WO2023090838A1 - 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트 - Google Patents

그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트 Download PDF

Info

Publication number
WO2023090838A1
WO2023090838A1 PCT/KR2022/018054 KR2022018054W WO2023090838A1 WO 2023090838 A1 WO2023090838 A1 WO 2023090838A1 KR 2022018054 W KR2022018054 W KR 2022018054W WO 2023090838 A1 WO2023090838 A1 WO 2023090838A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
mol
bis
graphite sheet
dianhydride
Prior art date
Application number
PCT/KR2022/018054
Other languages
English (en)
French (fr)
Inventor
정형섭
원동영
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Publication of WO2023090838A1 publication Critical patent/WO2023090838A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide film for graphite sheet and a graphite sheet manufactured therefrom.
  • a graphite sheet has a higher thermal conductivity than a metal sheet such as copper or aluminum, and has attracted attention as a heat dissipation member for electronic devices.
  • a study on a graphite sheet having a high thickness for example, a graphite sheet having a thickness of about 50 ⁇ m or more
  • advantageous in terms of heat capacity compared to a thin graphite sheet for example, a graphite sheet having a thickness of about 40 ⁇ m or less
  • the graphite sheet may be manufactured by various methods, for example, it may be manufactured by carbonizing and graphitizing a polymer film.
  • polyimide films are in the limelight as polymer films for producing graphite sheets due to their excellent mechanical and thermal dimensional stability and chemical stability.
  • the drying speed of the surface and inside of the polyimide film is different, making it difficult to discharge internally generated gas, or the degree of orientation between the surface and the inside is different, resulting in volume change in the process of manufacturing graphite There is a problem that the shape cannot be maintained because it cannot withstand.
  • the tensile strain decreases.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2017-0049912
  • An object of the present invention is to provide a high-thickness polyimide film for graphite sheet having excellent tensile strain characteristics in which uniformity of surface and internal properties is secured by using two types of imidization catalysts together, and breakage does not occur during film production will be.
  • Another object of the present invention is to provide a method for manufacturing a graphite sheet from the polyimide film and a graphite sheet of excellent quality manufactured therefrom.
  • One embodiment of the present invention for achieving the above object includes quinoline and ⁇ -picoline as imidation catalysts,
  • a polyimide film is provided.
  • Another embodiment of the present invention includes the step of carbonizing, graphitizing or carbonizing and graphitizing the polyimide film
  • a method for producing a graphite sheet is provided.
  • Another embodiment of the present invention provides a graphite sheet manufactured by the method for manufacturing a graphite sheet.
  • the present invention is a high-thickness polyimide film for graphite sheet with excellent tensile strain characteristics that secures uniformity of surface and internal properties by using two types of imidation catalysts and does not cause breakage during film production, and the polyimide film It has the effect of providing a method for producing a graphite sheet from and a graphite sheet of excellent properties produced therefrom.
  • a polyimide film according to one aspect of the present invention includes quinoline and ⁇ -picoline as imidation catalysts,
  • an imidation catalyst that has a slow reaction rate at the beginning of the imidation reaction and remains for a long time or an imidation catalyst that has a fast reaction rate at the beginning of the imidation reaction but evaporates quickly may cause a problem of insufficient imidization of the initial polyimide.
  • the imidation of the polyimide film can be controlled by mixing and using two catalysts that have different reaction rates and can respectively affect initial and late imidization reactions.
  • an imidation catalyst having a fast initial imidation reaction rate by using an imidation catalyst having a fast initial imidation reaction rate, a base reaction is caused at the beginning of the imidation reaction, and the degree of curing can be suitably maintained for subsequent processes while securing uniformity between the surface and the inside.
  • quinoline can contribute to securing a sufficient imidization time because imidation can proceed even in a high-temperature section during the manufacturing process when manufacturing a polyimide film. If it is not used together with ⁇ -picoline, a polyimide film cannot be obtained because a gel film is not formed.
  • a polyimide film may not be obtained or physical properties (tensile deformation characteristics) of the polyimide film may be deteriorated.
  • the quinoline may be included in an amount of 0.1 mol% or more and 1.5 mol% or less, based on 1 mol of the amic acid group in the polyamic acid, and the ⁇ -picoline is present in the polyamic acid, based on 1 mol of the amic acid group, It may be included in 0.1 mol% or more and 1 mol% or less.
  • the ratio of the mole% of quinoline and the mole% of ⁇ -ficolin may be 1 or more and 3 or less.
  • the acetic anhydride may be included in an amount of 1 mol% or more and 4 mol% or less based on 1 mol of the amic acid group in the polyamic acid.
  • the polyimide film may not be formed due to shrinkage or curing reaction not occurring in the polyimide film.
  • the ratio of the mol% of ⁇ -picoline and the mol% of acetic anhydride may be 0.11 or more and 0.50 or less.
  • the polyamic acid may include dimethylformamide (DMF) in an amount of 1 mol% or more and 3 mol% or less based on 1 mol of the amic acid group in the polyamic acid.
  • DMF dimethylformamide
  • the polyimide film is prepared by imidizing a polyamic acid formed by a reaction between a dianhydride monomer and a diamine monomer, and the polyamic acid may have a weight average molecular weight of 100,000 to 500,000.
  • the 'weight average molecular weight' may be measured using gel chromatography (GPC) and using polystyrene as a standard sample.
  • the weight average molecular weight of the polyamic acid may be, for example, 150,000 to 500,000, another example 100,000 to 400,000, another example 250,000 to 400,000, but is not limited thereto.
  • the dianhydride monomer and the diamine monomer various monomers commonly used in the field of polyimide film production may be used.
  • the dianhydride monomer may be an aromatic dianhydride monomer and the diamine monomer may be an aromatic diamine monomer.
  • the dianhydride monomers include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, and oxydiphthalic dianhydride.
  • diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-1 ,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3',4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride
  • Water bis(3,4-dicarboxyphenyl)methane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, p-phenylenebis(trimellitic acid monoester anhydride), p- Biphenylenebis(trimellitic acid monoester anhydride), m-terphenyl-3,4,3',4'-tetracarboxylic dianhydride, p
  • Diamine monomers include diamine monomers containing one benzene ring (eg, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, 3 ,5-diaminobenzoic acid, etc.), diamine monomers containing two benzene rings (for example, diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl ether) , 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2' -bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-dia
  • the dianhydride monomers include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3', 4-biphenyltetracarboxylic dianhydride, and oxydiphthalic anhydride.
  • bis(3,4-dicarboxyphenyl)sulfone dianhydride, 3,3',4,4'-benzophenonetetracarboxylic acid dianhydride or a combination thereof is used, and 4,4'-oxydianiline is used as the diamine monomer , 3,4'-oxydianiline, p-phenylenediamine, m-phenylenediamine, 4,4'-methylenedianiline, 3,3'-methylenedianiline, or combinations thereof may be used.
  • the thickness of the polyimide film may be 50 ⁇ m or more.
  • the thickness of the polyimide film is, for example, 50 ⁇ m or more, 60 ⁇ m or more, 70 ⁇ m or more, 80 ⁇ m or more, 90 ⁇ m or more, 100 ⁇ m or more, 110 ⁇ m or more, 120 ⁇ m or more, 130 ⁇ m or more, 140 ⁇ m or more, 150 ⁇ m or more, 200 ⁇ m or more, 250 ⁇ m or more, 300 ⁇ m or more, 350 ⁇ m or more, 400 ⁇ m or more, 450 ⁇ m or more, or 500 ⁇ m or more, but is not limited thereto.
  • it may be a polyimide film of high thickness.
  • the tensile strain of the polyimide film may be 100% or more.
  • the polyimide film may be manufactured by various methods commonly used in the field of polyimide film production.
  • a polyimide film is prepared by polymerizing one or more dianhydride monomers and one or more diamine monomers in a solvent to prepare a polyamic acid solution, and then adding an imidization catalyst, a dehydrating agent, and optionally a sublimable inorganic to the polyamic acid solution. It may be prepared by forming a composition for a polyimide film by adding a filler, a solvent, and the like, and forming the composition into a film, but is not limited thereto.
  • the process of imidizing the polyamic acid solution may be performed through a known imidation method such as thermal imidation, chemical imidation, or a combined imidation method using the thermal imidation and chemical imidation methods together.
  • the average particle diameter (D 50 ) of the entire sublimable inorganic filler included in the polyimide film may be 0.1 to 5.0 ⁇ m, and the content of the entire sublimable inorganic filler may be 0.07 to 0.4% by weight based on the total weight of the polyimide film. there is.
  • the sublimable inorganic filler may sublimate during carbonization and/or graphitization of the polyimide film to induce a predetermined foaming phenomenon.
  • This foaming phenomenon makes it possible to obtain a high-quality graphite sheet by facilitating the exhaustion of sublimation gas generated during carbonization and/or graphitization, and the predetermined voids formed by foaming affect the bending resistance of the graphite sheet ( 'flexibility') can also be improved.
  • D 50 'Average particle diameter (D 50 )' is measured by using a laser diffraction particle size analyzer (SALD-2201, Shimadzu) after ultrasonically dispersing the sublimable inorganic filler in a dimethylformamide solvent at 25 ° C. for 5 minutes.
  • SALD-2201 laser diffraction particle size analyzer
  • the average particle diameter (D 50 ) of the entire sublimable inorganic filler in the polyimide film is, for example, 0.5 to 4.0 ⁇ m, another example is 0.1 to 2.5 ⁇ m, another example is 1.5 to 5.0 ⁇ m, another example is It may be less than 1.5 to 2.5 ⁇ m, but is not limited thereto.
  • the total content of the sublimable inorganic filler in the polyimide film is, for example, 0.07 to 0.35% by weight, another example is 0.1 to 0.3% by weight, and another example is 0.15 to 0.3% by weight, based on the total weight of the polyimide film. %, but is not limited thereto.
  • the sublimable inorganic filler may include a first sublimable inorganic filler having an average particle diameter (D 50 ) of 0.1 to 2.0 ⁇ m and a second sublimable inorganic filler having an average particle diameter (D 50 ) of greater than 2.0 to 5.0 ⁇ m.
  • the content of the first sublimable inorganic filler and the second sublimable inorganic filler among the sublimable inorganic fillers is not particularly limited, but, for example, based on the total weight of the sublimable inorganic filler, the first sublimable inorganic filler is 90 to 10 It is included in weight %, and the second sublimable inorganic filler may be included in 10 to 90 weight %.
  • the content of the first sublimable inorganic filler is, for example, 15 to 85% by weight, another example is 20 to 80% by weight, and another example is 30 to 85% by weight 80% by weight, for example, 50 to 80% by weight, and the content of the second sublimable inorganic filler is, for example, 85 to 15% by weight, another example is 80 to 20% by weight, another example For example, it may be 70 to 20% by weight, for another example, 50 to 20% by weight, but is not limited thereto.
  • sublimable inorganic filler examples include, but are not limited to, calcium carbonate, dibasic calcium phosphate, and barium sulfate.
  • the solvent is not particularly limited as long as it can dissolve the polyamic acid.
  • the solvent may include an aprotic polar solvent.
  • acetic anhydride, propionic anhydride, butyric anhydride, benzoic anhydride, etc. may be used alone or in combination of two or more, but are not limited thereto.
  • the film formation is performed by applying a polyamic acid solution in the form of a film on a substrate, heating and drying at a temperature of 30 to 200 ° C. for 15 seconds to 30 minutes to prepare a gel film, and then removing the substrate, and then heating the gel film at 250 to 600 ° C. It may be performed by heat treatment at a temperature of 15 seconds to 30 minutes, but is not limited thereto.
  • the polyimide film may be for manufacturing a graphite sheet.
  • a method for manufacturing a graphite sheet according to another aspect of the present invention includes carbonizing, graphitizing, or carbonizing and graphitizing the polyimide film.
  • the carbonization is a process of thermally decomposing the polymer chains of the polyimide film to form an amorphous carbon body, an amorphous carbon body and/or a preliminary graphite sheet including an amorphous carbon body, for example, the polyimide film under reduced pressure or an inert gas atmosphere. It may include, but is not limited to, the step of raising and maintaining the temperature over 10 hours to 30 hours from room temperature to a temperature in the range of 1,000 ° C to 1,500 ° C, which is the highest temperature.
  • pressure may be applied to the polyimide film using a hot press or the like during carbonization for high orientation of carbon, and the pressure at this time is, for example, 5 kg/cm 2 or more, for example, 15 kg/cm 2 or more, for another example, 25 kg/cm 2 or more, but may be, but is not limited thereto.
  • the graphitization is a process of rearranging an amorphous carbon body, an amorphous carbon body, and/or carbon of an amorphous carbon body to form a graphite sheet, for example, a preliminary graphite sheet, optionally under an inert gas atmosphere, from room temperature to the highest temperature It may include, but is not limited to, the step of raising and maintaining the temperature over 2 hours to 30 hours to a temperature in the range of 2,500 °C to 3,000 °C.
  • pressure may be applied to the preliminary graphite sheet using a hot press or the like during graphitization for high orientation of carbon, and the pressure at this time is, for example, 100 kg/cm 2 or more, for example, 200 kg/cm 2 or more. cm 2 or more, for another example, 300 kg/cm 2 or more, but may be, but is not limited thereto.
  • Production Example 1 production of polyimide film
  • DMF dimethylformamide
  • ODA 4,4'-oxydianiline
  • PMDA pyromellitic dianhydride
  • a polyimide film precursor solution was prepared by adding an appropriate amount of two types of imidation catalysts (quinoline (QL) and ⁇ -picoline (BP)).
  • the prepared polyimide film precursor solution was cast on a SUS plate (100SA, Sandvik) to a thickness of 500 ⁇ m using a doctor blade and dried at a temperature ranging from 100° C. to 200° C. to prepare a self-supporting gel film.
  • the gel film was peeled from the SUS plate, fixed to a pin frame, and transferred to a high-temperature tenter.
  • the film was heated from 200° C. to 700° C. in a high-temperature tenter, cooled at 25° C., and separated from the pin frame to obtain a polyimide film having a thickness of 125 ⁇ m.
  • the temperature of the polyimide film prepared in Preparation Example 1 was raised to 1,210 °C at a rate of 3.3 °C/min under nitrogen gas using an electric furnace capable of carbonization, and maintained at 1,210 °C for about 2 hours (carbonization).
  • a first sintering step was performed by raising the temperature from 1,210 °C to 2,200 °C at a heating rate of 2.5 °C/min under argon gas using an electric furnace capable of graphitization.
  • the heating rate was changed to a heating rate of 1.25 °C/min, and the temperature was continuously raised to 2,500 °C to perform a second firing step.
  • the temperature increase rate was changed to a temperature increase rate of 10 °C / min, the temperature was raised continuously to 2,800 °C to perform the third firing step, and after standing at 2,800 °C for several minutes, graphitization was completed to obtain a graphite sheet was manufactured.
  • Example BP (mol %) QL (mol%) AA (mol%) DMF (mol%) tensile strain (%) thickness ( ⁇ m)
  • Example 1 0.7 0.7 3.0 1.1 117 125
  • Example 2 0.7 0.7 3.0 1.5
  • Example 3 0.7 0.7 3.4 1.5
  • Example 4 0.7 0.7 2.7 2.2 107
  • Example 5 0.5 1.1 2.5 1.7 133
  • Example 6 0.5 1.3 2.5 1.7 106
  • Example 8 0.3 0.3 1.7 3.0 147 Comparative Example 1 0.7 0.0 2.7 2.2 31 Comparative Example 2 0.5 0.0 2.4 2.5 62 Comparative Example 3 0.5 0.0 2.4 2.5 54
  • the tensile strain of the polyimide films of all examples exceeded 100%.
  • Example 7 in which the content of the two imidation catalysts (quinoline (QL) and ⁇ -picoline (BP)) was reduced while maintaining the mol% ratio (quinoline mol% / picoline mol%) at 1 and 8, it was confirmed that a polyimide film having excellent tensile strain characteristics could be obtained by adjusting the appropriate contents and ratios of the imidation catalyst, acetic anhydride, and DMF.
  • the two imidation catalysts quinoline (QL) and ⁇ -picoline (BP)
  • thermogravimetric analyzer-mass spectrometer TGA-MS
  • Comparative Example 1 except for quinoline showed a significant decrease in tensile strain.
  • the thermal diffusivity was measured by the laser flash method using a measuring device (Netsch, LFA 467), and the foam thickness was measured by a digital micrometer (Standard-type, Mitutoyo).
  • the present invention is a high-thickness polyimide film for graphite sheet with excellent tensile strain characteristics that secures uniformity of surface and internal properties by using two types of imidation catalysts and does not cause breakage during film production, and the polyimide film It has the effect of providing a method for producing a graphite sheet from and a graphite sheet of excellent properties produced therefrom.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본원은 이미드화 촉매로 퀴놀린(quinoline) 및 β-피콜린(β-picoline)을 포함하고, 탈수제로 아세트산 무수물(acetic anhydride)을 포함하는 폴리아믹산을 이미드화 반응시켜 얻어진 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트를 개시한다.

Description

그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
본 발명은 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트에 관한 것이다.
최근의 전자 기기는 경량화, 소형화, 박형화 및 고집적화되고 있으며, 이로 인해 전자 기기에는 많은 열이 발생하고 있다. 이러한 열은 제품의 수명을 단축시키거나 고장, 오작동 등을 유발할 수 있다. 따라서, 전자 기기에 대한 열관리가 중요한 이슈로 대두되고 있다.
그라파이트 시트는 구리나 알루미늄 등의 금속 시트보다 높은 열전도율을 가져 전자 기기의 방열 부재로서 주목 받고 있다. 특히, 박형 그라파이트 시트(예를 들면, 약 40㎛ 이하의 두께를 갖는 그라파이트 시트)에 비해 열 수용량 측면에서 유리한 고후도 그라파이트 시트(예를 들면, 약 50㎛ 이상의 두께를 갖는 그라파이트 시트)에 대한 연구가 활발히 진행되고 있다.
그라파이트 시트는 다양한 방법으로 제조될 수 있는데, 예를 들어 고분자 필름을 탄화 및 흑연화시켜 제조될 수 있다. 특히, 폴리이미드 필름은 이들의 우수한 기계적 열적 치수 안정성, 화학적 안정성 등으로 인해 그라파이트 시트 제조용 고분자 필름으로서 각광 받고 있다.
고후도 그라파이트 시트를 제조하기 위해서는 고후도 폴리이미드 필름의 제조가 선행되어야 하는데, 폴리아믹산 용액을 캐스팅하고 열처리하여 폴리이미드 필름을 제조하는 통상의 방법으로는 내, 외부의 고른 경화가 어려워 분층, 기포 등이 발생하기 때문에 고후도 폴리이미드 필름의 제조가 어려운 문제가 있다.
즉, 고후도 폴리이미드 필름의 두께로 인하여, 폴리이미드 필름의 표면과 내부의 건조 속도가 달라져서 내부 발생 가스의 배출이 어려워지거나, 표면과 내부의 배향 정도가 달라져서 그라파이트가 제조되는 과정에서 생기는 부피 변화를 견디지 못하여 형태가 유지되지 못하는 문제가 있다.
특히, 동일 조성의 폴리이미드 필름은 두께가 두꺼워질수록 인장 변형률이 저하된다.
한편, 그라파이트화가 가능한 고후도 폴리이미드 필름을 만들기 위해서는 일정 수준 이상의 인장 변형률을 유지해야 하는데 전체적으로 인장 변형률이 낮아지면 제막 공정에서 파단이 다수 발생하여, 공정 효율이 크게 저하된다.
이러한 파단 발생을 방지하기 위해서 가소제를 사용하지만, 가소제 사용시 그라파이트 시트의 발포 두께의 조절이 어렵고, 그라파이트 시트의 열확산 특성이 저하되는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2017-0049912호
본 발명의 목적은 2종의 이미드화 촉매를 함께 사용하여 표면과 내부 특성의 균일성이 확보되고, 필름 제조시 파단이 발생하지 않는 인장 변형 특성이 우수한 그라파이트 시트용 고후도 폴리이미드 필름을 제공하는 것이다.
본 발명의 다른 목적은 상기 폴리이미드 필름으로부터 그라파이트 시트의 제조방법 및 이로부터 제조된 우수한 품질의 그라파이트 시트를 제공하는 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 실시형태는, 이미드화 촉매로 퀴놀린(quinoline) 및 β-피콜린(β-picoline)을 포함하고,
탈수제로 아세트산 무수물(acetic anhydride)을 포함하는 폴리아믹산을 이미드화 반응시켜 얻어진,
폴리이미드 필름을 제공한다.
본 발명의 다른 일 실시형태는, 상기 폴리이미드 필름을 탄화, 흑연화 또는 탄화 및 흑연화하는 단계를 포함하는,
그라파이트 시트의 제조 방법을 제공한다.
본 발명의 또 다른 일 실시형태는, 상기 그라파이트 시트의 제조 방법에 의해서 제조되는 그라파이트 시트를 제공한다.
본 발명은 2종의 이미드화 촉매를 함께 사용하여 표면과 내부 특성의 균일성이 확보되고, 필름 제조시 파단이 발생하지 않는 인장 변형 특성이 우수한 그라파이트 시트용 고후도 폴리이미드 필름, 상기 폴리이미드 필름으로부터 그라파이트 시트를 제조하는 방법 및 이로부터 제조된 우수한 특성의 그라파이트 시트을 제공하는 효과를 갖는다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예 및 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 중 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
본 명세서에서 수치범위를 나타내는 "a 내지 b"에서 "내지"는 ≥a이고 ≤b으로 정의한다.
본 발명의 일 측면에 따른 폴리이미드 필름은 이미드화 촉매로 퀴놀린(quinoline) 및 β-피콜린(β-picoline)을 포함하고,
탈수제로 아세트산 무수물(acetic anhydride)을 포함하는 폴리아믹산을 이미드화 반응시켜 얻어질 수 있다.
1종의 이미드화 촉매만을 사용하는 경우, 이미드화 반응 초기의 경화 온도가 낮으며, 경화 속도가 빠른 이미드화 촉매는 폴리이미드 필름의 경화도를 낮추기 어려울 수 있다. 또한, 경화 속도가 너무 빠르면 건조 과정에서 수축이 발생하는 등 공정 트러블이 발생하여 후공정으로 이어지기 어려울 수 있다.
한편, 이미드화 반응 초기의 반응 속도가 느리면서 오래 남아 있는 이미드화 촉매나, 이미드화 반응 초기의 반응 속도가 빠르지만 빨리 증발하는 이미드화 촉매는 초기의 폴리이미드의 이미드화가 부족한 문제가 발생할 수 있다.
따라서, 반응속도가 서로 다르고 초기 및 후기 이미드화 반응에 각각 영향을 줄 수 있는 2종의 촉매를 혼합하여 사용함으로써, 폴리이미드 필름의 이미드화를 조절할 수 있다.
즉, 초기의 이미드화 반응 속도가 빠른 이미드화 촉매를 사용하여 이미드화 반응 초기에 기초 반응을 일으키고, 표면과 내부의 균일성을 확보하면서 경화도는 후속 공정에 적합하게 유지할 수 있다.
이와 동시에, 이미드화 반응 속도가 느리며, 반응 온도가 높은 이미드화 촉매를 함께 사용하여 폴리이미드 필름의 제막 후반부 공정까지 남아서 폴리이미드 필름의 기계적 특성을 향상시키고 공정성을 향상시킬 수 있다.
특히, 퀴놀린은 폴리이미드 필름 제조시, 제조 공정 중의 고온의 구간에서도 이미드화가 진행될 수 있어서 충분한 이미드화 시간의 확보에 기여할 수 있으나. β-피콜린과 함께 사용하지 않으면 겔 필름이 형성되지 않아서 폴리이미드 필름을 얻을 수 없다.
또한, 퀴놀린을 사용하지 않고, β-피콜린만을 사용하는 경우에는 인장 변형 특성이 크게 저하되었다.
즉, 퀴놀린 및 β-피콜린을 함께 사용하지 않고, 각자 사용하는 경우에는 폴리이미드 필름을 얻을 수 없거나, 폴리이미드 필름의 물성(인장 변형 특성)이 저하될 수 있다.
일 구현예에 있어서, 상기 퀴놀린은 폴리아믹산 중 아믹산기 1몰에 대하여, 0.1 몰% 이상, 1.5 몰% 이하로 포함될 수 있고, 상기 β-피콜린은 상기 폴리아믹산 중 아믹산기 1몰에 대하여, 0.1 몰% 이상, 1 몰% 이하로 포함될 수 있다.
일 구현예에 있어서, 상기 퀴놀린의 몰% 및 β-피콜린의 몰%의 비(퀴놀린의 몰%/β-피콜린의 몰%)가 1 이상 3 이하일 수 있다.
상기 퀴놀린 및 β-피콜린의 함량 범위를 벗어나는 경우, 폴리이미드 필름의 물성(인장 변형 특성)이 저하되거나, 수축이 과다하게 발생하여 폴리이미드 필름이 형성되지 않을 수 있다.
일 구현예에 있어서, 상기 아세트산 무수물은 상기 폴리아믹산 중 아믹산기 1몰에 대하여, 1 몰% 이상, 4 몰% 이하로 포함될 수 있다.
상기 아세트산 무수물이 상기 범위를 상회하거나 하회하는 경우, 폴리이미드 필름에 수축이 발생하거나, 경화 반응이 일어나지 않아서 폴리이미드 필름이 형성되지 않을 수 있다.
일 구현예에 있어서, 상기 β-피콜린의 몰% 및 아세트산 무수물의 몰%의 비(β-피콜린의 몰%/ 아세트산 무수물의 몰%)가 0.11 이상 0.50 이하일 수 있다.
일 구현예에 있어서, 상기 폴리아믹산은 디메틸포름아미드(Dimethylformamide, DMF)를 폴리아믹산 중 아믹산기 1몰에 대하여, 1 몰% 이상, 3 몰% 이하로 포함할 수 있다.
한편, 상기 폴리이미드 필름은 이무수물 단량체와 디아민 단량체의 반응에 의해 형성된 폴리아믹산을 이미드화하여 제조되고, 상기 폴리아믹산은 100,000 내지 500,000의 중량평균분자량을 가질 수 있다. 상기 범위에서, 그라파이트 시트 제조 시 흑연화가 용이할 수 있다. 여기서, '중량평균분자량'은 겔크로마토그래피(GPC)를 사용하고, 폴리스티렌을 표준 시료로 이용하여 측정될 수 있다. 폴리아믹산의 중량평균분자량은, 예를 들어 150,000 내지 500,000, 다른 예를 들면 100,000 내지 400,000, 또 다른 예를 들면 250,000 내지 400,000 일 수 있으나, 이에 한정되는 것은 아니다.
이무수물 단량체와 디아민 단량체로는 폴리이미드 필름 제조 분야에서 통상적으로 이용되는 다양한 단량체가 사용될 수 있다. 예를 들어, 이무수물 단량체는 방향족 이무수물 단량체일 수 있고, 디아민 단량체는 방향족 디아민 단량체일 수 있다. 이무수물 단량체로는 피로멜리트산 이무수물, 3,3',4,4'-비페닐테트라카르복시산 이무수물, 2,3,3',4'-비페닐테트라카르복시산 이무수물, 옥시디프탈산 이무수물, 디페닐설폰-3,4,3',4'-테트라카르복시산 이무수물, 비스(3,4-디카르복시페닐)설파이드 이무수물, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로판 이무수물, 2,3,3',4'- 벤조페논테트라카르복시산 이무수물, 3,3',4,4'-벤조페논테트라카르복시산 이무수물, 비스(3,4-디카르복시페닐)메탄 이무수물, 2,2-비스(3,4-디카르복시페닐)프로판 이무수물, p-페닐렌비스(트리멜리트산 모노에스테르 무수물), p-비페닐렌비스(트리멜리트산 모노에스테르 무수물), m-터페닐-3,4,3',4'-테트라카르복시산 이무수물, p-터페닐-3,4,3',4'-테트라카르복시산 이무수물, 1,3-비스(3,4-디카르복시페녹시)벤젠 이무수물, 1,4-비스(3,4-디카르복시페녹시)벤젠 이무수물, 1,4-비스(3,4-디카르복시페녹시)비페닐 이무수물, 2,2-비스[(3,4-디카르복시 페녹시)페닐]프로판 이무수물, 2,3,6,7-나프탈렌테트라카르복시산 이무수물, 1,4,5,8-나프탈렌테트라카르복시산 이무수물, 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 이무수물, 또는 이들의 조합을 사용할 수 있으나, 이에 한정되는 것은 아니다. 디아민 단량체로는 벤젠 고리를 1개 포함한 디아민 단량체(예를 들면, 1,4-디아미노벤젠, 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조산 등), 벤젠 고리를 2개 포함한 디아민 단량체(예를 들면, 4,4'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르 등의 디아미노디페닐에테르, 4,4'-디아미노디페닐메탄, 3,3'-디메틸-4,4'-디아미노비페닐, 2,2'-디메틸-4,4'-디아미노비페닐, 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐, 3,3'-디메틸-4,4'-디아미노디페닐메탄, 3,3'-디카르복시-4,4'-디아미노디페닐메탄, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메탄, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디메틸벤지딘, 2,2'-디메틸벤지딘, 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 4,4'-디아미노디페닐메탄, 2,2-비스(3-아미노페닐)프로판, 2,2-비스(4-아미노페닐)프로판, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로판, 3,3'-디아미노디페닐설폭시드, 3,4'-디아미노디페닐설폭시드, 4,4'-디아미노디페닐설폭시드 등), 벤젠 고리를 3개 포함한 디아민 단량체(예를 들면, 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠, 1,3-비스(3-아미노페녹시)-4-트리플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스[2-(4-아미노페닐)아이소프로필]벤젠, 1,4-비스[2-(3-아미노페닐)아이소프로필]벤젠, 1,4-비스[2-(4-아미노페닐)아이소프로필]벤젠 등), 벤젠 고리를 4개 포함한 디아민 단량체(예를 들면, 3,3'-비스(3-아미노페녹시)비페닐, 3,3'-비스(4-아미노페녹시)비페닐, 4,4'-비스(3-아미노페녹시)비페닐, 4,4'-비스(4-아미노페녹시)비페닐, 비스[3-(3-아미노페녹시)페닐]에테르, 비스[3-(4-아미노페녹시)페닐]에테르, 비스[4-(3-아미노페녹시)페닐]에테르, 비스[4-(4-아미노페녹시)페닐]에테르, 비스[3-(3-아미노페녹시)페닐]케톤, 비스[3-(4-아미노페녹시)페닐]케톤, 비스[4-(3-아미노페녹시)페닐]케톤, 비스[4-(4-아미노 페녹시)페닐]케톤, 비스[3-(3-아미노페녹시)페닐]설파이드, 비스[3-(4-아미노페녹시)페닐]설파이드, 비스[4-(3-아미노페녹시)페닐]설파이드, 비스[4-(4-아미노페녹시)페닐]설파이드, 비스[3-(3-아미노페녹시)페닐]설폰, 비스[3-(4-아미노페녹시)페닐]설폰, 비스[4-(3-아미노페녹시)페닐]설폰, 비스[4-(4-아미노페녹시)페닐]설폰, 비스[3-(3-아미노페녹시)페닐]메탄, 비스[3-(4-아미노페녹시)페닐]메탄, 비스[4-(3-아미노페녹시)페닐]메탄, 비스[4-(4-아미노페녹시)페닐]메탄, 2,2-비스[3-(3-아미노페녹시)페닐]프로판, 2,2-비스[3-(4-아미노페녹시)페닐]프로판, 2,2-비스[4-(3-아미노페녹시)페닐]프로판, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 2,2-비스[3-(3-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스[3-(4-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스[4-(3-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판, 2,2-비스[4-(4-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판 등), 또는 이들의 조합을 사용할 수 있으나, 이에 한정되는 것은 아니다.
특히, 이무수물 단량체로는 피로멜리트산 이무수물, 3, 3',4, 4'-비페닐테트라카르복시산 이무수물, 2, 3,3', 4-비페닐테트라카르복시산 이무수물, 옥시디프탈산 무수물, 비스(3,4-디카르복시페닐)설폰 이무수물, 3,3',4,4'-벤조페논테트라카르복시산 이무수물 또는 이들의 조합이 사용되고, 디아민 단량체로는 4,4'-옥시디아닐린, 3,4'-옥시디아닐린, p-페닐렌디아민, m-페닐렌디아민, 4,4'-메틸렌디아닐린, 3,3'-메틸렌디아닐린 또는 이들의 조합이 사용될 수 있다.
일 구현예에 있어서, 상기 폴리이미드 필름의 두께는 50㎛ 이상일 수 있다. 폴리이미드 필름의 두께는, 예를 들어 50 ㎛ 이상, 60 ㎛ 이상, 70 ㎛ 이상, 80 ㎛ 이상, 90 ㎛ 이상, 100 ㎛ 이상, 110 ㎛ 이상, 120 ㎛ 이상, 130 ㎛ 이상, 140 ㎛ 이상, 150 ㎛ 이상, 200 ㎛ 이상, 250 ㎛ 이상, 300 ㎛ 이상, 350 ㎛ 이상, 400 ㎛ 이상, 450 ㎛ 이상, 500 ㎛ 이상 일 수 있으나, 이에 한정되는 것은 아니다.
즉, 고후도의 폴리이미드 필름일 수 있다.
일 구현예에 있어서, 상기 폴리이미드 필름의 인장 변형률이 100% 이상일 수 있다.
상기 폴리이미드 필름은 폴리이미드 필름 제조 분야에서 통상적으로 이용되는 다양한 방법으로 제조될 수 있다. 예를 들어, 폴리이미드 필름은 1종 이상의 이무수물 단량체 및 1종 이상의 디아민 단량체를 용매 중에서 중합하여 폴리아믹산 용액을 제조한 뒤, 상기 폴리아믹산 용액에 이미드화 촉매, 탈수제, 및 선택적으로 승화성 무기 충전제, 용매 등을 첨가하여 폴리이미드 필름용 조성물을 형성하고, 상기 조성물을 제막하여 제조될 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아믹산 용액을 이미드화하는 과정은 열 이미드화법, 화학 이미드화법 또는 상기 열 이미드화법과 화학 이미드화법을 병용하는 복합 이미드화법 등 공지의 이미드화법을 통해 수행될 수 있다.
상기 폴리이미드 필름에 포함되는 승화성 무기 충전제 전체의 평균 입경(D50)은 0.1 내지 5.0 ㎛이고, 승화성 무기 충전제 전체의 함량은 폴리이미드 필름의 총 중량을 기준으로 0.07 내지 0.4 중량%일 수 있다.
상기 승화성 무기 충전제는 폴리이미드 필름의 탄화 및/또는 흑연화 시 승화하여 소정의 발포 현상을 유도할 수 있다. 이러한 발포 현상은, 탄화 및/또는 흑연화 시 발생하는 승화 가스의 배기를 원활하게 하여 양질의 그라파이트 시트의 수득을 가능하게 할 수 있고, 발포에 따라 형성되는 소정의 공극은 그라파이트 시트의 내굴곡성('유연성')도 향상시킬 수 있다.
다만, 과도한 발포 현상과 그로 인한 다수의 공극은, 그라파이트 시트의 열전도도와 기계적 물성을 크게 악화시킬 수 있고, 그라파이트 시트 표면에 결함을 야기할 수 있으므로, 승화성 무기 충전제의 종류, 함량 및 입자 크기는 신중하게 선택되어야 한다.
'평균 입경(D50)'은 승화성 무기 충전제를 디메틸포름아미드 용매 중에서 25℃에서 5분 동안 초음파 분산시킨 후 입도측정기(laser diffraction particle size analyzer)(SALD-2201, Shimadzu)를 사용하여 측정될 수 있다.
폴리이미드 필름 중 승화성 무기 충전제 전체의 평균 입경(D50)은, 예를 들어 0.5 내지 4.0 ㎛, 다른 예를 들면 0.1 내지 2.5 ㎛, 또 다른 예를 들면 1.5 내지 5.0 ㎛, 또 다른 예를 들면 1.5 내지 2.5 ㎛ 미만일 수 있으나, 이에 한정되는 것은 아니다. 폴리이미드 필름 중 승화성 무기 충전제 전체의 함량은 폴리이미드 필름의 총 중량을 기준으로, 예를 들어 0.07 내지 0.35 중량%, 다른 예를 들면 0.1 내지 0.3 중량%, 또 다른 예를 들면 0.15 내지 0.3 중량%일 수 있으나, 이에 한정되는 것은 아니다.
상기 승화성 무기 충전제는 평균 입경(D50)이 0.1 내지 2.0 ㎛인 제1승화성 무기 충전제 및 평균 입경(D50)이 2.0 초과 내지 5.0 ㎛인 제2승화성 무기 충전제를 포함할 수 있다.
상기 승화성 무기 충전제 중 제1승화성 무기 충전제 및 제2승화성 무기 충전제의 함량은 특별히 제한되지 않으나, 예를 들면 승화성 무기 충전제의 총 중량을 기준으로 제1승화성 무기 충전제는 90 내지 10 중량%로 포함되고, 제2승화성 무기 충전제는 10 내지 90 중량%로 포함될 수 있다. 예를 들어, 승화성 무기 충전제의 총 중량을 기준으로 제1승화성 무기 충전제의 함량은, 예를 들면 15 내지 85 중량%, 다른 예를 들면 20 내지 80중량%, 또 다른 예를 들면 30 내지 80중량%, 또 다른 예를 들면 50 내지 80 중량%일 수 있고, 제2승화성 무기 충전제의 함량은, 예를 들면 85 내지 15 중량%, 다른 예를 들면 80 내지 20 중량%, 또 다른 예를 들면 70 내지 20 중량%, 또 다른 예를 들면 50 내지 20 중량%일 수 있으나, 이에 한정되는 것은 아니다.
상기 승화성 무기 충전제의 예로는 탄산칼슘, 제2인산칼슘, 황산바륨 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 용매로는 폴리아믹산을 용해시킬 수 있는 것이라면 특별히 한정되지 않는다. 예를 들어, 용매는 비양성자성 극성 용매(aprotic polar solvent)를 포함할 수 있다.
특히, 디메틸설폭시드, 디에틸설폭시드 등의 설폭시드계 용매; N,N-디메틸포름아미드, N,N-디에틸포름아미드 등의 포름아미드계 용매; N,N-디메틸아세트아미드, N,N-디에틸아세트아미드 등의 아세트아미드계 용매; N-메틸-2-피롤리돈, N-비닐-2-피롤리돈 등의 피롤리돈계 용매; 페놀, o-, m-, 또는 p-크레졸, 크실레놀, 할로겐화 페놀, 카테콜 등의 페놀계 용매; 헥사메틸포스포르아미드, γ-부틸올락톤 등의 비프로톤성 극성 용매; 등을 단독으로 또는 2종 이상 조합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 탈수제로는 아세트산 무수물, 프로피온산 무수물, 부티르산 무수물, 벤조산 무수물 등을 단독으로 또는 2종 이상 조합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 제막은 폴리아믹산 용액을 기재 상에 필름 형상으로 도포하고, 30 내지 200℃의 온도에서 15초 내지 30분 동안 가열 건조시켜 겔 필름을 제조한 뒤, 기재를 제거한 겔 필름을 250 내지 600℃의 온도에서 15초 내지 30분 동안 열처리하여 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 있어서, 상기 폴리이미드 필름은, 그라파이트 시트 제조용일 수 있다.
상기 폴리이미드 필름으로 그라파이트 시트 제조 시, 우수한 특성의 그라파이트 시트 제조가 가능하다.
본 발명의 다른 일 측면에 따른 그라파이트 시트의 제조 방법은 상기 폴리이미드 필름을 탄화, 흑연화 또는 탄화 및 흑연화하는 단계를 포함한다.
상기 탄화는 폴리이미드 필름의 고분자 사슬을 열분해하여 비정질 탄소체, 비결정질 탄소체 및/또는 무정형 탄소체를 포함한 예비 그라파이트 시트를 형성하는 공정으로, 예를 들어 폴리이미드 필름을 감압 하에서 또는 비활성기체 분위기 하에서 상온에서부터 최고 온도인 1,000℃ 내지 1,500℃ 범위의 온도까지 10시간 내지 30시간에 걸쳐 승온 및 유지하는 단계를 포함할 수 있으나, 이에 한정되는 것은 아니다. 선택적으로, 탄소의 고배향성을 위해 탄화시 핫프레스 등을 이용하여 폴리이미드 필름에 압력을 가할 수도 있으며, 이때의 압력은, 예를 들면 5 kg/cm2 이상, 다른 예를 들면 15 kg/cm2 이상, 또 다른 예를 들면 25 kg/cm2 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 흑연화는 비정질 탄소체, 비결정질 탄소체 및/또는 무정형 탄소체의 탄소를 재배열하여 그라파이트 시트를 형성하는 공정으로, 예를 들어 예비 그라파이트 시트를, 선택적으로 비활성기체 분위기 하에서 상온에서부터 최고 온도인 2,500℃ 내지 3,000℃ 범위의 온도까지 2시간 내지 30시간에 걸쳐 승온 및 유지하는 단계를 포함할 수 있으나, 이에 한정되는 것은 아니다. 선택적으로, 탄소의 고배향성을 위해 흑연화시 핫프레스 등을 이용하여 예비 그라파이트 시트에 압력을 가할 수도 있으며, 이때의 압력은, 예를 들면 100 kg/cm2 이상, 다른 예를 들면 200 kg/cm2 이상, 또 다른 예를 들면 300 kg/cm2 이상일 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 들어 본 발명을 보다 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며, 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
제조예 1 (폴리이미드 필름의 제조)
반응기에 용매로서 디메틸포름아미드(DMF) 205.0g을 투입하고 온도를 23℃로 맞췄다. 여기에 디아민 단량체로서 4,4'-옥시디아닐린(ODA) 21.5g을 첨가하고, 이어서 이무수물 단량체로서 피로멜리트산 이무수물(PMDA) 23.4g을 첨가하여 점도가 230,000cP인 폴리아믹산 용액을 제조하였다.
이어서, 제조된 폴리아믹산 용액에 승화성 무기 충전제로서 제2인산칼슘(평균입경(D50): 2.5㎛) 0.12g과 적정량의 아세트산 무수물(AA) 및 적정량의 디메틸포름아미드를 혼합하였다.
또한, 적정량의 2종의 이미드화 촉매(퀴놀린(quinoline, QL) 및 β-피콜린(β-picoline, BP))을 첨가하여 폴리이미드 필름 전구체 용액을 제조하였다.
준비된 폴리이미드 필름 전구체 용액을 SUS plate(100SA, Sandvik)에 닥터 블레이드를 사용하여 500 ㎛로 캐스팅하고 100℃ 내지 200℃의 온도 범위에서 건조시켜 자기 지지성을 갖는 겔 필름을 제조하였다.
이어서, 겔 필름을 SUS Plate에서 박리하여 핀 프레임에 고정시켜 고온 텐터로 이송하였다. 필름을 고온 텐터에서 200℃부터 700℃까지 가열한 후 25℃에서 냉각시킨 후 핀 프레임에서 분리하여 125㎛ 두께의 폴리이미드 필름을 수득하였다.
제조예 2(그라파이트 시트의 제조)
제조예 1에 의해서 제조된 폴리이미드 필름을 탄화가 가능한 전기로를 사용하여 질소 기체 하에서 3.3 ℃/min의 속도로 1,210℃까지 승온하였고, 1,210℃에서 약 2 시간 유지시켰다(탄화).
이어서, 흑연화가 가능한 전기로를 사용하여 아르곤 기체 하에서 2.5 ℃/min의 승온 속도로 1,210 ℃에서 2,200 ℃까지 승온하여 제1 소성 단계를 수행하였다.
2,200 ℃에 도달 후, 승온 속도를 1.25 ℃/min의 승온 속도로 변경하여 2,500 ℃까지 연속적으로 승온하여 제2 소성 단계를 수행하였다.
2,500 ℃에 도달 후, 승온 속도를 10 ℃/min의 승온 속도로 변경하여 2,800℃까지 연속적으로 승온하여 제3 소성 단계를 수행하였으며, 2,800℃에서 수분간 정치한 후, 흑연화를 완료하여 그라파이트 시트를 제조하였다.
마지막으로, 10 ℃/min의 속도로 그라파이트 시트를 냉각시켰다.
실시예 1 내지 8 및 비교예 1 내지 3
제조예 1에 의한 폴리이미드 필름 제조시, 2종의 이미드화 촉매(퀴놀린(QL) 및 β-피콜린(BP)), 탈수제인 아세트산 무수물(AA) 및 디메틸포름아미드(DMF)를 하기 표 1에 나타낸 바와 같이 각각 폴리아믹산 중 아믹산기 1몰에 대한 함량을 조절하여 첨가하였다. 이후 제조예 2에 의해서 그라파이트 시트를 제조하였다.
실시예 BP
(mol%)
QL
(mol%)
AA
(mol%)
DMF
(mol%)
인장 변형률
(%)
두께
(㎛)
실시예 1 0.7 0.7 3.0 1.1 117 125
실시예 2 0.7 0.7 3.0 1.5 111
실시예 3 0.7 0.7 3.4 1.5 113
실시예 4 0.7 0.7 2.7 2.2 107
실시예 5 0.5 1.1 2.5 1.7 133
실시예 6 0.5 1.3 2.5 1.7 106
실시예 7 0.4 0.4 2.0 2.5 166
실시예 8 0.3 0.3 1.7 3.0 147
비교예 1 0.7 0.0 2.7 2.2 31
비교예 2 0.5 0.0 2.4 2.5 62
비교예 3 0.5 0.0 2.4 2.5 54
실험예 1
실시예 1 내지 실시예 8 및 비교예 1 내지 3의 폴리이미드 필름의 인장 변형률을 측정하였다.
폴리이미드 필름의 기계 방향(MD)의 인장 변형률을 INSTRON 5564 EHP 9918 를 사용하여 ASTM D882에 준하는 방법으로 측정되었다.
모든 실시예의 폴리이미드 필름의 인장 변형률은 100%를 초과하였다.
실시예 1 및 2의 폴리이미드 필름의 인장 변형률 측정 결과의 비교를 통하여 DMF의 함량이 증가하면 인장 변형률이 감소함을 확인할 수 있었다.
또한, 실시예 2와 3 의 폴리이미드 필름의 인장 변형률 측정 결과의 비교를 통하여 탈수제인 아세트산 무수물의 함량이 증가하면 인장 변형률이 증가함을 확인할 수 있었다.
이러한 인장 변형률의 변화는 실시예 1 내지 3에 비하여 DMF의 함량을 늘리고 탈수제인 아세트산 무수물의 함량을 줄인 실시예 4의 폴리이미드 필름의 인장 변형률의 감소로부터도 확인할 수 있었다.
2종의 이미드화 촉매의 몰%의 비를 변화시킨 실시예 5 및 6을 통해서 퀴놀린의 몰%와 피콜린의 몰%의 비(퀴놀린의 몰%/피콜린의 몰%)가 커질수록 폴리이미드 필름의 인장 변형률이 감소하는 것을 확인할 수 있었다.
또한, 2종의 이미드화 촉매(퀴놀린(QL) 및 β-피콜린(BP))의 몰%의 비(퀴놀린의 몰%/피콜린의 몰%)를 1로 유지하면서 함량을 줄인 실시예 7 및 8을 통해서, 이미드화 촉매, 아세트산 무수물 및 DMF의 적절한 함량과 함량비를 조절하여 우수한 인장 변형률 특성을 가지는 폴리이미드 필름을 얻을 수 있음을 확인할 수 있었다.
그 밖에도, TGA-MS(Thermogravimetric analyzer-mass spectrometer) 장치를 사용하여 실시예 1 내지 8의 폴리이미드 필름을 분석한 결과, 분자량이 129g/mol인 화합물이 검출되었고, 검출된 화합물은 실시예 1 내지 8의 폴리이미드 필름에 포함된 퀴놀린으로 판단되었다.
한편, 퀴놀린을 포함하지 않는 비교예 1 내지 3의 폴리이미드 필름의 인장 변형률은 크게 저하되었다.
예를 들어, 실시예 4에서 퀴놀린을 제외한 비교예 1은 인장 변형률이 크게 감소하였다.
한편, 2종의 이미드화 촉매 중 β-피콜린(BP)를 사용하지 않을 경우에는 겔 필름 형성이 적절히 진행되지 않아서 폴리이미드 필름이 형성되지 않았다.
즉, 실시예 1 내지 8과 같이 2종의 이미드화 촉매(퀴놀린(QL) 및 β-피콜린(BP))가 적정량으로 포함하고, 또한 탈수제인 아세트산 무수물과 DMF과 적정량으로 조절될 때, 우수한 인장 변형률의 폴리이미드 필름을 얻을 수 있었다.
실험예 2
제조예 2에 따라 제조된 실시예의 폴리이미드 필름을 사용한 그라파이트 시트의 열확산계수 및 발포 두께를 측정하였다.
열확산계수는 측정장치(Netsch, LFA 467)를 사용하여 Laser Flash법으로 평면 방향 열확산율을 측정하였고, 발포 두께는 Digital Micrometer(Standard-type, Mitutoyo)에 의해서 측정되었다.
측정을 통해서 실시예의 폴리이미드 필름을 사용하는 경우, 열확산 및 발포 특성을 가진 그라파이트 시트가 제조됨을 확인할 수 있었다.
본 발명의 제조방법의 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 당업자가 본 발명을 용이하게 실시할 수 있도록 하는 바람직한 실시 예일 뿐, 전술한 실시 예에 한정되는 것은 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.
본 발명은 2종의 이미드화 촉매를 함께 사용하여 표면과 내부 특성의 균일성이 확보되고, 필름 제조시 파단이 발생하지 않는 인장 변형 특성이 우수한 그라파이트 시트용 고후도 폴리이미드 필름, 상기 폴리이미드 필름으로부터 그라파이트 시트를 제조하는 방법 및 이로부터 제조된 우수한 특성의 그라파이트 시트을 제공하는 효과를 갖는다.

Claims (9)

  1. 이미드화 촉매로 퀴놀린(quinoline) 및 β-피콜린(β-picoline)을 포함하고,
    탈수제로 아세트산 무수물(acetic anhydride)을 포함하는 폴리아믹산을 이미드화 반응시켜 얻어진,
    폴리이미드 필름.
  2. 제1항에 있어서,
    상기 퀴놀린을 상기 폴리아믹산 중 아믹산기 1몰에 대하여, 0.1 몰% 이상, 1.5 몰% 이하로 포함하고,
    상기 β-피콜린을 상기 폴리아믹산 중 아믹산기 1몰에 대하여, 0.1 몰% 이상, 1 몰% 이하로 포함하는,
    폴리이미드 필름.
  3. 제1항에 있어서,
    상기 퀴놀린의 몰% 및 상기 β-피콜린의 몰%의 비(퀴놀린의 몰%/β-피콜린의 몰%)가 1 이상 3 이하인,
    폴리이미드 필름.
  4. 제1항에 있어서,
    상기 아세트산 무수물을 상기 폴리아믹산 중 아믹산기 1몰에 대하여, 1 몰% 이상, 4 몰% 이하로 포함하는,
    폴리이미드 필름.
  5. 제1항에 있어서,
    상기 β-피콜린의 몰% 및 상기 아세트산 무수물의 몰%의 비(β-피콜린의 몰%/ 아세트산 무수물의 몰%)가 0.11 이상 0.50 이하인,
    폴리이미드 필름.
  6. 제1항에 있어서,
    상기 폴리아믹산은 디메틸포름아미드(Dimethylformamide, DMF)를 상기 폴리아믹산 중 아믹산기 1몰에 대하여, 1 몰% 이상, 3 몰% 이하로 포함하는,
    폴리이미드 필름.
  7. 제1항에 있어서,
    상기 폴리이미드 필름은 피로멜리트산 이무수물, 3,3',4,4'-비페닐테트라카르복시산 이무수물, 2,3,3',4-비페닐테트라카르복시산 이무수물, 옥시디프탈산 무수물, 비스(3,4-디카르복시페닐)설폰 이무수물, 3,3',4,4'-벤조페논테트라카르복시산 이무수물 또는 이들의 조합을 포함한 이무수물 단량체, 및
    4,4'-옥시디아닐린, 3,4'-옥시디아닐린, p-페닐렌디아민, m-페닐렌디아민, 4,4'-메틸렌디아닐린, 3,3'-메틸렌디아닐린 또는 이들의 조합을 포함한 디아민 단량체로부터 형성된,
    폴리이미드 필름.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 폴리이미드 필름은 그라파이트 시트 제조용인,
    폴리이미드 필름.
  9. 제1항 내지 제7항 중 어느 한 항의 폴리이미드 필름을 탄화, 흑연화 또는 탄화 및 흑연화하는 단계를 포함하는,
    그라파이트 시트의 제조 방법.
PCT/KR2022/018054 2021-11-16 2022-11-16 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트 WO2023090838A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210157397A KR20230071326A (ko) 2021-11-16 2021-11-16 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
KR10-2021-0157397 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023090838A1 true WO2023090838A1 (ko) 2023-05-25

Family

ID=86397344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018054 WO2023090838A1 (ko) 2021-11-16 2022-11-16 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트

Country Status (2)

Country Link
KR (1) KR20230071326A (ko)
WO (1) WO2023090838A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207014A (ja) * 1993-01-07 1994-07-26 Kanegafuchi Chem Ind Co Ltd ポリイミド及びポリイミドフィルムの製造方法
KR20060096413A (ko) * 2006-02-28 2006-09-11 카네카 코포레이션 필름 형상 그라파이트와 그 제조 방법
KR20200066144A (ko) * 2019-06-20 2020-06-09 에스케이씨코오롱피아이 주식회사 배향성이 우수한 폴리이미드 필름으로부터 제조되는 그라파이트 시트 및 이의 제조방법
KR20210001738A (ko) * 2019-06-28 2021-01-06 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 및 이의 제조방법
KR102222571B1 (ko) * 2019-10-28 2021-03-05 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125911B1 (ko) 2015-10-29 2020-06-23 피아이첨단소재 주식회사 폴리이미드 필름 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207014A (ja) * 1993-01-07 1994-07-26 Kanegafuchi Chem Ind Co Ltd ポリイミド及びポリイミドフィルムの製造方法
KR20060096413A (ko) * 2006-02-28 2006-09-11 카네카 코포레이션 필름 형상 그라파이트와 그 제조 방법
KR20200066144A (ko) * 2019-06-20 2020-06-09 에스케이씨코오롱피아이 주식회사 배향성이 우수한 폴리이미드 필름으로부터 제조되는 그라파이트 시트 및 이의 제조방법
KR20210001738A (ko) * 2019-06-28 2021-01-06 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 및 이의 제조방법
KR102222571B1 (ko) * 2019-10-28 2021-03-05 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트

Also Published As

Publication number Publication date
KR20230071326A (ko) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2019164067A1 (ko) 향상된 열전도도를 가지는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조된 그라파이트 시트
EP2342266A2 (en) Polyimide film
KR20190103638A (ko) 그래핀 함유의 구형 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
KR102286058B1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이의 제조방법
WO2021085851A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2020218695A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2021091116A1 (ko) 그라파이트 시트용 폴리이미드 필름, 이의 제조방법, 및 이로부터 제조된 그라파이트 시트
WO2022203327A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
KR102153506B1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2020230969A1 (ko) 폴리이미드 및 이의 제조 방법
WO2022114852A1 (ko) 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이로부터 제조된 그라파이트 시트
WO2023090838A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2021025454A1 (ko) 그라파이트 시트용 다층 폴리이미드 필름, 이의 제조방법 및 이로부터 제조된 그라파이트 시트
WO2021091117A1 (ko) 그라파이트 시트용 폴리이미드 필름, 이의 제조방법, 및 이로부터 제조된 그라파이트 시트
KR102151508B1 (ko) 고후도 그라파이트 시트의 제조방법 및 이를 이용하여 제조된 고후도 그라파이트 시트
WO2024010418A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
KR20230052044A (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2022045728A1 (ko) 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법
WO2024112104A1 (en) Polyimide film comprising additive and graphite sheet prepared by using same
WO2023191434A1 (ko) 폴리이미드 필름 및 그 제조방법
KR102162627B1 (ko) 배향성이 우수한 폴리이미드 필름의 제조방법, 이로부터 제조되는 폴리이미드 필름 및 이를 이용하여 제조된 그라파이트 시트
CN118234784A (zh) 石墨片用聚酰亚胺膜和由其制造的石墨片
KR102286059B1 (ko) 고후도 그라파이트 시트 및 이의 제조방법
WO2022169193A1 (ko) 고후도 다층 폴리이미드 필름 및 이의 제조방법
WO2023038322A1 (ko) 폴리아믹산 조성물 및 이로부터 제조되는 폴리이미드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896043

Country of ref document: EP

Kind code of ref document: A1