WO2023092844A1 - 一种陶瓷氧化物固态电解质及其制备方法 - Google Patents

一种陶瓷氧化物固态电解质及其制备方法 Download PDF

Info

Publication number
WO2023092844A1
WO2023092844A1 PCT/CN2022/072698 CN2022072698W WO2023092844A1 WO 2023092844 A1 WO2023092844 A1 WO 2023092844A1 CN 2022072698 W CN2022072698 W CN 2022072698W WO 2023092844 A1 WO2023092844 A1 WO 2023092844A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
additive
ceramic oxide
main raw
raw materials
Prior art date
Application number
PCT/CN2022/072698
Other languages
English (en)
French (fr)
Inventor
李海峰
许冠南
周鹏飞
季顺平
赵前
孙楷橦
夏俊超
吴思
朱英浩
Original Assignee
澳门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澳门大学 filed Critical 澳门大学
Publication of WO2023092844A1 publication Critical patent/WO2023092844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of electrolytes, in particular to a ceramic oxide solid state electrolyte and a preparation method thereof.
  • Solid-state batteries are one of the most important directions of battery development at present.
  • the solid-state electrolyte used in solid-state batteries is non-flammable and has ultra-high safety.
  • the combination of metal negative electrodes can make the battery have high energy density and safety at the same time.
  • the bottleneck of the current development of solid-state batteries is not only the problem of poor interface fusion, but also the low ionic conductivity of the electrolyte itself is one of the important bottlenecks hindering the performance of the battery.
  • High ionic conductivity can greatly reduce the internal resistance of the battery, enhance the battery rate and cycle performance.
  • the ionic conductivity of most solid electrolytes is still at the level of 1 ⁇ 10 -4 S/cm, the overall resistance of the electrolyte is about 200-300 ohms, and the non-mainstream electrolytes are even at the level of kiloohms. Electrolytes are difficult to use as components of commercial batteries.
  • the process of improving the performance of solid electrolytes is limited, and most of them use doping methods to improve the intrinsic ionic conductivity of the electrolyte.
  • doping has a high demand on the process.
  • the doping raw material needs to calculate the accurate mass of the doping raw material before the weighing stage, and then mix it with the raw material.
  • Some processes need to ball mill the doping raw material and the replaced raw material in advance, so that the two The phase forms a solid solution, which increases the complexity and time cost of the synthesis process.
  • the present disclosure provides a method for preparing a ceramic oxide solid electrolyte, which is prepared by using main raw materials and additives, including: mixing and calcining main raw materials to obtain an intermediate powder, mixing and sintering the intermediate powder and the additive; wherein, The additive is fluoride, and the mass ratio of the additive to the intermediate powder is 0.1-10:100.
  • the additive is selected from at least one of magnesium fluoride, calcium fluoride, sodium fluoride and potassium fluoride; optionally, the additive is magnesium fluoride.
  • the mass ratio of the additive to the intermediate powder is 1-3:100; alternatively, 1-2:100.
  • the intermediate powder and the additive are mixed and ball-milled to obtain a master powder, which is then pressed into shape and then sintered.
  • the ball milling time for mixing and ball milling the intermediate powder and the additive is 0.5-1 h, for example about 30 min.
  • the compression molding is to compress the homogeneously mixed mother powder into a disc shape through a mold with an axial pressure of 700 MPa.
  • the sintering temperature is 1100-1300°C, and the sintering time is 10-15h; for example, the sintering temperature is 1150-1250°C, and the sintering time is 11-13h; The time is 12-13h.
  • the preparation process of the intermediate powder includes: mixing the main raw materials, ball milling and calcining, and then ball milling again; optionally, the particle size of the intermediate powder is 2-20 microns, For example, 5-15 microns, or 8-12 microns.
  • the calcination temperature is 1000-1200°C, and the calcination time is 10-15h; for example, the calcination temperature is 1050-1150°C, and the calcination time is 11-13h; The time is 12-13h.
  • the main raw materials are mixed by ball milling, and the ball milling time is 0.5-2 hours, such as 1-2 hours, or 1-1.5 hours.
  • the ball milling time is 0.5-2 hours, such as 1-2 hours, or 1-1.5 hours.
  • the milling time for the ball milling is about 30 minutes; optionally, a large ball is used for milling and the vibration amplitude is controlled to be about 0.1 mm.
  • the main raw material is selected according to the type of the prepared ceramic oxide solid electrolyte; optionally, the type of the ceramic oxide solid electrolyte is at least one of NASICON type and garnet type LLZO One; for example, in parts by mass, the main raw materials include 31.5-33.1 parts of sodium phosphate dodecahydrate, 18.0-20.0 parts of silicon dioxide, 33.6-34.1 parts of zirconium dioxide and 11.6-12.8 parts of sodium carbonate.
  • the present disclosure also provides a ceramic oxide solid electrolyte, which is prepared by the above-mentioned preparation method.
  • the present disclosure further provides a solid-state battery, including the aforementioned ceramic oxide solid-state electrolyte.
  • Figure 1 is a comparison chart of EIS AC impedance test results of NASICON electrolyte with magnesium fluoride added and commercial NASICON;
  • Fig. 2 is the scanning electron micrograph of the NASICON sample that has added magnesium fluoride
  • Figure 3 is a scanning electron microscope image of a commercially available electrolyte.
  • the doped raw materials are generally mixed and calcined with the main raw materials. It is necessary to accurately calculate the mass of the doped raw materials before the weighing stage, and there is a multi-step ball milling process in the process, which makes the synthesis process cumbersome and time-consuming.
  • the inventors changed the adding time of the additives, optimized the types and amounts of the additives, and provided a simple and efficient preparation process.
  • the purpose of the present disclosure is to provide a ceramic oxide solid state electrolyte and its preparation method, which aims to simplify the synthesis and doping process, and significantly reduce the resistance value of the electrolyte under the condition of low additive dosage.
  • the disclosure provides a method for preparing a ceramic oxide solid state electrolyte, comprising: mixing and calcining main raw materials to obtain an intermediate powder, and mixing and sintering the intermediate powder and the additive.
  • the additive is fluoride.
  • the embodiment of the present disclosure provides a method for preparing a ceramic oxide solid electrolyte, which is prepared by using main raw materials and additives, including the following steps:
  • the main raw materials are mixed and calcined to obtain intermediate powder, and the raw materials are decomposed by calcining to obtain corresponding oxides.
  • the preparation process of the intermediate powder includes: after mixing and calcining the main raw materials, ball milling is performed to obtain a powder with a particle size that meets the requirements.
  • the particle size of the intermediate powder can be 2-20 microns, such as 5-15 microns , Another example is 8-12 microns.
  • the main raw materials are selected according to the types of ceramic oxide solid electrolytes prepared, and the main raw materials corresponding to different types of ceramic oxide solid electrolytes are also different.
  • the preparation processes of general types of ceramic oxide solid electrolytes are suitable for the embodiments of the present disclosure.
  • the preparation method provided in The composition of the main raw materials of different types of ceramic oxide solid electrolytes is well known in the art and is not limited here.
  • the type of the ceramic oxide solid electrolyte can be a NASICON type solid electrolyte; in parts by mass, the main raw materials include 31.5-33.1 parts of sodium phosphate dodecahydrate, 18.0-20.0 parts of silicon dioxide, zirconia 33.6-34.1 parts and 11.6-12.8 parts of sodium carbonate.
  • the main raw materials include 31.5-33.1 parts of sodium phosphate dodecahydrate, 18.0-20.0 parts of silicon dioxide, zirconia 33.6-34.1 parts and 11.6-12.8 parts of sodium carbonate.
  • the calcination temperature is 1000-1200°C, and the calcination time is 10-15h; for example, the calcination temperature is 1050-1150°C, and the calcination time is 11-13h.
  • the raw materials can be fully decomposed to obtain the corresponding oxides.
  • the calcination temperature can be 1000°C, 1050°C, 1100°C, 1150°C, 1200°C, etc., or any value between the above adjacent temperature values;
  • the calcination time can be 10h, 11h, 12h, 13h, 14h , 15h, etc., can also be any value between the above adjacent time values.
  • the main raw materials are mixed by ball milling, and the ball milling time is 0.5-2h, such as 0.5h, 1h, 1.5h, 2h, etc. It can also be any value between the above adjacent time values, and can be used
  • the large ball is milled and the vibration amplitude is controlled to be about 0.1mm.
  • the intermediate powder and the additive are mixed and sintered; wherein, the additive is fluoride, and the mass ratio of the additive to the intermediate powder is 0.1-10:100.
  • the performance of oxide ceramic electrolytes can be further improved.
  • the mass ratio of the additive to the intermediate powder can be 0.1:100, 0.5:100, 1.0:100, 2.0:100, 3.0:100, 4.0:100, 5.0:100, 6.0:100, 7.0:100, 8.0 :100, 9.0:100, 10:100, etc., can also be any value between the above adjacent ratios.
  • the mass ratio of the additive to the intermediate powder is 1-3:100; optionally 1-2:100.
  • the type of additives can be common fluorides, all of which can greatly improve the performance of the electrolyte.
  • the additive is selected from at least one of magnesium fluoride, calcium fluoride, sodium fluoride, and potassium fluoride; for example, magnesium fluoride.
  • magnesium fluoride as an additive can significantly improve the performance of the electrolyte under the condition of very small dosage.
  • the intermediate powder and additives are mixed and ball-milled, and then sintered after pressing to obtain a specific shape of the electrolyte sheet with a density that meets the requirements.
  • the sintering temperature is 1100-1300° C., and the sintering time is 10-15 hours; for example, the sintering temperature is 1150-1250° C., and the sintering time is 11-13 hours.
  • the sintering temperature can be 1100°C, 1150°C, 1200°C, 1250°C, 1300°C, etc.
  • the sintering time can be 10h, 11h, 12h, 13h, 14h, 15h, etc.
  • magnesium fluoride itself is a flux used in the manufacture of ceramics, metals, and glasses. Its melting point is 1261 ° C, which is close to the sintering temperature range of ceramic solid electrolytes, and can play a role in the liquid phase during the sintering process. The role of sintering increases the size of ceramic grains and enhances the density of ceramics, reducing the grain boundary resistance. At the same time, the diffusion of magnesium ions in the electrolyte lattice has a certain effect of avalent doping, and the fluorine element promotes the transformation of the material structure from the monoclinic phase to the orthorhombic phase with lower activation energy during the sintering process. The research of the inventors shows that the above two aspects are the main reasons why magnesium fluoride can enhance the performance of the oxide ceramic electrolyte.
  • the present disclosure also provides a ceramic oxide solid electrolyte prepared by the above preparation method, which has the advantages of low cost and low total impedance.
  • the present disclosure further provides a solid-state battery, including the aforementioned ceramic oxide solid-state electrolyte, which has the advantages of high ionic conductivity, reduced internal resistance, and enhanced rate and cycle performance.
  • the disclosure has the following beneficial effects: by introducing additives for sintering after the main raw materials are calcined, the requirements for the accuracy of raw material weighing and the process cost of ball milling are reduced, and more importantly: through the selection of additive types and the adjustment of dosage , can achieve the purpose of significantly reducing the total impedance under the premise of adding a very small proportion of fluoride, which is a simple and efficient process.
  • This embodiment provides a method for preparing a ceramic oxide solid electrolyte, which is prepared with the main raw material of the optimized NASICON solid electrolyte and a magnesium fluoride additive, including the following steps:
  • This embodiment provides a method for preparing a ceramic oxide solid electrolyte, which is prepared using the main raw materials of the traditional Na 3 Zr 2 Si 2 PO 12 solid electrolyte and magnesium fluoride additives, including the following steps:
  • This embodiment provides a method for preparing a ceramic oxide solid electrolyte, and the only difference from Embodiment 1 is that magnesium fluoride is replaced by calcium fluoride.
  • This embodiment provides a method for preparing a ceramic oxide solid electrolyte, the difference from Embodiment 1 is that magnesium fluoride is added in a mass ratio of 0.5 wt%.
  • This embodiment provides a method for preparing a ceramic oxide solid electrolyte, the difference from Embodiment 1 is that magnesium fluoride is added in a mass ratio of 3 wt%.
  • This embodiment provides a method for preparing a ceramic oxide solid state electrolyte, the difference from Embodiment 1 is that magnesium fluoride is added in a mass ratio of 0.1 wt%.
  • This comparative example provides a method for preparing a ceramic oxide solid state electrolyte, which differs from Example 1 only in that no magnesium fluoride is added.
  • This comparative example provides a method for preparing a ceramic oxide solid electrolyte, the difference from Example 1 is only that magnesium fluoride is replaced by sodium silicate.
  • This comparative example provides a method for preparing a ceramic oxide solid state electrolyte, which differs from Example 1 only in that magnesium fluoride is added in a mass ratio of 5 wt%.
  • This comparative example provides a method for preparing a ceramic oxide solid state electrolyte, which differs from Example 1 only in that magnesium fluoride is added in a mass proportion of 20 wt%.
  • Silver electrodes were vacuum-evaporated on both sides of the electrolyte sheet prepared in Example 1, and the impedance curve of the electrolyte was measured by electrochemical impedance spectroscopy (EIS) at a frequency of 1 Hz-1 MHz.
  • EIS electrochemical impedance spectroscopy
  • the obtained data were fitted using Zview2 software and compared with commercially available powder electrolytes. The result is shown in Figure 1.
  • composition of the commercially available powder electrolyte is Na 3 Zr 2 Si 2 PO 12 .
  • the fracture surface can be observed as part of the cleavage surface.
  • the scanning electron micrograph of the sample added with magnesium fluoride obtained in Example 1 is shown in FIG. 2 . It can be seen that the particles of the sample added with magnesium fluoride are larger, the contact between the particles is relatively close, and there is no obvious hole, which provides the material with relatively small grain boundary resistance; the fracture surface has dimple fractures, indicating that the material is plastic Well, the mechanical strength is higher.
  • the scanning electron micrograph of the sample of the commercially available electrolyte tested in Test Example 1 is shown in FIG. 3 . It can be seen that the commercially available products have smaller crystal grains, insufficient contact between particles, and more holes, so the grain boundary resistance is larger and the ionic conductivity performance is lower.
  • the fracture surface is mainly brittle, with no obvious dimple fracture, poor toughness, and fragile when processed into batteries.
  • the ionic conductivity of the electrolyte added with magnesium fluoride in Example 1 can reach 1.8 ⁇ 10 -3 S/cm, and now it is generally commercially available
  • the ionic conductivity of the electrolyte is only 3 ⁇ 10 -4 S/cm. It can be seen that the performance of the electrolyte added with magnesium fluoride is six times that of the commercially available electrolyte.
  • the impedance data obtained in Examples 1-6 are 54.24 ohms, 68.11 ohms, 61.69 ohms, 60.12 ohms, 79.67 ohms, and 92.82 ohms, respectively.
  • the impedance data obtained in Comparative Examples 1-4 are 460.9 ohms, 392 ohms, 275.3 ohms, and 1185 ohms, respectively.
  • Comparative Example 3-4 compares, with optimized NASICON material or traditional Na 3 Zr 2 Si 2 PO 12 is the main raw material of solid state electrolyte and adds a very small amount of magnesium fluoride (1wt%, 0.5wt%, 3wt%, 0.1wt% ) or calcium fluoride (1 wt%) as additives, all showed significantly reduced impedance.
  • the present disclosure provides a ceramic oxide solid state electrolyte and a preparation method thereof.
  • the addition time of additives is changed, the types of additives and the amount of additives are improved, and the main raw materials are calcined after the main raw materials are calcined.
  • the introduction of additives for sintering reduces the requirements for the accuracy of raw material weighing and the process cost of ball milling. More importantly, through the selection of additive types and adjustment of dosage, it can be added under the premise of a very small proportion of fluoride. The purpose of significantly reducing the total impedance can be achieved.
  • the ceramic oxide solid state electrolyte and the preparation method thereof of the present disclosure by introducing additives for sintering after the main raw materials are calcined, reduce the requirements for the weighing accuracy of raw materials and the process cost of ball milling, and add fluoride additives in a very small proportion It significantly reduces the total impedance of the ceramic oxide solid electrolyte, provides a simple and efficient preparation process, and has great application prospects in the field of electrolyte technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Abstract

本公开提供了一种陶瓷氧化物固态电解质及其制备方法,涉及电解质技术领域。陶瓷氧化物固态电解质的制备方法,通过主要原料和添加剂进行制备,包括:将主要原料混合煅烧得到中间粉体,将中间粉体与添加剂混合烧结;其中,添加剂为氟化物,添加剂与中间粉体的质量比为0.1-10:100。通过在主要原料煅烧之后引入添加剂进行烧结,减少了对原料称量的精确度要求以及球磨的工艺成本,更为重要的是:通过对添加剂种类的选择和用量的调整,可以在极少比例氟化物添加的前提下,就达到显著提高离子电导率的目的,是一种简单、高效的工艺。

Description

一种陶瓷氧化物固态电解质及其制备方法
相关申请的交叉引用
本公开要求于2021年11月26日提交中国专利局的申请号为CN 202111421365.8、名称为“一种陶瓷氧化物固态电解质及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电解质技术领域,具体而言,涉及一种陶瓷氧化物固态电解质及其制备方法。
背景技术
电池在储能以及电动交通工具中扮演了非常重要的角色,但由于传统电池起火、爆炸而导致的人员伤亡事件时有发生,提升电池的安全性已成为电池发展领域最迫切的任务之一。固态电池是目前电池发展最重要的方向之一,固态电池使用的固态电解质不可燃,本身具有超高安全性,搭配金属负极可以同时使电池拥有较高的能量密度和安全性。
固态电池目前发展的瓶颈除了不良的界面有效融合问题,电解质本身的低离子电导率也是阻碍电池性能的重要瓶颈之一,高的离子电导率可以极大的降低电池内阻,增强电池的倍率和循环性能。然而,目前大多数固态电解质的离子电导率还停留在1×10 -4S/cm级别,电解质的整体阻值大约在200-300欧姆,非主流类别的电解质甚至在千欧姆级别,这种性能的电解质很难作为商业电池的部件使用。
目前,提升固态电解质性能的工艺有限,大多数使用掺杂的方法提升电解质本征的离子电导率。但是,掺杂对工艺需求较高,掺杂原料需要在称量阶段前计算精确的掺杂原料质量,随后与原料进行混合,部分工艺需要提前将掺杂原料与被取代原料预先球磨,使两相形成固溶体,这增加了合成工艺的繁琐程度和时间成本。
发明内容
本公开提供了一种陶瓷氧化物固态电解质的制备方法,通过主要原料和添加剂进行制备,包括:将主要原料混合煅烧得到中间粉体,将所述中间粉体与所述添加剂混合烧结;其中,所述添加剂为氟化物,所述添加剂与所述中间粉体的质量比为0.1-10:100。
在一些实施方式中,所述添加剂选自氟化镁、氟化钙、氟化钠和氟化钾中的至少 一种;可选地,所述添加剂为氟化镁。
在一些实施方式中,所述添加剂与所述中间粉体的质量比为1-3:100;可选地,为1-2:100。
在一些实施方式中,将所述中间粉体和所述添加剂混合球磨后得到母粉,再压制成型之后进行烧结。可选地,所述中间粉体和所述添加剂混合球磨的球磨时间为0.5-1h,例如约30min。可选地,所述压制成型是将混合均匀的母粉通过模具使用轴向压强700MPa压制成圆碟状。
在一些实施方式中,烧结温度为1100-1300℃,烧结时间为10-15h;例如,烧结温度为1150-1250℃,烧结时间为11-13h;又如,烧结温度为1200-1250℃,烧结时间为12-13h。
在一些实施方式中,所述中间粉体的制备过程包括:将所述主要原料混合、球磨及煅烧之后,再次进行球磨;可选地,所述中间粉体的粒径为2-20微米,例如5-15微米,又如8-12微米。
在一些实施方式中,煅烧温度为1000-1200℃,煅烧时间为10-15h;例如,煅烧温度为1050-1150℃,煅烧时间为11-13h;又如,煅烧温度为1100-1150℃,煅烧时间为12-13h。
在一些实施方式中,所述主要原料采用球磨的方式进行混合,球磨时间为0.5-2h,例如1-2h,又如1-1.5h。可选地,使用大球球磨并控制振幅为约0.1mm。
在一些实施方式中,所述再次进行球磨的球磨时间为约30min;可选地,使用大球球磨并控制振幅为约0.1mm。
在一些实施方式中,所述主要原料根据所制备的所述陶瓷氧化物固态电解质的种类进行选择;可选地,所述陶瓷氧化物固态电解质的类型为NASICON型和石榴石型LLZO中的至少一种;例如,按质量份数计,所述主要原料包括磷酸钠十二水31.5-33.1份、二氧化硅18.0-20.0份、二氧化锆33.6-34.1份和碳酸钠11.6-12.8份。
本公开还提供了一种陶瓷氧化物固态电解质,所述陶瓷氧化物固态电解质通过如上文所述的制备方法制备而得。
本公开另外还提供了一种固态电池,包括如前所述的陶瓷氧化物固态电解质。
附图说明
为了更清楚地说明本公开实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施方式,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它相关的附图。
图1为添加氟化镁的NASICON电解质和商用NASICON的EIS交流阻抗测试结果对比图;
图2为添加了氟化镁的NASICON样品的扫描电镜图;
图3为市购电解质的扫描电镜图。
具体实施方式
为使本公开实施方式的目的、技术方案和优点更加清楚,下面将对本公开实施方式中的技术方案进行清楚、完整地描述。实施方式中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
目前的工艺中掺杂原料一般与主要原料一起混合煅烧,需要在称量阶段前精确计算掺杂原料的质量,并且过程中存在多步球磨的工艺,使合成工艺繁琐、时间成本较高。针对这些问题,发明人改变了添加剂的加入时间、优化了添加剂的种类以及添加量,提供了一种简单高效的制备工艺。
本公开的目的在于提供一种陶瓷氧化物固态电解质及其制备方法,旨在简化合成及掺杂工艺,并在较低添加剂用量的条件下,显著降低电解质的阻值。
本公开提供了一种陶瓷氧化物固态电解质的制备方法,包括:将主要原料混合煅烧得到中间粉体,将所述中间粉体与所述添加剂混合烧结。在一些实施方式中,添加剂为氟化物。
本公开实施方式提供了一种陶瓷氧化物固态电解质的制备方法,通过主要原料和添加剂进行制备,包括以下步骤:
S1、煅烧
将主要原料混合煅烧得到中间粉体,通过煅烧使原料分解,得到对应的氧化物。在实际操作过程中,中间粉体的制备过程包括:将主要原料混合煅烧之后,进行球磨以得到粒径满足要求的粉末,中间粉体的粒径可以为2-20微米,例如5-15微米,又如8-12微米。
主要原料根据所制备的陶瓷氧化物固态电解质的种类进行选择,不同种类的陶瓷氧化物固态电解质所对应的主要原料也不同,一般类型的陶瓷氧化物固态电解质的制备工艺均适合于本公开实施方式中提供的制备方法。不同类型的陶瓷氧化物固态电解质的主要原料的成分为本领域众所周知的,在此不做限定。
在一些实施方式中,陶瓷氧化物固态电解质的类型可以为NASICON型固态电解质;按质量份数计,主要原料包括磷酸钠十二水31.5-33.1份、二氧化硅18.0-20.0份、二氧化锆33.6-34.1份和碳酸钠11.6-12.8份。以NASICON型固态电解质的主要原料进行制备,所获得的电解质产品的性能非常优异,总阻抗能够得到显著降低。
在一些实施方式中,煅烧温度为1000-1200℃,煅烧时间为10-15h;例如,煅烧温度为1050-1150℃,煅烧时间为11-13h。通过控制煅烧温度和煅烧时间,可以使原料充分地分解,得到对应的氧化物。
具体地,煅烧温度可以为1000℃、1050℃、1100℃、1150℃、1200℃等,也可以为以上相邻温度值之间的任意值;煅烧时间可以为10h、11h、12h、13h、14h、15h等,也可以为以上相邻时间值之间的任意值。
在一些实施方式中,主要原料采用球磨的方式进行混合,球磨时间为0.5-2h,例如0.5h、1h、1.5h、2h等,也可以为以上相邻时间值之间的任意值,可以使用大球球磨并控制振幅为0.1mm左右。
S2、烧结
将中间粉体与添加剂混合烧结;其中,添加剂为氟化物,添加剂与中间粉体的质量比为0.1-10:100。通过选择特定种类的添加剂并控制用量,可以进一步提升氧化物陶瓷电解质的性能。
具体地,添加剂与中间粉体的质量比可以为0.1:100、0.5:100、1.0:100、2.0:100、3.0:100、4.0:100、5.0:100、6.0:100、7.0:100、8.0:100、9.0:100、10:100等,也可以为以上相邻比例之间的任意值。
在一些实施方式中,添加剂与中间粉体的质量比为1-3:100;可选地为1-2:100。
添加剂的种类可以为一般的氟化物,均能够使电解质的性能得到较大程度的提升。在一些实施方式中,添加剂选自氟化镁、氟化钙、氟化钠和氟化钾中的至少一种;例如为氟化镁。采用氟化镁作为添加剂可以在极少用量的条件下,使电解质的性能得到显著改善。
在实际操作过程中,将中间粉体和添加剂混合球磨,再压制成型之后进行烧结,以得到致密度满足要求的特定形状的电解质片。
在一些实施方式中,烧结温度为1100-1300℃,烧结时间为10-15h;例如,烧结温度为1150-1250℃,烧结时间为11-13h。例如,烧结温度可以为1100℃、1150℃、1200℃、1250℃、1300℃等,烧结时间可以为10h、11h、12h、13h、14h、15h等。
需要说明的是,氟化镁本身是一种用于制造陶瓷、金属和玻璃的助熔剂,它的熔点为1261℃,靠近陶瓷固态电解质的烧结温度区间,在烧结过程中可以起到液相辅助烧结的作用,增大陶瓷晶粒尺寸并增强陶瓷致密度,降低了晶界电阻。同时,镁离子在电解质晶格中扩散起到了一定异价掺杂的效果,氟元素在烧结过程中促进材料结构由单斜相向活化能更低的斜方相转变。发明人研究表明,以上两方面是氟化镁能够增强氧化物陶瓷电解质性能的主要原因。
本公开还提供了一种陶瓷氧化物固态电解质,通过上述制备方法制备而得,具有成本低、总阻抗低等优点。
本公开另外还提供了一种固态电池,包括如前所述的陶瓷氧化物固态电解质,其具有高离子电导率、降低的内阻以及增强的倍率和循环性能等优点。
本公开具有以下有益效果:通过在主要原料煅烧之后引入添加剂进行烧结,减少了对原料称量精确度的要求以及球磨的工艺成本,更为重要的是:通过对添加剂种类的选择和用量的调整,可以在极少比例氟化物添加的前提下,就达到显著降低总阻抗的目的,是一种简单、高效的工艺。
以下结合实施例对本公开的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种陶瓷氧化物固态电解质的制备方法,以优化的NASICON固态电解质的主要原料和氟化镁添加剂进行制备,包括如下步骤:
称取磷酸钠十二水3.5570g、二氧化硅2.1418g、二氧化锆3.6605g、碳酸钠1.3853g,将以上主要原料混合,并使用大球球磨、振幅0.1mm研磨1小时,研磨均匀的粉末放入氧化铝坩埚中,于1100℃下煅烧12小时,将得到的产物用大球研磨,同样的振幅,研磨30分钟,得到颗粒均匀的白色母粉。
称取一定质量的白色母粉,按照1wt%的比例加入氟化镁粉末,球磨30分钟,混合均匀的母粉通过模具使用轴向压强700MPa压制成圆碟状,放入坩埚中,于1200℃下烧结12小时,得到白色陶瓷氧化物的电解质片。
实施例2
本实施例提供一种陶瓷氧化物固态电解质的制备方法,以传统的Na 3Zr 2Si 2PO 12固态电解质的主要原料和氟化镁添加剂进行制备,包括如下步骤:
称取十二水合磷酸钠8.2393g,二氧化锆4.64508g,二氧化硅2.2649g,将以上主要原料混合,并使用大球球磨、振幅0.1mm研磨1小时,研磨均匀的粉末放入氧化铝坩埚中,于1100℃下煅烧12小时,将得到的产物用大球研磨,同样的振幅,研磨30分钟,得到颗粒均匀的白色母粉。
称取一定质量的白色母粉,按照1wt%的比例加入氟化镁粉末,球磨30分钟,混合均匀的母粉通过模具使用轴向压强700MPa压制成圆碟状,放入坩埚中,于1200℃下烧结12小时,得到白色陶瓷氧化物的电解质片。
实施例3
本实施例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:将氟化镁替换为氟化钙。
实施例4
本实施例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:将氟化镁按照0.5wt%的质量比例添加。
实施例5
本实施例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:将氟化镁按照3wt%的质量比例添加。
实施例6
本实施例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:将氟化镁按照0.1wt%的质量比例添加。
对比例1
本对比例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:不添加氟化镁。
对比例2
本对比例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:将氟化镁替换为硅酸钠。
对比例3
本对比例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:将氟化镁按照5wt%的质量比例添加。
对比例4
本对比例提供一种陶瓷氧化物固态电解质的制备方法,与实施例1的区别仅在于:将氟化镁按照20wt%的质量比例添加。
试验例1
将实施例1中制备得到的电解质片两面真空蒸镀银电极,通过电化学阻抗谱(EIS)技术测量电解质的阻抗曲线,频率1Hz–1MHz。将得到的数据使用Zview2软件拟合,并与市购粉末电解质进行对比。结果如图1所示。
从图1可以看出,添加1wt%的氟化镁使得样品的晶粒阻值减小为33.49欧姆,晶界阻值减小为20.04欧姆,总阻值减小为53.53欧姆。然而,市购粉末电解质经过同一测试步骤,得到总阻值为256.64欧姆,添加1wt%氟化镁的样品的总阻值仅为普通商用粉末的20.85%。
需要补充的是,市购粉末电解质的成分为Na 3Zr 2Si 2PO 12
试验例2
通过扫描电镜观察电解质样品的截面,断裂面可观察到部分为解理面。
实施例1中得到的添加氟化镁的样品的扫描电镜图如图2所示。可以看出,添加氟化镁的样品的颗粒较大,颗粒之间接触较为紧密,且没有明显的孔洞,为材料提供了相对较小的晶界电阻;断裂面有韧窝断口,表明材料塑性好,机械强度较高。
测试试验例1中市购电解质的样品的扫描电镜图如图3所示。可以看出:市购产品晶粒较小,颗粒与颗粒之间接触不充分,并且有较多孔洞,所以晶界电阻较大,离子电导率 性能较低。断裂面以脆性断面为主,没有明显韧窝断口,韧性较差,加工成电池时易碎。
经过离子电导率公式的计算σ=(1/R)×(L/S),实施例1中添加氟化镁的电解质的离子电导率可达1.8×10 -3S/cm,而现在一般商用电解质的离子电导率只有3×10 -4S/cm,可见添加氟化镁的电解质的性能是市购电解质的六倍。
试验例3
测试实施例1-6和对比例1-4得到的电解质产品的性能,得到它们各自的阻抗数据如下表1所示。
表1.实施例1-6和对比例1-4得到的电解质产品的阻抗数据
Figure PCTCN2022072698-appb-000001
实施例1-6得到阻抗数据分别为54.24欧姆、68.11欧姆、61.69欧姆、60.12欧姆、79.67欧姆、92.82欧姆。对比例1-4得到的阻抗数据分别为460.9欧姆、392欧姆、275.3欧姆、1185欧姆。
比较实施例与对比例的阻抗数据,可以看出,与不添加添加剂的对比例1、添加硅酸钠作为添加剂的对比例2以及添加较大量(5wt%、20wt%)氟化镁作为添加剂的对比例3-4相比,以优化的NASICON材料或传统Na 3Zr 2Si 2PO 12为固态电解质的主要原料并添加极少量氟化镁(1wt%、0.5wt%、3wt%、0.1wt%)或氟化钙(1wt%)作为添加剂的实施例1-6均显示出显著降低的阻抗。
综上所述,本公开提供一种陶瓷氧化物固态电解质及其制备方法,在固态电解质的制备过程中改变了添加剂的加入时间、改进了添加剂的种类和添加剂的用量,通过在主要原料煅烧之后引入添加剂进行烧结,减少了对原料称量精确度的要求以及球磨的工艺成本,更为重要的是:通过对添加剂种类的选择和用量的调整,可以在极少比例氟化物添加的前提下,就能够达到显著降低总阻抗的目的。
以上仅为本公开的示例性实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开的陶瓷氧化物固态电解质及其制备方法,通过在主要原料煅烧之后引入添加剂进行烧结,减少了对原料称量精确度的要求以及球磨的工艺成本,并通过以极少比例加入氟化物添加剂显著降低了陶瓷氧化物固态电解质的总阻抗,提供了一种简单、高效的制 备工艺,在电解质技术领域具有极大的应用前景。

Claims (15)

  1. 一种陶瓷氧化物固态电解质的制备方法,其特征在于,通过主要原料和添加剂进行制备,包括:将主要原料混合煅烧得到中间粉体,将所述中间粉体与所述添加剂混合烧结;
    其中,所述添加剂为氟化物,所述添加剂与所述中间粉体的质量比为0.1-10:100。
  2. 根据权利要求1所述的制备方法,其特征在于,所述添加剂选自氟化镁、氟化钙、氟化钠和氟化钾中的至少一种;优选为氟化镁。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述添加剂与所述中间粉体的质量比为1-3:100;优选为1-2:100。
  4. 根据权利要求1-3中任一项所述的制备方法,其特征在于,将所述中间粉体和所述添加剂混合球磨,再压制成型之后进行烧结。
  5. 根据权利要求4所述的制备方法,其特征在于,所述中间粉体和所述添加剂混合球磨的球磨时间为0.5-1h,例如约30min。
  6. 根据权利要求4或5所述的制备方法,其特征在于,所述压制成型是将混合均匀的母粉通过模具使用轴向压强700MPa压制成圆碟状。
  7. 根据权利要求4-6中任一项所述的制备方法,其特征在于,烧结温度为1100-1300℃,烧结时间为10-15h;
    优选地,烧结温度为1150-1250℃,烧结时间为11-13h;
    更优选地,烧结温度为1200-1250℃,烧结时间为12-13h。
  8. 根据权利要求1-7中任一项所述的制备方法,其特征在于,所述中间粉体的制备过程包括:将所述主要原料混合、球磨及煅烧之后,再次进行球磨;优选地,所述中间粉体的粒径为2-20微米,例如5-15微米,又如8-12微米。
  9. 根据权利要求8所述的制备方法,其特征在于,煅烧温度为1000-1200℃,煅烧时间为10-15h;
    优选地,煅烧温度为1050-1150℃,煅烧时间为11-13h;
    更优选地,煅烧温度为1100-1150℃,煅烧时间为12-13h。
  10. 根据权利要求8或9所述的制备方法,其特征在于,所述主要原料采用球磨的方式进行混合,球磨时间为0.5-2h,例如1-2h,又如1-1.5h。
  11. 根据权利要求10所述的制备方法,其特征在于,使用大球球磨并控制振幅为约0.1mm。
  12. 根据权利要求8-11中任一项所述的制备方法,其特征在于,所述再次进行球磨的球磨时间为约30min;优选地,使用大球球磨并控制振幅为约0.1mm。
  13. 根据权利要求8-12中任一项所述的制备方法,其特征在于,所述主要原料根据所制备的所述陶瓷氧化物固态电解质的种类进行选择;
    优选地,所述陶瓷氧化物固态电解质的类型为NASICON型和石榴石型LLZO中的至少一种;
    更优选地,按质量份数计,所述主要原料包括磷酸钠十二水31.5-33.1份、二氧化硅18.0-20.0份、二氧化锆33.6-34.1份和碳酸钠11.6-12.8份。
  14. 一种陶瓷氧化物固态电解质,其特征在于,通过权利要求1-13中任一项所述的制备方法制备而得。
  15. 一种固态电池,包括根据权利要求14所述的陶瓷氧化物固态电解质。
PCT/CN2022/072698 2021-11-26 2022-01-19 一种陶瓷氧化物固态电解质及其制备方法 WO2023092844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111421365.8 2021-11-26
CN202111421365.8A CN114122509A (zh) 2021-11-26 2021-11-26 一种陶瓷氧化物固态电解质及其制备方法

Publications (1)

Publication Number Publication Date
WO2023092844A1 true WO2023092844A1 (zh) 2023-06-01

Family

ID=80369976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072698 WO2023092844A1 (zh) 2021-11-26 2022-01-19 一种陶瓷氧化物固态电解质及其制备方法

Country Status (2)

Country Link
CN (1) CN114122509A (zh)
WO (1) WO2023092844A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128759A1 (ja) * 2012-03-02 2013-09-06 日本碍子株式会社 固体電解質セラミックス材料及びその製造方法
CN104591231A (zh) * 2013-10-31 2015-05-06 中国科学院上海硅酸盐研究所 含氟石榴石结构锂离子氧化物陶瓷
CN107732295A (zh) * 2017-10-12 2018-02-23 燕山大学 一种基于卤化锂掺杂的氧化物固体电解质及其低温烧结方法
CN108727025A (zh) * 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
CN110581312A (zh) * 2019-08-07 2019-12-17 广东工业大学 一种高离子电导率nasicon结构固态电解质及制备与应用
CN112320849A (zh) * 2020-10-13 2021-02-05 冯云龙 一种固态电解质粉末粉末及其制备方法
CN113224379A (zh) * 2021-04-27 2021-08-06 西南交通大学 一种氟掺杂f-llto复合固态电解质、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247105A (zh) * 2018-03-07 2019-09-17 重庆市科学技术研究院 一种提高固态电解质致密度的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128759A1 (ja) * 2012-03-02 2013-09-06 日本碍子株式会社 固体電解質セラミックス材料及びその製造方法
CN104591231A (zh) * 2013-10-31 2015-05-06 中国科学院上海硅酸盐研究所 含氟石榴石结构锂离子氧化物陶瓷
CN108727025A (zh) * 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 锂石榴石复合陶瓷、其制备方法及其用途
CN107732295A (zh) * 2017-10-12 2018-02-23 燕山大学 一种基于卤化锂掺杂的氧化物固体电解质及其低温烧结方法
CN110581312A (zh) * 2019-08-07 2019-12-17 广东工业大学 一种高离子电导率nasicon结构固态电解质及制备与应用
CN112320849A (zh) * 2020-10-13 2021-02-05 冯云龙 一种固态电解质粉末粉末及其制备方法
CN113224379A (zh) * 2021-04-27 2021-08-06 西南交通大学 一种氟掺杂f-llto复合固态电解质、制备方法及应用

Also Published As

Publication number Publication date
CN114122509A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN109873195A (zh) 锂离子传导复合材料及由其制备锂离子导体的方法
KR20170134231A (ko) 산화물 전해질 소결체 및 당해 산화물 전해질 소결체의 제조 방법
JP7198170B2 (ja) 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池
CN112467198B (zh) 一种锂离子电池用氧化物固态电解质及其制备方法
JP2017091788A (ja) イオン伝導体、リチウム電池、および、イオン伝導体の製造方法
CN111718198A (zh) 一种用于陶瓷材料制备的多元烧结助剂添加方法
Zhang et al. Microstructure and ion conductivity of Al‐LLZO solid electrolyte prepared by molten salt and cold sintering process
WO2023092844A1 (zh) 一种陶瓷氧化物固态电解质及其制备方法
JP6432969B2 (ja) 固体電解質用原料粉末
CN109081687B (zh) 一种适用于煅烧锂电池正极材料的高抗热震陶瓷坩埚及其制备方法
JP7045289B2 (ja) 全固体リチウムイオン電池用複合固体電解質粉末及び全固体リチウムイオン電池
CN106206928A (zh) 一种压电功能多孔电极复合材料及制备方法
JP6672485B2 (ja) イオン伝導体、リチウム電池、および、イオン伝導体の製造方法
JP7365947B2 (ja) 全固体リチウムイオン電池用ガーネット型固体電解質焼結体の製造方法及び全固体リチウムイオン電池の製造方法
CN115340378A (zh) 一种氧化物固态电解质及其制备方法以及一种锂离子电池
CN114478002B (zh) 一种锂镧锆氧基固体电解质陶瓷体及其制备方法
JP2019121462A (ja) 酸化物電解質焼結体で被覆された電極活物質の製造方法、酸化物電解質焼結体で被覆された電極活物質、及び、硫化物固体電池
CN115548277A (zh) 正极材料及其制备方法与应用、锂离子电池正极极片以及锂离子电池
CN110391455B (zh) 一种钇稳定二氧化锆-低熔点玻璃粉复合物及其制备方法
JPH07192754A (ja) ナトリウム−硫黄電池用固体電解質及びその製造方法
CN102219386A (zh) SiO2基复合氧化物体系玻璃的超微细粉体的制备方法
TWI835182B (zh) 用於鋰離子電池之共摻雜的磷酸鈦鋁鋰的固態電解質材料及其製備方法
JPH0680462A (ja) 固体電解質
CN116023134B (zh) 一种锂镧锆氧材料及其制备方法、固态电解质、固态锂离子电池
JP7196368B1 (ja) イオン伝導性固体及び全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896948

Country of ref document: EP

Kind code of ref document: A1