WO2020230969A1 - 폴리이미드 및 이의 제조 방법 - Google Patents

폴리이미드 및 이의 제조 방법 Download PDF

Info

Publication number
WO2020230969A1
WO2020230969A1 PCT/KR2019/016607 KR2019016607W WO2020230969A1 WO 2020230969 A1 WO2020230969 A1 WO 2020230969A1 KR 2019016607 W KR2019016607 W KR 2019016607W WO 2020230969 A1 WO2020230969 A1 WO 2020230969A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
bis
dianhydride
chain
present application
Prior art date
Application number
PCT/KR2019/016607
Other languages
English (en)
French (fr)
Inventor
노경현
황인환
이익상
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Priority to JP2021568068A priority Critical patent/JP7350891B2/ja
Priority to CN201980098437.4A priority patent/CN114096588A/zh
Priority to US17/610,999 priority patent/US20220227941A1/en
Publication of WO2020230969A1 publication Critical patent/WO2020230969A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present application relates to a polyimide and a method for preparing the same.
  • Polyimide (PI) is a polymer material with thermal stability based on a rigid aromatic backbone and has mechanical properties such as excellent strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring.
  • polyimide is in the spotlight as a high-functional polymer material applicable to a wide range of industries such as electronics, communication, and optics due to its excellent electrical properties such as insulation and low dielectric constant.
  • the present application is to provide a polyimide and a method for manufacturing the same, which can achieve excellent adhesion while maintaining the characteristics of the original polyimide by solving the conventional problem recognized above.
  • This application relates to a polyimide.
  • the polyimide of the present application can be applied in fields requiring adhesion or dimensional stability by utilizing varnishes such as displays, enamels, semiconductors, and binders.
  • Exemplary polyimide includes a polymer in which a diamine monomer and a dianhydride monomer are polymerized, the average light transmittance in the 380 nm to 780 nm wavelength range is in the range of 49 to 61%, and the light transmittance at the 550 nm wavelength is 40 to 64 It can be in the range of %.
  • the light transmittance may be measured using a UV-Vis Spectrometer.
  • the lower limit of the average light transmittance in the 380nm to 780nm wavelength region may be 49.5%, 50%, 51%, 53%, 54%, 55%, 56%, or 56.5%
  • the upper limit is 60.8 %, 60.5%, 60.3%, 60%, 58%, 55%, 53%, or 50%.
  • the lower limit of the light transmittance at the 550nm wavelength may be 45%, 50%, 53%, 54.1%, 54.5%, 55%, 56% or 58%
  • the upper limit is 63.8%, It may be 63.5%, 63.3%, 63%, 61%, 58%, 56%, 55%, 54% or 52%.
  • an adhesion promoter is formed in the polyimide molecular structure, and through this, the adhesive strength of the polyimide, which has previously low adhesion, can be realized at a desired level.
  • the method of controlling the light transmittance is not particularly limited.
  • the polyimide of the present application may be derived from a polyamic acid in which a diamine monomer and a dianhydride monomer are polymerized. In one example, that it is derived from the polyamic acid may mean that the polyamic acid is imidized to form the polyimide of the present application.
  • the polyamic acid which is a polyimide precursor composition
  • long polymer chains may be formed, but short chains may be generated during this process. Since the short chains act like impurities in the composition, adhesion may be lowered.
  • the present application can increase adhesion by oxidizing the short chains. In the present application, some chains may be oxidized because the light transmittance of the polyimide film is lowered. Accordingly, the present application oxidizes some chains in the polyimide molecular structure by adjusting the light transmittance in the 380 nm to 780 nm wavelength range and the 550 nm wavelength range to the above range, thereby improving adhesion.
  • the polymer of the present application includes a first chain and a second chain that is shorter than the first chain, and the second chain may be in an oxidized state.
  • the first chain is the above-described long polymer chain
  • the second chain may be the short chain.
  • the long chain and the short chain are relative concepts and do not limit absolute values.
  • whether the second chain is oxidized can be determined through the light transmittance range in the 380nm to 780nm wavelength range and the 550nm wavelength range described above.
  • the second chain may be included in a range of 5 wt% or less in the total polymer.
  • the upper limit of the second chain content is 4.8 wt%, 4.5 wt%, 4.3 wt%, 4.0 wt%, 3.8 wt%, 3.5 wt%, 3.3 wt%, 3.0 wt%, 2.8 wt%, 2.5 wt%, 2.3 wt %, 2.0 wt%, 1.5 wt%, 1.0 wt% or 0.8 wt%.
  • the lower limit of the content of the second chain may be 0 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, 1.0 wt%, or 1.3 wt%.
  • the present application may provide a polyimide having excellent adhesion while maintaining mechanical properties such as original polyimide strength, chemical resistance, weather resistance, and heat resistance through the oxidized second chain.
  • the dianhydride monomer that can be used in the preparation of the polyamic acid solution may be an aromatic tetracarboxylic dianhydride, and the aromatic tetracarboxylic dianhydride is pyromellitic dianhydride (or PMDA), 3, 3',4,4'-biphenyltetracarboxylic dianhydride (or BPDA), 2,3,3',4'-biphenyltetracarboxylic dianhydride (or a-BPDA), oxydip Talic dianhydride (or ODPA), diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride (or DSDA), bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride, 2,3,3',4'-benzophenonetetrac
  • the dianhydride monomer may be used alone or in combination of two or more, as necessary, but, for example, pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracar It may include a boxylic dianhydride (s-BPDA) or 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA).
  • PMDA pyromellitic dianhydride
  • s-BPDA boxylic dianhydride
  • a-BPDA 2,3,3',4'-biphenyltetracarboxylic dianhydride
  • the diamine monomer that can be used for preparing the polyamic acid solution is an aromatic diamine, and is classified as follows and examples thereof are given.
  • 1,4-diaminobenzene or paraphenylenediamine, PDA
  • 1,3-diaminobenzene 2,4-diaminotoluene
  • 2,6-diaminotoluene 3,5-diaminobenzo
  • a diamine having one benzene nucleus in structure such as an acid acid (or DABA)
  • a diamine having a relatively rigid structure such as an acid acid (or DABA)
  • Diaminodiphenyl ether such as 4,4'-diaminodiphenyl ether (or oxydianiline, ODA), 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane (Methylenediamine), 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl )-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane , 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis(4-aminophenyl)sulfide, 4,4'-diaminobenz
  • the diamine monomer may be used alone or in combination of two or more, as necessary, for example, 3,5-diamino benzoic acid, 3,3-dihydroxy-4,4-diamino-biphenyl, 2,5-dihydroxy-p-phenylenediamine, 4,6-diaminoresorcinol, 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 2,4- Diaminotoluene, 2,6-diaminotoluene or 4,4'-methylenediamine (MDA).
  • 3,5-diamino benzoic acid 3,3-dihydroxy-4,4-diamino-biphenyl, 2,5-dihydroxy-p-phenylenediamine, 4,6-diaminoresorcinol, 1,4-diaminobenzene (PPD), 1,3-diaminobenzene (MPD), 2,4- Diaminotolu
  • the diamine monomer may include at least one hydroxy group in the molecular structure.
  • the present application can control the substituents in the molecular structure of the polyimide, and in one example, the diamine monomer includes one or more hydroxy groups, thereby maintaining the existing physical properties of the polyimide and implementing excellent adhesion.
  • the dianhydride monomer may include at least one hydroxy group in the molecular structure.
  • the polyimide may have a thermal decomposition temperature of 560°C or higher or 562°C or higher.
  • the upper limit value is not particularly limited, but may be 1000° C. or less, or 800° C. or less.
  • the polyimide of the present application can minimize unreacted monomers by controlling the thermal decomposition temperature, thereby providing a polyimide having a desired physical property.
  • the polyimide of the present application may have a weight average molecular weight of 500 to 100,000, 1,000 to 80,000, 10,000 to 70,000, 20,000 to 60,000, 25,000 to 55,000, or 30,000 to 50,000.
  • weight average molecular weight means a value converted to standard polystyrene measured by GPC (Gel permeation Chromatograph).
  • the polyimide may have a glass transition temperature of 360°C or higher, 370°C or higher, 375°C or higher, 380°C or higher, or 400°C or higher.
  • the upper limit is not particularly limited, but may be 600 °C or 550 °C.
  • the polyimide may have a coefficient of thermal expansion (CTE) of 15 ppm/°C or less, 13 ppm/°C or less, 10 ppm/°C or less, or 5 ppm/°C or less.
  • the lower limit is not particularly limited, but may be 0 ppm/°C or 2 ppm/°C.
  • the CTE may be measured at elevated or lower temperature from 100°C to 350°C, for example.
  • by controlling the physical properties of the polyimide it is possible to implement excellent adhesion while maintaining mechanical properties such as excellent strength, chemical resistance, weather resistance, and heat resistance of the existing polyimide.
  • the polyimide of the present application may be a polyimide imidized under a nitrogen and oxygen atmosphere.
  • the polyimide may be a polyimide in which polyamic acid is imidized in an oxygen and nitrogen atmosphere.
  • an oxidation reaction due to oxygen can be induced, and the adhesion of the entire polyimide can be improved through a relatively low molecular weight chain.
  • the polyimide precursor composition may be used with the same meaning as polyamic acid.
  • the polyimide precursor composition may include an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which polyamic acid can be dissolved, but may be an aprotic polar solvent as an example.
  • the aprotic polar solvent is, for example, an amide solvent such as N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide (DMAc), p-chlorophenol, o-chlorophenol, etc.
  • amide solvent such as N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide (DMAc), p-chlorophenol, o-chlorophenol, etc.
  • the solubility of polyamic acid may be adjusted by using an auxiliary solvent such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water in some cases.
  • an auxiliary solvent such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water in some cases.
  • the organic solvent may be, for example, N-methyl-pyrrolidone (NMP).
  • the polyimide precursor composition of the present application may include a filler for the purpose of improving various properties of the film such as sliding property, thermal conductivity, conductivity, corona resistance, and loop hardness.
  • the filler to be added is not particularly limited, and examples thereof include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • the particle diameter of the filler is not particularly limited, and may be determined according to the characteristics of the film to be modified and the type of filler to be added.
  • the average particle diameter may be 0.05 to 20 ⁇ m, 0.1 to 10 ⁇ m, 0.1 to 5 ⁇ m, or 0.1 to 3 ⁇ m. In the present specification, the average particle diameter may be an average particle diameter measured according to D50 particle size analysis unless otherwise specified.
  • the modification effect may be sufficiently maintained, and the surface properties may not be impaired and the mechanical properties may not be deteriorated.
  • the present application is not particularly limited to the amount of the filler added, and may be determined by film properties to be modified or the particle diameter of the filler.
  • the amount of the filler added may be 0.01 to 10 parts by weight, 0.01 to 5 parts by weight, or 0.02 to 1 part by weight based on 100 parts by weight of the polyimide resin. According to the present application, by adjusting the content, the mechanical properties of the film may not be damaged while sufficiently maintaining the modifying effect of the filler.
  • the method of adding the filler is not particularly limited, and a method known in the same industry may be used.
  • the polyimide precursor composition may include 5 to 30% by weight, 8 to 25% by weight, or 10 to 20% by weight of solids based on the total weight.
  • the polyimide precursor composition may have a viscosity of 10,000 cP or less and 9,000 cP or less as measured by a Brookfield viscometer on the RV-7 spindle under conditions of a temperature of 23° C. and a rotation speed of 0.5 rpm.
  • the lower limit is not particularly limited, but may be 500 cP or more or 1000 cP or more.
  • a method of polymerizing by adding the total amount of the diamine monomer into a solvent, and then adding the dianhydride monomer to be substantially equimolar or excess with the diamine monomer, or the total amount of the dianhydride monomer into a solvent.
  • a diamine monomer is added so as to be substantially equimolar or excessive with the dianhydride monomer to perform polymerization.
  • the polyimide may have an adhesive strength of 0.08 N/cm or more measured according to ASTM D 3359.
  • the adhesion is, for example, 0.12 N/cm or more, 0.15 N/cm or more, 0.18 N/cm or more, 0.22 N/cm or more, 0.25 N/cm or more, 0.3 N/cm or more, 0.33 N/cm or more, 0.38 N/cm or more, or 0.45 N/cm or more, and its upper limit is not particularly limited, but 5 N/cm, 4 N/cm, 3 N/cm, 2 N/cm, 1 N/cm, 0.8 N/ cm, or 0.6 N/cm.
  • the adhesive force may be an adhesive force measured while attaching the prepared polyimide film to a glass substrate with a width of 10 mm and peeling at a peel rate of 20 mm/min and a peel angle of 180°.
  • the present application also relates to a method for producing a polyimide.
  • the manufacturing method may be the manufacturing method of the above-described polyimide.
  • the manufacturing method may include the step of imidizing the polyimide precursor composition in a nitrogen and oxygen atmosphere.
  • the imidization step not only nitrogen but also a certain amount of oxygen may be added together.
  • the present application can induce an oxidation reaction due to oxygen, and can improve the adhesion of the entire polyimide through a relatively low molecular weight chain.
  • nitrogen and oxygen may have a volume ratio of 95 to 5 and 5 to 95, respectively.
  • the volume ratio may be, for example, the volume ratio of nitrogen is 94 to 8, 93 to 20, 92 to 40, 91 to 60, or 90 to 82.
  • the volume ratio of oxygen may be adjusted within the range of, for example, 6 to 80, 7 to 60, 8 to 40, or 9 to 18.
  • the present application by controlling the volume ratio of nitrogen and oxygen, it is possible to oxidize short chains of low molecular weight in the polyimide, and to control the adhesion promoter in the polyimide, thereby implementing excellent adhesion.
  • the present application can also maintain the existing polyimide physical properties within the volume ratio range.
  • the manufacturing method may have a process temperature of 50 to 500°C, 100 to 480°C, or 130 to 470°C.
  • the polyimide precursor composition may be coated on a support or a substrate to be made of a polyimide having a film form, and the polyimide may have a film form having a thickness of 5 to 50 ⁇ m or 10 to 20 ⁇ m.
  • the present application provides a method for producing a polyimide comprising: forming a film of the polyimide precursor composition on a support and drying to prepare a gel film; And it may provide a method for producing a polyimide film comprising the step of curing the gel film.
  • a conventionally known method may be used for a method of imidizing the above polyimide precursor composition to prepare a polyimide film.
  • thermal imidation method a thermal imidation method, a chemical imidization method, or a composite imidization method in which the thermal imidation method and the chemical imidization method are used in combination may be exemplified.
  • the present application provides a polyimide and a method for manufacturing the same, which can realize excellent adhesion while maintaining the characteristics of the original polyimide.
  • NMP N-methyl-pyrrolidone
  • PPD 1,4-diaminobenzene
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • Example 1 a polyimide was prepared in the same manner as in Example 1, except that the process conditions were changed as shown in Table 1 below.
  • Atmosphere nitrogen:oxygen
  • volume ratio Film thickness( ⁇ m)
  • Maximum process temperature (°C)
  • Example 1 90:10 15.3 460
  • Example 3 50:50 15.4 460
  • Example 4 30:70 15.0
  • Example 5 10:90 16.2 460 Comparative Example 1 100:0 15.3 460 Comparative Example 2 0:100 15.3 460
  • TA's Thermomechanical Analyzer Q400 model was used, and a polyimide film was cut into 2 mm in width and 10 mm in length, and then 500 N at room temperature at a rate of 10 °C/min while applying a tension of 0.05 N in a nitrogen atmosphere. After raising the temperature to °C, while cooling at a rate of 10 °C/min again, the slope of the section from 100 °C to 350 °C was measured. CTE was first measured in the heating section from 100°C to 350°C, and then CTE was measured in the low temperature section from 350°C to 100°C.
  • the loss modulus and the storage modulus of each polyimide resin were calculated using TMA, and the inflection point was measured as a glass transition degree in the tangent graph.
  • Adhesion was measured using the method presented in ASTM D 3359. Specifically, the polyimide films prepared in Examples and Comparative Examples were attached to a glass substrate to have a width of 10 mm, and the adhesion was measured while peeling at a peel rate of 20 mm/min and a peel angle of 180°. The unit of adhesion is N/cm.
  • the light transmittance was measured in a wavelength range of 380 nm to 780 nm using a UV-Vis Spectrometer, and the average value was calculated, and also, the light transmittance at 550 nm was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 출원은 폴리이미드 및 이의 제조 방법에 관한 것으로서, 본래의 폴리이미드의 특성을 유지하면서도 우수한 접착력을 구현할 수 있는 폴리이미드 및 이의 제조방법을 제공한다.

Description

폴리이미드 및 이의 제조 방법
관련 출원들과의 상호 인용
본 출원은 2019년 05월 13일자 한국 특허 출원 제10-2019-0055736호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 폴리이미드 및 이의 제조 방법에 관한 것이다.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄를 기본으로 하는 열적 안정성을 가진 고분자 물질로 이미드 고리의 화학적 안정성을 기초로 하여 우수한 강도, 내화학성, 내후성, 내열성 등의 기계적 특성을 가진다.
또한, 폴리이미드는 절연 특성, 낮은 유전율과 같은 뛰어난 전기적 특성으로 전자, 통신, 광학 등 광범위한 산업 분야에 적용 가능한 고기능성 고분자 재료로 각광받고 있다.
다만, 일반적으로 폴리이미드 수지는 고분자 수지 중에서 접착력이 높은 편으로 보기는 어려우며, 접착력을 보다 개선하기 위한 다양한 연구가 행해지고 있다.
예를 들어, 폴리이미드 수지의 접착력을 개선하기 위해 단량체의 함량을 한정하는 방법이 일부에서 시도되고 있으나, 접착력이 다소 향상되는 반면에, 신율과 인장 강도 등의 기계적 물성 저하 및 치수 안정성이 희생될 수 있다.
따라서, 종래보다 더 우수한 접착력을 가지면서도, 유리전이온도 및 치수 안정성 또한 적정한 수준으로 담보될 수 있는 신규한 폴리이미드 수지가 필요한 실정이다.
본 출원은 상기에서 인식된 종래의 문제를 해결하여, 본래의 폴리이미드의 특성을 유지하면서도 우수한 접착력을 구현할 수 있는 폴리이미드 및 이의 제조방법 제공하는 것이다.
본 출원은 폴리이미드에 관한 것이다. 본 출원의 폴리이미드는 디스플레이, 애나멜, 반도체, 바인더 등 바니쉬를 활용해 접착력이 필요하거나 치수 안정성이 요구되는 분야에서 적용이 가능하다.
예시적인 폴리이미드는 디아민 단량체 및 디안하이드라이드 단량체가 중합된 중합체를 포함하고, 380nm 내지 780nm 파장영역에서의 평균 광투과율이 49 내지 61%의 범위 내이고, 550nm 파장에서의 광투과율이 40 내지 64%의 범위 내일 수 있다. 본 명세서에서 상기 광투과율은 UV-Vis Spectrometer를 이용하여 측정한 것일 수 있다. 일 예시에서, 상기 380nm 내지 780nm 파장영역에서의 평균 광투과율의 하한은 49.5%, 50%, 51%, 53%, 54%, 55%, 56%, 또는 56.5%일 수 있으며, 그 상한은 60.8%, 60.5%, 60.3%, 60%, 58%, 55%, 53%, 또는 50%일 수 있다. 또한, 일 구체예에서, 상기 550nm 파장에서의 광투과율의 하한은 45%, 50%, 53%, 54.1%, 54.5%, 55%, 56% 또는 58%일 수 있고, 그 상한은 63.8%, 63.5%, 63.3%, 63%, 61%, 58%, 56%, 55%, 54% 또는 52%일 수 있다. 본 출원은 폴리이미드의 광투과율을 상기와 같이 조절함으로써, 폴리이미드 분자 구조 내에 접착력 향상 인자(Adhesion Promotor)를 형성하고, 이를 통해 기존에 접착력이 낮은 폴리이미드의 접착력을 목적하는 수준으로 구현할 수 있다. 상기 광투과율을 조절하는 방법은 특별히 한정되지 않는다.
하나의 예시에서, 본 출원의 폴리이미드는 디아민 단량체 및 디안하이드라이드 단량체가 중합된 폴리아믹산으로부터 유래될 수 있다. 일 예시에서, 상기 폴리아믹산으로부터 유래되었다는 것은 상기 폴리아믹산이 이미드화되어 본 출원의 폴리이미드를 형성함을 의미할 수 있다.
폴리이미드 전구체 조성물인, 상기 폴리아믹산은 이미드화될 때, 긴 중합체 사슬을 형성할 수 있고, 다만, 이 과정 중에 짧은 사슬들이 생성될 수 있다. 상기 짧은 사슬들은 조성물 내에서 불순물과 같은 역할을 하기 때문에, 접착력을 저하시킬 수 있다. 본 출원은 상기 짧은 사슬들을 산화시킴으로써 접착력을 상승시킬 수 있다. 본 출원은 폴리이미드 필름의 광투과율이 낮아짐으로써 일부 사슬이 산화될 수 있다. 이에 따라, 본 출원은 380nm 내지 780nm 파장영역 및 550nm 파장에서 광투과율을 상기 범위로 조절함으로써, 폴리이미드 분자 구조 내의 일부 사슬을 산화시키고, 이로써 접착력을 향상시킬 수 있다.
본 출원의 구체예에서, 본 출원의 중합체는 제1사슬 및 상기 제1사슬 보다 짧은 사슬인 제2사슬을 포함하며, 상기 제2사슬은 산화된 상태일 수 있다. 상기 제1사슬이 상술한 긴 중합체 사슬이라고 하면, 상기 제2사슬은 상기 짧은 사슬일 수 있다. 본 명세서에서 긴 사슬 및 짧은 사슬은 상대적인 개념으로서 절대적인 수치를 한정하는 것은 아니다. 상기 제2사슬이 산화되었는지 여부는 반대로, 전술한 380nm 내지 780nm 파장영역 및 550nm 파장에서 광투과율 범위를 통해서 알 수 있다. 하나의 예시에서, 상기 제2사슬은 전체 중합체에서 5wt% 이하의 범위로 포함될 수 있다. 상기 제2사슬 함량의 상한은 4.8wt%, 4.5 wt%, 4.3 wt%, 4.0 wt%, 3.8 wt%, 3.5 wt%, 3.3 wt%, 3.0 wt%, 2.8 wt%, 2.5 wt%, 2.3 wt%, 2.0 wt%, 1.5 wt%, 1.0 wt% 또는 0.8 wt%일 수 있다. 또한, 상기 제2사슬 함량의 하한은 0 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, 1.0 wt%, 또는 1.3 wt%일 수 있다. 본 출원은 상기 산화된 제2사슬을 통해, 본래의 폴리이미드 강도, 내화학성, 내후성, 내열성 등의 기계적 특성을 유지하면서도, 우수한 접착력을 가지는 폴리이미드를 제공할 수 있다.
상기 폴리아믹산 용액의 제조에 사용될 수 있는 디안하이드라이드 단량체는 방향족 테트라카르복실릭 디안하이드라이드일 수 있으며, 상기 방향족 테트라카르복실릭 디안하이드라이드는 피로멜리틱 디안하이드라이드(또는 PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 BPDA), 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 a-BPDA), 옥시디프탈릭 디안하이드라이드(또는 ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(또는 DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로페인 디안하이드라이드, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(또는 BTDA), 비스(3,4-디카르복시페닐)메테인 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로페인 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로페인 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드, 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드 등을 예로 들 수 있다.
상기 디안하이드라이드 단량체는 필요에 따라, 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 예를 들면, 피로멜리틱 디안하이드라이드(PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA) 또는 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA)를 포함할 수 있다.
또한, 폴리아믹산 용액 제조에 사용될 수 있는 디아민 단량체는 방향족 디아민으로서, 이하와 같이 분류하여 예를 들 수 있다.
1) 1,4-디아미노벤젠(또는 파라페닐렌디아민, PDA), 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(또는 DABA) 등과 같이, 구조 상 벤젠 핵 1개를 갖는 디아민으로서, 상대적으로 강직한 구조의 디아민;
2) 4,4'-디아미노디페닐에테르(또는 옥시디아닐린, ODA), 3,4'-디아미노디페닐에테르 등의 디아미노디페닐에테르, 4,4'-디아미노디페닐메테인(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메테인, 3,3'-디카복시-4,4'-디아미노디페닐메테인, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메테인, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디클로로벤지딘, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메테인, 3,4'-디아미노디페닐메테인, 4,4'-디아미노디페닐메테인, 2,2-비스(3-아미노페닐)프로페인, 2,2-비스(4-아미노페닐)프로페인, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드 등과 같이, 구조 상 벤젠 핵 2개를 갖는 디아민;
3) 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠(또는 TPE-Q), 1,4-비스(4-아미노페녹시)벤젠(또는 TPE-Q), 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이 드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠 등과 같이, 구조 상 벤젠 핵 3개를 갖는 디아민;
4) 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메테인, 비스〔3-(4-아미노페녹시)페닐〕메테인, 비스〔4-(3-아미노페녹시)페닐〕메테인, 비스〔4-(4-아미노페녹시)페닐〕메테인, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로페인(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인 등과 같이, 구조 상 벤젠 핵 4개를 갖는 디아민.
상기 디아민 단량체는 필요에 따라, 단독 또는 2 종 이상을 조합하여 이용할 수 있으며, 예를 들면, 3,5-디아미노 벤조산, 3,3-디하이드록시-4,4-디아미노-비페닐, 2,5-디하이드록시-p-페닐렌디아민, 4,6-디아미노레조르시놀, 1,4-디아미노벤젠(PPD), 1,3-디아미노벤젠(MPD), 2,4-디아미노톨루엔, 2,6-디아미노톨루엔 또는 4,4'-메틸렌디아민(MDA)를 포함할 수 있다.
본 출원의 구체예에서, 상기 디아민 단량체는 분자 구조 내에 적어도 하나 이상의 히드록시기를 포함할 수 있다. 본 출원은 전술한 바와 같이, 폴리이미드의 분자 구조 내의 치환기를 조절할 수 있고, 일 예시에서, 상기 디아민 단량체가 히드록시기를 하나 이상 포함함으로써, 폴리이미드의 기존의 물성을 유지하면서도 우수한 접착력을 구현할 수 있다. 또한, 상기 디안하이드라이드 단량체가 분자 구조 내에 적어도 하나 이상의 히드록시기를 포함할 수 있다.
하나의 예시에서, 폴리이미드는 열분해 온도가 560℃ 이상 또는 562℃ 이상일 수 있다. 그 상한 값은 특별히 한정되지 않으나, 1000℃ 이하, 또는 800℃ 이하일 수 있다. 본 출원의 폴리이미드는 상기 열분해 온도를 조절함으로써, 미반응 단량체들을 최소화할 수 있고, 이를 통해 목적하는 물성의 폴리이미드를 제공할 수 있다.
일 구체예에서, 본 출원의 폴리이미드는 중량평균분자량이 500 내지 100,000, 1,000 내지 80,000, 10,000 내지 70,000, 20,000 내지 60,000, 25,000 내지 55,000 또는 30,000 내지 50,000의 범위 내일 수 있다. 본 출원에서 용어 중량평균분자량은, GPC(Gel permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미한다. 본 출원의 폴리이미드의 중량평균분자량을 조절함으로써, 목적하는 물성을 갖는 폴리이미드를 제공할 수 있다.
또한, 일 예씨에서, 폴리이미드는 유리전이온도가 360℃ 이상, 370℃ 이상, 375℃ 이상, 380℃ 이상 또는 400℃ 이상일 수 있다. 그 상한은 특별히 제한되지 않으나, 600℃ 또는 550℃일 수 있다. 또한, 상기 폴리이미드는 열팽창계수(CTE)가 15ppm/℃ 이하, 13 ppm/℃ 이하, 10 ppm/℃ 이하 또는 5 ppm/℃ 이하일 수 있다. 그 하한은 특별히 한정되지 않으나, 0 ppm/℃ 또는 2 ppm/℃일 수 있다. 상기 CTE는 예를 들어, 100℃에서 350℃까지 승온 또는 하온 시 측정한 것일 수 있다. 본 출원은 상기 폴리이미드의 물성을 조절함으로써, 기존의 폴리이미드의 우수한 강도, 내화학성, 내후성, 내열성 등의 기계적 특성을 유지하면서도 우수한 접착력을 구현할 수 있다.
하나의 예시에서, 본 출원의 폴리이미드는 질소 및 산소 분위기 하에서 이미드화된 폴이미드일 수 있다. 일 예시에서, 상기 폴리이미드는 폴리아믹산이 산소 및 질소 분위기 하에서 이미드화된 폴리이미드일 수 있다. 본 출원은 상기와 같이 산소 및 질소 분위기 하에서 폴리아믹산을 이미드화함으로써, 산소로 인한 옥시데이션 반응을 유도할 수 있고, 상대적으로 저분자량의 사슬을 통해 폴리이미드 전체의 접착력을 향상시킬 수 있다.
본 출원에서 폴리이미드 전구체 조성물은 폴리아믹산과 동일한 의미로 사용될 수 있다. 상기 폴리이미드 전구체 조성물은 유기용매를 포함할 수 있다. 상기 유기 용매는 폴리아믹산이 용해될 수 있는 유기 용매라면 특별히 한정되지는 않으나, 하나의 예로서 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.
상기 비양성자성 극성 용매는 예를 들어, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
본 출원은, 경우에 따라서 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다.
하나의 예시에서, 상기 유기 용매는 예를 들어, N-메틸-피롤리돈(NMP) 일 수 있다.
한편, 본 출원의 폴리이미드 전구체 조성물은 접동성, 열전도성, 도전성, 코로나 내성, 루프 경도 등의 필름의 여러 가지 특성을 개선할 목적으로 충전재가 포함될 수 있다. 첨가되는 충전재는 특별히 한정되는 것은 아니지만, 예를 들어, 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.
상기 충전재의 입경은 특별히 한정되는 것은 아니며, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류에 따라서 결정할 수 있다. 상기 평균 입경은 0.05 내지 20 ㎛, 0.1 내지 10 ㎛, 0.1 내지 5 ㎛ 또는 0.1 내지 3 ㎛일 수 있다. 본 명세서에서 평균 입경은 특별히 달리 규정하지 않는 한, D50 입도 분석에 따라 측정한 평균 입경일 수 있다.
본 출원은 상기 입경 범위를 조절함으로써, 개질 효과를 충분히 유지하면서도 표면성을 손상시키지 않고 기계적 특성을 저하시키지 않을 수 있다.
또한, 본 출원은 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정할 수 있다. 본 출원에서, 상기 충전재의 첨가량은 폴리이미드 수지 100 중량부에 대하여 0.01 내지 10 중량부, 0.01 내지 5 중량부, 또는 0.02 내지 1 중량부일 수 있다. 본 출원은 상기 함량을 조절함으로써, 충전재의 개질 효과를 충분히 유지하면서도 필름의 기계적 특성을 손상시키지 않을 수 있다.
상기 충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 동종 업계의 공지의 방법을 이용할 수도 있다.
하나의 구체적인 예에서, 상기 폴리이미드 전구체 조성물은 전체 중량을 기준으로 고형분을 5 내지 30중량%, 8 내지 25중량% 또는 10 내지 20 중량% 포함할 수 있다.
본 출원은 상기 폴리이미드 전구체 조성물의 고형분 함량을 조절함으로써, 점도 상승을 제어하면서 경화 과정에서 다량의 용매를 제거해야 하는 제조 비용과 공정 시간 증가를 방지할 수 있다.
상기 폴리이미드 전구체 조성물은 23℃ 온도 및 0.5 rpm의 회전속도 조건으로 RV-7번 스핀들에서 브룩필드 점도계로 측정한 점도가 10,000cP 이하, 9,000 cP 이하일 수 있다. 그 하한은 특별히 한정되지 않으나, 500 cP 이상 또는 1000 cP 이상일 수 있다.
한편, 폴리아믹산 용액의 제조는 예를 들어, 디아민 단량체 전량을 용매 중에 넣고, 그 후 디안하이드라이드 단량체를 디아민 단량체와 실질적으로 등몰 또는 과량이 되도록 첨가하여 중합하는 방법 또는 디안하이드라이드 단량체 전량을 용매 중에 넣고, 그 후 디아민 단량체를 디안하이드라이드 단량체와 실질적으로 등몰 또는 과량이 되도록 첨가하여 중합하는 방법 등을 사용한다.
본 출원의 구체예에서, 상기 폴리이미드는 ASTM D 3359에 따라 측정한 접착력이 0.08 N/cm 이상일 수 있다. 상기 접착력은 예를 들어, 0.12 N/cm 이상, 0.15 N/cm 이상, 0.18 N/cm 이상, 0.22 N/cm 이상, 0.25 N/cm 이상, 0.3 N/cm 이상, 0.33 N/cm 이상, 0.38 N/cm 이상, 또는 0.45 N/cm 이상일 수 있고, 그 상한은 특별히 제한되지 않으나, 5 N/cm, 4 N/cm, 3 N/cm, 2 N/cm, 1 N/cm, 0.8 N/cm, 또는 0.6 N/cm일 수 있다. 상기 접착력은 제조한 폴리이미드 필름을 글라스 기판에 너비가 10mm가 되도록 부착하고, 20mm/min의 박리 속도 및 180°의 박리 각도로 박리하면서 측정한 접착력일 수 있다.
본 출원은 또한, 폴리이미드의 제조 방법에 관한 것이다. 상기 제조 방법은 전술한 폴리이미드의 제조방법일 수 있다.
상기 제조 방법은 폴리이미드 전구체 조성물을 질소 및 산소 분위기 하에서 이미드화하는 단계를 포함할 수 있다. 본 출원은 이미드화 단계에서 질소뿐만 아니라 일정량의 산소도 함께 투입할 수 있다. 본 출원은 산소로 인한 옥시데이션 반응을 유도할 수 있고, 상대적으로 저분자량의 사슬을 통해 폴리이미드 전체의 접착력을 향상시킬 수 있다.
본 출원은 상기 단계에서, 질소 및 산소가 각각 95 내지 5 및 5 내지 95의 부피비를 가질 수 있다. 상기 부피비는 예를 들어, 질소의 부피비가 94 내지 8, 93 내지 20, 92 내지 40, 91 내지 60 또는 90 내지 82일 수 있다. 또한, 산소의 부피비는 예를 들어, 6 내지 80, 7 내지 60, 8 내지 40 또는 9 내지 18의 범위 내로 조절될 수 있다. 본 출원은 상기 질소와 산소의 부피비를 조절함으로써, 폴리이미드 내의 저분자량의 짧은 사슬을 산화시키고, 폴리이미드 내에서 Adhesion Promotor를 조절할 수 있으며, 이를 통해 우수한 접착력을 구현할 수 있다. 또한, 본 출원은 상기 부피비 범위 내에서 기존의 폴리이미드 물성도 함께 유지시킬 수 있다.
하나의 예시에서, 상기 제조 방법은 50 내지 500℃, 100 내지 480 ℃ 또는 130 내지 470℃의 공정 온도를 가질 수 있다. 또한, 상기 폴리이미드 전구체 조성물은 지지체 또는 기재 상에 도포되어 필름 형태를 가지는 폴리이미드로 제조될 수 있는데, 상기 폴리이미드는 5 내지 50㎛ 또는 10 내지 20㎛ 두께의 필름 형태를 가질 수 있다.
하나의 예시에서, 본 출원은 폴리이미드의 제조방법에 상기 폴리이미드 전구체 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조하는 단계; 및 상기 겔 필름을 경화하는 단계를 포함하는, 폴리이미드 필름의 제조방법을 제공할 수 있다.
구체적으로, 상기한 폴리이미드 전구체 조성물을 이미드화하여 폴리이미드 필름을 제조하는 방법에 대해서는, 종래 공지된 방법을 사용할 수 있다.
이러한 이미드화의 구체적인 방법으로는 열 이미드화법, 화학 이미드화법 또는 상기 열 이미드화법과 화학 이미드화법을 병용하는 복합 이미드화법을 예로 들수 있다.
본 출원은 본래의 폴리이미드의 특성을 유지하면서도 우수한 접착력을 구현할 수 있는 폴리이미드 및 이의 제조방법을 제공한다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
교반기 및 질소 주입 배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 N-메틸-피롤리돈(NMP)을 투입하고 반응기의 온도를 30℃로 설정한 후 디아민 단량체로서 1,4-디아미노벤젠(PPD), 디안하이드라이드 단량체로서 바이페닐테트라카르복실릭 디안하이드라이드(BPDA) 및 피로멜리틱 디안하이드라이드(PMDA)를 투입하여 완전히 용해된 것을 확인한다. 질소 분위기하에 40℃로 온도를 올려 가열하면서 120 분간 교반을 계속한 후, 23℃에서의 점도가 7,000 cP를 나타내는 폴리아믹산 용액을 제조하였다.
이이서, 질소 분위기하에 80℃로 온도를 올려 가열하면서 2 시간 동안 추가적으로 교반을 계속한 후, 23℃까지 냉각하여 점도가 5,100 cP를 나타내고, 폴리이미드 전구체 조성물을 제조하였다.
상기 폴리이미드 전구체 조성물을 WIZUS Glass(Asahi Glass사) 지지체에 박막의 형태로 도포 후, 하기 표 1의 산소 및 질소 분위기 하에서, 약 110℃에서 시작하여 460℃까지 온도를 높여주며 열처리하였고, 이어서 지지체로부터 박리하여 평균두께가 각각, 약 15 내지 17 ㎛인 필름 형태의 폴리이미드를 제조하였다.
실시예 2 내지 5 및 비교예 1 내지 2
실시예 1에서, 공정 조건을 각각 하기 표 1과 같이 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드를 제조하였다.
분위기(질소:산소)(부피비) 막두께(㎛) 공정 최고 온도(℃)
실시예 1 90:10 15.3 460
실시예 2 80:20 15.8 460
실시예 3 50:50 15.4 460
실시예 4 30:70 15.0 460
실시예 5 10:90 16.2 460
비교예 1 100:0 15.3 460
비교예 2 0:100 15.3 460
실험예 1 - CTE
TA사 열기계 분석기(Thermomechanical Analyzer) Q400 모델을 사용하였으며, 폴리이미드 필름을 폭 2 mm, 길이 10 mm로 자른 후 질소 분위기하에서 0.05 N의 장력을 가하면서, 10 ℃/min의 속도로 상온에서 500℃까지 승온 후 다시 10 ℃/min의 속도로 냉각하면서 100℃에서 350℃ 구간의 기울기를 측정하였다. 100℃에서 350℃까지 승온 구간에서 먼저 CTE를 측정하였고, 이어서, 350℃에서 100℃까지 하온 구간에서 CTE를 측정하였다.
실험예 2 - 유리전이온도
유리전이온도는 TMA를 이용하여 각 폴리이미드 수지의 손실 탄성률과 저장 탄성률을 구하고, 이들의 탄젠트 그래프에서 변곡점을 유리전이온도로 측정하였다.
실험예 3 - 접착력
ASTM D 3359에 제시된 방법을 이용하여 접착력을 측정하였다. 구체적으로, 실시예 및 비교예에서 제조한 폴리이미드 필름을 글라스 기판에 너비가 10mm가 되도록 부착하고, 20mm/min의 박리 속도 및 180°의 박리 각도로 박리하면서 접착력을 측정하였다. 접착력 단위는 N/cm이다.
실험예 4 - 광투과율
상기에서 제조한 폴리이미드 필름에 대하여 UV-Vis Spectrometer를 이용하여 380nm 내지 780nm 파장영역에서 광투과율을 측정하고 그 평균값을 계산하였으며, 또한, 550nm에서의 광투과율을 측정하였다.
CTE(ppm/℃) 유리전이온도(℃) 접착력(N/cm) 광투과율(%)
승온 하온 평균값 550nm
실시예 1 4.5 4.7 410 0.54 60.3 62.9
실시예 2 9.2 8.3 396 0.35 56.2 57
실시예 3 15.0 13.4 379 0.2 54.3 55.8
실시예 4 14.3 11.3 381 0.2 52 54.2
실시예 5 14.2 12.2 380 0.1 49.7 51.3
비교예 1 18.9 17 357 0.05 61.4 64.2
비교예 2 25 30 338 0.01 48.5 54

Claims (17)

  1. 디아민 단량체 및 디안하이드라이드 단량체가 중합된 중합체를 포함하고, 380nm 내지 780nm 파장영역에서의 평균 광투과율이 49 내지 61%의 범위 내이고, 550nm 파장에서의 광투과율이 40 내지 64%의 범위 내인 폴리이미드.
  2. 제 1 항에 있어서, 중합체는 제1사슬 및 상기 제1사슬 보다 짧은 사슬인 제2사슬을 포함하며, 상기 제2사슬은 산화된 상태인 폴리이미드.
  3. 제 2 항에 있어서, 산화된 제 2 사슬은 전체 중합체에서 5wt% 이하의 범위로 포함되는 폴리이미드.
  4. 제 1 항에 있어서, 디아민 단량체는 3,5-디아미노 벤조산, 3,3-디하이드록시-4,4-디아미노-비페닐, 2,5-디하이드록시-p-페닐렌디아민, 4,6-디아미노레조르시놀, 1,4-디아미노벤젠(PPD), 1,3-디아미노벤젠(MPD), 2,4-디아미노톨루엔, 2,6-디아미노톨루엔 또는 4,4'-메틸렌디아민(MDA)를 포함하는 폴리이미드.
  5. 제 1 항에 있어서, 디안하이드라이드 단량체는 피로멜리틱 디안하이드라이드(PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA) 또는 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA)를 포함하는 폴리이미드.
  6. 제 1 항에 있어서, 디아민 단량체는 분자 구조 내에 적어도 하나 이상의 히드록시기를 포함하는 폴리이미드.
  7. 제 1 항에 있어서, 열분해 온도가 560 ℃ 이상인 폴리이미드.
  8. 제 1 항에 있어서, 유리전이온도가 360 ℃ 이상인 폴리이미드.
  9. 제 1 항에 있어서, 열팽창계수(CTE)가 15ppm/℃ 이하인 폴리이미드.
  10. 제 11 항에 있어서, 질소 및 산소 분위기 하에서 이미드화된 폴리이미드.
  11. 제 1 항에 있어서, ASTM D 3359에 따라, 폴리이미드를 너비가 10mm가 되도록 글라스 기판에 부착하고, 20mm/min의 박리 속도 및 180°의 박리 각도로 박리하면서 측정한 접착력이 0.08N/cm 이상인 폴리이미드.
  12. 폴리이미드 전구체 조성물을 질소 및 산소 분위기 하에서 이미드화하는 폴리이미드의 제조 방법.
  13. 제 12 항에 있어서, 질소 및 산소는 각각 95 내지 5 및 5 내지 95의 부피비를 갖는 폴리이미드의 제조 방법.
  14. 제 12 항에 있어서, 50 내지 500℃의 공정 온도를 가지는 폴리이미드의 제조 방법.
  15. 제 12 항에 있어서, 5 내지 50㎛ 두께의 필름 형태를 갖는 폴리이미드를 제조하는 폴리이미드의 제조 방법.
  16. 제 12 항에 있어서, 폴리이미드 전구체 조성물은 고형분이 5 내지 30중량%의 범위 내인 폴리이미드의 제조 방법.
  17. 제 12 항에 있어서, 폴리이미드 전구체 조성물은 23℃ 온도 및 0.5 rpm의 회전속도 조건으로 RV-7번 스핀들에서 브룩필드 점도계로 측정한 점도가 10,000cP 이하인 폴리이미드의 제조 방법.
PCT/KR2019/016607 2019-05-13 2019-11-28 폴리이미드 및 이의 제조 방법 WO2020230969A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021568068A JP7350891B2 (ja) 2019-05-13 2019-11-28 ポリイミド及びその製造方法
CN201980098437.4A CN114096588A (zh) 2019-05-13 2019-11-28 聚酰亚胺及其制造方法
US17/610,999 US20220227941A1 (en) 2019-05-13 2019-11-28 Polyimide and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190055736A KR102097431B1 (ko) 2019-05-13 2019-05-13 폴리이미드 및 이의 제조 방법
KR10-2019-0055736 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020230969A1 true WO2020230969A1 (ko) 2020-11-19

Family

ID=70291146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016607 WO2020230969A1 (ko) 2019-05-13 2019-11-28 폴리이미드 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US20220227941A1 (ko)
JP (1) JP7350891B2 (ko)
KR (1) KR102097431B1 (ko)
CN (1) CN114096588A (ko)
WO (1) WO2020230969A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115551714A (zh) * 2020-05-29 2022-12-30 东洋纺株式会社 包含透明高耐热膜的层叠体
CN115551713A (zh) * 2020-05-29 2022-12-30 东洋纺株式会社 包含透明高耐热膜的层叠体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536981A (ja) * 2007-08-20 2010-12-02 コーロン インダストリーズ,インコーポレイテッド ポリイミドフィルム
KR20120069382A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 폴리이미드 전구체 조성물, 폴리이미드의 제조 방법, 상기 제조 방법에 따라 제조한 폴리이미드 및 상기 폴리이미드를 포함하는 필름
KR20160077694A (ko) * 2014-12-24 2016-07-04 에스케이씨코오롱피아이 주식회사 광투과율이 향상된 폴리이미드 필름 및 이의 제조방법
KR20170076096A (ko) * 2015-12-24 2017-07-04 주식회사 두산 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
KR101780447B1 (ko) * 2015-02-02 2017-09-21 연세대학교 원주산학협력단 가압 조건 하에서 수행되는 폴리이미드 복합체 제조방법
KR20190003328A (ko) * 2017-06-30 2019-01-09 에스케이씨코오롱피아이 주식회사 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602206B2 (ja) * 1994-07-13 2004-12-15 株式会社日立製作所 配線構造体とその製造法
JP4891411B2 (ja) * 2006-12-15 2012-03-07 コーロン インダストリーズ インク ポリイミド樹脂とこれを用いた液晶配向膜およびポリイミドフィルム
ES2392000T3 (es) * 2007-05-24 2012-12-03 Mitsubishi Gas Chemical Company, Inc. Procedimiento y aparato de producción de película de resina transparente incolora
CN104558603B (zh) * 2013-10-23 2016-08-17 北京大学 一种合成芳香酰亚胺的方法
JP2016124956A (ja) * 2014-12-26 2016-07-11 富士ゼロックス株式会社 ポリアミドイミド前駆体組成物、ポリアミドイミド成形体、及びポリアミドイミド成形体の製造方法
JP6733220B2 (ja) * 2016-03-03 2020-07-29 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物及びポリイミド樹脂膜
US20190232333A1 (en) * 2016-07-15 2019-08-01 Ube Industries, Ltd. Method for producing polyimide laminate and method for producing flexible circuit board
JP6705583B2 (ja) * 2016-08-08 2020-06-03 Jxtgエネルギー株式会社 ポリイミド、ポリアミド酸、ポリアミド酸溶液、及び、ポリイミドフィルム
JP2018110105A (ja) * 2016-12-28 2018-07-12 セントラル硝子株式会社 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ
US11920019B2 (en) * 2018-10-03 2024-03-05 Konica Minolta, Inc. Resin composition and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536981A (ja) * 2007-08-20 2010-12-02 コーロン インダストリーズ,インコーポレイテッド ポリイミドフィルム
KR20120069382A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 폴리이미드 전구체 조성물, 폴리이미드의 제조 방법, 상기 제조 방법에 따라 제조한 폴리이미드 및 상기 폴리이미드를 포함하는 필름
KR20160077694A (ko) * 2014-12-24 2016-07-04 에스케이씨코오롱피아이 주식회사 광투과율이 향상된 폴리이미드 필름 및 이의 제조방법
KR101780447B1 (ko) * 2015-02-02 2017-09-21 연세대학교 원주산학협력단 가압 조건 하에서 수행되는 폴리이미드 복합체 제조방법
KR20170076096A (ko) * 2015-12-24 2017-07-04 주식회사 두산 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
KR20190003328A (ko) * 2017-06-30 2019-01-09 에스케이씨코오롱피아이 주식회사 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재

Also Published As

Publication number Publication date
KR102097431B1 (ko) 2020-04-07
US20220227941A1 (en) 2022-07-21
JP7350891B2 (ja) 2023-09-26
JP2022532368A (ja) 2022-07-14
CN114096588A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
KR102004659B1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
KR102153509B1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
KR102153505B1 (ko) 불소-함유 실란 첨가제 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
KR102004660B1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2020230969A1 (ko) 폴리이미드 및 이의 제조 방법
KR102224504B1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조 방법 및 이를 포함하는 폴리이미드
KR102121307B1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
KR102153506B1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
KR102153508B1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
KR102472537B1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
KR102030841B1 (ko) 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물 및 이를 이용하여 제조되는 폴리이미드 필름
KR102013535B1 (ko) 저장 안정성 및 점도 안정성이 향상된 폴리이미드 전구체 조성물의 제조방법, 이를 이용하여 제조된 폴리이미드 전구체 조성물
WO2021060616A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
KR102224506B1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조 방법 및 이를 포함하는 폴리이미드
WO2020230966A1 (ko) 폴리이미드 전구체 조성물, 이의 제조 방법 및 폴리이미드
KR102114093B1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
KR102472528B1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
KR102472532B1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2022107967A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2022107965A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2023038321A1 (ko) 폴리아믹산 조성물 및 이로부터 제조되는 폴리이미드
WO2023038322A1 (ko) 폴리아믹산 조성물 및 이로부터 제조되는 폴리이미드
WO2024076094A1 (en) Black polyimide film and the manufacturing method thereof
WO2023243967A1 (en) Black polyimide film and manufacturing method thereof
WO2019160216A1 (ko) 가교성 폴리아믹산 조성물, 이를 이용하여 제조되는 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928790

Country of ref document: EP

Kind code of ref document: A1