WO2021248900A1 - 一种高通量改性氧化钛复合超滤膜及其应用 - Google Patents

一种高通量改性氧化钛复合超滤膜及其应用 Download PDF

Info

Publication number
WO2021248900A1
WO2021248900A1 PCT/CN2020/142099 CN2020142099W WO2021248900A1 WO 2021248900 A1 WO2021248900 A1 WO 2021248900A1 CN 2020142099 W CN2020142099 W CN 2020142099W WO 2021248900 A1 WO2021248900 A1 WO 2021248900A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
sol
coupling agent
silane coupling
membrane
Prior art date
Application number
PCT/CN2020/142099
Other languages
English (en)
French (fr)
Inventor
陈云强
洪昱斌
方富林
蓝伟光
Original Assignee
三达膜科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三达膜科技(厦门)有限公司 filed Critical 三达膜科技(厦门)有限公司
Publication of WO2021248900A1 publication Critical patent/WO2021248900A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/05Cermet materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the invention belongs to the technical field of membrane separation, and specifically relates to a high-flux modified titanium oxide composite ultrafiltration membrane and its application.
  • oily wastewater is generated in the chemical, food, petroleum, metallurgical, pharmaceutical and other industrial fields. Every year on the earth, a large amount of oily wastewater is directly discharged into natural water. These oily wastewater will cause great harm to the environment. Irrigating farmland with oily wastewater can cause crop yield reduction or death. The consumption of oily wastewater by livestock can cause infection and disease in the esophagus, and endanger human health through the food chain. Therefore, how to efficiently treat oily wastewater has become a hot spot for researchers.
  • the traditional treatment process of oily wastewater mainly includes centrifugal separation, gravity separation, chemical treatment and particle filler filtration.
  • filtered oily wastewater can basically meet the discharge requirements, but the oil content and particle size of the filtered water are often difficult to reach the first-level discharge standard.
  • Membrane separation method can not only quickly deal with and solve the problem of water pollution, but also will not cause secondary pollution, can realize recycling, save resources and protect the environment.
  • organic ultrafiltration membranes were used to treat oily wastewater, and the membrane pores were used to intercept suspended oil droplets to achieve the effect of oil-water separation.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a high-flux modified titanium oxide composite ultrafiltration membrane.
  • Another object of the present invention is to provide a method for preparing the above-mentioned high-throughput modified titanium oxide composite ultrafiltration membrane.
  • Another object of the present invention is to provide the application of the above-mentioned high flux modified titanium oxide composite ultrafiltration membrane.
  • a high-throughput modified titanium oxide composite ultrafiltration membrane comprising a porous ceramic membrane support and a titanium oxide separation membrane layer.
  • the titanium oxide separation membrane is grafted with cysteic acid through a silane coupling agent to separate the titanium oxide
  • the water contact angle of the surface of the film layer is 6-10°.
  • the silane coupling agent is 3-aminopropyltriethoxysilane.
  • the titanium oxide separation membrane layer is soaked in a silane coupling agent solution, reacted at room temperature, and dried after sufficient washing to obtain a titanium oxide separation membrane layer grafted with a silane coupling agent;
  • the step (1) is: adding the dispersant to the organotitanium solution, and then adding acid to dissolve the gel, the pH of the sol after dissolution is 2-5, and then add the dispersant Mix uniformly to prepare titanium oxide sol.
  • the solute of the organic titanium solution is n-butyl titanate or isopropanol titanate.
  • the concentration of the silane coupling agent solution is 1.9-2.1 mmol/L, and the concentration of the cysteic acid solution is 1-5 mol/L.
  • the dispersant is polyethylene glycol or glycerin.
  • the plasticizer is polyvinyl alcohol
  • the binder is a cellulose compound
  • the defoamer is a silicone defoamer
  • the drying and calcination are specifically: heating at room temperature to 80-120°C at a rate of 1-3°C/min, and then holding and drying for 2-5 hours, Then the temperature is increased to 500-700°C at a rate of 1-5°C/min, and the temperature is kept and sintered for 2-5 hours and then cooled naturally.
  • the beneficial effect of the present invention is that the present invention selects cysteic acid to modify the surface of the membrane layer, and the carboxyl group on the cysteic acid will react with the silane coupling agent on the ceramic membrane to improve the affinity of the membrane layer.
  • Water-based the water surface contact angle of the titanium oxide film is increased from 38° to 6-10°. This is because the cysteic acid hydrophilic group includes two parts: sulfo group and amino group, cysteic acid The hydrophilic group can form multiple hydrogen bonds with the solvent, so that the surface of the membrane has a strong hydrophilicity, which improves the anti-pollution performance and water flux.
  • titanium oxide sol by sol-gel method: add 0.5% dispersant polyethylene glycol to 0.5mol/L n-butyl titanate solution, in the sol-gel reaction, n-butyl titanate and water The molar ratio is 1:10, and acid is added to dissolve the gel. The pH of the sol after dissolution is 4 to obtain a titanium dioxide sol. Then add 1% of the dispersant polyethylene glycol and mix evenly to make a well-dispersed oxidation Titanium sol.
  • the comparative membrane prepared by this comparative example has a filtration rate of about 95 for oily wastewater with an oil content of 15g/L, and a flux of 300LHM for oily wastewater.
  • titanium oxide sol by sol-gel method: add 0.5% dispersant polyethylene glycol to 0.8mol/L n-butyl titanate solution, in the sol-gel reaction, n-butyl titanate and water The molar ratio is 1:50, and acid is added to dissolve the gel. The pH of the sol after dissolution is 4 to obtain a titanium dioxide sol. Then add 1% of the dispersant polyethylene glycol and mix evenly to make a well-dispersed oxide Titanium sol.
  • step (3) The material obtained in step (3) is soaked in 1mol/L sodium hydroxide solution for 5h, dried at 100°C for 24h, and after cooling, soaked in 3-aminopropyltriethoxysilane ethanol with a concentration of 2mmol/L In the solution, react at room temperature for 12 hours, then rinse with ethanol and deionized water several times, put it in an oven at a set temperature of 150°C for 12 hours, and then cool in the furnace to obtain a grafted ceramic membrane.
  • the comparative membrane prepared by this comparative example has a retention rate of 96% for filtering oily wastewater with an oil content of 15g/L, and a flux of 420LHM for oily wastewater.
  • step (3) The material obtained in step (3) is soaked in 1mol/L sodium hydroxide solution for 5h, dried at 100°C for 24h, and after cooling, soaked in 3-aminopropyltriethoxysilane ethanol with a concentration of 2mmol/L In the solution, react at room temperature for 12 hours, then rinse with ethanol and deionized water several times, put it in an oven at a set temperature of 150°C for 12 hours, and then cool in the furnace to obtain a grafted ceramic membrane.
  • the high flux modified titanium oxide composite ultrafiltration membrane prepared in this comparative example filters the oily wastewater with an oil content of 15g/L with a retention rate of 99%, and the flux of oily wastewater is 530LHM.
  • titanium oxide sol by sol-gel method: add 0.5% dispersant polyethylene glycol to 1mol/L n-butyl titanate solution, in the sol-gel reaction, the n-butyl titanate and water The molar ratio is 1:100, and acid is added to dissolve the gel. The pH of the sol after dissolution is 5 to obtain a titanium dioxide sol. Then 1% of the dispersant polyethylene glycol is added and mixed uniformly to make a well-dispersed titanium oxide Sol.
  • step (3) The material obtained in step (3) is soaked in 1mol/L sodium hydroxide solution for 5h, dried at 100°C for 24h, and after cooling, soaked in 3-aminopropyltriethoxysilane ethanol with a concentration of 2mmol/L In the solution, react at room temperature for 12 hours, then rinse with ethanol and deionized water several times, put it in an oven at a set temperature of 150°C for 12 hours, and then cool in the furnace to obtain a grafted ceramic membrane.
  • the high-throughput modified titanium oxide composite ultrafiltration membrane prepared in this example filters oily wastewater with an oil content of 15g/L with a retention rate of 98%, and a flux of 550LHM for oily wastewater.
  • the high-throughput modified titanium oxide composite ultrafiltration membrane prepared in this example filters the oily wastewater with an oil content of 15g/L with a retention rate of 98% and a flux of 570LHM for the oily wastewater.
  • the invention discloses a high flux modified titanium oxide composite ultrafiltration membrane and its application.
  • the invention selects cysteic acid to modify the surface of the membrane layer, and the carboxyl group on the cysteic acid will interact with the ceramic membrane.
  • the silane coupling agent reacts on the surface to increase the hydrophilicity of the film, and the water surface contact angle of the titanium oxide film is changed from 38° to 6-10°.
  • the cysteic acid hydrophilic group includes
  • the hydrophilic group part of cysteic acid can form multiple hydrogen bonds with the solvent, which makes the surface of the membrane have strong hydrophilicity, and improves the anti-pollution performance and water flux. It has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种高通量改性氧化钛复合超滤膜及其应用,本发明选择磺基丙氨酸来对膜层表面进行改性,磺基丙氨酸上的羧基会与陶瓷膜上的硅烷偶联剂发生反应,提高膜层的亲水性,使氧化钛膜层的水表面接触角从38°变为6-10°,这是由于磺基丙氨酸亲水基团包括了酰磺基和氨基两部分,磺基丙氨酸的亲水基团部分能和溶剂形成多重氢键,使膜层表面具有很强的亲水性,提升了抗污染性能和水通量。

Description

一种高通量改性氧化钛复合超滤膜及其应用 技术领域
本发明属于膜分离技术领域,具体涉及一种高通量改性氧化钛复合超滤膜及其应用。
背景技术
随着社会经济的快速发展,人们在生产生活中产生大量的含油废水。研究调查表明,在化工、食品、石油、冶金、医药等工业领域都会产生含油废水,地球上每年都有大量的含油废水被直接排入自然水中,这些含油废水会对环境造成巨大的危害,用含油废水灌溉农田,会造成农作物减产或死亡,牲畜饮用了含油废水会导致食道的感染致病,并会通过食物链危及人体健康。因此,对如何高效处理含油废水成为研究人员关注的热点。
含油废水的传统处理工艺主要包括离心分离、重力分离、化学处理及颗粒填料过滤等。经过传统过滤的含油废水基本可以满足排放要求,但滤水的含油量及粒径往往很难达到一级排放标准。近些年来,膜分离法对含油废水进行深度处理成为研究热点。膜分离法不仅可以快速处理解决水污染问题,而且不会带来二次污染,可以实现循环利用,节约资源保护环境。早期采用有机超滤膜进行含油废水的处理,利用膜孔对悬浮油滴的截留,达到油水分离效果。但是由于膜本身受温度的限制,不能在较高温度下操作,因此寿命不长。随着科技日新月异,无机陶瓷膜开始走上历史舞台。陶瓷膜的优良特性使其在处理含油废水的行业中显示出非常好的前景。但是含油废水易腐蚀陶瓷膜且容易堵塞膜孔,降低使用寿命。因此对陶瓷膜进行改性显得尤为重要,其中提高陶瓷膜的亲水性是解决问题的关键。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种高通量改性氧化钛复合超滤膜。
本发明的另一目的在于提供上述高通量改性氧化钛复合超滤膜的制备方法。
本发明的再一目的在于提供上述高通量改性氧化钛复合超滤膜的应用。
本发明的技术方案如下:
一种高通量改性氧化钛复合超滤膜,包括多孔陶瓷膜支撑体和氧化钛分离膜层,该氧化钛分离膜上通过硅烷偶联剂接枝有磺基丙氨酸使得氧化钛分离膜层的表面的 水接触角为6-10°。
在本发明的一个优选实施方案中,所述硅烷偶联剂为3-氨丙基三乙氧基硅烷。
本发明的另一技术方案如下:
上述高通量改性氧化钛复合超滤膜的制备方法,其特征在于:包括如下步骤:
(1)通过溶胶凝胶法制备氧化钛溶胶;
(2)在氧化钛溶胶中加入增塑剂、粘结剂和消泡剂,制成涂膜液;
(3)在多孔陶瓷膜支撑体上浸涂上述涂膜液,再经干燥和烧结后,制得氧化钛分离膜层;
(4)将上述氧化钛分离膜层经碱活化后浸泡于硅烷偶联剂溶液中,室温下进行反应,经充分冲洗后进行干燥,获得接枝硅烷偶联剂的氧化钛分离膜层;
(5)将上述接枝硅烷偶联剂的氧化钛分离膜层浸泡于磺基丙氨酸溶液中,于78-82℃反应3-5h,即得。
在本发明的一个优选实施方案中,所述步骤(1)为:将分散剂加入有机钛溶液中,再加入酸进行解胶,解胶后的溶胶的pH为2-5,再加入分散剂混合均匀,制成氧化钛溶胶。
进一步优选的,所述有机钛溶液的溶质为钛酸正丁酯或钛酸异丙醇酯。
在本发明的一个优选实施方案中,所述硅烷偶联剂溶液的浓度为1.9-2.1mmol/L,所述磺基丙氨酸溶液的浓度为1-5mol/L。
在本发明的一个优选实施方案中,所述分散剂为聚乙二醇或甘油。
在本发明的一个优选实施方案中,所述增塑剂为聚乙烯醇,所述粘结剂为纤维素类化合物,所述消泡剂为有机硅消泡剂。
在本发明的一个优选实施方案中,所述步骤(3)中,所述干燥和煅烧具体为:于室温以1-3℃/min的速度升温至80-120℃后保温干燥2-5h,再以1-5℃/min的速度升温至500-700℃,保温烧结2-5h后自然冷却。
本发明的再一技术方案如下:
上述高通量改性氧化钛复合超滤膜在处理含油废水中的应用。
本发明的有益效果是:本发明选择磺基丙氨酸来对膜层表面进行改性,磺基丙氨酸上的羧基会与陶瓷膜上的硅烷偶联剂发生反应,提高膜层的亲水性,使氧化钛膜层的水表面接触角从38°提高到6-10°,这是由于磺基丙氨酸亲水基团包括了酰磺基和 氨基两部分,磺基丙氨酸的亲水基团部分能和溶剂形成多重氢键,使膜层表面具有很强的亲水性,提升了抗污染性能和水通量。
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
对比例1
(1)采用溶胶凝胶法制备氧化钛溶胶:将0.5%的分散剂聚乙二醇加入0.5mol/L钛酸正丁酯溶液中,在溶胶凝胶反应中,钛酸正丁酯和水的摩尔比为1:10,再加入酸进行解胶,解胶后的溶胶pH为4,获得二氧化钛溶胶,再加入1%的分散剂聚乙二醇,并混合均匀,制成分散良好的氧化钛溶胶。
(2)将制成分散良好的氧化钛溶胶加入2%的聚乙烯醇和5%的羟乙基纤维素,充分混匀后,再加入0.01%的消泡剂,制成分散均匀的涂膜液。
(3)将上述涂膜液采用浸涂的方式涂于平均孔径为0.1μm的多孔陶瓷膜支撑体上,然后于室温以3℃/min的速度升温至120℃后保温干燥5h,再以3℃/min的速度升温至600℃,保温烧结3h后自然冷却,制得对比膜(氧化钛膜层的水表面接触角为38°)。
在0.1MPa和25℃条件下,本对比例制得的对比膜过滤含油量为15g/L的含油废水截留率约95,含油废水通量为300LHM。
对比例2
(1)采用溶胶凝胶法制备氧化钛溶胶:将0.5%的分散剂聚乙二醇加入0.8mol/L钛酸正丁酯溶液中,在溶胶凝胶反应中,钛酸正丁酯和水的摩尔比为1:50,再加入酸进行解胶,解胶后的溶胶pH为4,获得二氧化钛溶胶,再加入1%的分散剂聚乙二醇,并混合均匀,制成分散良好的氧化钛溶胶。
(2)将制成分散良好的氧化钛溶胶加入3%的聚乙烯醇和5%的羟乙基纤维素,充分混匀后,再加入0.01%的消泡剂,制成分散均匀的涂膜液。
(3)将上述涂膜液采用浸涂的方式涂于平均孔径为0.1μm的多孔陶瓷膜支撑体 上,然后于室温以1℃/min的速度升温至120℃后保温干燥5h,再以5℃/min的速度升温至600℃,保温烧结5h后自然冷却。
(4)将步骤(3)所得的物料用1mol/L氢氧化钠溶液浸泡5h,100℃下烘干24h,冷却后浸泡在浓度为2mmol/L的3-氨丙基三乙氧基硅烷乙醇溶液中,在室温下反应12h,然后依次用乙醇和去离子水冲洗数次,放入烘箱中以温度设定值150℃干燥12h后随炉冷却获得接枝后的陶瓷膜。
(5)将接枝后的陶瓷膜浸泡于浓度为0.5mol/L的磺基丙氨酸水溶液中,浸泡10min后取出膜管在烘箱80℃下反应3h,制备获得对比膜(氧化钛膜层的水表面接触角为22°)。
在0.1MPa和25℃条件下,本对比例制得的对比膜过滤含油量为15g/L的含油废水截留率96%,含油废水通量为420LHM。
实施例1
(1)-(3)同对比例2。
(4)将步骤(3)所得的物料用1mol/L氢氧化钠溶液浸泡5h,100℃下烘干24h,冷却后浸泡在浓度为2mmol/L的3-氨丙基三乙氧基硅烷乙醇溶液中,在室温下反应12h,然后依次用乙醇和去离子水冲洗数次,放入烘箱中以温度设定值150℃干燥12h后随炉冷却获得接枝后的陶瓷膜。
(5)将接枝后的陶瓷膜浸泡于浓度为1mol/L的磺基丙氨酸水溶液中,浸泡10min后取出膜管在烘箱80℃下反应3h,制备获得所述高通量改性氧化钛复合超滤膜(氧化钛膜层的水表面接触角为10°)。
在0.1MPa和25℃条件下,本对比例制得的高通量改性氧化钛复合超滤膜过滤含油量为15g/L的含油废水截留率99%,含油废水通量为530LHM。
实施例2
(1)采用溶胶凝胶法制备氧化钛溶胶:将0.5%的分散剂聚乙二醇加入1mol/L钛酸正丁酯溶液中,在溶胶凝胶反应中,钛酸正丁酯和水的摩尔比为1:100,再加入酸进行解胶,解胶后的溶胶pH为5,获得二氧化钛溶胶,再加入1%的分散剂聚乙二 醇,并混合均匀,制成分散良好的氧化钛溶胶。
(2)将制成分散良好的氧化钛溶胶加入3%的聚乙烯醇和2%的羟乙基纤维素,充分混匀后,再加入0.1%的消泡剂,制成分散均匀的涂膜液。
(3)将上述涂膜液采用浸涂的方式涂于平均孔径为0.1μm的多孔陶瓷膜支撑体上,然后于室温以1℃/min的速度升温至120℃后保温干燥5h,再以5℃/min的速度升温至700℃,保温烧结5h后自然冷却。
(4)将步骤(3)所得的物料用1mol/L氢氧化钠溶液浸泡5h,100℃下烘干24h,冷却后浸泡在浓度为2mmol/L的3-氨丙基三乙氧基硅烷乙醇溶液中,在室温下反应12h,然后依次用乙醇和去离子水冲洗数次,放入烘箱中以温度设定值150℃干燥12h后随炉冷却获得接枝后的陶瓷膜。
(5)将接枝后的陶瓷膜浸泡于浓度为3mol/L的磺基丙氨酸水溶液中,浸泡10min后取出膜管在烘箱80℃下反应5h,制备获得所述高通量改性氧化钛复合超滤膜(氧化钛膜层的水表面接触角为7°)。
在0.1MPa和25℃条件下,本实施例制得的高通量改性氧化钛复合超滤膜过滤含油量为15g/L的含油废水截留率98%,含油废水通量550LHM。
实施例3
(1)-(4)同实施例2。
(5)将接枝后的陶瓷膜浸泡于浓度为5mol/L的磺基丙氨酸水溶液中,浸泡10min后取出膜管在烘箱80℃下反应5h,制备获得所述高通量改性氧化钛复合超滤膜(氧化钛膜层的水表面接触角为6°)。
在0.1MPa和25℃条件下,本实施例制得的高通量改性氧化钛复合超滤膜过滤含油量为15g/L的含油废水截留率98%,含油废水通量570LHM。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种高通量改性氧化钛复合超滤膜及其应用,本发明选择磺基丙氨 酸来对膜层表面进行改性,磺基丙氨酸上的羧基会与陶瓷膜上的硅烷偶联剂发生反应,提高膜层的亲水性,使氧化钛膜层的水表面接触角从38°变为6-10°,这是由于磺基丙氨酸亲水基团包括了酰磺基和氨基两部分,磺基丙氨酸的亲水基团部分能和溶剂形成多重氢键,使膜层表面具有很强的亲水性,提升了抗污染性能和水通量,具有工业实用性。

Claims (9)

  1. 一种高通量改性氧化钛复合超滤膜,其特征在于:包括多孔陶瓷膜支撑体和氧化钛分离膜层,该氧化钛分离膜上通过硅烷偶联剂接枝有磺基丙氨酸使得氧化钛分离膜层的表面的水接触角为6-10°。
  2. 如权利要求1所述的一种高通量改性氧化钛复合超滤膜,其特征在于:所述硅烷偶联剂为3-氨丙基三乙氧基硅烷。
  3. 权利要求1或2所述的一种高通量改性氧化钛复合超滤膜的制备方法,其特征在于:包括如下步骤:
    (1)通过溶胶凝胶法制备氧化钛溶胶;
    (2)在氧化钛溶胶中加入增塑剂、粘结剂和消泡剂,制成涂膜液;
    (3)在多孔陶瓷膜支撑体上浸涂上述涂膜液,再经干燥和烧结后,制得氧化钛分离膜层;
    (4)将上述氧化钛分离膜层经碱活化后浸泡于硅烷偶联剂溶液中,室温下进行反应,经充分冲洗后进行干燥,获得接枝硅烷偶联剂的氧化钛分离膜层;
    (5)将上述接枝硅烷偶联剂的氧化钛分离膜层浸泡于磺基丙氨酸溶液中,于78-82℃反应3-5h,即得;
    所述硅烷偶联剂溶液的浓度为1.9-2.1mmol/L,所述磺基丙氨酸溶液的浓度为1-5mol/L。
  4. 如权利要求3所述的制备方法,其特征在于:所述步骤(1)为:将分散剂加入有机钛溶液中,再加入酸进行解胶,解胶后的溶胶的pH为2-5,再加入分散剂混合均匀,制成氧化钛溶胶。
  5. 如权利要求4所述的制备方法,其特征在于:所述有机钛溶液的溶质为钛酸正丁酯或钛酸异丙醇酯。
  6. 如权利要求3所述的制备方法,其特征在于:所述分散剂为聚乙二醇或甘油。
  7. 如权利要求3所述的制备方法,其特征在于:所述增塑剂为聚乙烯醇,所述粘结剂为纤维素类化合物,所述消泡剂为有机硅消泡剂。
  8. 如权利要求3所述的制备方法,其特征在于:所述步骤(3)中,所述干燥和煅烧具体为:于室温以1-3℃/min的速度升温至80-120℃后保温干燥2-5h,再以1-5℃/min的速度升温至500-700℃,保温烧结2-5h后自然冷却。
  9. 权利要求1或2所述的高通量改性氧化钛复合超滤膜在处理含油废水中的应用。
PCT/CN2020/142099 2020-06-12 2020-12-31 一种高通量改性氧化钛复合超滤膜及其应用 WO2021248900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010540187.X 2020-06-12
CN202010540187.XA CN113797766A (zh) 2020-06-12 2020-06-12 一种高通量改性氧化钛复合超滤膜及其应用

Publications (1)

Publication Number Publication Date
WO2021248900A1 true WO2021248900A1 (zh) 2021-12-16

Family

ID=78846925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142099 WO2021248900A1 (zh) 2020-06-12 2020-12-31 一种高通量改性氧化钛复合超滤膜及其应用

Country Status (2)

Country Link
CN (1) CN113797766A (zh)
WO (1) WO2021248900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449234A (zh) * 2022-08-16 2022-12-09 河南佰利联新材料有限公司 一种原位热解Ti-MOF制备的环保性高耐候钛白粉及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481928A (zh) * 2003-07-29 2004-03-17 复旦大学 亲水性有机-无机复合渗透蒸发分离膜及其制备方法
US20120261343A1 (en) * 2011-04-15 2012-10-18 William Marsh Rice University Methods, Systems and Membranes for Separation of Organic Compounds from Liquid Samples
CN104772044A (zh) * 2015-03-13 2015-07-15 南京工业大学 一种界面改性提高有机无机复合膜性能的方法
CN105960273A (zh) * 2013-10-30 2016-09-21 分子过滤有限公司 有机化合物与液体的分离
CN106178981A (zh) * 2016-08-12 2016-12-07 三达膜科技(厦门)有限公司 一种低温制备氧化钛陶瓷超滤膜的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357240A (zh) * 2008-09-12 2009-02-04 西南交通大学 一种在Ti-O薄膜表面固定层粘连蛋白的方法
WO2014081734A1 (en) * 2012-11-20 2014-05-30 Lance Energy Services, L.L.C. Functionalized ceramic membranes for the separation of organics from raw water and methods of filtration using functionalized ceramic membranes
CN110038438B (zh) * 2019-04-04 2021-10-26 三达膜科技(厦门)有限公司 一种有机无机复合陶瓷纳滤膜的制备方法
CN110743384B (zh) * 2019-09-12 2021-12-10 三达膜科技(厦门)有限公司 一种陶瓷纳滤膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481928A (zh) * 2003-07-29 2004-03-17 复旦大学 亲水性有机-无机复合渗透蒸发分离膜及其制备方法
US20120261343A1 (en) * 2011-04-15 2012-10-18 William Marsh Rice University Methods, Systems and Membranes for Separation of Organic Compounds from Liquid Samples
CN105960273A (zh) * 2013-10-30 2016-09-21 分子过滤有限公司 有机化合物与液体的分离
CN104772044A (zh) * 2015-03-13 2015-07-15 南京工业大学 一种界面改性提高有机无机复合膜性能的方法
CN106178981A (zh) * 2016-08-12 2016-12-07 三达膜科技(厦门)有限公司 一种低温制备氧化钛陶瓷超滤膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAGUIRE-BOYLE SAMUEL J., HUSEMAN JOSEPH E., AINSCOUGH THOMAS J., OATLEY-RADCLIFFE DARREN L., ALABDULKAREM ABDULLAH A., AL-MOJIL SA: "Superhydrophilic Functionalization of Microfiltration Ceramic Membranes Enables Separation of Hydrocarbons from Frac and Produced Water", SCIENTIFIC REPORTS, vol. 7, no. 1, 12267, 1 December 2017 (2017-12-01), pages 1 - 9, XP055879162, DOI: 10.1038/s41598-017-12499-w *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449234A (zh) * 2022-08-16 2022-12-09 河南佰利联新材料有限公司 一种原位热解Ti-MOF制备的环保性高耐候钛白粉及制备方法
CN115449234B (zh) * 2022-08-16 2023-10-03 河南佰利联新材料有限公司 一种原位热解Ti-MOF制备的环保性高耐候钛白粉及制备方法

Also Published As

Publication number Publication date
CN113797766A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2022148460A1 (zh) 纤维复合气凝胶材料及其制备方法和应用
WO2021047205A1 (zh) 一种陶瓷纳滤膜的制备方法
CN87103503A (zh) 组合隔膜
JP2019006125A (ja) 基板の改善された製造のための組成
CN108854589B (zh) 一种用于油水分离的莫来石晶须中空纤维膜及其制备方法
CN107376673B (zh) 一种负载有TiO2纳米管的PES超滤膜及其制备方法和应用
CN105126647B (zh) 一种高效油水分离复合超滤膜的制备方法
CN101698141B (zh) 一种聚偏氟乙烯/氧化铝杂化膜制备方法
CN108854588B (zh) 一种具有双重过硫酸盐活化功能的中空纤维陶瓷膜的制备方法及应用
WO2021248900A1 (zh) 一种高通量改性氧化钛复合超滤膜及其应用
CN115212729A (zh) 一种高稳定性水处理用超滤膜及其制备方法
CN101069750A (zh) 一种除病毒过滤膜及其制备方法
CN104383818A (zh) 复合微孔隔膜、制备方法及其用途
CN110272298B (zh) 一种氧化钛陶瓷超滤膜的制备方法
CN106964330B (zh) 活性碳纤维膜负载TiO2/ZnO光催化剂的制备方法
CN105670021A (zh) 一种在溶剂浸渍树脂表面包覆半透膜的方法
CN108816056A (zh) 一种抗污染纳滤膜的制备方法
CN108004682A (zh) 一种静电纺丝制备荷正电杂化纤维膜的方法
CN111153684B (zh) 陶瓷膜及其制备方法和应用
CN212881904U (zh) 过滤结构件
CN107694352A (zh) 二氧化钛纤维复合陶瓷分离膜及其制备方法
CN108905626B (zh) 一种复合超滤膜及其制备方法和应用
CN104529448B (zh) 一种高孔隙率高渗透性Nb2O5陶瓷膜及其制备方法
CN1330413C (zh) TiO2光催化透明薄膜的制备方法
CN114573354B (zh) 一种低温制备陶瓷膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939502

Country of ref document: EP

Kind code of ref document: A1