WO2021047205A1 - 一种陶瓷纳滤膜的制备方法 - Google Patents

一种陶瓷纳滤膜的制备方法 Download PDF

Info

Publication number
WO2021047205A1
WO2021047205A1 PCT/CN2020/091609 CN2020091609W WO2021047205A1 WO 2021047205 A1 WO2021047205 A1 WO 2021047205A1 CN 2020091609 W CN2020091609 W CN 2020091609W WO 2021047205 A1 WO2021047205 A1 WO 2021047205A1
Authority
WO
WIPO (PCT)
Prior art keywords
add
titanium oxide
preparation
cellulose
hours
Prior art date
Application number
PCT/CN2020/091609
Other languages
English (en)
French (fr)
Inventor
陈云强
洪昱斌
方富林
蓝伟光
Original Assignee
三达膜科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三达膜科技(厦门)有限公司 filed Critical 三达膜科技(厦门)有限公司
Publication of WO2021047205A1 publication Critical patent/WO2021047205A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide

Definitions

  • the invention belongs to the technical field of nanofiltration membrane preparation, and specifically relates to a preparation method of a ceramic nanofiltration membrane.
  • Ceramic nanofiltration membrane has the characteristics of resistance to organic solvents, high temperature, acid and alkali, high mechanical strength, large flux and long life. It has been widely used in chemical, energy, electronics, food and medicine industries.
  • ceramic nanofiltration membranes are mainly prepared by the sol-gel method.
  • the sol-gel method is to hydrolyze organic alkoxide or non-alkoxide precursors under certain reaction medium conditions to prepare hydrated oxide, Hydroxide or metal oxide sol, add appropriate amount of additives to the sol to prepare a coating liquid with a certain viscosity and concentration; then the coating liquid is coated on the porous support to form a gel film, which is dried And sintering to prepare nanofiltration membrane.
  • two problems are usually overcome. On the one hand, how to control the particle size of the sol particles, and on the other hand, how to ensure the integrity of the membrane layer. Sex.
  • the preparation of the sol-gel method is simple and the process is easy to control, it can prepare thin films on substrates of different shapes and materials on a large area, and is widely used in the preparation of ceramic ultrafiltration membranes and nanofiltration membranes.
  • this method is difficult to control the pore size distribution, porosity and other micro properties of the membrane material, and these problems are more obvious for the preparation of high-precision ceramic membranes with small pore sizes.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a method for preparing ceramic nanofiltration membranes.
  • a preparation method of ceramic nanofiltration membrane includes the following steps:
  • step (2) Add mineralizer and surfactant to the titanium oxide sol obtained in step (1), and put it into a hydrothermal reaction kettle with a filling degree of 50-80%, and heat preservation and reaction at 100-120°C. 5- 10h, cooling to prepare a titanium oxide nano solution;
  • step (3) Add the titanium oxide nano-solution obtained in step (2) as a plasticizer and as a binder, and make the final concentrations of the plasticizer and binder be 3-10wt% and 0.1-1wt%, respectively , Mix well to prepare coating liquid;
  • step (2) Add 0.1 mol of mineralizer and surfactant to the titanium oxide sol obtained in step (1), stir them evenly, and put them in a hydrothermal reactor with a filling degree of 50-80%, and a filling degree of 50-80%. Incubate and react at 120°C for 5-10 hours, and cool to obtain a titanium oxide nano-solution with uniform particles;
  • step (3) Add polyethylene glycol with a weight average molecular weight of 350-450 as a plasticizer and a cellulose compound with a molecular weight of 6000-10000 as a binder to the titanium oxide nano solution obtained in step (2), And make the final concentration of the plasticizer and the binder be 3-10wt% and 0.1-1wt%, respectively, and mix them to obtain a coating liquid;
  • the cellulose compounds are hydroxymethyl cellulose and hydroxyethyl cellulose Or hydroxypropyl cellulose;
  • the organic titanium salt is n-butyl titanate or isopropanol titanate.
  • the mineralizer is magnesium oxide, sodium fluoride or ammonium nitrate.
  • the surfactant is dodecylamine.
  • the step (3) is to add polyethylene glycol with a weight average molecular weight of 350-450 as a plasticizer to the titanium oxide nano-solution obtained in step (2) and as a
  • the cellulose compound of the binder, and the final concentration of the plasticizer and the binder are 3-10% by weight and 0.1-1% by weight, respectively. After mixing uniformly, add the defoamer until the final concentration of the defoamer is 0.01-0.1wt%, and mix well to prepare a coating liquid.
  • the defoamer is a silicone defoamer byk028.
  • the average pore diameter of the porous alumina ceramic membrane support is 0.1 ⁇ m.
  • a complete and defect-free ceramic nanofiltration membrane is prepared by a modified sol-gel method combined with a hydrothermal method.
  • the addition of glycerin to the modified sol can inhibit the crystal transformation and prevent the growth of crystal grains.
  • the present invention prepares a high-purity, uniform crystal particle solution through a hydrothermal reaction. At the same time, mineralizer and surfactant are added in the hydrothermal reaction to reduce the hydrothermal temperature and inhibit crystal polymerization. Prepare nanoparticles with a particle size of 3-5nm, and then prepare ceramic nanofiltration membranes by adding plasticizers and binders.
  • FIG. 1 is a scanning electron micrograph of the film layer of the titanium oxide ceramic nanofiltration membrane prepared in Comparative Example 1 of the present invention.
  • Fig. 3 is a scanning electron micrograph of the film layer of the ceramic nanofiltration membrane prepared in Example 1 of the present invention.
  • Figure 4 shows the surface and cross-section of the KD of Example 11, and the thickness of the cross-section is between 600-800 nm.
  • step (2) Add PEG-400 and hydroxymethyl cellulose with a molecular weight of 6000-10000 to the titanium oxide sol obtained in step (1), and make the mass concentrations of PEG-400 and hydroxymethyl cellulose 5% respectively , 0.5%, then add organic silicon defoaming agent byk028 (byk company in Germany) and make the final mass concentration of 0.05%, mix well to prepare a coating liquid;
  • step (2) Put the titanium oxide sol obtained in step (1) into a hydrothermal reaction kettle with a filling degree of 60%, keep the reaction at 100°C for 8 hours, and cool to prepare a titanium oxide nano-solution with uniform particles;
  • step (3) Add PEG-400 and hydroxymethyl cellulose with a molecular weight of 6000-10000 to the titanium oxide nano solution obtained in step (2), and make the mass concentrations of PEG-400 and hydroxymethyl cellulose 5 %, 0.5%, then add the organic silicon defoamer byk028 and make the final mass concentration 0.05%, mix well to prepare the coating liquid;
  • step (2) Add 0.1 mol of mineralizer magnesium oxide and dodecylamine to the titanium oxide sol obtained in step (1), stir them evenly, and put them into a hydrothermal reaction kettle with a filling degree of 60%, at 200°C The temperature is kept for 8 hours, and then cooled to obtain a titanium oxide nano-solution with uniform particles;
  • step (3) Add PEG-400 and hydroxymethyl cellulose with a molecular weight of 6000-10000 to the titanium oxide nano solution obtained in step (2), and make the mass concentrations of PEG-400 and hydroxymethyl cellulose 5 %, 0.5%, then add the organic silicon defoamer byk028 and make the final mass concentration 0.05%, mix well to prepare the coating liquid;
  • step (2) Add 0.1 mol of mineralizer sodium fluoride and dodecylamine to the titanium oxide sol obtained in step (1), stir them evenly, and put them in a hydrothermal reaction kettle with a filling degree of 50% and a temperature of 120%. Incubate and react at °C for 5 hours, and then cool to prepare a titanium oxide nano-solution with uniform particles;
  • step (3) Add PEG-400 and hydroxymethyl cellulose with a molecular weight of 6000-10000 to the titanium oxide nano solution obtained in step (2), and make the mass concentrations of PEG-400 and hydroxymethyl cellulose be 2 %, 0.1%, then add the organic silicon defoamer byk028 and make the final mass concentration 0.01%, mix well to prepare a coating liquid;
  • step (2) Add 0.1 mol of mineralizers ammonium nitrate and dodecylamine to the titanium oxide sol obtained in step (1), stir them evenly, and put them into a hydrothermal reactor with a filling degree of 80% at 120°C. The temperature is kept for 10 hours, and then cooled to obtain a titanium oxide nano-solution with uniform particles;
  • step (3) Add PEG-400 and hydroxypropyl cellulose with a molecular weight of 6000-10000 to the titanium oxide nano solution obtained in step (2), and make the mass concentrations of PEG-400 and hydroxypropyl cellulose be 10 %, 1%, and then add the organosilicon defoamer byk028 to make the final mass concentration of 0.1%, and mix well to prepare a coating liquid;
  • hydroxymethyl cellulose in the above embodiments can also be replaced with hydroxyethyl cellulose or hydroxypropyl cellulose;
  • the invention discloses a preparation method of a ceramic nanofiltration membrane.
  • a complete and defect-free ceramic nanofiltration membrane is prepared by a modified sol-gel method combined with a hydrothermal method.
  • the addition of glycerin to the modified sol can inhibit the crystal transformation and prevent the growth of crystal grains.
  • the present invention prepares a nanoparticle solution with high purity and uniform crystal grains through a hydrothermal reaction.
  • a mineralizer and a surfactant are added in the hydrothermal reaction to reduce the hydrothermal temperature and inhibit crystal polymerization.
  • Nanoparticles with a particle size of 3-5nm are then prepared by adding plasticizers and binders to prepare ceramic nanofiltration membranes, which have industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种陶瓷纳滤膜的制备方法,通过改性的溶胶-凝胶法结合水热法制备完整无缺陷的陶瓷纳滤膜。在改性的溶胶中加入甘油起到抑制晶体转变,阻止晶粒长大。通过水热反应制备高纯、晶粒均匀的纳米粒子溶液,同时,在水热反应中加入矿化剂和表面活性剂,起到降低水热温度和抑制晶体聚合的作用,制备出粒径在3-5nm的纳米粒子,接着通过加入增塑剂和粘结剂制备陶瓷纳滤膜。

Description

一种陶瓷纳滤膜的制备方法 技术领域
本发明属于纳滤膜制备技术领域,具体涉及一种陶瓷纳滤膜的制备方法。
背景技术
陶瓷纳滤膜具有耐有机溶剂、耐高温、耐酸碱、机械强度高、通量大和寿命长等特点,在化工、能源、电子、食品和医药等行业得到越来越广泛的应用。
现有技术中,陶瓷纳滤膜主要采用溶胶-凝胶法制备,溶胶-凝胶法是将有机醇盐或非醇盐前驱体在一定的反应介质条件下进行水解,制得含水氧化物、氢氧化物或金属氧基盐溶胶,在溶胶中加入适量的添加剂,制得一定粘度和浓度的涂膜液;然后将涂膜液对多孔的支撑体进行涂膜处理形成凝胶膜,经过干燥和烧结制备纳滤膜。在通过溶胶-凝胶法制备完整无缺陷的陶瓷纳滤膜的过程中,通常要克服两方面的问题,一方面是如何控制溶胶粒子的粒径大小,另一方面是如何保证膜层的完整性。尽管溶胶-凝胶法的制备简单,过程容易控制,可以大面积在不同形状、不同材料的基片上制备薄膜,广泛应用于陶瓷超滤膜和纳滤膜的制备。但是该方法难以控制膜材料的孔径分布、孔隙率等微观性质,对于制备高精度的小孔径陶瓷膜这些问题更加明显。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种陶瓷纳滤膜的制备方法。
一种陶瓷纳滤膜的制备方法,包括如下步骤:
(1)有机钛盐的醇溶液中加入硝酸溶液,其中有机钛盐和水的摩尔比为1:10-1:100,在常温下搅拌滴加甘油,甘油和有机钛盐的质量比为1:1-2,陈化,制得氧化钛溶胶;
(2)将步骤(1)中得到的氧化钛溶胶中加入矿化剂和表面活性剂,放入水热反应釜中,填充度为50-80%,在100-120℃下保温反应5-10h,冷却,制得氧化钛纳米溶液;
(3)将步骤(2)中得到的氧化钛纳米溶液内加入作为增塑剂和作为粘结剂,并使增塑剂和粘结剂的终浓度分别为3-10wt%和0.1-1wt%,混匀,制得涂膜液;
(4)将该涂膜液涂于多孔氧化铝陶瓷膜支撑体上,在10-20%的湿度下,升温至80-120℃,保温干燥2-5h,然后再升温至350-600℃,保温煅烧2-5h,冷却,即得所述陶瓷纳滤膜。
更进一步为:
(1)在浓度为0.2-0.5mol/L有机钛盐的醇溶液中加入pH为1.0-1.5的硝酸水溶液,其中有机钛盐和水的摩尔比为1:10-1:100,在常温下搅拌10-30min,然后滴加甘油,甘油和有机钛盐的质量比为1:1-2,继续搅拌30min,于48-52℃陈化10-13h,制得透明的氧化钛溶胶;
(2)在步骤(1)中得到的氧化钛溶胶中加入0.1mol的矿化剂和表面活性剂,并搅拌均匀,放入水热反应釜中,填充度为50-80%,在100-120℃下保温反应5-10h,冷却,制得颗粒均一的氧化钛纳米溶液;
(3)向步骤(2)中得到的氧化钛纳米溶液内加入作为增塑剂的重均分子量为350-450的聚乙二醇和作为粘结剂的分子量为6000-10000的纤维素类化合物,并使增塑剂和粘结剂的终浓度分别为3-10wt%和0.1-1wt%,混匀,制得涂膜液;该纤维素类化合物为羟甲基纤维素、羟乙基纤维素或羟丙基纤维素;
(4)将该涂膜液涂于多孔氧化铝陶瓷膜支撑体上,在10-20%的湿度下,以1-3℃/min的速度升温至80-120℃,保温干燥2-5h,然后以1-5℃/min的速度升温至350-600℃,保温煅烧2-5h,冷却,即得所述陶瓷纳滤膜。
在本发明的一个优选实施方案中,所述有机钛盐为钛酸正丁酯或钛酸异丙醇酯。
在本发明的一个优选实施方案中,所述矿化剂为氧化镁、氟化钠或硝酸铵。
在本发明的一个优选实施方案中,所述表面活性剂为十二胺。
在本发明的一个优选实施方案中,所述步骤(3)为,向步骤(2)中得到的氧化钛纳米溶液内加入作为增塑剂的重均分子量为350-450的聚乙二醇和作为粘结剂的纤维素类化合物,并使增塑剂和粘结剂的终浓度分别为3-10wt%和0.1-1wt%,混合均匀后,再加入消泡剂至消泡剂的终浓度为0.01-0.1wt%,混匀,制得涂膜液。
进一步优选的,所述消泡剂为有机硅消泡剂byk028。
在本发明的一个优选实施方案中,所述多孔氧化铝陶瓷膜支撑体的平均孔径为0.1μm。
本发明的有益效果是:
1、本发明通过改性的溶胶-凝胶法结合水热法制备完整无缺陷的陶瓷纳滤膜。在改性的溶胶中加入甘油起到抑制晶体转变,阻止晶粒长大。
2、本发明在通过水热反应制备高纯、晶粒均匀的纳米粒子溶液,同时,在水热反应中加入矿化剂和表面活性剂,起到降低水热温度和抑制晶体聚合的作用,制备出粒径在3-5nm的纳米粒子,接着通过加入增塑剂和粘结剂制备陶瓷纳滤膜。
附图说明
图1为本发明对比例1所制得的氧化钛陶瓷纳滤膜的膜层的扫描电镜照片。
图2为本发明对比例2所制得的氧化钛陶瓷纳滤膜的膜层的扫描电镜照片。
图3为本发明实施例1所制得的陶瓷纳滤膜的膜层的扫描电镜照片。
图4为实施例11KD表面和截面,截面厚度在600-800nm之间。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
对比例1
(1)在0.3mol/L钛酸正丁酯溶液中加入pH为1.2的硝酸水溶液中,按照钛酸正丁酯和水的摩尔比为1:50的比例,在常温下搅拌20min,然后滴加甘油,甘油和钛酸正丁酯的质量比为1:1,继续搅拌30min,于50℃陈化12h,制得透明的氧化钛溶胶;
(2)向步骤(1)中得到的氧化钛溶胶内加入PEG-400和分子量为6000-10000的羟甲基纤维素,并使PEG-400和羟甲基纤维素的质量浓度分别为5%、0.5%,再加入有机硅消泡剂byk028(德国毕克公司)并使其终质量浓度为0.05%,混匀,制得涂膜液;
(3)将该涂膜液涂于平均孔径为0.1μm的多孔氧化铝陶瓷膜支撑体上,按照湿度在65%以上,以2℃/min的速度升温至100℃,保温干燥3h,然后以3℃/min的速度升温至500℃,保温煅烧3h,冷却,即得氧化钛陶瓷纳滤膜。膜层容易出现裂纹(如图1所示).
对比例2
(1)在0.3mol/L钛酸正丁酯溶液中加入pH为1.2的硝酸水溶液中,按照钛酸正丁酯和水的摩尔比为1:50的比例,在常温下搅拌20min,然后滴加甘油,甘油和钛酸正丁酯的质量比为1:1,继续搅拌30min,于50℃陈化12h,制得透明的氧化钛溶 胶;
(2)将步骤(1)中得到的氧化钛溶胶放入水热反应釜中,填充度为60%,在100℃下保温反应8h,冷却,制得颗粒均一的氧化钛纳米溶液;
(3)向步骤(2)中得到的氧化钛纳米溶液内加入PEG-400和分子量为6000‐10000的羟甲基纤维素,并使PEG-400和羟甲基纤维素的质量浓度分别为5%、0.5%,再加入有机硅消泡剂byk028并使其终质量浓度为0.05%,混匀,制得涂膜液;
(4)将该涂膜液涂于平均孔径为0.1μm的多孔氧化铝陶瓷膜支撑体上,按照湿度在40%,以2℃/min的速度升温至100℃,保温干燥3h,然后以2℃/min的速度升温至500℃,保温煅烧3h,冷却,即得氧化钛陶瓷纳滤膜。其膜层完整(如图2所示)。
实施例1
(1)在0.3mol/L钛酸正丁酯溶液中加入pH为1.2的硝酸水溶液中,按照钛酸正丁酯和水的摩尔比为1:50的比例,在常温下搅拌20min,然后滴加甘油,甘油和钛酸正丁酯的质量比为1:1,继续搅拌30min,于50℃陈化12h,制得透明的氧化钛溶胶;
(2)在步骤(1)中得到的氧化钛溶胶中加入0.1mol的矿化剂氧化镁和十二胺,并搅拌均匀,放入水热反应釜中,填充度为60%,在200℃下保温反应8h,冷却,制得颗粒均一的氧化钛纳米溶液;
(3)向步骤(2)中得到的氧化钛纳米溶液内加入PEG-400和分子量为6000-10000的羟甲基纤维素,并使PEG-400和羟甲基纤维素的质量浓度分别为5%、0.5%,再加入有机硅消泡剂byk028并使其终质量浓度为0.05%,混匀,制得涂膜液;
(4)将该涂膜液涂于平均孔径为0.1μm的多孔氧化铝陶瓷膜支撑体上,按照湿度在40%,以2℃/min的速度升温至100℃,保温干燥3h,然后以2℃/min的速度升温至500℃,保温煅烧3h,冷却,即得所述陶瓷纳滤膜。膜层完整(如图3所示)。
实施例2
(1)在0.2mol/L钛酸正丁酯溶液中加入pH为1的硝酸水溶液中,按照钛酸正 丁酯和水的摩尔比为1:10的比例,在常温下搅拌20min,然后滴加甘油,甘油和钛酸正丁酯的质量比为1:1,继续搅拌30min,于50℃陈化12h,制得透明的氧化钛溶胶;
(2)在步骤(1)中得到的氧化钛溶胶中加入0.1mol的矿化剂氟化钠和十二胺,并搅拌均匀,放入水热反应釜中,填充度为50%,在120℃下保温反应5h,冷却,制得颗粒均一的氧化钛纳米溶液;
(3)向步骤(2)中得到的氧化钛纳米溶液内加入PEG-400和分子量为6000-10000的羟甲基纤维素,并使PEG-400和羟甲基纤维素的质量浓度分别为2%、0.1%,再加入有机硅消泡剂byk028并使其终质量浓度为0.01%,混匀,制得涂膜液;
(4)将该涂膜液涂于平均孔径为0.1μm的多孔氧化铝陶瓷膜支撑体上,按照湿度在30%,以1℃/min的速度升温至100℃,保温干燥3h,然后以1℃/min的速度升温至350℃,保温煅烧2h,冷却,即得所述陶瓷纳滤膜。
实施例3
(1)在0.5mol/L钛酸正丁酯溶液中加入pH为1.5的硝酸水溶液中,按照钛酸正丁酯和水的摩尔比为1:100的比例,在常温下搅拌20min,然后滴加甘油,甘油和钛酸正丁酯的质量比为1:2,继续搅拌30min,于50℃陈化12h,制得透明的氧化钛溶胶;
(2)在步骤(1)中得到的氧化钛溶胶中加入0.1mol的矿化剂硝酸铵和十二胺,并搅拌均匀,放入水热反应釜中,填充度为80%,在120℃下保温反应10h,冷却,制得颗粒均一的氧化钛纳米溶液;
(3)向步骤(2)中得到的氧化钛纳米溶液内加入PEG-400和分子量为6000-10000的羟丙基纤维素,并使PEG-400和羟丙基纤维素的质量浓度分别为10%、1%,再加入有机硅消泡剂byk028并使其终质量浓度为0.1%,混匀,制得涂膜液;
(4)将该涂膜液涂于平均孔径为0.1μm的多孔氧化铝陶瓷膜支撑体上,按照湿度在80%,以3℃/min的速度升温至120℃,保温干燥3h,然后以1℃/min的速度升温至600℃,保温煅烧5h,冷却,即得所述陶瓷纳滤膜。
上述实施例中的羟甲基纤维素还可以替换为羟乙基纤维素或羟丙基纤维素;
上述对比例和实施例所得的纳滤膜的效果对比如下表所示:
  制备方法 膜层 纳米粒子粒径 烘干湿度
对比例1 溶胶-凝胶法 易开裂 5-7nm 65%以上
对比例2 溶胶-水热法 膜层完整 20-40nm 20%-100%
实施例1 改性的溶胶-水热法 膜层完整 3-5nm 20%-100%
实施例2 改性的溶胶-水热法 膜层完整 4-6nm 20%-100%
实施例3 改性的溶胶-水热法 膜层完整 2-4nm 20%-100%
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种陶瓷纳滤膜的制备方法。本发明通过改性的溶胶-凝胶法结合水热法制备完整无缺陷的陶瓷纳滤膜。在改性的溶胶中加入甘油起到抑制晶体转变,阻止晶粒长大。本发明在通过水热反应制备高纯、晶粒均匀的纳米粒子溶液,同时,在水热反应中加入矿化剂和表面活性剂,起到降低水热温度和抑制晶体聚合的作用,制备出粒径在3-5nm的纳米粒子,接着通过加入增塑剂和粘结剂制备陶瓷纳滤膜,具有工业实用性。

Claims (12)

  1. 一种陶瓷纳滤膜的制备方法,其特征在于:包括如下步骤:
    (1)在浓度为0.2-0.5mol/L有机钛盐的醇溶液中加入pH为1.0-1.5的硝酸水溶液,其中有机钛盐和水的摩尔比为1:10-1:100,在常温下搅拌10-30min,然后滴加甘油,甘油和有机钛盐的质量比为1:1-2,继续搅拌30min,于48-52℃陈化10-13h,制得透明的氧化钛溶胶;
    (2)在步骤(1)中得到的氧化钛溶胶中加入0.1mol的矿化剂和表面活性剂,并搅拌均匀,放入水热反应釜中,填充度为50-80%,在100-120℃下保温反应5-10h,冷却,制得颗粒均一的氧化钛纳米溶液;
    (3)向步骤(2)中得到的氧化钛纳米溶液内加入作为增塑剂的重均分子量为350-450的聚乙二醇和作为粘结剂的分子量为6000-10000的纤维素类化合物,并使增塑剂和粘结剂的终浓度分别为3-10wt%和0.1-1wt%,混匀,制得涂膜液;该纤维素类化合物为羟甲基纤维素、羟乙基纤维素或羟丙基纤维素;
    (4)将该涂膜液涂于多孔氧化铝陶瓷膜支撑体上,在10-20%的湿度下,以1-3℃/min的速度升温至80-120℃,保温干燥2-5h,然后以1-5℃/min的速度升温至350-600℃,保温煅烧2-5h,冷却,即得所述陶瓷纳滤膜。
  2. 如权利要求1所述的制备方法,其特征在于:所述有机钛盐为钛酸正丁酯或钛酸异丙醇酯。
  3. 如权利要求1所述的制备方法,其特征在于:所述矿化剂为氧化镁、氟化钠或硝酸铵。
  4. 如权利要求1所述的制备方法,其特征在于:所述表面活性剂为十二胺。
  5. 如权利要求1所述的制备方法,其特征在于:所述步骤(3)为,向步骤(2)中得到的氧化钛纳米溶液内加入作为增塑剂的重均分子量为350-450的聚乙二醇和作为粘结剂的纤维素类化合物,并使增塑剂和粘结剂的终浓度分别为3-10wt%和0.1-1wt%,混合均匀后,再加入消泡剂至消泡剂的终浓度为0.01-0.1wt%,混匀,制得涂膜液。
  6. 如权利要求5所述的制备方法,其特征在于:所述消泡剂为有机硅消泡剂byk028。
  7. 如权利要求1所述的制备方法,其特征在于:所述多孔氧化铝陶瓷膜支撑体的平均孔径为0.1μm。
  8. 一种陶瓷纳滤膜的制备方法,其特征在于:包括如下步骤:
    (1)有机钛盐的醇溶液中加入硝酸溶液,其中有机钛盐和水的摩尔比为1:10-1:100,在常温下搅拌滴加甘油,甘油和有机钛盐的质量比为1:1-2,陈化,制得氧化钛溶胶;
    (2)将步骤(1)中得到的氧化钛溶胶中加入矿化剂和表面活性剂,放入水热反应釜中,填充度为50-80%,在100-120℃下保温反应5-10h,冷却,制得氧化钛纳米溶液;
    (3)将步骤(2)中得到的氧化钛纳米溶液内加入作为增塑剂和作为粘结剂,并使增塑剂和粘结剂的终浓度分别为3-10wt%和0.1-1wt%,混匀,制得涂膜液;
    (4)将该涂膜液涂于多孔氧化铝陶瓷膜支撑体上,在10-20%的湿度下,升温至80-120℃,保温干燥2-5h,然后再升温至350-600℃,保温煅烧2-5h,冷却,即得所述陶瓷纳滤膜。
  9. 如权利要求8所述的制备方法,其特征在于:所述有机钛盐为钛酸正丁酯或钛酸异丙醇酯。
  10. 如权利要求8所述的制备方法,其特征在于:所述矿化剂为氧化镁、氟化钠或硝酸铵。
  11. 如权利要求8所述的制备方法,其特征在于:所述表面活性剂为十二胺。
  12. 如权利要求8所述的制备方法,其特征在于:所述步骤(3)为,将步骤(2)中得到的氧化钛纳米溶液内加入作为增塑剂为重均分子量为350-450的聚乙二醇和作为粘结剂的纤维素类化合物,混合均匀后,再加入消泡剂至消泡剂的终浓度为0.01-0.1wt%,混匀,制得涂膜液,该纤维素类化合物为羟甲基纤维素、羟乙基纤维素或羟丙基纤维素。
PCT/CN2020/091609 2019-09-12 2020-05-21 一种陶瓷纳滤膜的制备方法 WO2021047205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910868038.3 2019-09-12
CN201910868038.3A CN110743384B (zh) 2019-09-12 2019-09-12 一种陶瓷纳滤膜的制备方法

Publications (1)

Publication Number Publication Date
WO2021047205A1 true WO2021047205A1 (zh) 2021-03-18

Family

ID=69276439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091609 WO2021047205A1 (zh) 2019-09-12 2020-05-21 一种陶瓷纳滤膜的制备方法

Country Status (2)

Country Link
CN (1) CN110743384B (zh)
WO (1) WO2021047205A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025634A (zh) * 2022-06-30 2022-09-09 常州大学 一种具有梯度孔径结构有机硅/陶瓷复合膜的制备方法
CN115364676A (zh) * 2021-05-21 2022-11-22 三达膜科技(厦门)有限公司 一种高通量球形氧化铝陶瓷微滤膜的制备方法
CN115368158A (zh) * 2021-05-21 2022-11-22 三达膜科技(厦门)有限公司 一种超薄氧化钛陶瓷纳滤膜的制备方法
CN115772548A (zh) * 2023-01-31 2023-03-10 山东寿光巨能金玉米开发有限公司 一种有机酸与l-赖氨酸联合生产的方法
CN116832623A (zh) * 2023-07-03 2023-10-03 威海智洁环保技术有限公司 一种多元金属氧化物改性催化复合陶瓷膜的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743384B (zh) * 2019-09-12 2021-12-10 三达膜科技(厦门)有限公司 一种陶瓷纳滤膜的制备方法
CN113797766A (zh) * 2020-06-12 2021-12-17 三达膜科技(厦门)有限公司 一种高通量改性氧化钛复合超滤膜及其应用
CN115364689A (zh) * 2021-05-21 2022-11-22 三达膜科技(厦门)有限公司 一种超薄氧化锆-氧化钛陶瓷复合纳滤膜的制备方法
CN113480678B (zh) * 2021-08-06 2022-03-25 江西华太药业有限公司 右旋糖酐铁合成方法及其分散片

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500402A (zh) * 2011-10-31 2012-06-20 黑龙江大学 利用类微乳体系合成AgBr-TiO2纳米异质结构光催化剂的方法
KR20120122451A (ko) * 2011-04-29 2012-11-07 선경워텍(주) 수열합성법을 이용한 티타늄산화물 나노입자의 제조방법
CN105329939A (zh) * 2015-12-03 2016-02-17 安徽中创电子信息材料有限公司 一种尺寸可控纳米级立方相超细钛酸钡粉体的制备方法
CN106178981A (zh) * 2016-08-12 2016-12-07 三达膜科技(厦门)有限公司 一种低温制备氧化钛陶瓷超滤膜的方法
CN106178970A (zh) * 2016-08-12 2016-12-07 三达膜科技(厦门)有限公司 一种制备氧化锆陶瓷超滤膜的方法
CN107151029A (zh) * 2017-04-28 2017-09-12 长安大学 一种四方相钛酸钡粉体的溶胶‑水热法制备工艺
CN107188222A (zh) * 2017-06-21 2017-09-22 天津宝兴威科技股份有限公司 一种酸催化溶胶凝胶法制备纳米二氧化钛的方法
CN108238627A (zh) * 2018-04-20 2018-07-03 内江师范学院 高比表面积微纳米二氧化铈的制备方法
CN109574073A (zh) * 2018-06-13 2019-04-05 上海上惠纳米科技有限公司 一种高分散纳米氧化锆粉末的制备方法
CN110743384A (zh) * 2019-09-12 2020-02-04 三达膜科技(厦门)有限公司 一种陶瓷纳滤膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341701B1 (en) * 1996-12-27 2002-01-29 Ngk Insulators, Ltd. Ceramic porous membrane including ceramic of ceramic and ceramic sol particles, ceramic porous body including the membrane, and method of manufacturing the membrane
CN102743983B (zh) * 2012-06-01 2014-10-08 新加坡三泰水技术有限公司 纳米多孔陶瓷复合纳滤膜及其制备方法
CN102744065B (zh) * 2012-07-19 2014-10-01 福州大学 一种具有光热耦合作用的催化剂及其制备方法
CN103706337B (zh) * 2013-12-30 2015-10-07 成都纺织高等专科学校 一种除甲醛纳米混合物及其制备方法
CN107020074A (zh) * 2016-02-02 2017-08-08 中国科学院大学 一种具有微纳结构的电催化多孔钛滤膜及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120122451A (ko) * 2011-04-29 2012-11-07 선경워텍(주) 수열합성법을 이용한 티타늄산화물 나노입자의 제조방법
CN102500402A (zh) * 2011-10-31 2012-06-20 黑龙江大学 利用类微乳体系合成AgBr-TiO2纳米异质结构光催化剂的方法
CN105329939A (zh) * 2015-12-03 2016-02-17 安徽中创电子信息材料有限公司 一种尺寸可控纳米级立方相超细钛酸钡粉体的制备方法
CN106178981A (zh) * 2016-08-12 2016-12-07 三达膜科技(厦门)有限公司 一种低温制备氧化钛陶瓷超滤膜的方法
CN106178970A (zh) * 2016-08-12 2016-12-07 三达膜科技(厦门)有限公司 一种制备氧化锆陶瓷超滤膜的方法
CN107151029A (zh) * 2017-04-28 2017-09-12 长安大学 一种四方相钛酸钡粉体的溶胶‑水热法制备工艺
CN107188222A (zh) * 2017-06-21 2017-09-22 天津宝兴威科技股份有限公司 一种酸催化溶胶凝胶法制备纳米二氧化钛的方法
CN108238627A (zh) * 2018-04-20 2018-07-03 内江师范学院 高比表面积微纳米二氧化铈的制备方法
CN109574073A (zh) * 2018-06-13 2019-04-05 上海上惠纳米科技有限公司 一种高分散纳米氧化锆粉末的制备方法
CN110743384A (zh) * 2019-09-12 2020-02-04 三达膜科技(厦门)有限公司 一种陶瓷纳滤膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU, YAWEI, XIANFU CHEN, JUANJUAN WEN, MINGHUI QIU, YIQUN FAN: "Fabrication of high performance ZrO2-TiO2 NF membranes via a modified colloidal sol-gel process", JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING, HUAXUE GONGYE CHUBANSHE, CN, vol. 66, no. 9, 1 September 2015 (2015-09-01), CN, pages 3769 - 3775, XP055791111, ISSN: 0438-1157, DOI: 10.11949/j.issn.0438-1157.20150936 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115364676A (zh) * 2021-05-21 2022-11-22 三达膜科技(厦门)有限公司 一种高通量球形氧化铝陶瓷微滤膜的制备方法
CN115368158A (zh) * 2021-05-21 2022-11-22 三达膜科技(厦门)有限公司 一种超薄氧化钛陶瓷纳滤膜的制备方法
CN115368158B (zh) * 2021-05-21 2023-07-07 三达膜科技(厦门)有限公司 一种超薄氧化钛陶瓷纳滤膜的制备方法
CN115364676B (zh) * 2021-05-21 2024-04-19 三达膜科技(厦门)有限公司 一种高通量球形氧化铝陶瓷微滤膜的制备方法
CN115025634A (zh) * 2022-06-30 2022-09-09 常州大学 一种具有梯度孔径结构有机硅/陶瓷复合膜的制备方法
CN115025634B (zh) * 2022-06-30 2023-08-18 常州大学 一种具有梯度孔径结构有机硅/陶瓷复合膜的制备方法
CN115772548A (zh) * 2023-01-31 2023-03-10 山东寿光巨能金玉米开发有限公司 一种有机酸与l-赖氨酸联合生产的方法
CN116832623A (zh) * 2023-07-03 2023-10-03 威海智洁环保技术有限公司 一种多元金属氧化物改性催化复合陶瓷膜的制备方法
CN116832623B (zh) * 2023-07-03 2024-03-19 威海智洁环保技术有限公司 一种多元金属氧化物改性催化复合陶瓷膜的制备方法

Also Published As

Publication number Publication date
CN110743384B (zh) 2021-12-10
CN110743384A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2021047205A1 (zh) 一种陶瓷纳滤膜的制备方法
US4971696A (en) Inorganic porous membrane
CN106178981B (zh) 一种低温制备氧化钛陶瓷超滤膜的方法
WO2021047206A1 (zh) 一种氧化锆-氧化钛复合超滤膜的制备方法
WO2021248896A1 (zh) 一种氧化钛陶瓷超滤膜的制备方法
CN106178970B (zh) 一种制备氧化锆陶瓷超滤膜的方法
CN102380321A (zh) 一种氧化铝陶瓷膜膜层的制备方法
CN110743385A (zh) 一种氧化钛-氧化硅复合陶瓷超滤膜的制备方法
CN103360080A (zh) 一种改进的溶胶-凝胶法制备陶瓷纳滤膜的方法
CN87103503A (zh) 组合隔膜
CN108097064A (zh) 一种基于新型二维材料制备介孔陶瓷膜的方法
Changrong et al. Sol–gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide
Kreiter et al. Sol–gel routes for microporous zirconia and titania membranes
CN110743401A (zh) 一种高通量陶瓷超滤膜的制备方法
Khalili et al. Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination
CN104630771B (zh) 一种在金属载体表面制备多孔氧化物薄膜的方法
CN116444290A (zh) 一种稀土改进粉煤灰陶瓷膜及其制备方法
WO2021248897A1 (zh) 一种氧化锆陶瓷超滤膜的制备方法
CN104774024B (zh) 一种管式水处理膜的制备工艺
CN104529448B (zh) 一种高孔隙率高渗透性Nb2O5陶瓷膜及其制备方法
CN108568218B (zh) 多孔石墨烯膜的制备方法及其在二氧化碳捕集方面的应用
WO2021248900A1 (zh) 一种高通量改性氧化钛复合超滤膜及其应用
JPH06199569A (ja) ジルコニア及びイットリア安定化ジルコニア成形物の製造方法
JPH08299904A (ja) 無機多孔質膜及びその製造方法
Shi et al. Preparation and characterization of alumina membranes and alumina–titania composite membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862233

Country of ref document: EP

Kind code of ref document: A1