WO2023092624A1 - 钛硅复合材料及其制备方法以及负载型催化剂 - Google Patents

钛硅复合材料及其制备方法以及负载型催化剂 Download PDF

Info

Publication number
WO2023092624A1
WO2023092624A1 PCT/CN2021/134984 CN2021134984W WO2023092624A1 WO 2023092624 A1 WO2023092624 A1 WO 2023092624A1 CN 2021134984 W CN2021134984 W CN 2021134984W WO 2023092624 A1 WO2023092624 A1 WO 2023092624A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
composite material
inorganic
silicon composite
silicon
Prior art date
Application number
PCT/CN2021/134984
Other languages
English (en)
French (fr)
Inventor
文霞
Original Assignee
文霞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 文霞 filed Critical 文霞
Publication of WO2023092624A1 publication Critical patent/WO2023092624A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts

Definitions

  • the present application relates to the field of material technology, in particular to a titanium-silicon composite material, a preparation method thereof, and a supported catalyst using the titanium-silicon composite material.
  • Supported catalyst is a catalyst in which active components and catalysts are uniformly dispersed and loaded on a specially selected carrier.
  • Catalyst carrier is an important part of supported catalyst.
  • Commonly used catalyst carrier materials include alumina carrier, silica carrier, activated carbon carrier And titanium dioxide carrier, etc.
  • the pores formed by this type of material are small (less than 5nm), and it is difficult for some larger molecules to enter, so the contact area between the reaction substance and the active substance becomes smaller, which may lead to a defect that may lead to lower catalytic performance. Therefore, there is an urgent need to provide a new titanium-silicon composite material to solve the shortcomings of the above-mentioned existing materials.
  • the main purpose of this application is to address the deficiencies of the prior art, to provide a titanium-silicon composite material and its preparation method, and a catalyst using the titanium-silicon composite material, which has high mechanical strength, high activity and stability, and low preparation cost Features.
  • an embodiment of the present application discloses a titanium-silicon composite material, which is prepared from the following raw materials in mass percentage.
  • Dispersant 1.6 ⁇ 30.4%, preferably 10 ⁇ 20%;
  • the balance is the material body, the material body includes an inorganic titanium source and an inorganic silicon source, and the mass percentage of the inorganic titanium source in the material body is 8.3 ⁇ 94.1%, preferably 20 ⁇ 50%, and the inorganic silicon source The mass percentage in the main body of the material is 5.7-91.7%, preferably 50-80%.
  • the inorganic titanium source includes any one or both of nano-titanium oxide and metatitanic acid; the inorganic silicon source is nano-silicon oxide.
  • the particle size of the inorganic titanium source is 1-500 nm, and the specific surface area is 10-500 m 2 /g.
  • the particle size of the inorganic silicon source is 1-500 nm, and the specific surface area is 10-500 m 2 /g.
  • the adhesive includes an inorganic adhesive and an organic molding aid
  • the mass percentage of the inorganic adhesive in the raw material is 34.6-67.4%
  • the organic molding aid The mass percentage of the agent in the raw material is 0.5-10.0%.
  • the inorganic binder is silica sol, and the solid content of the silica sol is 10-40%.
  • the organic forming aids include: at least one or more of: scallop powder, carboxymethyl cellulose, polyacrylamide, polyvinyl alcohol, paraffin, starch, polycarboxylic acid and glycerin Various.
  • the dispersant includes an acidic aqueous solution, and the acidic aqueous solution is at least one or more of nitric acid, acetic acid and citric acid.
  • the flux includes at least one or more of boride and fluoride, wherein the boride is at least one of boric acid, borate and boron oxide or Various.
  • the titanium-silicon composite material has a strength of 50-180 N/cm, a specific surface area of 45-250 m 2 /g, an average pore diameter of 8-20 nm, and a pore volume of 0.2-0.6 cm 3 /g. g.
  • the strength retention rate of the titanium-silicon composite material boiled in the water and oleic acid mixture at 350°C for 6 hours is greater than or equal to 95%; wherein the water and oleic acid in the water and oleic acid mixture The mass ratio is 1:4.
  • an embodiment of the present application discloses a method for preparing a titanium-silicon composite material, comprising steps:
  • the components of the raw materials in terms of mass percentage are as follows: binder 39.2% ⁇ 70.2%, preferably 50 ⁇ 60%; dispersant 1.6 ⁇ 30.4%, preferably 10 ⁇ 20%; flux 0.5 ⁇ 10.0%, preferably 4 ⁇ 8%; the balance is the main body of the material, the main body of the material includes an inorganic titanium source and an inorganic silicon source, and the mass percentage of the inorganic titanium source in the main body of the material is 8.3 ⁇ 94.1%, preferably 20 ⁇ 50%, The mass percentage of the inorganic silicon source in the material body is 5.7-91.7%, preferably 50-80%.
  • the adhesive includes an inorganic adhesive and an organic molding aid, the mass percentage of the inorganic adhesive in the raw material is 34.6-67.4%, and the organic molding aid The mass percentage of the agent in the raw material is 0.5 ⁇ 10.0%; the step (X1) also includes:
  • the drying temperature in the drying treatment is 60-180° C.
  • the drying time is 0.5-12 hours.
  • the calcination temperature in the calcination treatment is 400-900° C., and the calcination time is 0.5-12 hours.
  • the calcination temperature in the calcination treatment is 600-800°C.
  • an embodiment of the present application discloses another titanium-silicon composite material, which includes titanium oxide with a mass percentage of 5-80% and silicon oxide with a mass percentage of 95-20%;
  • the silicon oxide is amorphous silicon oxide
  • the titanium oxide is an anatase phase
  • the amorphous silicon oxide and the titanium oxide of the anatase phase form Si-O-Ti at the contact interface. bonded.
  • the titanium-silicon composite material has a strength of 50-180 N/cm, a specific surface area of 45-250 m 2 /g, an average pore diameter of 8-20 nm, and a pore volume of 0.2-0.6 cm 3 /g. g.
  • the strength retention rate of the titanium-silicon composite material boiled in the water and oleic acid mixture at 350°C for 6 hours is greater than or equal to 95%; wherein the water and oleic acid in the water and oleic acid mixture The mass ratio is 1:4.
  • an embodiment of the application discloses a supported catalyst, comprising:
  • the catalyst carrier is made of any titanium-silicon composite material as described in the foregoing embodiments.
  • the active substance is attached to the carrier.
  • the active material includes, for example, at least one of nickel-containing compounds, copper compounds, cobalt compounds, molybdenum compounds and tungsten-containing compounds.
  • the main body of the material adopts inorganic titanium source and inorganic silicon source, which are low in price and low in preparation cost;
  • Titanium-silicon composite materials can be used as the carrier of biomass conversion or biomass deoxidation catalysts, and have the characteristics of high acid resistance, water resistance, high activity and stability.
  • Fig. 1 is a flowchart of a method for preparing a titanium-silicon composite material provided by an embodiment of the present invention.
  • Fig. 2 is the XRD patterns of samples A to F of titanium-silicon composite materials prepared in Experiments 1 to 6 of the present invention.
  • Fig. 3 is the FT-IR infrared spectrum of sample D and sample F.
  • Figure 4 is the XRD pattern of sample D in test 1 before and after cooking.
  • Fig. 5 is the XRD pattern of the ⁇ -Al 2 O 3 carrier commonly used in industry in Test 2 before and after cooking.
  • Dispersant 1.6 ⁇ 30.4%, preferably 10 ⁇ 20%;
  • the balance is the material body, the material body includes an inorganic titanium source and an inorganic silicon source, and the mass percentage of the inorganic titanium source in the material body is 8.3 ⁇ 94.1%, preferably 20 ⁇ 50%, and the inorganic silicon source The mass percentage in the main body of the material is 5.7-91.7%, preferably 50-80%.
  • the binder includes, for example, 34.6-67.4% of inorganic binders and 0.5-10.0% of organic forming aids
  • the inorganic binders are, for example, silica sol (nano-scale silicon dioxide particles in water or solvents) Dispersion liquid), organic forming additives such as kale powder, carboxymethyl cellulose (Carboxymethyl Cellulose, carmellose [C 6 H 7 O 2 (OH) 2 CH 2 COONa] n ), polypropylene Amide (Polyacrylamide, Polyacrylic amide, PAM, (C 3 H 5 NO) n ), polyvinyl alcohol (polyvinyl alcohol, vinylalcohol polymer, PVA, [C 2 H 4 O] n ) paraffin, starch, polycarboxylic acid (RCOOH) and glycerol (glycerol, C 3 H 8 O 3 ), at least one or more of them, for example, it can be a single scallop powder, or it can also be a combination
  • Dispersants include, for example, acidic aqueous solutions, specifically nitric acid (HNO 3 ), acetic acid (acetic acid, glacial acetic acid, CH 3 COOH) and citric acid (citric acid, 3-carboxy-3-hydroxyglutaric acid, 2-hydroxy propane-1,2,3-tricarboxylic acid (C 6 H 8 O 7 ), for example, nitric acid, or a combination of acetic acid and citric acid.
  • HNO 3 nitric acid
  • acetic acid acetic acid, glacial acetic acid, CH 3 COOH
  • citric acid citric acid, 3-carboxy-3-hydroxyglutaric acid, 2-hydroxy propane-1,2,3-tricarboxylic acid (C 6 H 8 O 7 )
  • nitric acid or a combination of acetic acid and citric acid.
  • Fluxes include at least one or more of borides and fluorides, wherein borides are, for example, one or more of boric acid (orthoboric acid, H 3 BO 3 ), borates and boron oxides, preferably An example of boron oxide is boron trioxide (boron oxide, borate, B 2 O 3 ).
  • the fluoride is, for example, ammonium fluoride (NH 4 F).
  • the flux may be a combination of boric acid and ammonium fluoride. Similarly, this is only an example and should not be used as a limiting condition for understanding the present invention.
  • the inorganic titanium source refers to the inorganic compound of titanium, specifically, for example, a composition including any one or both of nano-titanium oxide and metatitanic acid (hydrated titanium dioxide, TiO(OH) 2 ), preferably nano-titanium oxide, Nano-titanium oxide has two crystal forms: rutile type and anatase type, and the anatase type is preferred in this embodiment.
  • the particle size of nano-titanium oxide can be 1 ⁇ 500nm (nanometer), and the specific surface area can be 10 ⁇ 500m 2 /g (square meter per gram).
  • the inorganic silicon source refers to an inorganic compound of silicon, specifically, nano-silicon oxide, the particle size of the nano-silicon oxide may be 1-500 nm, and the specific surface area may be 10-500 m 2 /g. Silicon oxide is divided into two categories: crystalline and amorphous. In this application, amorphous silicon oxide is preferred. Amorphous silicon oxide and anatase phase titanium oxide are more likely to form Si-O-Ti bonds at the contact interface.
  • the strength of the titanium-silicon composite material provided by the embodiment of the present invention can be 50-180 N/cm (newton per centimeter), and the specific surface area (the total area of the material per unit mass) is 45-250 m 2 /g (square meter per centimeter). gram), the average pore diameter is 8 ⁇ 20nm (nanometer), and the pore volume (the total volume of pores per unit mass of porous solid) is 0.2 ⁇ 0.6cm 3 /g (cubic centimeter per gram). The strength retention rate is greater than or equal to 95%.
  • the strength retention rate refers to putting the titanium-silicon composite material sample together with the mixture of oleic acid and water into a high-pressure reactor, raising the temperature of the reactor to 350°C (Celsius), and boiling for 6h (hours). Finally, take out the boiled titanium-silicon composite material sample, dry it and detect its strength, and compare the strength of the boiled titanium-silicon composite material sample with that before boiling, for example, the strength before boiling is 100N/cm, and the strength after boiling is 100N/cm. When the strength is 95N/cm, the strength retention rate is 95%.
  • FIG. 1 it is a schematic flowchart of a preparation method of a titanium-silicon composite material provided in an embodiment of the present application, which can be used to prepare any titanium-silicon composite material mentioned in the above-mentioned embodiments.
  • a method for preparing a titanium-silicon composite material provided in an embodiment of the present application includes:
  • step (S2) Drying the extruded material obtained in step (S1) to obtain a dried material
  • step (S3) Calcining and cooling the dried material obtained in step (S2) to obtain the titanium-silicon composite material.
  • the ingredients and proportions of the raw materials mentioned in step (S1) can refer to the raw materials of the titanium-silicon composite material in the above-mentioned embodiments, and will not be repeated here.
  • the binder in the raw material is the inorganic binder and organic molding aid mentioned in the above embodiment
  • the step (S1) may include:
  • Step (S11) performing a first kneading treatment on the flux and the inorganic binder to obtain a kneaded mixture; specifically, the kneading time of the first kneading treatment is 0.5-3 hours.
  • the final material specifically, the kneading time of the second kneading treatment is 1 ⁇ 8h.
  • the process conditions of the drying treatment in the step (S2) are, for example: the drying temperature is 60-180° C., and the drying time is 0.5-12 hours.
  • the process conditions of the roasting treatment in step (S3) are, for example: the roasting temperature is 400-900°C (preferably 600-800°C), and the roasting time is 0.5-12h.
  • titanium-silicon composite material prepared by the preparation method of the titanium-silicon composite material in this embodiment can have the strength, specific surface area and other characteristics of the titanium-silicon composite material mentioned in the previous embodiment, and will not be repeated here.
  • an embodiment of the present application also provides a supported catalyst, which can be used for biomass conversion or biomass deoxygenation treatment.
  • the supported catalyst includes a carrier made of any titanium-silicon composite material in the above-mentioned embodiments and an active material attached to the carrier, wherein the active material includes, for example, nickel-containing compounds, copper compounds, cobalt compounds, molybdenum compounds, and tungsten-containing compounds. compound.
  • the traditional alumina carrier is easily corroded by acid or hydrated with water, resulting in accelerated deactivation of the catalyst.
  • the titanium-silicon composite material used in this application not only has good water resistance and Anti-acid performance, but also has excellent hydrothermal stability and acid resistance of titanium oxide, especially titanium oxide has good binding force with inorganic oxyacids such as molybdate and tungstate, so as to make up for the relationship between silicon oxide and these inorganic oxyacids.
  • the defects with weak binding force enable them to be highly dispersed on the titanium-silicon composite material provided by this application; and silicon oxide can also make up for the defects of low specific surface area of pure titanium oxide. Therefore, when the titanium-silicon composite material of the present application is used as a catalyst carrier for biomass conversion or biomass deoxidation, it has the characteristics of high acid resistance, water resistance, high activity and stability.
  • inorganic titanium source is nano-titanium oxide
  • inorganic silicon source is nano-silicon oxide
  • inorganic binder is silica sol aqueous solution
  • organic forming aid is scallop powder
  • dispersant is nitric acid aqueous solution and industrial grade glacial acetic acid
  • fluxing agent For boric acid and ammonium fluoride. See Table 1 for detailed parameters.
  • solid content the mass percentage of the remaining part of the emulsion after drying under specified conditions, and the mass percentage of each component: (mass of each component/total mass of raw materials) * 100%
  • acidic Concentration of aqueous solution (solute mass/solution mass)*100%.
  • Step (X3) drying the extruded material obtained in step (X2), the drying temperature is 80° C., and the drying time is 4 hours to obtain the dried material.
  • Step (X4) roasting the dried material obtained in step (X3), the roasting temperature is 800° C., and the roasting time is 2 hours. After the cooling treatment, a titanium-silicon composite material sample A was obtained.
  • Experiment 6 is a control experiment. The difference from [Experiment 1] is that no flux is added in step (X1); no dispersant is added in step (X2); the rest of the raw materials and process parameters refer to the data in Table 6 to obtain sample F .
  • FIG. 2 shows the XRD spectra of samples A to F prepared from [Experiment 1] to [Experiment 6]. Among them, each sample has the characteristic diffraction peaks of amorphous silicon oxide and sharp anatase Characteristic diffraction peaks of mineral-phase titanium dioxide. The result further shows that when the titanium-silicon composite oxide is prepared by this method, no titanium ions enter the silicon oxide crystal lattice between the silicon oxide and the titanium oxide to form a new titanium-silicon oxide. Amorphous silicon oxide and anatase titanium dioxide still exist as separate phases, and the two are only combined by Si-O-Ti bonds formed between the contact interfaces.
  • Figure 3 is the FT-IR infrared spectrum of sample D and sample F, in which the absorption peak in the range of 1000-1200cm -1 corresponds to the antisymmetric stretching vibration peak of the Si-O-Si bond in the sample; the absorption peak at 960cm -1 corresponds to Due to the antisymmetric stretching vibration peak of the Si-O-Ti bond in the sample, the appearance of this peak indicates that the Si-O-Ti bond is formed between the silicon oxide and titanium oxide particles in sample D, and the two are connected to each other through this chemical bond; however Sample F has no absorption peak at 960 cm -1 , it can be seen that there is no Si-O-Ti bond in sample F.
  • Step (X5) Take 50g of titanium-silicon composite material sample A (/sample B/sample C/sample D/sample E/sample F) and 300g of a mixture of oleic acid and water (wherein the ratio of oleic acid to water is 4 : 1) Put it into a 1L autoclave and tighten the autoclave;
  • Step (X6) Raise the temperature of the reactor to 350°C, cook for 6 hours, take out the boiled sample A (/sample B/sample C/sample D/sample E/sample F), and dry;
  • the strength retention rate of sample A to sample F can refer to the following table:
  • [Test 2] is similar to [Test 1], the difference is that the test sample is ⁇ -Al 2 O 3 carrier, the diameter is 4 ⁇ 6mm, and the strength before cooking is 120N/piece.
  • Step (X7) obtains that the ⁇ -Al 2 O 3 carrier has a strength after boiling of 15N/particle, and its strength retention rate is calculated to be 12.5%.
  • Figure 4 was obtained by XRD crystal phase analysis of sample D in [Test 1] before and after cooking
  • Figure 5 was obtained by XRD crystal phase analysis of the ⁇ -Al 2 O 3 carrier in [Test 2] before and after cooking.
  • ⁇ -Al 2 O 3 is completely converted into pseudobohemite AlOOH after cooking; it can be seen that the embodiment of the present invention
  • the provided titanium silicon compound has good water and acid resistance and stability.
  • the main body of the material adopts inorganic titanium source and inorganic silicon source, which are low in price and low in preparation cost;
  • the titanium-silicon composite material can be used as a carrier for biomass conversion or biomass deoxidation catalysts, and has the characteristics of large pores, high acid resistance, water resistance and stability.

Abstract

公开了一种钛硅复合材料,由以下按质量百分比计的原材料制备而成:粘合剂39.2%~70.2%;分散剂1.6~30.4%;助熔剂0.5~10.0%;余量为材料主体,所述材料主体包括无机钛源和无机硅源,所述无机钛源在所述材料主体中的质量百分比为8.3~94.1%,所述无机硅源在所述材料主体中的质量百分比为91.7~5.7%。还公开了一种钛硅复合材料的制备方法和应用该钛硅复合材料的催化剂,兼具高机械强度、高活性和稳定性以及低制备成本等特点。

Description

钛硅复合材料及其制备方法以及负载型催化剂 技术领域
本申请涉及材料技术领域,尤其涉及一种钛硅复合材料及其制备方法,以及应用该钛硅复合材料的负载型催化剂。
背景技术
负载型催化剂是活性组分及催化剂均匀分散并负载在专门选定的载体上的催化剂,催化剂载体是负载型催化剂的重要组成部分,常用的催化剂载体材料有氧化铝载体、氧化硅载体、活性炭载体以及二氧化钛载体等。
传统单一材料的催化剂载体在抗酸、抗水性能和比表面积、活性、稳定性和强度等性能方面难以实现兼具的效果。因此,常采用复合材料制备催化剂载体以获得更优的性能,其中,钛硅复合材料应用较为广泛。
例如,目前有一些方案在制备过程中加入葡萄糖等碳源以防止二氧化钛在高温焙烧时孔道坍塌而减少比表面积的损失,能保留焙烧前的孔道结构。但由于其增加了碳源,不仅原材料的成本增加,后续还需要进一步的除碳,工艺较为复杂。
还有一些方案提供了以TS-1钛硅分子筛为原料,在成型过程中加入活性炭纤维及硼酸等使得焙烧后的成型催化剂具有贯通整个颗粒的大通道,同时具有较强的机械强度。但目前钛硅分子筛本身的制备过程就较为复杂,反应时长长,且原料一般为钛酸四乙酯或钛酸四丁酯为钛源,硅酸四乙酯为硅源,其主要原料的获取难度也较大,成本也较高。特别的,这类材料形成的孔道较小(小于5nm),一些体积较大的分子难以进入,因此反应物质与活性物质的接触面积变小,存在可能导致催化性能变低的缺陷。因此,亟需提供一种新的钛硅复合材料,以解决上述现有材料的不足。
技术解决方案
本申请的主要目的是针对现有技术的不足,提供一种钛硅复合材料及其制备方法,以及应用该钛硅复合材料的催化剂,兼具高机械强度、高活性和稳定性以及低制备成本等特点。
具体地,一方面本申请的一个实施例公开了一种钛硅复合材料,由以下按质量百分比计的原材料制备而成。
粘合剂39.2%~70.2%,优选50~60%;
分散剂1.6~30.4%,优选10~20%;
助熔剂0.5~10.0%,优选4~8%;
余量为材料主体,所述材料主体包括无机钛源和无机硅源,所述无机钛源在所述材料主体中的质量百分比为8.3~94.1%,优选20~50%,所述无机硅源在所述材料主体中的质量百分比为5.7~91.7%,优选50~80%。
在本申请的一个实施例中,所述无机钛源包括纳米氧化钛和偏钛酸中任意一者或者两者;所述无机硅源为纳米氧化硅。
在本申请的一个实施例中,所述无机钛源的粒径为1~500nm,比表面积为10~500m 2/g。
在本申请的一个实施例中,所述无机硅源的粒径为1~500nm,比表面积为10~500m 2/g。
在本申请的一个实施例中,所述粘合剂包括无机粘接剂和有机成型助剂,所述无机粘接剂在所述原材料中的质量百分比为34.6~67.4%,所述有机成型助剂在所述原材料中的质量百分比为0.5~10.0%。
在本申请的一个实施例中,所述无机粘接剂为硅溶胶,所述硅溶胶的固含量为10~40%。
在本申请的一个实施例中,所述有机成型助剂包括:田菁粉、羧甲基纤维素、聚丙烯酰胺、聚乙烯醇、石蜡、淀粉、多元羧酸和甘油中的至少一种或多种。
在本申请的一个实施例中,所述分散剂包括酸性水溶液,所述酸性水溶液为硝酸、醋酸和柠檬酸中的至少一种或多种。
在本申请的一个实施例中,所述助熔剂包括硼化物和氟化物中的至少一种或多种,其中,所述硼化物为硼酸、硼酸盐和硼氧化物中的至少一种或多种。
在本申请的一个实施例中,所述钛硅复合材料的强度为50~180N/cm,比表面积为45~250m 2/g,平均孔径为8~20nm,孔容积为0.2~0.6cm 3/g。
在本申请的一个实施例中,所述钛硅复合材料在350℃下水和油酸混合液中煮6h的强度保留率大于等于95%;其中所述水和油酸混合液中水与油酸的质量比为1:4。
另一方面,本申请的一个实施例公开了一种钛硅复合材料的制备方法,包括步骤:
(X1)对原材料进行混捏处理、挤条处理,得到挤条后材料;
(X2)对所述挤条后材料进行干燥处理,得到干燥后材料;
(X3)对所述干燥后材料进行焙烧处理、冷却处理后得到所述钛硅复合材料;
其中,所述原材料按照质量百分比计的组分如下:粘合剂39.2%~70.2%,优选50~60%;分散剂1.6~30.4%,优选10~20%;助熔剂0.5~10.0%,优选4~8%;余量为材料主体,所述材料主体包括无机钛源和无机硅源,所述无机钛源在所述材料主体中的质量百分比为8.3~94.1%,优选20~50%,所述无机硅源在所述材料主体中的质量百分比为5.7~91.7%,优选50~80%。
在本申请的一个实施例中,所述粘合剂包括无机粘接剂和有机成型助剂,所述无机粘接剂在所述原材料中的质量百分比为34.6~67.4%,所述有机成型助剂在所述原材料中的质量百分比为0.5~10.0%;所述步骤(X1)还包括:
(X11)将所述助熔剂和所述无机粘接剂进行第一混捏处理,得到混捏后混合物;
(X12)向所述混捏后混合物中加入所述材料主体、所述分散剂和所述有机成型助剂并第二混捏处理、挤条处理后得到所述挤条后材料。
在本申请的一个实施例中,所述干燥处理中的干燥温度为60~180℃,干燥时间为0.5~12h。
在本申请的一个实施例中,所述焙烧处理中的焙烧温度为400~900℃,焙烧时间为0.5~12h。
在本申请的一个实施例中,所述焙烧处理中的焙烧温度为600~800℃。
另一方面,本申请的一个实施例公开了另一种钛硅复合材料,其包含质量百分比为5~80%的氧化钛,与质量百分比为95~20%的氧化硅;
其中,所述氧化硅为无定形氧化硅,所述氧化钛为锐钛矿相,所述无定形氧化硅与所述锐钛矿相的氧化钛在接触界面间以形成的Si-O-Ti键结合。
在本申请的一个实施例中,所述钛硅复合材料的强度为50~180N/cm,比表面积为45~250m 2/g,平均孔径为8~20nm,孔容积为0.2~0.6cm 3/g。
在本申请的一个实施例中,所述钛硅复合材料在350℃下水和油酸混合液中煮6h的强度保留率大于等于95%;其中所述水和油酸混合液中水与油酸的质量比为1:4。
再一方面,本申请的一个实施例公开了一种负载型催化剂,包括:
催化剂载体,采用如前述实施例所述的任意一种钛硅复合材料制成;以及
活性物质,附着于所述载体上。
在本申请的一个实施例中,所述活性物质例如包括:含镍化合物、铜化合物、钴化合物、钼化合物和含钨化合物中的至少一种。
上述方案具有如下优点或有益效果:
(1)材料主体采用无机钛源和无机硅源,价格低廉,制备成本低;
(2)以氧化硅为骨架,氧化钛高分散在氧化硅表面,二者之间通过助熔剂的作用下形成Si-O-Ti键紧密结合,稳定性高、催化性能好;
(3)钛硅复合材料可用作生物质转化或生物质脱氧催化剂的载体,具有高抗酸、抗水性能、高活性和稳定性的特点。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例提供的钛硅复合材料的制备方法的流程图。
图2为本发明实验一至实验六制得的钛硅复合材料样品A至样品F的XRD图谱。
图3为样品D和样品F的FT-IR红外谱图。
图4为测试一中样品D煮前和煮后的XRD图谱。
图5为测试二中工业常用γ-Al 2O 3载体煮前和煮后的XRD图谱。
本发明的实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明做更全面、细致的描述,但本发明的保护范围并不限于以下实施例。
除非另有定义,下文中所使用的所有专业属于与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例,并不是旨在限制本发明的保护范围。
本申请一个实施例提供一种钛硅复合材料,由以下按质量百分比计的原材料制备而成:
粘合剂39.2%~70.2%,优选50~60%;
分散剂1.6~30.4%,优选10~20%;
助熔剂0.5~10.0%,优选4~8%;
余量为材料主体,所述材料主体包括无机钛源和无机硅源,所述无机钛源在所述材料主体中的质量百分比为8.3~94.1%,优选20~50%,所述无机硅源在所述材料主体中的质量百分比为5.7~91.7%,优选50~80%。
具体的,粘合剂例如包括34.6~67.4%的无机粘接剂和0.5~10.0%的有机成型助剂,无机粘接剂例如为硅溶胶(纳米级的二氧化硅颗粒在水中或溶剂中的分散液),有机成型助剂例如为田菁粉、羧甲基纤维素(羧甲基纤维纳,Carboxymethyl Cellulose,carmellose [C 6H 7O 2(OH) 2CH 2COONa] n)、聚丙烯酰胺(Polyacrylamide, Polyacrylic amide,PAM,(C 3H 5NO) n)、聚乙烯醇(polyvinyl alcohol,vinylalcohol polymer,PVA,[C 2H 4O] n)石蜡、淀粉、多元羧酸(RCOOH)和甘油(丙三醇,C 3H 8O 3)中的至少一种或多种,例如可以是单独的田菁粉,或者还例如可以是田菁粉加羧甲基纤维素两者的组合,或者还例如田菁粉加聚丙烯酰胺和甘油三者的组合,或者其它组合,当然此处只是举例说明有机成型助剂可以为一种或者是多种的组合,并不能作为理解本发明实施例的限制条件。
分散剂例如包括酸性水溶液,具体地例如为硝酸(HNO 3)、醋酸(乙酸,冰醋酸,CH 3COOH)和柠檬酸(枸橼酸,3-羧基-3-羟基戊二酸、2-羟基丙烷-1,2,3-三羧酸C 6H 8O 7)中的至少一种或多种,例如可以是硝酸、还例如可以是醋酸和柠檬酸的组合物,同理,此处仅作举例说明,并不能作为理解本发明的限制条件。
助熔剂例如包括硼化物和氟化物中的至少一种或多种,其中硼化物例如为硼酸(原硼酸,H 3BO 3)、硼酸盐和硼氧化物中的一种或多种,优选的硼氧化物例如为三氧化二硼(氧化硼,硼酸酒,B 2O 3)。氟化物例如为氟化铵(NH 4F),举例而言,助熔剂例如可以是硼酸和氟化铵的组合,同理,此处仅作举例说明,并不能作为理解本发明的限制条件。
无机钛源指的是钛的无机化合物,具体地例如包括纳米氧化钛和偏钛酸(水合二氧化钛,TiO(OH) 2)中任意一者或者两者的组合物,优选的为纳米氧化钛,纳米氧化钛有金红石型和锐钛矿型两种结晶形态,本实施例优选为锐钛矿型。纳米氧化钛的粒径可为1~500nm(纳米),比表面积可为10~500m 2/g(平方米每克)。
无机硅源指的是硅的无机化合物,具体地,例如为纳米氧化硅,纳米氧化硅的粒径可为1~500nm,比表面积可为10~500m 2/g。氧化硅分为结晶形和无定形两大类,本申请优选无定形氧化硅,无定形氧化硅与锐钛矿相的氧化钛在接触界面更易于形成的Si-O-Ti键结合。
具体的,本发明实施例提供的钛硅复合材料强度可为50~180N/cm(牛每厘米),比表面积(单位质量物料所具有的总面积)为45~250m 2/g(平方米每克),平均孔径为8~20nm(纳米),孔容积(单位质量多孔固体所具有的细孔总容积)为0.2~0.6cm 3/g(立方厘米每克)。强度保留率大于等于95%。其中,强度保留率指的是将钛硅复合材料样品与油酸和水的混合液一并装入高压反应釜中,将反应釜的温度升高到350℃(摄氏度),煮6h(小时)后取出煮后的钛硅复合材料样品,烘干并检测其强度,并将该煮后的钛硅复合材料样品的强度与煮之前相比,例如煮前的强度为100N/cm,煮后的强度为95N/cm,则强度保留率为95%。
如图1所示为本申请一个实施例提供的一种钛硅复合材料的制备方法流程示意图,可用于制备上述实施例提到的任意一种钛硅复合材料。具体的,本申请一个实施例提供的一种钛硅复合材料的制备方法包括:
(S1)对原材料进行混捏处理、挤条处理,得到挤条后材料;
(S2)对步骤(S1)得到的所述挤条后材料进行干燥处理,得到干燥后材料;
(S3)对步骤(S2)得到的所述干燥后材料进行焙烧处理、冷却处理后得到所述钛硅复合材料。
具体的,步骤(S1)中提到的原材料成分及配比可参照上述实施例中钛硅复合材料的原材料,在此不再赘述。其中,原材料中的粘合剂为上述实施例提到的无机粘接剂和有机成型助剂时,步骤(S1)可包括:
步骤(S11)将所述助熔剂和所述无机粘接剂进行第一混捏处理,得到混捏后混合物;具体地,第一混捏处理的捏合时长为0.5~3h。
步骤(S12):向步骤(S11)得到的所述混捏后混合物中加入所述材料主体、所述分散剂和所述有机成型助剂并第二混捏处理、挤条处理后得到所述挤条后材料,具体地,第二混捏处理的捏合时长为1~8h。
具体的,步骤(S2)中干燥处理的工艺条件例如为:干燥温度为60~180℃,干燥时间为0.5~12h。
具体的,步骤(S3)中焙烧处理的工艺条件例如为:焙烧温度为400~900℃(优选600~800℃),焙烧时间为0.5~12h。
可以理解的是通过本实施例钛硅复合材料的制备方法制备出的钛硅复合材料能够具有如前述实施例提到的钛硅复合材料的强度、比表面积等特性,在此不再赘述。
另一方面,本申请的一个实施例还提供一种负载型催化剂,其可用于生物质转化或者生物质脱氧处理。该负载型催化剂包括由上述实施例中任意一种钛硅复合材料制成的载体以及附着在载体上的活性物质,其中活性物质例如包括含镍化合物、铜化合物、钴化合物、钼化合物和含钨化合物。钼化合物和含钨化合物例如为硫化钼(MoS 2)、硫化钨(WS 2),以及第八族元素铁、钴或镍修饰的硫化钼或硫化钨(M1-M2S 2,M1=Fe、Co或Ni,M2=Mo或W等)中的至少一种。
在生物质转化或者生物质脱氧处理中,传统的氧化铝载体易被酸腐蚀或者与水发生水合反应而导致催化剂加速失活,本申请采用的钛硅复合材料既具有氧化硅良好的抗水和抗酸性能,又具有氧化钛优良的水热稳定性和耐酸性,特别是氧化钛具有与钼酸根和钨酸根等无机含氧酸根具有良好的结合力,以弥补氧化硅与这些无机含氧酸根结合力弱的缺陷,使他们能高度分散在本申请提供的钛硅复合材料上;并且氧化硅还能弥补了纯氧化钛比表面积低的缺陷。因而本申请的钛硅复合材料应用于生物质转化或者生物质脱氧催化剂载体时,兼具高抗酸、抗水性能、高活性和稳定性的特点。
以下结合【实验一】至【实验五】对本申请上述实施例进行进一步的说明,以及结合【实验六】作为对比实验进行比较说明。
1 )钛硅复合材料的制备:
【实验一】
预备原材料:无机钛源为纳米氧化钛、无机硅源为纳米氧化硅、无机粘接剂为硅溶胶水溶液、有机成型助剂为田菁粉、分散剂为硝酸水溶液和工业级冰醋酸、助熔剂为硼酸和氟化铵。详细参数参见表1,表中,固含量:乳液在规定条件下烘干后剩余部分占总量的质量百分数,各组分质量百分比:(各组分质量/原材料总质量)*100%,酸性水溶液的浓度:(溶质质量/溶液质量)*100% 。
步骤(X1):助熔剂与无机粘接剂进行混捏,以进行第一混捏处理,得到混捏后混合物。
步骤(X2):向步骤(X1)得到的混捏后的混合物中添加无机钛源、无机硅源、有机成型助剂和分散剂进行第二混捏处理,混捏均匀后进行挤条处理,得到挤条后材料。
步骤(X3),对步骤(X2)得到的挤条后材料进行干燥处理,干燥温度为80℃,干燥时间为4h,得到干燥后材料。
步骤(X4),对步骤(X3)中得到的干燥后材料进行焙烧处理,焙烧温度为800℃,焙烧时间为2h。冷却处理后得到钛硅复合材料样品A。
表1:【实验一】原材料及工艺参数表,
组分名称 原材料 质量g 质量百分比% 参数
无机钛源 纳米氧化钛 300 13.82 粒径5nm
无机硅源 纳米氧化硅 350 16.13 粒径100nm
无机粘接剂 硅溶胶 750 34.56 固含量40%
有机成型助剂 田菁粉 100 4.61 工业级
分散剂 硝酸水溶液 600 27.65 浓度20wt%
分散剂 冰醋酸 60 2.76 工业级
助熔剂 硼酸 5 0.23 工业级
助熔剂 氟化铵 5 0.23 工业级
工艺参数        
步骤 温度℃ 时间h    
干燥 80 4    
焙烧 800 2    
【实验二】
【实验二】中的制备方法与【实验一】相似,不同的是:原材料及工艺参数参照表2中的数据,得到样品B。
表2:【实验二】原材料及工艺参数表
组分名称 原材料 质量g 质量百分比% 参数
无机钛源 偏钛酸 50 2.01 粒径50nm
无机硅源 纳米氧化硅 550 22.11 粒径500nm
无机粘接剂 硅溶胶 1125 45.24 固含量40%
有机成型助剂 聚丙烯酰胺 12 0.48 工业级
分散剂 柠檬酸水溶液 600 24.13 浓度15wt%
助熔剂 氧化硼 150 6.03 工业级
工艺参数        
步骤 温度℃ 时间h    
干燥 100 6    
焙烧 600 8    
【实验三】
【实验三】中的制备方法与【实验一】相似,不同的是:原材料及工艺参数参照表3中的数据,得到样品C。
表3:【实验三】原材料及工艺参数表
组分名称 原材料 质量g 质量百分比% 参数
无机钛源 纳米氧化钛 800 31.81 粒径300nm
无机硅源 纳米氧化硅 50 1.99 粒径50nm
无机粘接剂 硅溶胶 1500 59.64 固含量10%
有机成型助剂 羧甲基纤维素 60 2.39 工业级
分散剂 醋酸水溶液 80 3.18 12wt%
助熔剂 硼砂 25 0.99 工业级
工艺参数        
步骤 温度℃ 时间h    
干燥 60 12    
焙烧 400 12    
【实验四】
【实验四】中的制备方法与【实验一】相似,不同的是:原材料及工艺参数参照表4中的数据,得到样品D。
表4:【实验四】原材料及工艺参数表
组分名称 原材料 质量g 质量百分比% 参数
无机钛源 纳米氧化钛 500 13.48 粒径500nm
无机硅源 纳米氧化硅 250 6.74 粒径300nm
无机粘接剂 硅溶胶 2500 67.39 固含量10%
有机成型助剂 聚乙二醇 30 0.81 工业级
分散剂 硝酸水溶液 60 1.62 50wt%
助熔剂 硼酸 270 7.28 工业级
助熔剂 氟化铵 100 2.7 工业级
工艺参数        
步骤 温度℃ 时间h    
干燥 180 8    
焙烧 900 0.5    
【实验五】
【实验五】中的制备方法与【实验一】相似,不同的是:原材料及工艺参数参照表5中的数据,得到样品E。
表5:【实验五】原材料及工艺参数表
组分名称 原材料 质量g 质量百分比% 参数
无机钛源 纳偏钛酸 200 7.43 粒径100nm
无机硅源 纳米氧化硅 150 5.57 粒径5nm
无机粘接剂 硅溶胶 1625 60.34 固含量40%
有机成型助剂 田菁粉 100 3.71 工业级
有机成型助剂 甘油 168 6.24 工业级
分散剂 硝酸水溶液 300 11.14 10wt%
分散剂 柠檬酸 70 2.6 工业级
助熔剂 氟化铵 80 2.97 工业级
工艺参数        
步骤 温度℃ 时间h    
干燥 150 0.5    
焙烧 700 4    
【实验六】
实验六为对照实验,与【实验一】不同的是:步骤(X1)中不添加助熔剂;步骤(X2)中不添加分散剂;其余原材料及工艺参数参照表6中的数据,得到样品F。
表6:【实验六】原材料及工艺参数表
组分名称 原材料 质量g 质量百分比% 参数
无机钛源 纳米氧化钛 300 14.81 粒径100nm
无机硅源 纳米氧化硅 450 22.22 粒径5nm
无机粘接剂 硅溶胶 1125 55.56 固含量40%
有机成型助剂 田菁粉 150 7.41 工业级
工艺参数        
步骤 温度℃ 时间h    
干燥 150 4    
焙烧 700 4    
如图2所示为【实验一】至【实验六】制得的样品A至样品F的 XRD谱图,其中,各样品均出现了无定形氧化硅的特征衍射峰包,以及尖锐的锐钛矿相二氧化钛的特征衍射峰。该结果进一步表明,采用该方法制备钛硅复合氧化物时,氧化硅和氧化钛二者之间没有发生钛离子进入氧化硅晶格,形成新的钛硅氧化物。无定形氧化硅和锐钛矿相的二氧化钛仍以单独的物相存在,二者仅靠接触界面间形成的Si-O-Ti键结合。
图3为样品D和样品F的FT-IR红外谱图,其中1000-1200cm -1范围的吸收峰对应于样品中Si-O-Si键的反对称伸缩振动峰;960cm -1的吸收峰对应于样品中Si-O-Ti键的反对称伸缩振动峰,该峰的出现表明样品D中的氧化硅和氧化钛颗粒间形成了Si-O-Ti键,二者通过该化学键相互连接;然而样品F在960cm -1处没有吸收峰,可见样品F不存在Si-O-Ti键。
2 )钛硅复合材料的性能测试:
上述【实验一】至【实验六】获得的样品A至样品F的性能参数如表7所示。
表7:样品A至样品F性能参数表
  强度N/cm 比表面积m 2/g 平均孔径nm 孔容积cm 3/g
样品A 138 83.5 17.7 0.40
样品B 86 150.6 12.3 0.52
样品C 58 250.0 13.4 0.54
样品D 180 45.8 19.8 0.36
样品E 115 181.0 14.4 0.59
样品F 50 74.6 8.0 0.23
由表7可知样品A至样品E的各项参数均优于样品F,可见分散剂与助熔剂有利于无机钛源与无机硅源之间形成Si-O-Ti键紧密结合,以提高钛硅复合材料的强度、比表面积、孔径和孔容积等性能。
【抗水抗酸性能测试】
【测试一】样品A至样品F抗水抗酸性能测试
步骤(X5):取50g钛硅复合材料样品A(/样品B/样品C/样品D/样品E/样品F)和300g油酸和水的混合液(其中,油酸与水之比为4:1)装入1L高压反应釜中,拧紧高压釜;
步骤(X6):将反应釜温度升高到350℃,煮6h,取出煮后的样品A(/样品B/样品C/样品D/样品E/样品F),烘干;
步骤(X7):检测煮后的样品A(/样品B/样品C/样品D/样品E/样品F)的强度并与煮前的样品A(/样品B/样品C/样品D/样品E/样品F)的强度进行比较计算,得到样品A(/样品B/样品C/样品D/样品E/样品F)的强度保留率,计算公式如下:
强度保留率=(煮后强度/煮前强度)×100。
样品A至样品F强度保留率可参考下表:
样品名称 A B C D E F
煮前强度(N/cm) 138 86 58 180 115 50
煮后强度(N/cm) 135 84 55 181 113 45
强度保留率(%) 98 97 95 100 98 90
【测试二】工业常用γ-Al 2O 3载体抗水抗酸性能测试
【测试二】与【测试一】步骤相似,不同的是测试样品为γ-Al 2O 3载体,直径4~6mm,煮前强度120N/颗。步骤(X7)得到γ-Al 2O 3载体煮后强度为15N/颗,计算其强度保留率为12.5%。
对【测试一】中样品D煮前和煮后进行XRD晶相分析得到图4,对【测试二】中γ-Al 2O 3载体煮前和煮后进行XRD晶相分析得到图5。如图4,样品D煮前和煮后晶相没有发生任何变化,而和图5所示γ-Al 2O 3煮后完全转化为拟博水铝石AlOOH;由此可见,本发明实施例提供的钛硅化合物具有较好的抗水抗酸性能及稳定性。
上述方案具有如下优点或有益效果:
(1)材料主体采用无机钛源和无机硅源,价格低廉,制备成本低;
(2)以氧化硅为骨架,氧化钛高分散在氧化硅表面,二者之间通过助熔剂的作用下形成Si-O-Ti键紧密结合,稳定性高、催化性能好;
(3)钛硅复合材料可用作生物质转化或生物质脱氧催化剂的载体,具有大孔道、高抗酸、抗水性能和稳定性的特点。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细说明,本领域普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种钛硅复合材料,由以下按质量百分比计的原材料制备而成:
    粘合剂39.2%~70.2%;
    分散剂1.6~30.4%;
    助熔剂0.5~10.0%;
    余量为材料主体,所述材料主体包括无机钛源和无机硅源,所述无机钛源在所述材料主体中的质量百分比为8.3~94.1%,所述无机硅源在所述材料主体中的质量百分比为5.7~91.7%。
  2. 根据权利要求1所述的钛硅复合材料,其中,所述无机钛源包括纳米氧化钛和偏钛酸中任意一者或者两者;所述无机硅源为纳米氧化硅。
  3. 根据权利要求2所述的钛硅复合材料,其中,所述无机钛源的粒径为1~500nm,比表面积为10~500m 2/g。
  4. 根据权利要求2所述的钛硅复合材料,其中,所述无机硅源的粒径为1~500nm,比表面积为10~500m 2/g。
  5. 根据权利要求1所述的钛硅复合材料,其中,所述粘合剂包括无机粘接剂和有机成型助剂,所述无机粘接剂在所述原材料中的质量百分比为34.6~67.4%,所述有机成型助剂在所述原材料中的质量百分比为0.5~10.0%。
  6. 根据权利要求5所述的钛硅复合材料,其中,所述无机粘接剂为硅溶胶,所述硅溶胶的固含量为10~40%。
  7. 根据权利要求5所述的钛硅复合材料,其中,所述有机成型助剂包括:田菁粉、羧甲基纤维素、聚丙烯酰胺、聚乙烯醇、石蜡、淀粉、多元羧酸和甘油中的至少一种或多种。
  8. 根据权利要求1所述钛硅复合材料,其中,所述分散剂包括酸性水溶液,所述酸性水溶液为硝酸、醋酸和柠檬酸中的至少一种或多种。
  9. 根据权利要求1所述的钛硅复合材料,其中,所述助熔剂包括硼化物和氟化物中的至少一种或多种,其中,所述硼化物为硼酸、硼酸盐和硼氧化物中的至少一种或多种。
  10. 根据权利要求1所述的钛硅复合材料,其中,所述钛硅复合材料的强度为50~180N/cm,比表面积为45~250m 2/g,平均孔径为8.0~20nm,孔容积为0.2~0.6cm 3/g。
  11. 根据权利要求1所述的钛硅复合材料,其中,所述钛硅复合材料在350℃下水和油酸混合液中煮6h的强度保留率大于等于95%;其中所述水和油酸混合液中水与油酸的质量比为1:4。
  12. 一种钛硅复合材料的制备方法,其中,包括步骤:
    (X1)对原材料进行混捏处理、挤条处理,得到挤条后材料;
    (X2)对所述挤条后材料进行干燥处理,得到干燥后材料;
    (X3)对所述干燥后材料进行焙烧处理、冷却处理后得到所述钛硅复合材料;
    其中,所述原材料按照质量百分比计的组分如下:粘合剂39.2%~70.2%;分散剂1.6~30.4%;助熔剂0.5~10.0%;余量为材料主体,所述材料主体包括无机钛源和无机硅源,所述无机钛源在所述材料主体中的质量百分比为8.3~94.1%,所述无机硅源在所述材料主体中的质量百分比为5.7~91.7%。
  13. 根据权利要求12所述的钛硅复合材料的制备方法,其中,所述粘合剂包括无机粘接剂和有机成型助剂,所述无机粘接剂在所述原材料中的质量百分比为34.6~67.4%,所述有机成型助剂在所述原材料中的质量百分比为0.5~10.0%;
    所述步骤(X1)还包括:
    (X11)将所述助熔剂和所述无机粘接剂进行第一混捏处理,得到混捏后混合物;
    (X12)向所述混捏后混合物中加入所述材料主体、所述分散剂和所述有机成型助剂并第二混捏处理、挤条处理后得到所述挤条后材料。
  14. 根据权利要求12所述的钛硅复合材料制备方法,其中,所述干燥处理中干燥温度为60~180℃,干燥时间为0.5~12h。
  15. 根据权利要求12所述的钛硅复合材料的制备方法,其中,所述焙烧处理中焙烧温度为400~900℃,焙烧时间为0.5~12h。
  16. 根据权利要求15所述的钛硅复合材料的制备方法,其中,所述焙烧处理中的焙烧温度为600~800℃。
  17. 一种钛硅复合材料,其包含质量百分比为5~80%的氧化钛,与质量百分比为95~20%的氧化硅;
    其中,所述氧化硅为无定形氧化硅,所述氧化钛为锐钛矿相,所述无定形氧化硅与所述锐钛矿相的氧化钛在接触界面间以形成的Si-O-Ti键结合。
  18. 根据权利要求17所述的钛硅复合材料,其中,所述钛硅复合材料的强度为50~180N/cm,比表面积为45~250m 2/g,平均孔径为8~20nm,孔容积为0.2~0.6cm 3/g。
  19. 根据权利要求17所述的钛硅复合材料,其中,所述钛硅复合材料在350℃下水和油酸混合液中煮6h的强度保留率大于等于95%;其中所述水和油酸混合液中水与油酸的质量比为1:4。
  20. 一种负载型催化剂,其中,包括:
    催化剂载体,采用如权利要求1-11、17-19中任意一项所述的钛硅复合材料制成;以及
    活性物质,附着于所述载体上。
  21. 根据权利要求20所述的负载型催化剂,其中,所述活性物质包括:含镍化合物、铜化合物、钴化合物、钼化合物和含钨化合物中的至少一种。
PCT/CN2021/134984 2021-11-23 2021-12-02 钛硅复合材料及其制备方法以及负载型催化剂 WO2023092624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021132396 2021-11-23
CNPCT/CN2021/132396 2021-11-23

Publications (1)

Publication Number Publication Date
WO2023092624A1 true WO2023092624A1 (zh) 2023-06-01

Family

ID=86538789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134984 WO2023092624A1 (zh) 2021-11-23 2021-12-02 钛硅复合材料及其制备方法以及负载型催化剂

Country Status (1)

Country Link
WO (1) WO2023092624A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147829A (en) * 1989-04-19 1992-09-15 University Of Florida Research Foundation Sol-gel derived SiO2 /oxide power composites and their production
CN102139231A (zh) * 2010-02-02 2011-08-03 中国石油化工股份有限公司 一种氧化硅改性的二氧化钛成型载体的制备方法
CN103041850A (zh) * 2012-12-03 2013-04-17 大连理工齐旺达化工科技有限公司 一种高强度ts-1钛硅分子筛催化剂的挤条成型方法
KR101328657B1 (ko) * 2012-12-07 2013-11-14 김윤환 새집증후군 제거용 나노산소 촉매제
CN103524642A (zh) * 2012-07-04 2014-01-22 中国石油天然气股份有限公司 一种改性载体硅胶的制备方法
CN108273485A (zh) * 2018-02-13 2018-07-13 福州大学 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法
CN110694640A (zh) * 2019-10-22 2020-01-17 邢台旭阳科技有限公司 一种耐水耐硫脱硝催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147829A (en) * 1989-04-19 1992-09-15 University Of Florida Research Foundation Sol-gel derived SiO2 /oxide power composites and their production
CN102139231A (zh) * 2010-02-02 2011-08-03 中国石油化工股份有限公司 一种氧化硅改性的二氧化钛成型载体的制备方法
CN103524642A (zh) * 2012-07-04 2014-01-22 中国石油天然气股份有限公司 一种改性载体硅胶的制备方法
CN103041850A (zh) * 2012-12-03 2013-04-17 大连理工齐旺达化工科技有限公司 一种高强度ts-1钛硅分子筛催化剂的挤条成型方法
KR101328657B1 (ko) * 2012-12-07 2013-11-14 김윤환 새집증후군 제거용 나노산소 촉매제
CN108273485A (zh) * 2018-02-13 2018-07-13 福州大学 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法
CN110694640A (zh) * 2019-10-22 2020-01-17 邢台旭阳科技有限公司 一种耐水耐硫脱硝催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN107442150B (zh) 一种二维锐钛矿TiO2/g-C3N4复合材料及其制备方法和应用
WO2021047205A1 (zh) 一种陶瓷纳滤膜的制备方法
CN108097064B (zh) 一种基于二维材料制备介孔陶瓷膜的方法
WO2020135202A1 (zh) 具有三维多级孔道结构的蜂窝式scr脱硝催化剂及制备方法
CN102658165B (zh) 乙酸气相加氢制备乙醇的催化剂及其制备方法
CN108383154B (zh) 一种具有大比表面积的空心介孔Ti4O7@C纳米球的制备方法
CN113224380B (zh) 一种固态电解质材料及其制备方法、电池
CN103086435A (zh) 一种三氧化钼纳米棒的制备方法
CN113769785B (zh) 基于有机骨架材料Uio-66的复合脱硝催化剂悬浮液及其制备方法和应用
Liu et al. Sandwich SrTiO3/TiO2/H-Titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution
CN105800676A (zh) 二维钛酸盐纳米材料及其制备方法
CN111841526B (zh) 一种改性Ce-Ti中低温烟气脱硝催化剂粉体及其制备方法
CN102861618B (zh) 一种氧化铝载体的制备方法
CN102909009A (zh) 一种结晶银负载TiO2纳米颗粒的制备方法
CN111450876A (zh) 一种利用不同粒径载体负载Mn的低温SCR脱硝催化剂及其制备方法
CN102068991A (zh) 一种高分散负载型纳米金属Ni催化剂及其制备方法
CN103496738B (zh) 一种高比表面积、高可控性氧化钛气凝胶的制备方法
CN113333023A (zh) 一种高吸附碘氧化铋可见光催化剂及其应用
Wei et al. Triggering efficient photocatalytic water oxidation reactions over BaNbO2N by incorporating Ca at B site
TWI487661B (zh) 電極用碳材的改質方法及其製成的電極用碳材
WO2023092624A1 (zh) 钛硅复合材料及其制备方法以及负载型催化剂
CN110743386A (zh) 一种氧化锆-氧化钛复合超滤膜的制备方法
CN108311134B (zh) 柴油车/轮船尾气scr脱硝用钛钨硅复合粉及制备方法
CN111468178B (zh) 一种金属改性zsm-5分子筛催化剂及其制备方法与应用
CN108525668B (zh) 海泡石纳米纤维负载钴铝复合氧化物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965353

Country of ref document: EP

Kind code of ref document: A1