CN108273485A - 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法 - Google Patents

一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法 Download PDF

Info

Publication number
CN108273485A
CN108273485A CN201810149003.XA CN201810149003A CN108273485A CN 108273485 A CN108273485 A CN 108273485A CN 201810149003 A CN201810149003 A CN 201810149003A CN 108273485 A CN108273485 A CN 108273485A
Authority
CN
China
Prior art keywords
composite oxide
catalyst
order mesoporous
carrier
hydrobon catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810149003.XA
Other languages
English (en)
Inventor
江莉龙
米金星
刘福建
曹彦宁
马永德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201810149003.XA priority Critical patent/CN108273485A/zh
Publication of CN108273485A publication Critical patent/CN108273485A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于加氢精制催化剂的技术领域,具体涉及一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法。所述的有序介孔钛硅复合氧化物是以表面活性剂、酸溶液、有机硅源和钛源为原料,经加热溶解、老化、离心、干燥处理得到钛硅复合氧化物前驱体,然后在空气氛围中进行高温焙烧而制得的。该复合氧化物载体经过高温焙烧后依然具有良好的有序介孔和大比表面积,同时可以通过改变钛硅比和模板剂调节载体表面的酸碱性质,浸渍过程中有利于活性组分分散均匀,载体和活性组分之间形成良好的相互作用。

Description

一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及 其制备方法
技术领域
本发明属于加氢精制催化剂的技术领域,具体涉及一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法。
背景技术
二十一世纪以来,随着人们对生态环境的愈发重视和化石能源的日益消耗,劣质油的深度清洁利用显得越来越重要。目前,加氢脱硫技术依然是大规模生产清洁汽柴油最为有效的手段,而研发深度清洁的高活性汽柴油加氢精制催化剂就显得尤为重要。随着中国和世界各地对汽柴油中硫含量排放的规定日益严格,生产低硫甚至无硫的清洁燃料油成为了经济发展和环境保护的迫切需要,尤其是在目前需要以劣质油为原料进行清洁汽柴油生产的情况下。通过对加氢脱硫催化剂的进一步优化以满足目前对汽柴油生产标准和日益严格的环保要求变得越来越重要。
在工业上,传统的加氢脱硫催化剂通常是以Al2O3为载体,并添加Ni或Co作为助剂的Mo基或W基金属硫化物,这种催化剂虽然具有很好的加氢脱硫效果,但是需要较高的运行压力,从而对设备具有很高的使用要求。因此也有研究者通过对Al2O3载体进行改性来提升催化效果并降低对设备的需求,但效果并不好。与此同时,以TiO2,SiO2为载体制备加氢脱硫催化剂的具有更好的加氢精制效果,但存在单独的TiO2载体成本高、比表面积较低等问题,从而利用其他载体的高比表面积、良好的力学性能、价格合理特点,将它们复合以提高物化性能及催化性能。而要想达到新的硫含量标准,其反应条件都要进行严格的调整。因此,开发新型高效的深度加氢脱硫催化剂成为解决这一难题的最有效和实用的手段。而深度加氢脱硫催化剂的研究开发主要是从改进活性组分的担载方法、筛选活性更高的组分和寻找更好的载体三方面展开。
目前,研究过的Ti基CoMo加氢脱硫催化剂氧化物载体主要有从Zr-Ti复合,Al-Ti复合和Si-Ti复合着手,同时利用磷进行改性。中国专利文献CN106076355A公开了一种加氢脱硫催化剂的制备方法。所述催化剂以AlOOH和TiO2的复合物为载体,担载NiO、MoO3和WO3为活性组分,通过完全液相法制备了一种反应活性高、稳定性好的浆状催化剂。虽然上述催化剂具有良好的脱硫性能及稳定性,但在高温反应过程中催化剂表面的积碳反应造成脱硫活性和稳定性的降低,且这两种催化剂的比表面积不大,没有良好的孔道结构。在浸渍过程中其活性组分分散效果一般。因此本文提出一种水热自组装法制备钛硅复合氧化物的方法,再经过干燥、焙烧后得到高比表面积,有序介孔的钛硅复合氧化物载体。
发明内容
本发明的目的在于针对现有的Ti基加氢脱硫催化剂孔道结构复杂,比表面积低且容易结焦的问题,提供一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法。以该复合氧化物为载体的催化剂,在较低的活性组分负载量情况下,其催化活性比同类催化剂有了显著提高。
为实现上述目的,本发明采用如下技术方案:
一种有序介孔钛硅复合氧化物,是以表面活性剂、酸溶液、有机硅源和钛源为原料,经加热溶解、老化、离心、干燥处理得到钛硅复合氧化物前驱体,然后在空气氛围中进行高温焙烧而制得的有序介孔钛硅复合氧化物。
所述的表面活性剂包括F127、F108和P123中的一种或多种;所述的有机硅源为正硅酸乙酯或正硅酸四乙酯;所述的钛源为钛酸四丁酯或钛酸正丁酯。
所述的加热溶解为:先将表面活性剂溶解到酸溶液里,搅拌溶解后,再加入有机硅源,升温至30~60℃,搅拌4~12h;然后再加入钛源,升温至60~80℃,搅拌12~36h。
所述的老化为在160~200℃老化24~72h。
所述的干燥处理其温度为80~120℃,干燥时间为12~24h;所述的高温焙烧其温度为450~650℃,焙烧时间为3~8h。
一种如上所述的有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂,助剂为Co或Ni,活性组分为Mo;催化剂中的活性组分和助剂含量以氧化物计,CoO或NiO 1~5wt%,MoO3 5~15wt%。
一种制备如上所述的加氢脱硫催化剂的方法,包括以下步骤:
(1)将活性组分、助剂配成一定含量的浸渍液,然后采用等体积浸渍法将活性组分的溶液浸渍到有序介孔钛硅复合氧化物上,浸渍过程在常压常温下进行,静置时间为6~24h,然后再经过干燥、400~600℃焙烧2~6h,得到氧化态加氢脱硫催化剂;
(2)将氧化态加氢脱硫催化剂于250~350℃进行硫化处理2~4h,即得到硫化态加氢脱硫催化剂。
一种如上所述的有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂在常压加氢脱硫反应中的应用。
所述的常压加氢脱硫反应为加氢脱除噻吩或加氢脱除二苯并噻吩反应。
所述的加氢脱除噻吩反应条件为:常压,原料气流量为90 ml /min,组成为8.0kPa 噻吩, 91.2 kPa H2 和 2.1 kPa H2S;所述的加氢脱除二苯并噻吩反应条件为:常压,280-400℃,氢油体积比为100-500,液时空速为0.5-2.5 h-1,反应时间8-24小时。
本发明的有益效果在于:
(1)本发明采用水热法自组装制备得到有序介孔钛硅复合氧化物,该钛硅复合氧化物具有良好的砖墙结构,相互之间作用良好。
(2)本发明的催化剂以有序介孔钛硅复合氧化物为载体,经过高温焙烧后依然具有良好的有序介孔和大比表面积,同时可以通过改变钛硅比和模板剂调节载体表面的酸碱性质,浸渍过程中有利于活性组分分散均匀,载体和活性组分之间形成良好的相互作用;并且在较低的活性组分负载量下,本发明催化剂的催化活性比同类催化剂有了显著提高。
具体实施方式
以下结合实施例进一步阐述本发明,但本发明的保护范围不限于下述实施例。为进一步说明本发明的实验操作及其实验结果,本部分结合发明的实施例进行更为详细的描述。
实施例1
一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂的制备方法,具体步骤为:
(1)钛硅复合氧化物的合成:首先称取2.4g F127表面活性剂溶于76 ml去离子水中,然后再加入3.3ml浓盐酸溶液进行搅拌溶解;待溶解之后再量取8ml的正硅酸乙酯加入上述混合溶液中,再置于油浴中在40℃搅拌保持6h;然后再量取2ml钛酸正丁酯继续于40℃油浴中搅拌保持20h;最终将混合均匀的溶液转移到聚四氟乙烯内衬中,在180℃保持24h,取出水热釜待冷却后,将得到的介孔钛硅复合氧化物前驱体置于烘箱里面在100℃干燥12h,再置于马弗炉中在450℃焙烧5h得到氧化铝载体;将得到的介孔氧化铝载体记为Ti-Si-O(0.25)。该载体的比表面积为320m2/g;
(2)催化剂的制备:配制一定浓度的Co(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液;采用等体积浸渍法将该溶液浸渍到Ti-Si-O(0.25)上,之后置于马弗炉中,再经过450℃焙烧2h后焙烧得到催化剂CoMo/Ti-Si-O(0.25),催化剂中按质量分数记,其中CoO为3wt%,MoO3为9wt%。记为催化剂A。
实施例2
一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂的制备方法,具体步骤为:
(1)钛硅复合氧化物的合成:首先称取2.6g F108表面活性剂溶于76 ml去离子水中,然后再加入3.6ml浓盐酸溶液进行搅拌溶解。 待溶解之后再量取4ml的正硅酸乙酯加入上述混合溶液中,再置于油浴中在40℃搅拌保持6h;然后再量取4ml钛酸正丁酯继续于40℃油浴中搅拌保持20h;最终将混合均匀的溶液转移到聚四氟乙烯内衬中,在200℃保持36h,取出水热釜待冷却后,将得到的介孔钛硅复合氧化物前驱体置于烘箱里面在100℃干燥12h,再置于马弗炉中在500℃焙烧4h得到氧化铝载体;将得到的介孔氧化铝载体记为Ti-Si-O(1)。该载体的比表面积为378m2/g;
(2)催化剂的制备:配制一定浓度的Ni(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液。采用等体积浸渍法将该溶液浸渍到Ti-Si-O(1)上,之后置于马弗炉中,再经过400℃焙烧3h后焙烧得到催化剂CoMo/Ti-Si-O(1),催化剂中按质量分数记,其中NiO为1wt%,MoO3为7wt%。记为催化剂B。
实施例3
一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂的制备方法,具体步骤为:
(1)钛硅复合氧化物的合成:首先称取2.4g F127表面活性剂溶于76 ml去离子水中,然后再加入5.0ml浓盐酸溶液进行搅拌溶解;待溶解之后再量取8ml的正硅酸四乙酯加入上述混合溶液中,再置于油浴中在50℃搅拌保持12h;然后再量取4ml钛酸四丁酯继续于50℃油浴中搅拌保持24h;最终将混合均匀的溶液转移到聚四氟乙烯内衬中,在200℃保持36h,取出水热釜待冷却后,将得到的介孔钛硅复合氧化物前驱体置于烘箱里面在120℃干燥24h,再置于马弗炉中在600℃焙烧5h得到氧化铝载体;将得到的介孔氧化铝载体记为Ti-Si-O(0.5)。该载体的比表面积为341m2/g;
(2)催化剂的制备:配制一定浓度的Co(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液。采用等体积浸渍法将该溶液浸渍到Ti-Si-O(0.5)上,之后置于马弗炉中,再经过550℃焙烧2h后焙烧得到催化剂CoMo/Ti-Si-O(0.5), 催化剂中按质量分数记,其中CoO为3wt%,MoO3为11wt%。记为催化剂C。
实施例4
一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂的制备方法,具体步骤为:
(1)钛硅复合氧化物的合成:首先称取3.2g P108表面活性剂溶于76 ml去离子水中,然后再加入2.3ml浓盐酸溶液进行搅拌溶解;待溶解之后再量取4ml的正硅酸乙酯加入上述混合溶液中,再置于油浴中在60℃搅拌保持12h;然后再量取8ml钛酸四丁酯继续于60℃油浴中搅拌保持40h;最终将混合均匀的溶液转移到聚四氟乙烯内衬中,在160℃保持12h,取出水热釜待冷却后,将得到的介孔钛硅复合氧化物前驱体置于烘箱里面在80℃干燥12h,再置于马弗炉中在450℃焙烧6h得到氧化铝载体;将得到的介孔氧化铝载体记为Ti-Si-O(2)。该载体的比表面积为553m2/g;
(2)催化剂的制备:配制一定浓度的Ni(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液。采用等体积浸渍法将该溶液浸渍到Ti-Si-O(2)上,之后置于马弗炉中,再经过450℃焙烧4h后焙烧得到催化剂CoMo/ Ti-Si-O(2), 催化剂中按质量分数记,其中NiO为5wt%,MoO3为10wt%。记为催化剂D。
实施例5
一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂的制备方法,具体步骤为:
(1)钛硅复合氧化物的合成:首先称取2.4g F127表面活性剂溶于76 ml去离子水中,然后再加入3.3ml浓盐酸溶液进行搅拌溶解;待溶解之后再量取2ml的正硅酸四乙酯加入上述混合溶液中,再置于油浴中在40℃搅拌保持8h;然后再量取6ml钛酸正丁酯继续于40℃油浴中搅拌保持28h;最终将混合均匀的溶液转移到聚四氟乙烯内衬中,在180℃保持48h,取出水热釜待冷却后,将得到的介孔钛硅复合氧化物前驱体置于烘箱里面在120℃干燥24h,再置于马弗炉中在550℃焙烧8h得到氧化铝载体;将得到的介孔氧化铝载体记为Ti-Si-O(3)。该载体的比表面积为482m2/g;
(2)催化剂的制备:配制一定浓度的Co(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液。采用等体积浸渍法将该溶液浸渍到Ti-Si-O(3)上,之后置于马弗炉中,再经过600℃
焙烧3h后焙烧得到催化剂CoMo/ Ti-Si-O(3), 催化剂中按质量分数记,其中CoO为2wt%,MoO3为12wt%。记为催化剂E。
对比例1
催化剂的制备:配制一定浓度的Co(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液。采用等体积浸渍法将该溶液浸渍到商业TiO2(西格玛,比表面积151m2/g)上,之后经过静置、干燥后置于马弗炉中,再经过400℃焙烧6h后焙烧得到催化剂CoMo/TiO2,催化剂中按质量分数计,其中CoO为3wt%,MoO3为9wt%。记为催化剂F。
对比例2
催化剂的制备:配制一定浓度的Ni(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液。采用等体积浸渍法将该溶液浸渍到商业SiO2(西格玛,比表面积294m2/g)上,之后经过静置、干燥后置于马弗炉中,再经过550℃焙烧2h后焙烧得到催化剂NiMo/SiO2,催化剂中按质量分数计,其中NiO为2wt%,MoO3为11wt%。记为催化剂G。
对比例3
一种以钛硅复合氧化物为载体的加氢脱硫催化剂的制备方法,具体步骤为:
(1)将8ml钛酸四丁酯和4ml正硅酸乙酯分别溶于20ml无水乙醇后再均匀混合得溶液A;将一40ml的水、2ml醋酸及20ml无水乙醇混合得溶液 B;在强烈的磁搅拌下,将溶液 B 逐滴滴入 A 中进行反应;反应12h后得到溶胶,溶胶在自然条件下老化24h就得到 TiO2-SiO2凝胶。凝胶经 CO2超临界得到白色 TiO2-SiO2超细粉体;粉体在空气气氛中经500℃焙烧后得到钛硅复合氧化物载体。记为Ti-SiO-C(X=2)。该载体的比表面积为198m2/g;
(2)催化剂的制备:配制一定浓度的Co(NO3)2·6H2O和(NH4)6 Mo7O24·4H2O的混合溶液。采用等体积浸渍法将该溶液浸渍到Ti-SiO(X=2)-C上,之后置于马弗炉中,再经过焙烧得到催化剂CoMo/Ti-Si-O-C(X=2), 催化剂中按质量分数计,其中CoO为5wt%,MoO3为9wt%。记为催化剂H。
上述案例制备的催化剂的活性评价是在由北京欣航盾石化科技有限公司生产的微型实验反应装置上进行(MRT-6113,系统设计温度500℃,系统设计压力:8MPa,反应器内径10mm,液体计量泵量程0.001-1sccm,质量流量计量程:0-200sccm)以及由岛津公司生产的GC-MS上进行产物分析。以噻吩或二苯并噻吩含量为3 wt%的正庚烷溶液为模型化合物原料。噻吩脱硫反应:向加氢脱硫装置中装入2 g催化剂,首先在350℃,用混合气10%H2S/H2(50 ml/min)对氧化态催化剂前驱体硫化2 h。还原完成后切换反应,反应条件为:常压,原料气流量为90 ml /min,组成为8.0 kPa 噻吩, 91.2 kPa H2 and 2.1 kPa H2S的条件下进行(加氢脱除噻吩)。常压,280-400℃,氢油体积比为100-500,液时空速为0.5-2.5 h-1,反应时间8-24小时(加氢脱除二苯并噻吩)。反应结束后,采用GC或RPP-5000SN型硫氮分析仪(泰州市中环分析仪器有限公司)对反应后的产物进行分析测试。
表1催化剂的噻吩和二苯并噻吩加氢脱硫催化剂的评价指标。
表1为实施例1-5和对比例1-3中利用本发明方法制备的加氢脱硫催化剂的评价指标。
从表1可以看出,本发明所述的加氢脱硫催化剂(样品A-E)都有较高的脱硫活性较好的稳定性。其中样品D常压下在350℃的噻吩转化率可达97.56%,其二苯并噻吩转化率的转化率也可达89.32%。加氢脱硫活性明显高于其他催化剂。尤其与以商业TiO2和SiO2为载体制备的加氢脱硫催化剂相比具有明显的活性优势。且该方法与传统的制备方法相比,在常压活性和稳定性方面也更具有优势。
显然,上述实施例仅仅是为了清楚地说明情况而举的例子,并不是对实施方式进行了限定。因此,对于该领域的普通技术人员来说,在上述实例的基础上还可以还可以做出其他不同形式的变化。这里也无需对所有的实施方式一一举例,但由此所引出的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (10)

1.一种有序介孔钛硅复合氧化物,其特征在于:所述的氧化物是以表面活性剂、酸溶液、有机硅源和钛源为原料,经加热溶解、老化、离心、干燥处理得到钛硅复合氧化物前驱体,然后在空气氛围中进行高温焙烧而制得的有序介孔钛硅复合氧化物。
2.根据权利要求1所述的有序介孔钛硅复合氧化物,其特征在于:所述的表面活性剂包括F127、F108和P123中的一种或多种;所述的有机硅源为正硅酸乙酯或正硅酸四乙酯;所述的钛源为钛酸四丁酯或钛酸正丁酯。
3.根据权利要求1所述的有序介孔钛硅复合氧化物,其特征在于:所述的加热溶解为:先将表面活性剂溶解到酸溶液里,搅拌溶解后,再加入有机硅源,升温至30~60℃,搅拌4~12h;然后再加入钛源,升温至60~80℃,搅拌12~36h。
4.根据权利要求1所述的有序介孔钛硅复合氧化物,其特征在于:所述的老化为在160~200℃老化24~72h。
5.根据权利要求1所述的有序介孔钛硅复合氧化物,其特征在于:所述的干燥处理其温度为80~120℃,干燥时间为12~24h;所述的高温焙烧其温度为450~650℃,焙烧时间为3~8h。
6.一种如权利要求1-5任一项所述的有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂,其特征在于:所述的加氢精制催化剂助剂为Co或Ni,活性组分为Mo;催化剂中的活性组分和助剂含量以氧化物计,CoO或NiO 1~5wt%,MoO3 5~15wt%。
7.一种制备如权利要求6所述的加氢脱硫催化剂的方法,其特征在于:包括以下步骤:
(1)将活性组分、助剂配成一定含量的浸渍液,然后采用等体积浸渍法将活性组分的溶液浸渍到有序介孔钛硅复合氧化物上,浸渍过程在常压常温下进行,静置时间为6~24h,然后再经过干燥、400~600℃焙烧2~6h,得到氧化态加氢脱硫催化剂;
(2)将氧化态加氢脱硫催化剂于250~350℃进行硫化处理2~4h,即得到硫化态加氢脱硫催化剂。
8.一种如权利要求6所述的有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂在常压加氢脱硫反应中的应用。
9.根据权利要求8所述的应用,其特征在于:所述的常压加氢脱硫反应为加氢脱除噻吩或加氢脱除二苯并噻吩反应。
10.根据权利要求9所述的应用,其特征在于:所述的加氢脱除噻吩反应条件为:常压,原料气流量为90 ml /min,组成为8.0 kPa 噻吩, 91.2 kPa H2和2.1 kPa H2S;所述的加氢脱除二苯并噻吩反应条件为:常压,280-400℃,氢油体积比为100-500,液时空速为0.5-2.5h-1,反应时间8-24小时。
CN201810149003.XA 2018-02-13 2018-02-13 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法 Pending CN108273485A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810149003.XA CN108273485A (zh) 2018-02-13 2018-02-13 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810149003.XA CN108273485A (zh) 2018-02-13 2018-02-13 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN108273485A true CN108273485A (zh) 2018-07-13

Family

ID=62808513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810149003.XA Pending CN108273485A (zh) 2018-02-13 2018-02-13 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108273485A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718757A (zh) * 2018-12-07 2019-05-07 清华大学盐城环境工程技术研发中心 一种钒硅钛复合氧化物催化剂的制备方法
CN111229233A (zh) * 2020-04-08 2020-06-05 福州大学 一种用于合成松油烯-4-醇的镍/氧化钛-氧化硅催化剂及其制备方法和应用
CN112844443A (zh) * 2020-12-14 2021-05-28 北京航天试验技术研究所 一种使用有序介孔材料的正仲氢转化催化剂及其制备方法
WO2023092624A1 (zh) * 2021-11-23 2023-06-01 文霞 钛硅复合材料及其制备方法以及负载型催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782032A (zh) * 2004-12-01 2006-06-07 中国石油天然气股份有限公司 一种以TiO2-SiO2复合氧化物为载体的柴油加氢精制催化剂的制备方法
CN101204659A (zh) * 2006-12-18 2008-06-25 中国石油天然气集团公司 一种以铝钛硅复合氧化物为载体的加氢催化剂及制备方法
CN101274766A (zh) * 2008-05-15 2008-10-01 复旦大学 一种有序介孔氧化钛硅分子筛的合成方法
CN102627290A (zh) * 2012-04-01 2012-08-08 温州大学 一种含有介孔结构的钛硅沸石及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1782032A (zh) * 2004-12-01 2006-06-07 中国石油天然气股份有限公司 一种以TiO2-SiO2复合氧化物为载体的柴油加氢精制催化剂的制备方法
CN101204659A (zh) * 2006-12-18 2008-06-25 中国石油天然气集团公司 一种以铝钛硅复合氧化物为载体的加氢催化剂及制备方法
CN101274766A (zh) * 2008-05-15 2008-10-01 复旦大学 一种有序介孔氧化钛硅分子筛的合成方法
CN102627290A (zh) * 2012-04-01 2012-08-08 温州大学 一种含有介孔结构的钛硅沸石及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718757A (zh) * 2018-12-07 2019-05-07 清华大学盐城环境工程技术研发中心 一种钒硅钛复合氧化物催化剂的制备方法
CN111229233A (zh) * 2020-04-08 2020-06-05 福州大学 一种用于合成松油烯-4-醇的镍/氧化钛-氧化硅催化剂及其制备方法和应用
CN111229233B (zh) * 2020-04-08 2022-07-08 福州大学 一种用于合成松油烯-4-醇的镍/氧化钛-氧化硅催化剂及其制备方法和应用
CN112844443A (zh) * 2020-12-14 2021-05-28 北京航天试验技术研究所 一种使用有序介孔材料的正仲氢转化催化剂及其制备方法
WO2023092624A1 (zh) * 2021-11-23 2023-06-01 文霞 钛硅复合材料及其制备方法以及负载型催化剂

Similar Documents

Publication Publication Date Title
CN108273485A (zh) 一种以有序介孔钛硅复合氧化物为载体的加氢脱硫催化剂及其制备方法
CN107824194A (zh) 一种以介孔氧化铝为载体的加氢脱硫催化剂及其制备方法和应用
CN103657736A (zh) 一种活性炭/氧化铝复合型催化剂载体及其制备和应用
CN102909027A (zh) 一种超低硫加氢精制催化剂的制备方法
CN106732636A (zh) 一种硫化态劣质油悬浮床加氢催化剂及其制备方法和应用
CN108273514A (zh) 一种具有酸性的非负载型加氢催化剂的制备方法
CN108465484B (zh) 一种fcc汽油脱硫加氢改质催化剂的制备方法
CN103769179A (zh) 一种渣油加氢处理催化剂的制备方法
CN110252321A (zh) 一种气相沉积制备CoMo系加氢脱硫催化剂的方法
CN101327453B (zh) 铝硅钛复合氧化物载体和负载型加氢脱芳烃催化剂
CN108273506A (zh) 一种高负载的金属镍催化剂及其制备方法和应用
CN108435233B (zh) 一种提高油品深度加氢脱硫的方法
CN111672539B (zh) 一种六核镍取代钨氧簇加氢催化脱硫催化剂及其制备方法和使用方法
JP2005254141A (ja) 石油系炭化水素油の水素化脱硫触媒および水素化脱硫方法
CN103074099B (zh) 一种燃料油的催化氧化脱硫方法
CN108404976B (zh) 一种fcc汽油脱硫加氢改质方法
CN112569953A (zh) 一种脱硫催化剂及其制备方法
CN102423712B (zh) 一种高活性劣质柴油加氢精制催化剂的制备方法
CN103691465B (zh) 用于煤焦油加氢裂化的催化剂及其制备方法
CN107486193A (zh) 一种加氢催化剂及其制备方法
CN101255356A (zh) 一种非负载型催化剂及其制备方法
CN1306885A (zh) 一种合成中孔分子筛mcm-41及以其为载体制备加氢脱硫催化剂的方法
CN102935373A (zh) 一种蜡油加氢预处理精制催化剂的制备方法
CN110721738B (zh) 一种加氢精制催化剂及其制备方法和应用
CN105694956B (zh) 一种劣质原料油加氢脱硫脱氮的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180713