negative electrode were bundled and welded to an aluminum ribbon having a width of 10 mm and a thickness of 0.1 mm by a resistance welding machine to form a terminal (aluminum ribbon (terminal) 18) (see FIG. 5).
  • a terminal aluminum ribbon (terminal) 18
  • Example 2 A test battery was produced in the same manner as in Example 1, except that the negative electrode paste was obtained by the following procedure.
  • Sucrose (sucrose) as a hard carbon source and the alkali ion conductive solid electrolyte precursor obtained above are mixed in a stirrer for 1 hour in a mass ratio of 4:1 to obtain a mixed solution. got
  • 40 parts by mass of the mixed liquid obtained above was added to 100 parts by mass of hard carbon powder having an average particle size of 5 ⁇ m, and mixed with a rotation/revolution mixer. After drying, it was pulverized.
  • the obtained powder was placed in a carbon crucible and fired in a quartz tubular furnace at 1000° C. in a nitrogen atmosphere. From the difference between the mass of the secondary particles after firing and the mass of the hard carbon powder before firing, the coating layer was determined to be 11 parts by mass with respect to 100 parts by mass of the hard carbon powder. 5 parts by mass of acetylene black as a conductive aid was added to 95 parts by mass of the coated hard carbon powder to obtain a negative electrode mixture powder.
  • the negative electrode paste was produced by mixing this with a rotation-revolution mixer.
  • Example 1 A charging/discharging test and a nail penetration test were performed in the same manner as in Example 1 for the test battery thus produced. Table 1 shows the results.
  • Example 3 A test battery was produced in the same manner as in Example 2, except that a gel polymer produced as follows was used instead of the electrolytic solution.
  • PAN polyacrylonitrile, average molecular weight 150,000
  • NaCF 3 SO 3 sodium trifluoromethanesulfonate, abbreviated as NaTFS
  • Example 1 A charging/discharging test and a nail penetration test were performed in the same manner as in Example 1 for the test battery thus produced. Table 1 shows the results.
  • Example 4 A test battery was produced in the same manner as in Example 2, except that a gel polymer produced as follows was used instead of the electrolytic solution.
  • PEO polyethylene oxide, average molecular weight 60000
  • supporting salt CF 3 SO 2 ) 2 NNa
  • sodium bis(trifluoromethanesulfonyl)imide abbreviated as NaTFSI
  • Example 1 A charging/discharging test and a nail penetration test were performed in the same manner as in Example 1 for the test battery thus produced. Table 1 shows the results.
  • Example 5 A test battery was produced in the same manner as in Example 1, except that the positive electrode active material powder was produced as follows.
  • Raw materials prepared so that the molar ratio of the glass composition was 37.5Na 2 O-25Fe 2 O 3 -37.5P 2 O 5 were melted in the atmosphere at 1200° C. for 1 hour and cooled with twin rollers.
  • a glass film was produced.
  • the resulting glass film was ground for 60 hours in a ball mill using a mixture of ⁇ 5 mm ZrO2 cobbles, ⁇ 3 mm ZrO2 cobbles, and ⁇ 1 mm ZrO2 cobbles in ethanol, resulting in a specific surface area of 11.1 m 2 . /g of glass powder was obtained.
  • the resulting glass powder was further pulverized in ethanol with ZrO 2 cobbles of ⁇ 0.3 mm in a planetary ball mill at 300 rpm for 5 hours to obtain glass powder having a specific surface area of 29.4 m 2 /g. .
  • Example 6 A test battery was prepared in the same manner as in Example 5, except that the negative electrode paste was obtained by the following procedure.
  • Sucrose (sucrose) as a hard carbon source and the alkali ion conductive solid electrolyte precursor obtained above are mixed in a stirrer for 1 hour in a mass ratio of 4:1 to obtain a mixed solution. got
  • 40 parts by mass of the mixed liquid obtained above was added to 100 parts by mass of hard carbon powder having an average particle size of 5 ⁇ m, and mixed with a rotation/revolution mixer. After drying, it was pulverized.
  • the obtained powder was placed in a carbon crucible and fired in a quartz tubular furnace at 1000° C. in a nitrogen atmosphere. From the difference between the mass of the secondary particles after firing and the mass of the hard carbon powder before firing, the coating layer was determined to be 11 parts by mass with respect to 100 parts by mass of the hard carbon powder. 5 parts by mass of acetylene black as a conductive aid was added to 95 parts by mass of the coated hard carbon powder to obtain a negative electrode mixture powder.
  • the negative electrode paste was produced by mixing this with a rotation-revolution mixer.
  • Example 7 A test battery was produced in the same manner as in Example 6, except that a gel polymer produced as follows was used instead of the electrolytic solution.
  • PEO polyethylene oxide, average molecular weight 60000
  • supporting salt CF 3 SO 2 ) 2 NNa
  • sodium bis(trifluoromethanesulfonyl)imide abbreviated as NaTFSI
  • NCA LiNi 0.8 Co 0.15 Al 0.05 O
  • graphite with an average particle size of 10 ⁇ m as a negative electrode active material
  • a test battery was made.
  • Example 1 A charging/discharging test and a nail penetration test were performed in the same manner as in Example 1 for the test battery thus produced. Table 1 shows the results.
  • FIG. 7 shows a graph of temperature change inside the battery.
  • Comparative example 2 A test battery was prepared in the same manner as in Comparative Example 1, except that NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) having an average particle size of 10 ⁇ m was used as the positive electrode active material. Charge/discharge test and nail penetration test were performed in the same manner as above. Table 1 shows the results.
  • Comparative Example 3 A test battery was produced in the same manner as in Comparative Example 1, except that carbon-coated LFP (LiFePO 4 ) having an average secondary particle diameter of 10 ⁇ m was used as the positive electrode active material. A charge/discharge test and a nail penetration test were performed in the same manner. Table 1 shows the results.
  • the test batteries of Examples 1 to 7 had a low internal temperature of 150°C or less in the nail penetration test and smoked. No fire or ignition occurred.
  • the internal temperature was as low as 80° C. or less.
  • the internal temperature was even lower at 60°C or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高容量でありかつ安全性に優れたナトリウムイオン二次電池を提供する。 一般式NaxMyP2Oz(1≦x≦2.8、0.95≦y≦1.6、6.5≦z≦8、MはFe、Ni、Co、Mn及びCrから選択される少なくとも1種)で表される結晶を含有する結晶化ガラスからなる正極活物質を含む正極、ハードカーボンからなる負極活物質を含む負極、及び、非水系電解質、を備えることを特徴とするナトリウムイオン二次電池。

Description

ナトリウムイオン二次電池
 本発明は、ナトリウムイオン二次電池に関する。
 リチウムイオン二次電池は、モバイル機器や電気自動車等に不可欠な、高容量で軽量な電源としての地位を確立している。しかし、現行のリチウムイオン二次電池には、電解質として可燃性の有機系電解液が主に用いられているため、発火等の危険性が懸念されている。特に、電気自動車用電源の二次電池には、長距離走行のため、高いエネルギー密度の高容量な電池が求められる。一方で、高い安全性も求められるため、高いエネルギー密度と高い安全性の両方を満たす高性能な蓄電デバイスの開発が求められている。
 有機系電解液を用いた現行のリチウムイオン二次電池には、エネルギー密度の向上のために、正極活物質としてNCA(Li(Ni-Co-Al)O系)やNCM(Li(Ni-Co-Mn)O系)といった三元系の正極活物質が使用されている。しかしながら、これらの正極活物質は層状酸化物であるため熱的に不安定で、短絡時の発熱反応により結晶から酸素と熱を放出しながら分解する熱暴走が起きるため、安全性には課題がある。そこで、熱安定性が比較的高く、安全性が高い正極活物質として、結晶構造にPを含むLFP(LiFePO)が利用されている(例えば特許文献1参照)。
特開2001-110455号公報
 LFPでも安全性はなお不十分であり、更なる安全性の向上が求められている。加えてLFPはレアメタルであるLiを含むため、安定的に供給できるか不透明であるという課題もある。
 以上に鑑み、本発明は、高容量でありかつ安全性に優れたナトリウムイオン二次電池を提供することを目的とする。
 本発明の態様1に係るナトリウムイオン二次電池は、一般式Na(1≦x≦2.8、0.95≦y≦1.6、6.5≦z≦8、MはFe、Ni、Co、Mn及びCrから選択される少なくとも1種)で表される結晶を含有する結晶化ガラスからなる正極活物質を含む正極、ハードカーボンからなる負極活物質を含む負極、及び、非水系電解質、を備えることを特徴とする。
 上述したように、結晶構造にPを含むLFPは熱的安定性が比較的高いが、一般式Naで表される結晶を含有する結晶化ガラスからなる正極活物質は、結晶内にピロリン酸骨格を含み、P元素とO元素がより強力に酸素と結合しているため、LFPよりも更に熱的に安定な材料である。また、結晶化ガラスからなる正極活物質の表面は、電気伝導性の低いガラス層で構成されているため、短絡時に急激な反応は起きずに徐々にエネルギーが放出され、電池の内部温度は上昇しにくい。例えば火災等により600℃以上の高温中にさらされた場合に、外装や電解液が燃焼したとしても、正極活物質表面のガラス層が溶解して絶縁性のガラス融液となるため、電池反応による熱暴走を防止することができる。
 またピロリン酸を含む正極活物質は高電圧で作動でき、負極活物質として極めて低電位かつ高容量で作動可能なハードカーボンと組み合わせることで、安全かつ高エネルギー密度な電池を構成することができる。加えて資源の豊富なNaイオンをキャリアとして用いることから安定供給が可能である。
 なお、本開示において、結晶化ガラスとは、非晶質相を含有する前駆体ガラスを加熱(焼成)し、結晶を析出(結晶化)させたものを意味する。非晶質相の全てが結晶相に転移していても良いし、非晶質相が残存していても良い。また、1種類の結晶を析出させても良いし、2種類以上の結晶を析出させても良い。例えば、結晶化ガラスは粉末X線回折(XRD)により示されるピーク角度で結晶化ガラスか否かを判別することが可能である。
 本発明の態様2に係るナトリウムイオン二次電池は、態様1において、ハードカーボンが、ベータアルミナ結晶またはNASICON結晶を含むコート層により被覆されていることが好ましい。ハードカーボンは電子伝導性が優れているため、短絡時には負極活物質の大部分が急激に反応し、短絡箇所への電流が集中し、温度上昇が起こりやすい。そこで、ベータアルミナ結晶やNASICON結晶といった固体電解質を含むコート層によりハードカーボンを被覆することで、イオン伝導性を維持しつつ、負極内の電子伝導性を低下させることで電流集中を抑制することができる。その結果、短絡時における温度上昇を抑制できるため、安全性をより一層向上させることができる。
 本発明の態様3に係るナトリウムイオン二次電池は、態様1または2において、正極活物質が、一般式NaMP(1≦x≦2、MはFe、Ni、Co、Mn及びCrから選択される少なくとも1種)で表される結晶を含有する結晶化ガラスからなることが好ましい。
 本発明の態様4に係るナトリウムイオン二次電池は、態様3において、正極活物質が、一般式NaFeP(1≦x≦2)で表される結晶を含有する結晶化ガラスからなることが好ましい。
 本発明の態様5に係るナトリウムイオン二次電池は、態様1~4の何れか1つの態様において、正極活物質がカーボン材料により被覆されていることが好ましい。なお、本開示において、被覆とは混合とは異なる概念であり、混合粉末が正極活物質とカーボン材料との単なる集合であるのに対して、被覆粉末とは当該粉末を構成する正極活物質粒子の表面にカーボン材料が存在している。例えば、正極活物質粒子を核としてその周辺(表面)にカーボン材料によって部分被覆又は完全被覆されていることを意味する。
 本発明の態様6に係るナトリウムイオン二次電池は、態様1~5の何れか1つの態様において、正極活物質が2次粒子からなることが好ましい。1次粒子からなる正極活物質を使用してペースト塗膜を形成すると、正極活物質の粒子径が小さいため、ペースト塗膜乾燥時の凝集力が大きく、ペースト塗膜の乾燥時に電極がひび割れる傾向がある。ここで1次粒子の粒子径を大きくすると、比表面積が小さくなって電子伝導性とイオン伝導性が低下するという問題が生じる。一方、2次粒子からなる正極活物質は比表面積が比較的大きく、かつ、粒子径も大きくすることができるため、上述したようなペースト塗膜乾燥時における電極のひび割れや、電子伝導性とイオン伝導性の低下を抑制することができる。
 なお、本開示において、2次粒子とは、平均粒子径50nm以上の1次粒子が集合(凝集)した粒子を意味する。
 本発明の態様7に係るナトリウムイオン二次電池は、態様1~6の何れか1つの態様において、非水系電解質が、有機系電解液、及び/または、ゲルポリマー電解質を含むことが好ましい。
 本発明の態様8に係る電気機器は、態様1~7の何れか1つの態様のナトリウムイオン二次電池を用いたことを特徴とする。
 本発明によれば、高容量でありかつ安全性に優れたナトリウムイオン二次電池を提供することができる。
図1は、実施例1で作製した正極の模式的平面図である。 図2は、実施例1で作製した正極の模式的側面図である。 図3は、実施例1の試験電池において、負極、セパレータ、正極の積層体を示す模式的断面図である。 図4は、実施例1の試験電池において、負極、セパレータ、正極の積層体を示す模式的平面図である。 図5は、実施例1の試験電池において、正極と負極のタブにアルミニウムリボンを溶接した図を示す模式的平面図である。 図6は、実施例1の試験電池について、釘刺し試験を行った際の電池内部の温度変化を示すグラフである。 図7は、比較例1の試験電池について、釘刺し試験を行った際の電池内部の温度変化を示すグラフである。
 本発明のナトリウムイオン二次電池は、少なくとも正極と負極と非水系電解質を備えている。非水系電解質は正極と負極の間に介在し、キャリアとなるナトリウムイオンを正極と負極に伝導させる役割を果たす。なお、非水系電解質は正極及び/または負極の内部に含浸されていることが好ましく、それにより正極及び/または負極のイオン伝導性を向上させることができる。なお、正極と負極が接触して短絡することを防止するため、正極と負極の間には絶縁性のセパレータを設けることが好ましい。例えば、正極と負極を、セパレータを介して積層させた状態で、セパレータに非水系電解質を含浸させることにより、正極と負極の接触を防止しつつ、正極と負極の間のイオン伝導パスを形成することができる。
 本発明のナトリウムイオン二次電池は、正極と負極を一組だけを備えていてもよく、後述する実施例に示すように、正極と負極を複数組備えておりそれらが積層された構造を有していてもよい。複数組の正極と負極が積層された構造を有することにより、電池の高容量化を図ることができる。
 以下、本発明のナトリウムイオン二次電池の各構成要素の実施形態について詳細に説明する。なお、以下の実施形態はあくまでも例示であり、本発明はこれらの実施形態に限定されるものではない。
 (正極)
 本発明の正極は、一般式Na(1≦x≦2.8、0.95≦y≦1.6、6.5≦z≦8、MはFe、Ni、Co、Mn及びCrから選択される少なくとも1種)で表される結晶を含有する結晶化ガラスからなる正極活物質を含む。
 上記一般式において、ナトリウム原子の数であるxは1~2.8、1.2~2.8、1.3~2.3、特に1.7~1.85であることが好ましい。この範囲であると、充放電容量の高い活物質が得られる。すなわち、xが小さすぎると、吸蔵及び放出に関与するナトリウムイオンが少なくなるため、充放電容量が低下する傾向にある。一方、xが大きすぎると、NaPO等の充放電に関与しない異種結晶が析出しやすくなるため、充放電容量が低下する傾向にある。
 上記一般式において、M原子の数であるyは0.95~1.6、0.95~1.4、特に1.0~1.2であることが好ましい。この範囲であると、充放電容量の高い活物質が得られる。すなわち、yが小さすぎると、レドックス反応を起こす遷移金属元素が少なくなることにより、吸蔵及び放出に関与するナトリウムイオンが少なくなるため、充放電容量が低下する傾向にある。一方、yが大きすぎると、NaFePO等の充放電に関与しない異種結晶が析出しやすくなるため、充放電容量が低下する傾向にある。
 Pは3次元網目構造を形成し、正極活物質の構造を安定化する効果を有する。酸素原子の数であるzは6.5~8、7~7.8、7~7.5、特に7~7.3であることが好ましい。この範囲であると、長寿命で高容量な活物質が得られる。すなわち、zが小さすぎると、Mの価数が2価より小さくなって、充放電に伴い金属が析出しやすくなる。析出した金属は電解質中に溶出し、電池の劣化を引き起こすおそれがある。一方、zが大きすぎると、Mの価数が2価より大きくなって、電池の充放電に伴うレドックス反応が起こりにくくなる。その結果、吸蔵及び放出されるナトリウムイオンが少なくなるため、充放電容量が低下する傾向にある。
 一般式Naで表される結晶を含有する結晶化ガラスからなる正極活物質の具体例としては、一般式NaMP(1≦x≦2、MはFe、Ni、Co、Mn及びCrから選択される少なくとも1種)で表される結晶を含有する結晶化ガラスからなる正極活物質が挙げられる。なかでも、一般式NaFeP(1≦x≦2)で表される結晶を含有する結晶化ガラスは強固なピロリン酸骨格を有するため過充電時に酸素放出するようなことがなく安全性に優れ、また、サイクル特性に優れるため好ましい。加えてレドックス反応が起こす遷移金属元素としてFeを利用するため、レアメタルを含まないことから資源の観点から好ましい。さらに、当該結晶を析出するガラスは、ガラス化が安定しているため、製造が容易であるという利点がある。なお、NaFe1.337.33(=NaFe(PO)P)は、単位質量当たりの容量や作動電圧が高いため、より高エネルギー密度な電池を作製することができる。
 一般式Naで表される結晶を含有する結晶化ガラスからなる正極活物質の形状は特に限定されないが、粉末状であることが好ましい。その場合、正極活物質の平均粒子径は0.01~30μm、0.05~12μm、特に0.1~10μmであることが好ましい。目穴50μm以下のメッシュに粉末を通すことでこの範囲の粉末に調整できる。この範囲であると、表面平滑性に優れた電極を製造しやすく、低抵抗の電池が得られる。すなわち、正極活物質粉末の平均粒子径が小さすぎると、粉末同士の凝集力が強くなり、ペースト化した際に分散性に劣る傾向がある。また、ペースト塗膜の乾燥時に電極がひび割れる傾向がある。その結果、電池の内部抵抗が高くなり作動電圧が低下しやすくなる。また、電極密度が低下して電池の単位体積あたりの容量が低下する傾向がある。一方、正極活物質粉末の平均粒子径が大きすぎると、ナトリウムイオンが拡散しにくくなるとともに、内部抵抗が大きくなる傾向がある。また、電極の表面平滑性に劣る傾向がある。
 正極活物質は2次粒子からなることが好ましい。このようにすれば、上述したように、ペースト塗膜乾燥時における電極のひび割れや、電子伝導性とイオン伝導性の低下を抑制することができる。正極活物質が2次粒子の場合は、当該2次粒子の平均粒子径が、上述の正極活物質の平均粒子径の好ましい範囲を満たすことが好ましい。正極2次粒子の形状は特に限定されない。すなわち、球状、楕円状、切子状、帯状、ファイバー状、フレーク状、ドーナツ状、中空状の粒子を含む粉末であってよい。
 なお本明細書において、平均粒子径はD50(体積基準の平均粒子径)を意味し、レーザー回折散乱法により測定された値を指すものとする。
 一般式Naで表される結晶を含有する結晶化ガラスからなる正極活物質は、所定の組成となるように調整した原料を溶融、成形、さらに必要に応じて粉砕することにより前駆体ガラスを得た後、当該前駆体ガラスを所定温度で熱処理して結晶化させることにより作製することができる。
 前駆体ガラスは、下記酸化物換算のモル%で、NaO 25~55%、FeO+NiO+CoO+MnO+CrO 20~60%、P 25~55%を含有することが好ましい。組成を上記のように限定した理由を以下に説明する。
 NaOはNa結晶を構成する成分である。NaOの含有量は25~55%、特に30~50%であることが好ましい。NaOの含有量が少なすぎる、あるいは、多すぎると、Na結晶が析出しにくくなる。
 FeO、NiO、CoO、MnO及びCrOも、Na結晶を構成する成分である。FeO、NiO、CoO、MnO及びCrOの含有量は、合量で20~60%、特に30~50%であることが好ましい。これらの成分の含有量が少なすぎるとNa結晶が析出しにくくなり、多すぎるとNa結晶が析出しにくくなるとともに、望まないFeO、NiO、CoO、MnOまたはCrO等の結晶が析出しやすくなる。特に、サイクル特性や急速充放電特性を向上させるためには、FeOを積極的に含有させることが好ましい。上記各成分は必ずしも全て必須成分として含有する必要はなく、いずれかの成分を含有しない場合(即ち、含有量が0%)があってもよい。なお、FeO、NiO、CoO、MnO及びCrOの各成分の含有量の好ましい範囲は、0~60%、10~60%、20~60%、特に30~50%であることが好ましい。
 PもNa結晶を構成する成分である。Pの含有量は25~55%、特に30~50%であることが好ましい。Pの含有量が少なすぎる、あるいは、多すぎると、Na結晶が析出しにくくなる。
 前駆体ガラスは上記成分以外にも、Nb、MgO、Al、TiO、ZrOまたはScを含有していてもよい。これらの成分はNa結晶に取り込まれ、電子伝導度を高めるため、急速充放電特性が向上しやすくなる。上記成分の含有量は、合量で0~25%、特に0.2~10%であることが好ましい。上記成分の含有量が多すぎると、異種結晶が生じ、Na結晶の析出量が低下しやすくなる。
 また、前駆体ガラスはSiO、B、GeO、Ga、SbまたはBiを含有していてもよい。これらの成分はガラス形成能を高めるため、均質な非晶質体が得られやすくなる。上記成分の含有量は、合量で0~25%、特に0.2~10%であることが好ましい。上記成分の含有量が多すぎると、Na結晶の析出量が低下しやすくなる。
 なお、得られた結晶化ガラスの組成は、前駆体ガラスの組成と同様であるため、その説明を割愛する。
 (負極)
 ハードカーボンからなる負極活物質は粉末状のものを使用することが好ましい。この場合、負極活物質の平均粒子径は0.1~30μm、0.5~15μm、特に1~10μmであることが好ましい。この範囲であると高い充放電効率と低抵抗の電池が得られる。すなわち、負極活物質の平均粒子径が小さすぎると、活物質の表面積が大きくなり、非水系電解質が表面で還元分解され被膜を形成しやすくなる傾向がある。その結果、電池の初回の充放電効率が低くなる。また、形成された被膜により、イオン伝導を阻害され電池の内部抵抗が高くなる傾向がある。一方、負極活物質粉末の平均粒子径が大きすぎると、内部抵抗が大きくなる傾向がある。また、電極の表面平滑性に劣る傾向がある。
 なお、ハードカーボンは、ハードカーボン前駆体を焼成することにより作製することもできる。ハードカーボン前駆体としては、スクロース、セルロース、D-グルコース、フルクトース等の糖;リグニン、コーンの茎、ソルガムの茎、松かさ、マンゴスチン、アルガン殻、籾殻、タンポポ、穀物藁の芯、ラミーの繊維、コットン、昆布、ココナッツの内果皮等のバイオマス;PAN(ポリアクリロニトリル)、ピッチ、PVC(ポリ塩化ビニル)ナノファイバー、ポリアニリン、ポリアクリル酸ナトリウム、タイヤ(タイヤ用ポリマー)、リンドープPAN等のポリマー;が挙げられる。
 なお、ハードカーボンは、ベータアルミナ結晶またはNASICON結晶を含むコート層により被覆されていることが好ましい。このようにすれば、上述したように、短絡時における温度上昇を抑制できるため、安全性をより一層向上させることができる。
 ベータアルミナ結晶は、β-アルミナ(理論組成式:NaO・11Al)とβ”-アルミナ(理論組成式:NaO・5.3Al)の2種類の結晶型が存在する。β”-アルミナは準安定物質であるため、通常、LiOやMgOを安定化剤として添加したものが用いられる。β-アルミナよりもβ”-アルミナの方が、ナトリウムイオン伝導度が高いため、β”-アルミナ単独、またはβ”-アルミナとβ-アルミナの混合物を用いることが好ましく、LiO安定化β”-アルミナ(Na1.7Li0.3Al10.717)またはMgO安定化β”-アルミナ((Al10.32Mg0.6816)(Na1.68O))を用いることがより好ましい。
 NASICON結晶としては、一般式Na1+x3-xSi12(Xは第4族元素の中から選択された少なくとも1種の遷移金属元素であり、0≦x≦3である)により表される化合物が挙げられる。特に、下記の第1の化合物及び第2の化合物のうち少なくとも一方の化合物を含むことが好ましい。第1の化合物は、一般式Na1+xZr3-xSi12(0≦x≦3)により表される化合物である。第2の化合物は、第1の化合物のZrの一部が、Ca、Mg、Ba、Sr、Al、Nb、Ta、In、Ga及び第3族元素からなる群から選択された少なくとも一種の元素に置換された化合物である。なお、第3族元素としてはSc、Y及びLaからなる群から選択された少なくとも一種が挙げられる。
 第1の化合物及び第2の化合物の例としては、NaZrSiPO12、NaZr1.6Ti0.4SiPO12、NaZr1.880.12SiPO12等を挙げることできる。NASICON型結晶の他の例としては、Na3.2Zr1.3Si2.20.710.5、NaHfSiPO12、Na3.4Zr0.9Hf1.4Al0.6Si1.21.812、NaZr1.7Nb0.24SiPO12、Na3.6Ti0.20.7Si2.8、Na3.12Zr1.880.12SiPO12、Na3.6Zr0.13Yb1.67Si0.112.912、Na3.12Zr1.880.12SiPO12等を挙げることができる。
 ベータアルミナ結晶またはNASICON結晶を含むコート層により被覆されたハードカーボンは、前記コート層の前駆体とハードカーボン粉末を混合、乾燥、粉砕することにより作製することができる。以下、ベータアルミナ結晶またはNASICON結晶を含むコート層の前駆体について説明する。なお、本開示において、被覆とは混合とは異なる概念であり、混合粉末がベータアルミナ結晶またはNASICON結晶とハードカーボンとの単なる集合であるのに対して、被覆粉末とは当該粉末を構成するハーボカーボン粒子の表面にベータアルミナ結晶またはNASICON結晶が存在している。例えば、ハーボカーボン粒子を核としてその周辺(表面)にベータアルミナ結晶またはNASICON結晶によって部分被覆又は完全被覆されていることを意味する。
 ベータアルミナ結晶またはNASICON結晶を含むコート層により被覆されたハードカーボンの形状は特に限定されない。すなわち、球状、楕円状、切子状、帯状、ファイバー状、フレーク状、ドーナツ状、中空状の粒子を含む粉末であってよい。また、上述の負極活物質の平均粒子径の好ましい範囲を満たすことが好ましい。
 コート層がベータアルミナ結晶を含む場合、コート層の前駆体は、例えば、硝酸アルミニウム、硝酸ナトリウム、硝酸リチウムを混合することによって得ることができる。このとき、上記各材料の比率を、目的とするベータアルミナ結晶の組成比となるように調整する。
 コート層がNASICON結晶である場合、コート層の前駆体としては、NASICON結晶を構成するアルカリ金属元素及び遷移金属元素と、炭酸イオンとを含む溶液が挙げられる。なお、当該溶液中において、ナトリウム金属元素はナトリウムイオンの状態で含まれており、遷移金属元素は遷移金属イオンの状態で含まれている。コート層の前駆体は、溶液以外にも、当該溶液のゲル化物または乾燥物からなる。
 遷移金属元素としては、例えば第3族元素及び第4族元素からなる群から選択された少なくとも一種である。遷移金属元素としては好ましくはTi、Zr、Hf、Sc、Y、La、Sm、DyまたはGdであり、より好ましくはZr、Hf、Sc、Y、La、Sm、DyまたはGdであり、さらに好ましくはZr、Hf、Sc、Y、LaまたはSmであり、特に好ましくはZr、Hf、Y、LaまたはSmである。これらの遷移金属元素以外に、Ca、Mg、Ba、Sr、Al、Nb、Ta、In及びGaからなる群から選択された少なくとも一種を含んでいてもよい。コート層の前駆体において、炭酸イオンは炭酸塩(遷移金属の炭酸塩)として、あるいは炭酸イオンと炭酸塩の混合物として含まれていてもよい。
 なお、コート層の前駆体には、炭酸イオンの代わりに硝酸イオンを含む溶液も使用することが可能である。もっとも、以下の理由により、コート層の前駆体は、炭酸イオンを含むものであることが好ましい。
 コート層の前駆体として硝酸イオンを含む溶液を用いた場合、溶液の混合や乾燥中に、溶液中の成分が不均一に析出して、焼成後にイオン伝導性の低下の原因となる異質相が形成される傾向がある。また、焼成過程で硝酸イオンが分解することによる重量減少が大きく、均一な薄膜層を形成することが困難である。加えて、焼成過程で生じるNO等の腐食性ガスを処理するための設備等にかかる製造コストが増大する可能性がある。さらに、硝酸イオンを含む溶液は強酸性であることから、製造設備に対しても高水準の化学的耐久性が要求されるため、この点でも製造コストが増大する可能性がある。
 一方、コート層の前駆体として炭酸イオンを含む溶液を用いた場合、ZrOやY等の、通常酸性領域でしか溶解しない遷移金属酸化物における遷移金属元素が、炭酸イオンによる配位を受け錯体を形成することによって溶解し、中性~弱塩基性(pH7以上、7.5以上、8以上、8.5以上、特に9以上)の金属塩溶液を調製することができる。この場合、コート層を構成するナトリウム金属成分も、炭酸塩や水酸化物として溶液中に溶解可能になる他、同じくコート層を構成するSi成分についても、水ガラス(ケイ酸ナトリウム:NaO・nSiO)として添加することができる。そのため、コート層の前駆体を容易に調製することができる。
 なお、コート層の前駆体溶液中において、炭酸イオンが遷移金属元素に対して二座配位していることが好ましい。この場合、遷移金属元素が溶液中で安定して存在しやすくなる。
 また、炭酸イオンの対イオンとして、NR (式中、各Rは互いに独立してH、CH、C及びCHCHOHからなる群より選ばれた少なくとも1種以上の置換基である)を含むことが好ましい。このようにすれば、遷移金属元素が溶液中で安定して存在しやすくなる。
 コート層の前駆体溶液は、例えば、水ガラス(ケイ酸ナトリウム)、トリポリリン酸ナトリウム、炭酸ジルコニウムアンモニア水溶液を混合することによって得ることができる。
 なお、コート層にはハードカーボンが含まれていてもよい。このようにすれば、電子伝導性を向上させつつ、電池を高容量化することができる。ハードカーボンを含むコート層は、例えばコート層の前駆体溶液に、上述したハードカーボンの前駆体を混合し、焼成することにより作製することができる。
 (非水系電解質)
 非水系電解質としては、有機系電解液やゲルポリマー電解質を含むものが挙げられる。また、非水系電解質はナトリウム塩(ナトリウム支持塩)を含むことにより、ナトリウム二次電池用の電解質として機能する。
 有機系電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、1,3-ジオキソラン、スルホラン、アセトニトリル(AN)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等が挙げられる。あるいは、N,N,N-トリメチル-N-プロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド[略称:TMPA-TFSI]、N-メチル-N-プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド[略称:PP13-TFSI]、N-メチル-N-プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド[略称:P13-TFSI]、N-メチル-N-ブチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド[略称:P14-TFSI]、等の脂肪族4級アンモニウム塩;1-メチル-3-エチルイミダゾリウムテトラフルオロボレート[略称:EMIBF]、1-メチル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[略称:EMITFSI]、1-アリル-3-エチルイミダゾリウムブロマイド[略称:AEImBr]、1-アリル-3-エチルイミダゾリウムテトラフルオロボレート[略称:AEImBF]、1-アリル-3-エチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[略称:AEImTFSI]、1,3-ジアリルイミダゾリウムブロマイド[略称:AAImBr]、1,3-ジアリルイミダゾリウムテトラフルオロボレート[略称:AAImBF]、1,3-ジアリルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド[略称:AAImTFSI]等のアルキルイミダゾリウム4級塩等のイオン液体が挙げられる。これらの非水系溶媒は単独で使用してもよいし、二種類以上を混合して用いてもよい。
 ゲルポリマー電解質としては、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリエチレンイミン(PEI)、ポリメチルメタクリル酸(PMMA)、フッ化ビニリデン(VDF)と六フッ化プロピレン(HFP)のコポリマー(PVDF-HFP)、およびこれらを組み合わせたポリマーが挙げられる。非水系電解質として、ゲルポリマー電解質を含むものを使用することにより、発火しにくくなるため、二次電池の安全性をより高めることが可能となる。
 ナトリウム塩としては、PF 、BF 、(CFSO(ビストリフルオロメタンスルホニルイミド;通称TFSI)、CFSO (通称TFS)、(CSO(ビスペンタフルオロエタンスルホニルアミド;通称BETI)、ClO 、AsF 、SbF 、ビスオキサラトホウ酸(B(C ;通称BOB)、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)ホウ酸(BFOCOOC(CF 、通称B(HHIB))等のナトリウム塩が挙げられる。これらの電解質塩は単独で使用してもよいし二種類以上を混合して用いてもよい。特に、安価であるPF 、BF のナトリウム塩が好ましい。電解質塩濃度は、一般的には0.5~3モル/Lの範囲内で適宜調整される。
 なお、非水系電解質は、ビニレンカーボネート(VC)、ビニレンアセテート(VA)、ビニレンブチレート、ビニレンヘキサネート、ビニレンクロトネート、カテコールカーボネート等の添加剤を含有していてもよい。これらの添加剤は、活物質表面に保護膜を形成する役割を有する。添加剤の濃度は、非水系電解質100質量部に対して0.1~3質量部、特に0.5~1質量部であることが好ましい。
 (その他の材料)
 正極及び負極において、導電助剤やバインダーを含有させてもよい。
 導電助剤は、正極や負極において導電パスを形成する成分である。導電助剤としては、例えば、導電性炭素を用いることができる。導電性炭素としては、アセチレンブラックやケッチェンブラックといった高導電性カーボンブラック等の粉末状または繊維状の導電性炭素が好ましい。
 バインダーは、正極や負極の原料(原料粉末)同士を一体化させるための材料である。バインダーとしては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシメチルセルロース等のセルロース誘導体またはポリビニルアルコール等の水溶性高分子;熱硬化性ポリイミド、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン等の熱硬化性樹脂;ポリプロピレンカーボネート等のポリカーボネート系樹脂;ポリフッ化ビニリデン等が挙げられる。
 正極及び/または負極の外側表面に集電体層を設けることが好ましい。このようにすれば、電池反応により生じた電子を集め、効率よく外部に取り出すことができる。集電体層は、例えば金属箔からなる。具体的には、金属箔の材質としては、Al、Ti、Fe、Ni、Sn、Bi、Cu、Pb、Mo、Ag及びAuから選択される少なくとも1種が挙げられる。なかでも、導電性に優れ軽量なAlであることが好ましい。
 集電体層の厚みは0.1~1000μm、0.1~500μm、特に0.2~20μmであることが好ましい。この範囲であると出力特性に優れ、且つエネルギー密度の高い電池が得られる。すなわち、集電体層が薄すぎると抵抗が大きくなり、厚すぎるとナトリウム二次電池の単位体積当たりのエネルギー密度及び単位重量当たりのエネルギー密度が低下する傾向がある。
 本開示のナトリウムイオン二次電池は、安全性に優れることから、例えば、エアコン、洗濯機、テレビ、冷蔵庫、冷凍庫、冷房機器、ノートパソコン、タブレット、スマートフォン、パソコンキーボード、パソコン用ディスプレイ、デスクトップ型パソコン、CRTモニター、パソコンラック、プリンター、3Dプリンター、一体型パソコン、マウス、ハードディスク、パソコン周辺機器、アイロン、衣類乾燥機、ウインドウファン、トランシーバー、送風機、換気扇、テレビ、音楽レコーダー、音楽プレーヤー、オーブン、レンジ、洗浄機能付便座、温風ヒーター、カーコンポ、カーナビ、懐中電灯、加湿器、携帯カラオケ機、換気扇、乾燥機、空気清浄器、携帯電話、非常用電灯、ゲーム機、血圧計、コーヒーミル、コーヒーメーカー、こたつ、コピー機、ディスクチェンジャー、ラジオ、シェーバー、ジューサー、シュレッダー、浄水器、照明器具、除湿器、食器乾燥機、炊飯器、ステレオ、ストーブ、スピーカー、ズボンプレッサー、掃除機、体脂肪計、体重計、ヘルスメーター、ムービープレーヤー、電気カーペット、電気釜、炊飯器、電気かみそり、電気スタンド、電気ポット、電子ゲーム機、携帯ゲーム機、電子辞書、電子手帳、電子レンジ、電磁調理器、電卓、電動カート、電動車椅子、電動工具、電動歯ブラシ、あんか、散髪器具、電話機、時計、インターホン、エアサーキュレーター、電撃殺虫器、複写機、ホットプレート、トースター、ドライヤー、電動ドリル、給湯器、パネルヒーター、粉砕機、はんだごて、ビデオカメラ、ビデオデッキ、ファクシミリ、ファンヒーター、フードプロセッサー、布団乾燥機、ヘッドホン、電気ポット、ホットカーペット、マイク、マッサージ機、豆電球、ミキサー、ミシン、もちつき機、床暖房パネル、ランタン、リモコン、冷温庫、冷水器、冷凍ストッカー、冷風器、ワープロ、泡だて器、GPS、電子楽器、オートバイ、おもちゃ類、芝刈り機、うき、電動リール、マグロ電気ショッカー、水中スクーター、魚群探知機、自転車、自動二輪、自動車、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、鉄道、船、飛行機、潜水艇、航空機、人工衛星、及び非常用電源システムなど様々な電気機器の電源として利用することができる。
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 表1及び表2は、実施例1~7及び比較例1~3を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (実施例1)
 (a)正極の作製
 ガラス組成として、モル比で40NaO-20Fe-40Pとなるように調合した原料を、1200℃で1時間大気中で溶融し、ツインローラーで冷却することでガラスフィルムを作製した。得られたガラスフィルムに対し、エタノール中でφ5mmのZrO玉石、φ3mmのZrO玉石、φ1mmのZrO玉石を混合して使用したボールミル粉砕を60時間行うことにより、比表面積が11.1m/gのガラス粉末を得た。得られたガラス粉末に対し、さらにエタノール中でφ0.3mmのZrO玉石とともに、遊星ボールミルで300rpmで5時間の粉砕を行うことにより、比表面積が32.1m/gのガラス粉末を得た。
 得られたガラス粉末100質量部に対して、炭素源として非イオン性界面活性剤であるポリエチレンオキシドノニルフェニルエーテル(HLB値:13.3、質量平均分子量:660)を25質量部加えて、自公転ミキサーで混合した後、乾燥させた。得られた粉末を窒素雰囲気下で620℃、30分間焼成を行うことにより、表面に炭素が被覆された、NaFeP結晶を含有する結晶化ガラスからなる正極活物質粉末を得た。
 得られた正極活物質粉末をアルミナ乳鉢で粉砕し、目穴50μmのメッシュに通した。得られた粉末95質量部に対し、導電助剤であるアセチレンブラックを5質量部添加し、正極合材粉末を得た。さらに、ポリフッ化ビニリデンを5質量部加え、正極合材粉末の濃度が50質量%となるように、溶媒としてN-メチル-2-ピロリドンを加えた。これを自公転ミキサーで混合することで、正極ペーストを作製した。
 作製した正極ペーストを厚さ20μmのアルミニウム箔からなる集電体層11の両面に、各々2.5mAh/cmの容量となるよう、ドクターブレードを用いて塗工した。その後、80℃の乾燥機で1時間乾燥させ、ロールプレスにより加圧し、正極層12を形成した。得られた積層体を、正極層形成部分が55mm×40mm、正極層12が形成されていないタブ15が10mm×10mmとなるよう、トムソン刃を用いて10枚打ち抜いた(図1及び図2参照)。このようにして、正極を作製した。
 (b)負極の作製
 平均粒子径5μmのハードカーボン粉末95質量部に対し、導電助剤としてアセチレンブラックを5質量部添加し、負極合材粉末を得た。さらに、ポリフッ化ビニリデンを5質量部加え、負極合材粉末の濃度が50質量%となるように、溶媒としてN-メチル-2-ピロリドンを加えた。これを自公転ミキサーで混合することで、負極ペーストを作製した。
 作製した負極ペーストを厚さ20μmのアルミニウム集電体箔の両面に、各々2.5mAh/cmの容量となるよう、ドクターブレードを用いて塗工した。その後、80℃の乾燥機で1時間乾燥させ、ロールプレスにより加圧し、負極層を形成した。得られた積層体を、負極層形成部分が60mm×45mm、負極層が形成されていないアルミニウムタブが10mm×10mmとなるよう、トムソン刃を用いて9枚打ち抜いた。このようにして負極を作製した。なお、これとは別に、負極層を片面だけに形成した負極を2枚作製した。
 (c)セパレータの作製
 厚み16μmのポリオレフィン系多孔質フィルム(アルミナが両面にコートされたポリプロピレン微多孔膜)のセパレータを、トムソン刃で65mm×50mmとなるよう10枚打ち抜いた。
 (d)試験電池の作製
 65mm×50mmのサイズの絞り加工が施されたアルミニウムラミネートフィルム内に、上記で得られた負極、セパレータ、正極を順に積層した。具体的には、図3に示すように、負極(負極層13)、セパレータ14及び正極(正極層12)のユニットを10ユニット積層し、かつ、積層体の両最表面には負極層13が片面だけ形成された負極が位置するようにした。積層の際には、図4に示すように、アルミニウムタブは正極と負極で異なる位置に突出させるようにした(図4のタブ(正極)16及びタブ(負極)17)。積層後、正極と負極のアルミニウムタブをそれぞれ束ねて、抵抗溶接機にて幅10mm、厚み0.1mmのアルミニウムリボンと溶接し、端子(アルミニウムリボン(端子)18)を形成した(図5参照)。その後、アルミニウムラミネートフィルムの3辺をヒートシールし、電解質として、1モル/L NaPF溶液/EC:DEC=1:1(エチレンカーボネートとジエチルカーボネートを1:1の体積比で混合した溶媒にNaPFを1モル/Lの濃度で溶解した電解液)を6g加えて、真空封止することで試験電池を作製した。
 (e)充電試験
 担持した正極活物質の質量から、理論容量96mAh/gとして電池容量を算出し、これを基準に0.05Cレート(20時間充放電)の電流値で定電流充電を30℃中の恒温槽内で行った。カットオフ電圧は4.2Vとした。充電容量を表1に示す。表1から明らかなように、いずれのセルも同程度の充電容量を示している。
 (f)釘刺し試験
 満充電の状態のラミネートセルに対して、K熱電対が釘の内部に搭載された直径3mmの軟鋼製釘を1mm/秒の速度でセルが貫通するまで突入させた。釘を突入させた後の電池内部の温度変化を熱電対により測定した。電池内部のピーク温度(内部温度)を表1に示す。また、電池内部の温度変化のグラフを図6に示す。また、釘突入後5分以内に発火や発煙が見られたか否かについても評価した。
 (実施例2)
 下記の手順で負極ペーストを得たこと以外は、実施例1と同様にして試験電池を作製した。
 組成がNaZrSiPO12のNASICON型結晶が得られるように、水ガラス(ケイ酸ナトリウム:NaO・nSiO)、炭酸ジルコニウムアンモニウム水溶液((NHZr(OH)(CO)、トリポリリン酸ナトリウム(Na10)を合計25g秤量した。これを150gの純水に加え、ホットスターラにより50℃において24時間撹拌した。これにより、アルカリイオン伝導性固体電解質前駆体溶液(pH=9.7)を得た。次に、この溶液を約5℃の恒温槽内において一晩静置することにより、ゲル化させた。以上により、アルカリイオン伝導性固体電解質前駆体を調製した。
 ハードカーボン源であるスクロース(ショ糖)と、上記で得られたアルカリイオン伝導性固体電解質前駆体とを、質量比で4:1となるように、スターラ中で1時間混合することにより混合液を得た。
 平均粒子径5μmのハードカーボン粉末100質量部に対し、上記で得られた混合液40質量部を添加し自公転ミキサーで混合した。これを乾燥した後、粉砕した。得られた粉末をカーボンるつぼに入れ、石英管状炉内にて窒素雰囲気中1000℃で焼成を行った。焼成後の2次粒子の粉末質量と焼成前のハードカーボン粉末の質量の差から、コーティング層はハードカーボン粉末100質量部に対して11質量部と求めた。このコートされたハードカーボン粉末95質量部に対し、導電助剤としてアセチレンブラックを5質量部加え、負極合材粉末を得た。さらに、ポリフッ化ビニリデンを5質量部加え、負極合材粉末の濃度が50質量%となるように、溶媒としてN-メチル-2-ピロリドンを加えた。これを自公転ミキサーで混合することで、負極ペーストを作製した。
 このようにして作製した試験電池について、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表1に示す。
 (実施例3)
 電解液の代わりに、以下のようにして作製したゲルポリマーを使用したこと以外は、実施例2と同様にして試験電池を作製した。
 PAN(ポリアクリロニトリル、平均分子量150000)と、支持塩であるNaCFSO(ナトリウムトリフルオロメタンスルホネート、略称NaTFS)を、質量比で7:3となるように混合した。得られた混合物10質量部に対して、EC:DEC=1:1溶媒(エチレンカーボネートとジエチルカーボネートを1:1の体積比で混合した溶媒)を90質量部加えることにより、ゲルポリマーを得た。
 このようにして作製した試験電池について、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表1に示す。
 (実施例4)
 電解液の代わりに、以下のようにして作製したゲルポリマーを使用したこと以外は、実施例2と同様にして試験電池を作製した。
 PEO(ポリエチレンオキサイド、平均分子量60000)と、支持塩である(CFSONNa(ナトリウムビス(トリフルオロメタンスルホニル)イミド、略称NaTFSI)とを、質量比で8:2となるように混合した。得られた混合物10質量部に対して、EC:DEC=1:1溶媒を90質量部加えることにより、ゲルポリマーを得た。
 このようにして作製した試験電池について、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表1に示す。
 (実施例5)
 正極の作製において、正極活物質粉末を以下のように作製した以外は、実施例1と同様にして試験電池を作製した。
 ガラス組成をモル比で37.5NaO-25Fe-37.5Pとなるように調合した原料を、1200℃で1時間大気中で溶融し、ツインローラーで冷却することでガラスフィルムを作製した。得られたガラスフィルムに対し、エタノール中でφ5mmのZrO玉石、φ3mmのZrO玉石、φ1mmのZrO玉石を混合して使用したボールミル粉砕を60時間行うことにより、比表面積が11.1m/gのガラス粉末を得た。得られたガラス粉末に対し、さらにエタノール中でφ0.3mmのZrO玉石とともに、遊星ボールミルで300rpmで5時間の粉砕を行うことにより、比表面積が29.4m/gのガラス粉末を得た。
 得られたガラス粉末100質量部に対して、炭素源として非イオン性界面活性剤であるポリエチレンオキシドノニルフェニルエーテル(HLB値:13.3、質量平均分子量:660)を25質量部加えて、自公転ミキサーで混合した後、乾燥させた。得られた粉末を窒素雰囲気下で620℃、30分間焼成を行うことにより、表面に炭素が被覆された、NaFe(PO)P(=NaFe1.337.33)結晶を含有する結晶化ガラスからなる正極活物質粉末を得た。
 このようにして作製した試験電池について、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表2に示す。
 (実施例6)
 下記の手順で負極ペーストを得たこと以外は、実施例5と同様にして試験電池を作製した。
 組成がNaZrSiPO12のNASICON型結晶が得られるように、水ガラス(ケイ酸ナトリウム:NaO・nSiO)、炭酸ジルコニウムアンモニウム水溶液((NHZr(OH)(CO)、トリポリリン酸ナトリウム(Na10)を合計25g秤量した。これを150gの純水に加え、ホットスターラにより50℃において24時間攪拌した。これにより、アルカリイオン伝導性固体電解質前駆体溶液(pH=9.7)を得た。次に、この溶液を約5℃の恒温槽内において一晩静置することにより、ゲル化させた。以上により、アルカリイオン伝導性固体電解質前駆体を調製した。
 ハードカーボン源であるスクロース(ショ糖)と、上記で得られたアルカリイオン伝導性固体電解質前駆体とを、質量比で4:1となるように、スターラ中で1時間混合することにより混合液を得た。
 平均粒子径5μmのハードカーボン粉末100質量部に対し、上記で得られた混合液40質量部を添加し自公転ミキサーで混合した。これを乾燥した後、粉砕した。得られた粉末をカーボンるつぼに入れ、石英管状炉内にて窒素雰囲気中1000℃で焼成を行った。焼成後の2次粒子の粉末質量と焼成前のハードカーボン粉末の質量の差から、コーティング層はハードカーボン粉末100質量部に対して11質量部と求めた。このコートされたハードカーボン粉末95質量部に対し、導電助剤としてアセチレンブラックを5質量部加え、負極合材粉末を得た。さらに、ポリフッ化ビニリデンを5質量部加え、負極合材粉末の濃度が50質量%となるように、溶媒としてN-メチル-2-ピロリドンを加えた。これを自公転ミキサーで混合することで、負極ペーストを作製した。
 このようにして作製した試験電池について、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表2に示す。
 (実施例7)
 電解液の代わりに、以下のようにして作製したゲルポリマーを使用したこと以外は、実施例6と同様にして試験電池を作製した。
 PEO(ポリエチレンオキサイド、平均分子量60000)と、支持塩である(CFSONNa(ナトリウムビス(トリフルオロメタンスルホニル)イミド、略称NaTFSI)とを、質量比で8:2となるように混合した。得られた混合物10質量部に対して、EC:DEC=1:1溶媒を90質量部加えることにより、ゲルポリマーを得た。
 このようにして作製した試験電池について、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表2に示す。
 (比較例1)
 正極活物質として平均粒子径15μmのNCA(LiNi0.8Co0.15Al0.05O)、負極活物質として平均粒子径10μmのグラファイト、電解質として1モル/L LiPF溶液/EC:DEC=1:1(エチレンカーボネートとジエチルカーボネートを1:1の体積比で混合した溶媒にLiPFを1モル/Lの濃度で溶解した電解液)を用いた以外は、実施例1と同様にして試験電池を作製した。
 このようにして作製した試験電池について、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表1に示す。また、電池内部の温度変化のグラフを図7に示す。
 (比較例2)
 正極活物質として、平均粒子径10μmのNCM811(LiNi0.8Co0.1Mn0.1)を用いたこと以外は、比較例1と同様にして試験電池を作製し、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表1に示す。
 (比較例3)
 正極活物質として、2次粒子の平均粒子径が10μmである、カーボンコートされたLFP(LiFePO)を用いたこと以外は、比較例1と同様にして試験電池を作製し、実施例1と同様にして、充放電試験及び釘差し試験を行った。結果を表1に示す。
 表1及び表2に示す通り、各試験電池では同程度の充電容量を示したにも関わらず、実施例1~7の試験電池は、釘刺し試験における内部温度が150℃以下と低く、発煙や発火が生じなかった。特に、負極活物質として、NASICON結晶を含むコート層により被覆したハードカーボンを使用した実施例2~4、6、7では、内部温度が80℃以下と低かった。また、電解質としてゲルポリマーを使用した実施例3、4、7では、内部温度が60℃以下とさらに低かった。
 一方、比較例1~3では、釘刺し試験において内部温度が210℃以上と高くなり、発煙または発火が生じた。
 11…集電体層
 12…正極層
 13…負極層
 14…セパレータ
 15…タブ
 16…タブ(正極)
 17…タブ(負極)
 18…アルミニウムリボン(端子)

Claims (8)

  1.  一般式Na(1≦x≦2.8、0.95≦y≦1.6、6.5≦z≦8、MはFe、Ni、Co、Mn及びCrから選択される少なくとも1種)で表される結晶を含有する結晶化ガラスからなる正極活物質を含む正極、
     ハードカーボンからなる負極活物質を含む負極、及び、
     非水系電解質、
    を備えることを特徴とするナトリウムイオン二次電池。
  2.  前記ハードカーボンが、ベータアルミナ結晶またはNASICON結晶を含むコート層により被覆されていることを特徴とする請求項1に記載のナトリウムイオン二次電池。
  3.  前記正極活物質が、一般式NaMP(1≦x≦2、MはFe、Ni、Co、Mn及びCrから選択される少なくとも1種)で表される結晶を含有する結晶化ガラスからなることを特徴とする請求項1または2に記載のナトリウムイオン二次電池。
  4.  前記正極活物質が、一般式NaFeP(1≦x≦2)で表される結晶を含有する結晶化ガラスからなることを特徴とする請求項3に記載のナトリウムイオン二次電池。
  5.  前記正極活物質がカーボン材料により被覆されていることを特徴とする請求項1または2に記載のナトリウムイオン二次電池。
  6.  前記正極活物質が2次粒子からなることを特徴とする請求項1または2に記載のナトリウムイオン二次電池。
  7.  非水系電解質が、有機系電解液、及び/または、ゲルポリマー電解質を含むことを特徴とする請求項1または2に記載のナトリウムイオン二次電池。
  8.  請求項1または2に記載のナトリウムイオン二次電池を用いたことを特徴とする電気機器。
PCT/JP2022/043133 2021-11-26 2022-11-22 ナトリウムイオン二次電池 WO2023095775A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021192328 2021-11-26
JP2021-192328 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095775A1 true WO2023095775A1 (ja) 2023-06-01

Family

ID=86539387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043133 WO2023095775A1 (ja) 2021-11-26 2022-11-22 ナトリウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2023095775A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107963A (ja) * 2004-10-06 2006-04-20 Nissan Motor Co Ltd バイポーラ電池
JP2014179317A (ja) * 2013-02-18 2014-09-25 Semiconductor Energy Lab Co Ltd 蓄電池用電極
JP2015041455A (ja) * 2013-08-21 2015-03-02 日本電気硝子株式会社 ナトリウムイオン二次電池用負極活物質、ならびに、それを用いたナトリウムイオン二次電池用負極及びナトリウムイオン二次電池
JP2016076422A (ja) * 2014-10-08 2016-05-12 トヨタ自動車株式会社 ハイブリッドイオン電池システム
JP2016173962A (ja) * 2015-03-18 2016-09-29 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質粉末
JP2018032536A (ja) * 2016-08-25 2018-03-01 国立大学法人長岡技術科学大学 蓄電デバイス用正極活物質及びその製造方法
WO2019093411A1 (ja) * 2017-11-08 2019-05-16 国立大学法人 東京大学 消火性電解液及び当該電解液を含む二次電池
JP2019533882A (ja) * 2016-10-26 2019-11-21 ナショナル ユニバーシティー オブ シンガポールNational University of Singapore 不燃性ナトリウムイオン電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107963A (ja) * 2004-10-06 2006-04-20 Nissan Motor Co Ltd バイポーラ電池
JP2014179317A (ja) * 2013-02-18 2014-09-25 Semiconductor Energy Lab Co Ltd 蓄電池用電極
JP2015041455A (ja) * 2013-08-21 2015-03-02 日本電気硝子株式会社 ナトリウムイオン二次電池用負極活物質、ならびに、それを用いたナトリウムイオン二次電池用負極及びナトリウムイオン二次電池
JP2016076422A (ja) * 2014-10-08 2016-05-12 トヨタ自動車株式会社 ハイブリッドイオン電池システム
JP2016173962A (ja) * 2015-03-18 2016-09-29 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質粉末
JP2018032536A (ja) * 2016-08-25 2018-03-01 国立大学法人長岡技術科学大学 蓄電デバイス用正極活物質及びその製造方法
JP2019533882A (ja) * 2016-10-26 2019-11-21 ナショナル ユニバーシティー オブ シンガポールNational University of Singapore 不燃性ナトリウムイオン電池
WO2019093411A1 (ja) * 2017-11-08 2019-05-16 国立大学法人 東京大学 消火性電解液及び当該電解液を含む二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONMA, TSUYOSHI: "Crystallization of oxide glass for sosium ion batteries", JOURNAL OF THE JAPANESE ASSOCIATION FOR CRYSTAL GROWTH, vol. 46, no. 1, 1 January 2019 (2019-01-01), pages 1 - 6, XP009546642, ISSN: 2188-7268, DOI: 10.19009/jjacg.46-1-06 *

Similar Documents

Publication Publication Date Title
CA3139843C (en) Rechargeable battery cell
JP6178316B2 (ja) フッ素化電解質組成物
CN105374980B (zh) 界面浸润的准固态碱金属电池、电池电极及电池制备方法
EP0704921B1 (en) Nonaqueous secondary battery
KR101946012B1 (ko) 리튬 이온 전도체, 이를 포함한 고체 전해질, 이를 포함한 활물질 및 상기 리튬 이온 전도체를 포함한 리튬 전지
JP5693538B2 (ja) 非水二次電池用電解液及び二次電池
JP4521525B2 (ja) 不燃性非水系電解液およびこれを用いたリチウムイオン電池
CN108352530A (zh) 钠离子二次电池用正极活性物质
CN103208623A (zh) 用于可再充电锂电池的正极活性物质和可再充电锂电池
JP2001223008A (ja) リチウムイオン二次電池、そのための正極活物質及びその製造方法
JP2008041502A (ja) 非水電解質二次電池用正極、その製造方法及び非水電解質二次電池
JP7168915B2 (ja) ナトリウムイオン二次電池用正極活物質
CN102903914A (zh) 活性物质、其制造方法、电极、二次电池和电池组
KR20170017716A (ko) 고체 전해질 재료 및 전고체 리튬 전지
JPH07288123A (ja) 非水二次電池
WO2017204213A1 (ja) リチウムイオン二次電池
KR101309395B1 (ko) 리튬 이온 이차 전지
JP3489286B2 (ja) 非水二次電池
JP6671717B2 (ja) リチウム空気電池用電解質、及びそれを含むリチウム空気電池
JP2010050021A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2016134294A (ja) リチウムイオン二次電池及びこれを用いた電気機器
JP2014049198A (ja) 電池用焼結体、全固体リチウム電池および電池用焼結体の製造方法
JP6115909B2 (ja) リチウム二次電池用負極およびその製造方法、並びに該負極を用いたリチウム二次電池および該電池を用いた電気機器
CN116210101A (zh) 用于全固态钠蓄电池的电极合剂、及使用该电极合剂的蓄电池
JP2000182602A (ja) 非水二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563691

Country of ref document: JP