CN113333023A - 一种高吸附碘氧化铋可见光催化剂及其应用 - Google Patents

一种高吸附碘氧化铋可见光催化剂及其应用 Download PDF

Info

Publication number
CN113333023A
CN113333023A CN202110550238.1A CN202110550238A CN113333023A CN 113333023 A CN113333023 A CN 113333023A CN 202110550238 A CN202110550238 A CN 202110550238A CN 113333023 A CN113333023 A CN 113333023A
Authority
CN
China
Prior art keywords
bismuth
visible light
bismuth oxyiodide
oxyiodide
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110550238.1A
Other languages
English (en)
Other versions
CN113333023B (zh
Inventor
朱新生
杨伟婷
孟言
洪愫
林楚楚
孙凯
石小丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Textile and Silk Industrial Technology Research Institute
Original Assignee
Nantong Textile and Silk Industrial Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Textile and Silk Industrial Technology Research Institute filed Critical Nantong Textile and Silk Industrial Technology Research Institute
Priority to CN202110550238.1A priority Critical patent/CN113333023B/zh
Publication of CN113333023A publication Critical patent/CN113333023A/zh
Application granted granted Critical
Publication of CN113333023B publication Critical patent/CN113333023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高吸附碘氧化铋可见光催化剂及其应用。一种高吸附碘氧化铋可见光催化剂,是通过以下步骤获得的:(1)将铋盐与酸、醇溶液混合得到混合液A;将粉体聚维酮碘配成水溶液B;(2)将混合液A缓慢滴加到水溶液B中,并在室温下过夜持续搅拌均匀后,再将混合溶液转移至三口烧瓶,在搅拌与回流条件下进行高温反应;(3)将所得反应产物分离、洗涤与干燥。本发明高吸附碘氧化铋超细粉体,具有比表面积大,能更好地吸收可见光,和对待降解的污染物吸附性强。本发明“原位”再生的聚乙烯基吡咯烷酮包覆的碘氧化铋能直接附着在粘胶、棉纤维表面,而不需要再添加其他的化学试剂进行后整理,整理方法简单高效。

Description

一种高吸附碘氧化铋可见光催化剂及其应用
技术领域
本发明涉及一种高吸附碘氧化铋可见光催化剂及其应用,属于新材料技术领域。
背景技术
随着我国经济的高速发展,尤其中国已经是世界最大的纺织品生产国,纺织工业发展也产生了大量纺织印染废水,因此,有效解决诸如纺织印染废水一直是困扰科技界与工程界难题。在众多物理与化学方法中,光催化降解法与化学氧化法,物理吸附法,微生物降解法相比,光催化降解法是一种简单,经济与高效可行的方法。
光催化剂概念源于二十世纪八十年代,Fujishima等人发现,在紫外光照射下,借助半导体二氧化硅(TiO2)媒介将水分解并制备出了氢气与氧气,从而开启了半导体光催化材料的研究。由于TiO2禁带宽度较大,只能利用部分太阳能,所以,可见光催化剂的研发逐渐受到重视。可见光催化剂的禁带宽度较窄,可以在400-800nm区间有强烈响应。此时,如果可见光催化剂在光照射后具有高效的电子-空穴分离性能,可将目标污染物分解成无毒无害的小分子化合物,这样,太阳能的利用便得到了大幅度提升。由此可见,可见光催化剂的开发已成为光催化领域的重要研究方向之一。
在许多可见光催化剂中,由于卤氧化铋具有独特的[X-O-Bi-O-X]的层状结构,一方面,这种结构形成独特的内部电场,这将促进光生空穴及光生电子的分离及迁移;另一方面,卤素间的弱结合力使得卤氧化铋易沿特定方向解离,从而生成纳米尺寸厚度的片状结构与材料。目前,卤氧化铋已在废水与废气处理,抗菌以及水解制氢等方面取得了初步应用,但由于纯相卤氧化铋光吸收效率较低、光生空穴-光生电子的重新结合率较高,这又在很大程度上限制了卤氧化铋的应用。所以,提高卤氧化铋光吸收效率和促进载流子的分离成为这类光催化剂的重要研究方向。
目前常见的碘氧化铋改性方法多为半导体耦合、形成异质结和利用两个半导体的导带和价带的电位差等提高了光生空穴-电子的分离效率。Liying Huang等人制备了BiO2-x/BiOI的Z型半导体光催化剂,异质结的形成使得两种半导体的费米能级得到了调整,导致BiOI导带光生电子与BiO2-x价带产生的光生空穴结合,从而提高了BiOI的价带光生空穴与BiO2-x导带的光生电子的分离效率。
目前提高碘氧化铋光吸收效率重要方法之一是减少颗粒尺寸而降低其对可见光的反射而增加光吸收作用,实现的主要途径是使用模板化合物控制颗粒尺寸。
目前制备碘氧化铋光催化剂的碘源均为碘负离子,如碘化钾和含碘离子液体(1-丁基-4-甲基碘化吡啶,1-丁基-1-甲基碘化吡咯、1-丁基-3-甲基碘化咪唑鎓),Bielicka-Giełdoń等认为,与碘化钾相比,离子液体改变了碘氧化铋的形态与催化活性。另外,Qiaofen Han等比较十六烷基三甲基溴化铵(CTAB)与溴化钾对溴氧化铋的影响,CTAB获得了半球状溴氧化铋空心纳米微球,而溴化钾则得到了纳米片层。也就是说,模板剂和反离子结构能改变卤氧化铋形貌结构甚至化学组成。
发明内容
为了克服现有技术的不足,提高碘氧化铋的可见光的吸收作用和对污染物的吸附性,本发明提供了一种高吸附碘氧化铋可见光催化剂及其应用。
本发明是通过以下技术方案来实现的:
一种高吸附碘氧化铋可见光催化剂,是通过以下步骤获得的:
(1)将铋盐与酸、醇溶液混合得到混合液A;将粉体聚维酮碘配成水溶液B;
(2)将混合液A缓慢滴加到水溶液B中,并在室温下过夜持续搅拌均匀后,再将混合溶液转移至三口烧瓶,在搅拌与回流条件下进行高温反应;
(3)将所得反应产物分离、洗涤、干燥与研磨而得到超细粉体。
所述的一种高吸附碘氧化铋可见光催化剂,所述铋元素与碘元素摩尔比是1:1-10。
所述的一种高吸附碘氧化铋可见光催化剂,所述铋盐为五水硝酸铋、无水氯化铋、醋酸铋或碱式碳酸铋中的一种或几种。
所述的一种高吸附碘氧化铋可见光催化剂,所述酸为冰乙酸、稀硝酸或稀盐酸。
所述的一种高吸附碘氧化铋可见光催化剂,所述醇为丙三醇、乙二醇、异丙醇、乙醇或甲醇中的一种或几种。
所述的一种高吸附碘氧化铋可见光催化剂,以铋盐的摩尔质量为1计,所述酸和醇的用量分别为1-5 L和2-20L。
所述的一种高吸附碘氧化铋可见光催化剂,所述聚维酮碘水溶液摩尔浓度(mol/L)为:0.02-1.00
所述的一种高吸附碘氧化铋可见光催化剂,所述高温反应的温度为50-95℃,反应时间为3-10h。
所述的一种高吸附碘氧化铋可见光催化剂,所述干燥条件为:温度为80-100℃,时间为5-24h。
所述的一种高吸附碘氧化铋可见光催化剂的应用,所述碘氧化铋光催化剂应用于可见光催化降解各种污染物,包括有机化合物与无机化合物。
本发明所达到的有益效果:
(1)将铋盐混合液滴加到聚维酮碘水溶液中,便于铋盐与聚维酮碘大分子充分混合均匀,且避免可能铋盐与碘低温化学反应(溶液A缓慢滴加到B溶液中)。
(2)在室温下过夜使两溶液充分混合与搅拌均匀,同时也向混合溶液引入空气(包含氧气),这将会促进碘分子转变为碘负离子。
(3)聚维酮碘缓慢释放碘分子,然后碘分子再转变为碘负离子(水解与氧化反应),这使碘氧化铋生成速率低于其晶核生长速率,也就是说,聚维酮碘中的碘释放速率本质上控制了纳米微球尺寸。
(4)在室温与较低的温度下酸与醇并用,酸抑制铋离子快速转变为铋氧离子,醇调节乳液的极性、粘度和表面张力,控制碘氧化铋颗粒尺寸;特别是在高温反应条件下,醇与酸会发生酯化反应,这会进一步降低溶液表面张力,以及降低碘分子和溶于水中的氧分子挥发性,有利于超细碘氧化铋的形成。
(5)碘氧化铋合成过程中直接长成纳米晶体,而无需高温煅烧处理,降低生产成本,简化制备工艺流程。如果仍进行高温煅烧处理,则破坏其纳米结构和烧毁已经均匀吸附的聚乙烯基吡咯烷酮。
(6)聚乙烯基吡咯烷酮在位包覆碘氧化铋而降低了碘氧化铋晶片尺寸和由其组装的颗粒尺寸,这不仅增强碘氧化铋对可见光吸收作用,而且增强对待降解污染物的吸附作用,这两种作用都有利于加快光降解速率。
(7)原位再生的聚乙烯基吡咯烷酮在位包覆新生成的碘氧化铋,这种包覆处理可以使碘氧化铋很容易附着在粘胶、棉纤维表面,这极大地方便了光催化降解功能纺织品制备。
(8)本发明的高吸附超细碘氧化铋光催化剂,其比表面积为5-150m2/g。
附图说明
图1是实施案例1的碘氧化铋催化剂的SEM图。
图2是实施案例2的碘氧化铋催化剂的SEM图。
图3是实施案例3的碘氧化铋催化剂的SEM图。
图4是对照案例4的碘氧化铋催化剂的SEM图。
图5是各实施案例及对照案例的碘氧化铋光催化剂的(αhν)1/2与光子能量(hν)的关系图。
图6是各实施案例及对照案例的碘氧化铋光催化剂的可见光降解酸性红1染料曲线。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
一种高吸附碘氧化铋光催化剂,是通过以下步骤获得的:
(1)将铋盐与酸、醇溶液混合得到混合溶液A;将粉体聚维酮碘配制水溶液B;(2)将混合溶液A滴加到B溶液中,在室温下过夜搅拌均匀后,将混合溶液移至三口烧瓶,在搅拌与回流条件下进行高温反应;(3)将反应产物分离、洗涤、干燥与研磨而得到超细粉体。
实施案例1
A溶液组成为五水硝酸铋,冰乙酸和乙醇,其比例为1:1.2:2.4(摩尔质量:体积:体积);均匀溶解后得到A溶液;配置0.04M聚维酮碘水溶液,即B溶液。
将A溶液滴加到B溶液,控制铋与碘元素的摩尔比为1:3,并在室温下经过夜持续搅拌得到均匀混合溶液;将混合溶液转移到三口烧瓶中,安装好冷凝回流器和搅拌装置,置于恒温油浴锅中,控制反应温度为60℃,反应时间6h,冷却后离心分离,分别用去离子水和无水乙醇洗涤,将反应产物在烘箱中,于80℃下干燥8h。用研钵仔细研磨得到高吸附碘氧化铋光催化剂。
本实施案例的高吸附超细碘氧化铋光催化剂,其比表面积为80m2/g。
实施案例2
A溶液组成为无水氯化铋,1mol/L的稀盐酸和异丙醇,其比例为1:2:6(摩尔质量:体积:体积);均匀溶解后得到A溶液;配置0.1M聚维酮碘水溶液,即B溶液。
将A溶液滴加到B溶液,控制铋与碘元素的摩尔比为1:1,并在室温下经过夜持续搅拌得到均匀混合溶液;将混合溶液转移到三口烧瓶中,安装好冷凝回流器和搅拌装置,置于恒温油浴锅中,控制反应温度为80℃,反应时间6h,冷却后离心分离,分别用去离子水和无水乙醇洗涤,将反应产物在烘箱中,于90℃下干燥6h。用研钵仔细研磨得到高吸附碘氧化铋光催化剂。
本实施案例的高吸附超细碘氧化铋光催化剂,其比表面积为135m2/g。
实施案例3
A溶液组成为醋酸铋,冰乙酸和乙二醇,其比例为1:3:8(摩尔质量:体积:体积);均匀溶解后得到A溶液;配置0.2M聚维酮碘水溶液,即B溶液。
将A溶液滴加到B溶液中,控制铋与碘元素的摩尔比为1:4,并在室温下经过夜持续搅拌得到均匀混合溶液;将混合溶液转移到三口烧瓶中,安装好冷凝回流器和搅拌装置,置于恒温油浴锅中,控制反应温度为90℃,反应时间6h,冷却后离心分离,分别用去离子水和无水乙醇洗涤,将反应产物在烘箱中,于90℃下干燥6h。用研钵仔细研磨得到高吸附碘氧化铋光催化剂。
本实施案例的高吸附超细碘氧化铋光催化剂,其比表面积为120m2/g。
对照案例1
称取5份(克)五水硝酸铋溶于20份(毫升)冰乙酸中得到甲溶液;称量5份(克)碘化钾、2份(克)无水乙酸钠溶于200份(毫升)去离子水中得到乙溶液。将甲溶液滴加到乙溶液中,常温下搅拌反应20h,然后离心分离,分别用去离子水和无水乙醇洗涤,再将粉体移至烘箱中,在80℃下干燥8h,并研磨处理。最后将干燥的粉体于400℃下煅烧3h,得到对照碘氧化铋光催化剂。本对照例的高吸附超细碘氧化铋光催化剂,其比表面积为4m2/g。
对各实施例和对比例1的碘氧化铋进行带隙能、可见光(光源:普通白炽灯)对染料降解率和总脱色率的测试,结果见表1。
表1 测试结果
实施案例1 实施案例2 实施案例3 对照案例1
带隙能/eV 2.00 1.77 1.79 2.02
60 min光催化酸性红1的降解率% 77 91 83 69
60min光催化甲基橙的降解率% 67 72 70 53
比表面积(m<sup>2</sup>/g) 80 135 120 4
可见,相对于对照案例,实施案例1、2和3采用聚维酮碘水溶液,降低了带隙能,提高了催化剂比表面积和光降解速率。
通常,碘化钾和含碘负离子的离子液体中碘负离子与铋氧阳离子快速结合而生成较大尺寸碘氧化铋。本发明采用全新碘源-聚维酮碘,首先,碘与吡咯烷酮环形成的络合物缓慢分解而释放碘分子;其次,释放出来的碘分子一方面会水解形成碘负离子,另一方面,溶液中氧气也会引起碘单质转变为碘负离子,即碘负离子的形成经过络合物分解、水解或者被还原成碘负离子;最后,碘负离子与铋氧离子结合形成碘氧化铋。这些系列反应过程控制了碘氧化铋生成速率进而也控制碘氧化铋形貌尺寸。
新离解而生成聚乙烯基吡咯烷酮原位与生成的碘氧化铋结合而形成纳米片层结构,这也明显降低了碘氧化铋颗粒尺寸。
尽管聚吡咯烷酮也常用作模板剂来控制颗粒的生长,但是,这里“新鲜”和“原位”生成聚吡咯烷酮在碘氧化铋表面吸附尤其显著。比如再生纤维素、再生丝素与天然纤维素、天然丝素的力学性能完全不同;人体骨骼的拉伸模量甚至达到钢筋的拉伸模量值,天然密质骨的模量达到140GPa。相比较而言,人工合成骨骼则是胶原蛋白与羟基磷酸钙混合而成,其强度远低于天然密质骨。
本发明“原位”再生的聚乙烯基吡咯烷酮包覆的碘氧化铋纳米片层与颗粒,并直接促进了晶粒生长而无需高温煅烧。这简化了生产工艺流程,降低了生产成本。
本发明制备的高吸附碘氧化铋超细粉体,不仅更好地吸收可见光,而且对待降解的污染物吸附性强(因为已经有聚乙烯基吡咯烷酮预吸附)。
本发明“原位”再生的聚乙烯基吡咯烷酮包覆的碘氧化铋能直接附着在粘胶、棉纤维表面,而不需要再添加其他的化学试剂进行后整理,整理方法简单高效。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种高吸附碘氧化铋可见光催化剂,其特征是,是通过以下步骤获得的:
(1)将铋盐与酸、醇溶液混合得到混合液A;将粉体聚维酮碘配成水溶液B;
(2)将混合液A缓慢滴加到水溶液B中,并在室温下过夜持续搅拌均匀后,再将混合溶液转移至三口烧瓶,在搅拌与回流条件下进行高温反应;
(3)将所得反应产物分离、洗涤、干燥与研磨而得到超细粉体。
2.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,所述铋元素与碘元素摩尔比是1:1-10。
3.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,所述铋盐为五水硝酸铋、无水氯化铋、醋酸铋或碱式碳酸铋中的一种或几种。
4.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,所述酸为冰乙酸、稀硝酸或稀盐酸。
5.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,所述醇为丙三醇、乙二醇、异丙醇、乙醇或甲醇中的一种或几种。
6.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,以铋盐的摩尔质量为1计,所述酸和醇的用量分别为1-5 L和2-20L。
7.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,所述聚维酮碘水溶液摩尔浓度(mol/L)为:0.02-1.00。
8.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,所述高温反应的温度为50-95℃,反应时间为3-10h。
9.根据权利要求1所述的一种高吸附碘氧化铋可见光催化剂,其特征是,所述干燥条件为:温度为80-100℃,时间为5-24h。
10.根据权利要求1-9任一权利要求所述的一种高吸附碘氧化铋可见光催化剂的应用,其特征是,所述碘氧化铋光催化剂应用于可见光催化降解各种污染物,包括有机化合物与无机化合物。
CN202110550238.1A 2021-05-20 2021-05-20 一种高吸附碘氧化铋可见光催化剂及其应用 Active CN113333023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110550238.1A CN113333023B (zh) 2021-05-20 2021-05-20 一种高吸附碘氧化铋可见光催化剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110550238.1A CN113333023B (zh) 2021-05-20 2021-05-20 一种高吸附碘氧化铋可见光催化剂及其应用

Publications (2)

Publication Number Publication Date
CN113333023A true CN113333023A (zh) 2021-09-03
CN113333023B CN113333023B (zh) 2022-11-11

Family

ID=77469933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110550238.1A Active CN113333023B (zh) 2021-05-20 2021-05-20 一种高吸附碘氧化铋可见光催化剂及其应用

Country Status (1)

Country Link
CN (1) CN113333023B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231099A (zh) * 2021-05-21 2021-08-10 吉林大学 一种z型聚吡咯-钨酸铋光催化剂的制备及应用
CN116282148A (zh) * 2023-03-24 2023-06-23 哈尔滨理工大学 一种利用失活碘氧化铋制备碳酸氧铋光催化剂的制备方法
CN116474804A (zh) * 2023-03-28 2023-07-25 哈尔滨理工大学 一种棉絮状碳酸氧铋光催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105460974A (zh) * 2014-09-13 2016-04-06 南阳师范学院 一种富含缺陷的超薄碘氧化铋纳米片的制备方法
CN107670677A (zh) * 2017-11-25 2018-02-09 哈尔滨工业大学 一种二维超薄卤氧化铋固溶体纳米片光催化剂的制备方法
CN110227504A (zh) * 2019-06-26 2019-09-13 成都理工大学 一种低温液相沉淀法碘氧化铋可见光光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105460974A (zh) * 2014-09-13 2016-04-06 南阳师范学院 一种富含缺陷的超薄碘氧化铋纳米片的制备方法
CN107670677A (zh) * 2017-11-25 2018-02-09 哈尔滨工业大学 一种二维超薄卤氧化铋固溶体纳米片光催化剂的制备方法
CN110227504A (zh) * 2019-06-26 2019-09-13 成都理工大学 一种低温液相沉淀法碘氧化铋可见光光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD ASHFAQ等: "A novel bimetallic (Fe/Bi)-povidone-iodine micro-flowers composite for photocatalytic and antibacterial applications", 《JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY》 *
姬燕培等: "纳米BiOI的制备及其对溴甲酚绿的光催化降解", 《环境科学与技术》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231099A (zh) * 2021-05-21 2021-08-10 吉林大学 一种z型聚吡咯-钨酸铋光催化剂的制备及应用
CN113231099B (zh) * 2021-05-21 2022-05-17 吉林大学 一种z型聚吡咯-钨酸铋光催化剂的制备及应用
CN116282148A (zh) * 2023-03-24 2023-06-23 哈尔滨理工大学 一种利用失活碘氧化铋制备碳酸氧铋光催化剂的制备方法
CN116474804A (zh) * 2023-03-28 2023-07-25 哈尔滨理工大学 一种棉絮状碳酸氧铋光催化剂的制备方法

Also Published As

Publication number Publication date
CN113333023B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN113333023B (zh) 一种高吸附碘氧化铋可见光催化剂及其应用
Bibi et al. Hybrid BiOBr/UiO-66-NH 2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation
Geetha et al. High performance photo-catalyst based on nanosized ZnO–TiO2 nanoplatelets for removal of RhB under visible light irradiation
Gu et al. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
Yan et al. Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline
CN109289895A (zh) 一种多孔网状g-C3N4负载TiO2复合纳米材料的制备方法
Zhu et al. Coating BiOCl@ g-C3N4 nanocomposite with a metal organic framework: enhanced visible light photocatalytic activities
Zhao et al. Novel carboxy-functionalized PVP-CdS nanopopcorns with homojunctions for enhanced photocatalytic hydrogen evolution
CN110975866A (zh) 负载贵金属和非金属纳米二氧化钛的制备方法、光触媒水性涂料及其制备方法
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
Wang et al. Synergistic enhancement of the visible-light photocatalytic activity of hierarchical 3D BiOClxBr1-x/graphene oxide heterojunctions for formaldehyde degradation at room temperature
CN114751388A (zh) 多孔氮化硼及其制备方法、纳米金氮化硼复合光催化剂及其制备方法和应用
Lin et al. Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye
CN105797762A (zh) 一种光催化陶粒及制备方法和应用
Quan et al. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO 3 decorated with Zn x Cd 1− x S
CN111939957A (zh) 一种光催化固氮材料多孔氮化碳纳米纤维/石墨烯的制备方法
CN114588897B (zh) 一种复合多孔光触媒材料及其制备方法和应用
CN107442098B (zh) 一种采用可见光光解水制氢的钛酸锶催化剂及制备方法
CN114471707B (zh) 含催化剂水凝胶球、其制备方法及其在光催化处理有机污染物方面的应用
CN109095546A (zh) 一种光催化处理废水协同制取氢气的方法
Tian et al. Interlocked 3D active carbon fibers and monolithic I-doped Bi 2 O 2 CO 3 structure built by 2D face-to-face interaction: endowed with cycling stability and photocatalytic activity
CN109499567B (zh) 一种金属团簇光稳定性催化剂的制备方法及其应用
CN117504892B (zh) 一种La-Fe共掺杂SrTiO3/TiO2复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant