WO2022045728A1 - 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법 - Google Patents

그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법 Download PDF

Info

Publication number
WO2022045728A1
WO2022045728A1 PCT/KR2021/011276 KR2021011276W WO2022045728A1 WO 2022045728 A1 WO2022045728 A1 WO 2022045728A1 KR 2021011276 W KR2021011276 W KR 2021011276W WO 2022045728 A1 WO2022045728 A1 WO 2022045728A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
graphite sheet
inorganic filler
polyamic acid
dianhydride
Prior art date
Application number
PCT/KR2021/011276
Other languages
English (en)
French (fr)
Inventor
정형섭
원동영
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Priority to JP2023513300A priority Critical patent/JP7496472B2/ja
Priority to CN202180053107.0A priority patent/CN115989266A/zh
Publication of WO2022045728A1 publication Critical patent/WO2022045728A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties

Definitions

  • It relates to a method for manufacturing a polyimide film for a graphite sheet and a method for manufacturing a graphite sheet, and more particularly, to a method for manufacturing a polyimide film for a graphite sheet having excellent thermal conductivity and a method for manufacturing a graphite sheet.
  • the graphite sheet has a higher thermal conductivity than a metal sheet such as copper or aluminum, and is attracting attention as a heat dissipation member for electronic devices.
  • a graphite sheet may be manufactured by various methods, for example, it may be manufactured by carbonizing and graphitizing a polymer film.
  • polyimide films are spotlighted as polymer films for graphite sheet production due to their excellent mechanical, thermal, dimensional stability, and chemical stability.
  • a method for manufacturing a polyimide film for a graphite sheet includes preparing a polyamic acid solution and adding a sublimable inorganic filler solution having a zeta potential of +30mV to +40mV or -40mV to -30mV to the polyamic acid solution to prepare a precursor composition for a polyimide film, and obtaining a polyimide film from the precursor composition.
  • the polyamic acid solution is prepared by reacting a diamine monomer and a dianhydride monomer in a solvent, and the diamine monomer is 4,4'-oxydianiline, 3,4' -oxydianiline, p-phenylene diamine, m-phenylenediamine, 4,4'-methylenedianiline, 3,3'-methylenedianiline, or a combination thereof, and the dianhydride
  • the water monomer is pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4-biphenyltetracarboxylic dianhydride, oxydiphthalic anhydride , bis(3,4-dicarboxyphenyl)sulfone dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, or a combination thereof.
  • the average particle diameter (D 50 ) of the sublimable inorganic filler in the sublimable inorganic filler solution may be 2 ⁇ m to 10 ⁇ m.
  • sublimable inorganic filler according to any one of 1 to 3 above, wherein the sublimable inorganic filler may include dicalcium phosphate, barium sulfate, calcium carbonate, or a combination thereof.
  • any one of 1 to 4 0.1 to 0.3 parts by weight of the sublimable inorganic filler may be added based on 100 parts by weight of the polyamic acid.
  • the precursor composition further comprises a dehydrating agent and an imidizing agent
  • the step of obtaining a polyimide film from the precursor composition comprises forming the precursor composition on a support and drying it to form a gel film It may include preparing, and heat-treating the gel film.
  • the polyimide film may have a roughness (Ra) of 10 nm to 15 nm measured based on ISO 1997 standard.
  • a method for manufacturing a graphite sheet may include preparing a polyimide film according to any one of 1 to 7 above, and carbonizing and graphitizing the polyimide film to obtain a graphite sheet.
  • the graphite sheet may have a thickness of 20 ⁇ m to 40 ⁇ m, and a thermal conductivity of 1,400 W/m ⁇ K or more.
  • the present invention has the effect of providing a method for manufacturing a polyimide film for a graphite sheet and a method for manufacturing a graphite sheet having excellent thermal conductivity.
  • a method for manufacturing a polyimide film for a graphite sheet includes preparing a polyamic acid solution and adding a sublimable inorganic filler solution having a zeta potential of +30mV to +40mV or -40mV to -30mV to the polyamic acid solution to prepare a precursor composition for a polyimide film, and obtaining a polyimide film from the precursor composition.
  • a polyamic acid solution is prepared.
  • the polyamic acid solution may be prepared using a conventional method known in the art.
  • the polyamic acid solution may be prepared by reacting a diamine monomer and a dianhydride monomer in a solvent, and the types and numbers of the solvent, the diamine monomer, and the dianhydride monomer used are not particularly limited.
  • the solvent is not particularly limited as long as it can dissolve the polyamic acid.
  • the solvent may include an aprotic polar solvent.
  • the aprotic polar solvent include amide solvents such as N,N'-dimethylformamide (DMF) and N,N'-dimethylacetamide (DMAc), and phenolic solvents such as p-chlorophenol and o-chlorophenol. solvent, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), Diglyme, and the like, and these may be used alone or in combination of two or more.
  • the solubility of polyamic acid may be controlled by using an auxiliary solvent such as toluene, tetrahydrofuran (THF), acetone, methyl ethyl ketone (MEK), methanol, ethanol, and water.
  • an auxiliary solvent such as toluene, tetrahydrofuran (THF), acetone, methyl ethyl ketone (MEK), methanol, ethanol, and water.
  • the diamine monomer various diamine monomers known in the art may be used without limitation within a range that does not impair the purpose of the present invention.
  • the diamine monomer is 4,4'-oxydianiline (ODA), 3,4'-oxydianiline, p-phenylene diamine (PPD), m -Phenylenediamine, 4,4'-methylenedianiline, 3,3'-methylenedianiline or a combination thereof may be included, and in this case, it is possible to form a polyimide film advantageous for molecular orientation, so carbonization, graphite It is possible to form a graphite sheet having excellent thermal conductivity upon heating.
  • ODA 4,4'-oxydianiline
  • PPD p-phenylene diamine
  • m -Phenylenediamine 4,4'-methylenedianiline, 3,3'-methylenedianiline or a combination thereof
  • the dianhydride monomer various dianhydride monomers known in the art may be used without limitation within a range that does not impair the purpose of the present invention.
  • the dianhydride monomer is pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4-biphenyltetracarboxylic acid dianhydride, oxydiphthalic anhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, or a combination thereof, in which case It is possible to form a polyimide film advantageous for molecular orientation, and thus a graphite sheet having excellent thermal conductivity during carbonization and graphitization can be formed.
  • PMDA pyromellitic dianhydride
  • the diamine monomer and the dianhydride monomer are included in the solvent to form substantially equimolar amounts, where 'substantially equimolar' means that the dianhydride monomer is contained in an amount of 99.8 mol% to 100.2 mol% based on the total number of moles of the diamine monomer.
  • Reaction of the diamine monomer and the dianhydride monomer in substantially equimolar amounts includes, for example,
  • a part of the diamine monomer (or dianhydride monomer) is added in the solvent, and the dianhydride monomer (or diamine monomer) is added in a ratio of 95 mol% to 105 mol% with respect to the diamine monomer (or dianhydride monomer) Then, a method of reacting by adding a diamine monomer and/or a dianhydride monomer to a substantially equimolar amount;
  • the diamine monomer and dianhydride monomer may refer to one or more (eg, one or two) diamine monomer and dianhydride monomer.
  • the polyamic acid may be included in an amount of 5 parts by weight to 35 parts by weight based on 100 parts by weight of the polyamic acid solution.
  • the polyamic acid solution may have a suitable molecular weight and viscosity to form a film.
  • the polyamic acid may be included in an amount of 5 to 30 parts by weight, for example, 15 to 20 parts by weight, based on 100 parts by weight of the polyamic acid solution, but is not limited thereto.
  • the polyamic acid solution may have a viscosity of 100,000 cP to 500,000 cP at 23° C. and a shear rate of 1 s ⁇ 1 .
  • 'viscosity' may be measured using a HAAKE Mars Rheometer.
  • the viscosity of the polyamic acid solution may be 150,000 cP to 450,000 cP, for example 200,000 cP to 400,000 cP, for another example 250,000 cP to 350,000 cP at 23 ° C., shear rate 1 s -1 It is not limited.
  • the polyamic acid may have a weight average molecular weight of 100,000 g/mol to 500,000 g/mol. In the above range, it may be advantageous to manufacture a graphite sheet having better thermal conductivity.
  • the 'weight average molecular weight' may be measured using gel chromatography (GPC) and using polystyrene as a standard sample.
  • the weight average molecular weight of the polyamic acid may be 150,000 g/mol to 500,000 g/mol, for example, 100,000 g/mol to 400,000 g/mol, but is not limited thereto.
  • a precursor composition for a polyimide film is prepared by adding a sublimable inorganic filler solution having a zeta potential of +30mV to +40mV or -40mV to -30mV to the polyamic acid solution.
  • the term 'sublimable inorganic filler' refers to an inorganic filler that is sublimed by heat during carbonization and/or graphitization processes in the manufacture of graphite sheets.
  • the polyimide film includes the sublimable inorganic filler
  • voids may be formed in the graphite sheet by gas generated through sublimation of the sublimable inorganic filler when the graphite sheet is manufactured. This makes it possible to smoothly exhaust the sublimation gas generated during the manufacture of the graphite sheet to obtain a good quality graphite sheet, and to improve the flexibility of the graphite sheet to ultimately improve the handleability and formability of the graphite sheet.
  • the sublimable inorganic filler include, but are not limited to, dicalcium phosphate, barium sulfate, calcium carbonate, and the like.
  • the inventors of the present invention control the zeta potential of the sublimable inorganic filler solution to +30mV to +40mV or -40mV to -30mV to prepare a polyimide film after adding it to the polyamic acid solution.
  • the present invention was completed by discovering that a graphite sheet having an appropriate size and uniform particle size distribution in the film can be uniformly dispersed, and as a result, a graphite sheet having excellent thermal conductivity can be manufactured.
  • the 'zeta potential' may be measured based on ISO 13099-2 (colloidal systems-methods for zeta-potential determination - part 2: optical methods) using a zeta potential measuring device.
  • the zeta potential of the sublimable inorganic filler solution may be +32mV to +40mV or -40mV to -32mV. According to another embodiment, the zeta potential of the sublimable inorganic filler solution may be +35mV to +40mV or -35mV to -40mV, but is not limited thereto.
  • the method for controlling the zeta potential is not particularly limited, and various methods known to those skilled in the art may be used.
  • the zeta potential of the sublimable inorganic filler solution is determined by adding a surfactant to the sublimable inorganic filler-containing solution, adding a charged polymer, or adjusting the pH of the sublimable inorganic filler-containing solution. can be controlled
  • the sublimable inorganic filler solution may include a solvent and a sublimable inorganic filler.
  • a description of the solvent included in the sublimable inorganic filler solution refer to the description of the solvent included in the polyamic acid solution.
  • the average particle diameter (D 50 ) of the sublimable inorganic filler in the sublimable inorganic filler solution may be 2 ⁇ m to 10 ⁇ m.
  • the sublimable inorganic filler may be uniformly dispersed while having an appropriate size and uniform particle size distribution in the polyimide film, and as a result, it may be possible to manufacture a graphite sheet having excellent thermal conductivity.
  • the 'average particle diameter (D 50 )' can be measured using a laser diffraction particle size analyzer (SALD-2201, Shimadzu) after ultrasonically dispersing the sublimable inorganic filler solution at 25° C. for 5 minutes. .
  • the average particle diameter (D 50 ) of the sublimable inorganic filler in the sublimable inorganic filler solution may be 3 ⁇ m to 8 ⁇ m, for example, 4 ⁇ m to 7 ⁇ m, but is not limited thereto.
  • the sublimable inorganic filler may be added in an amount of 0.05 to 0.3 parts by weight based on 100 parts by weight of the polyamic acid.
  • the sublimable inorganic filler may be uniformly dispersed while having an appropriate size and uniform particle size distribution in the polyimide film, and as a result, it may be possible to manufacture a graphite sheet having excellent thermal conductivity.
  • the sublimable inorganic filler may be added in an amount of 0.10 parts by weight to 0.28 parts by weight, for example, 0.12 parts by weight to 0.26 parts by weight, based on 100 parts by weight of the polyamic acid, but is not limited thereto.
  • a method for obtaining the polyimide film from the precursor composition is not particularly limited, and various methods known to those skilled in the art may be used.
  • the polyimide film can be obtained by using a thermal imidization method, a chemical imidization method, or a composite imidization method using a combination of a thermal imidization method and a chemical imidization method.
  • Thermal imidization is a method of advancing the imidization reaction only by heating without using a dehydrating agent or imidizing agent. For example, after coating a precursor composition on a support, 40° C. to 400° C. to 300° C.), and heat treatment for 1 hour to 8 hours while gradually increasing the temperature to obtain a polyimide film.
  • Chemical imidization is a method of promoting imidization of polyamic acid by applying a dehydrating agent and/or an imidizing agent to a precursor composition.
  • a dehydrating agent and an imidizing agent are added to the precursor composition, applied on a support, and then heated at 80° C. to 200° C. (eg, 100° C. to 180° C.) to activate the dehydrating agent and imidizing agent, and partially It is a method of obtaining a polyimide film by heating at 200°C to 400°C for 5 seconds to 400 seconds after curing with
  • the precursor composition further comprises a dehydrating agent and an imidizing agent
  • the step of obtaining a polyimide film from the precursor composition is to apply (eg, cast) the precursor composition on a support and dry it to obtain a gel. It may include preparing a film, and heat-treating the gel film.
  • the order of addition of the sublimable inorganic filler solution and the dehydrating agent and the imidizing agent is not particularly limited, and either the sublimable inorganic filler solution, the dehydrating agent and the imidizing agent are simultaneously added to the polyamic acid solution, or the sublimable inorganic filler solution is added to the polyamic acid solution After this, a dehydrating agent and an imidizing agent may be added.
  • the 'dehydrating agent' promotes the ring closure reaction by dehydrating the polyamic acid.
  • the dehydrating agent include aliphatic acid anhydride, aromatic acid anhydride, N,N'-dialkylcarbodiimide, lower aliphatic halide, halogenated lower aliphatic acid anhydride, arylphosphonic acid dihalide, thionyl halide, and the like. , These may be used alone or in combination of two or more. Among them, aliphatic acid anhydrides such as acetic anhydride, propionic anhydride and lactic acid anhydride can be used from the viewpoints of availability and cost.
  • the 'imidating agent' promotes the ring closure reaction of the polyamic acid.
  • the imidizing agent include aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines.
  • a heterocyclic tertiary amine can be used from the viewpoint of reactivity as a catalyst.
  • the heterocyclic tertiary amine include quinoline, isoquinoline, ⁇ -picoline, and pyridine, and these may be used alone or in combination of two or more.
  • the addition amount of the dehydrating agent and the imidizing agent is not particularly limited, but the dehydrating agent may be used in a ratio of 0.5 to 7 moles (for example, 1 to 6 moles) based on 1 mole of the amic acid group in the polyamic acid.
  • the desalination agent may be used in a ratio of 0.05 moles to 3 moles (for example, 0.2 moles to 2 moles) based on 1 mole of the amic acid group in the polyamic acid. In the above range, imidization is sufficient, and casting into a film form may be easy.
  • the support used in the gel film manufacturing step includes a glass plate, aluminum foil, endless stainless belt, stainless drum, etc., and the drying temperature is 40° C. to 300° C. (eg 80° C. to 200° C.), drying The time may be 1 minute to 10 minutes (eg, 3 minutes to 7 minutes), but is not limited thereto.
  • the gel film is in an intermediate stage of curing from polyamic acid to polyimide and may be self-supporting.
  • the method may further include stretching the gel film in order to control the thickness and size of the finally obtained polyimide film and to improve orientation, and stretching is performed in at least one of MD (machine direction) and TD (transverse direction). It can be done in one direction.
  • the heat treatment temperature of the gel film may be, for example, 50 ° C. to 700 ° C., for example, 150 ° C. to 600 ° C., for another example, 200 ° C. to 600 ° C., and the heat treatment time is, for example, 1 minute to It may be 10 minutes (eg, 3 to 7 minutes), but is not limited thereto.
  • the solvent and the like remaining in the gel film are removed by heat treatment of the gel film, and most of the remaining amic acid groups are imidized to obtain a polyimide film.
  • the polyimide film thus obtained may be heat-finished at a temperature of 400° C. to 650° C. for 5 seconds to 400 seconds to further harden the polyimide film. Heat finishing may be performed under a predetermined tension in order to relieve internal stress.
  • the polyimide film may have a roughness (Ra) of 10 nm to 15 nm measured based on ISO 1997 standard. In the above range, there may be an effect of increasing the thermal conductivity when the graphite sheet is manufactured from the polyimide film, but is not limited thereto.
  • the sublimable inorganic filler can be evenly dispersed in the polyimide film while having an appropriate size and uniform particle size distribution, and as a result, a graphite sheet with excellent thermal conductivity can be produced.
  • a method for manufacturing a graphite sheet from the above-described polyimide film may include preparing a polyimide film according to the method described above, and carbonizing and graphitizing the polyimide film to obtain a graphite sheet.
  • 'Carbonization' is a process of thermally decomposing the polymer chain of a polyimide film to form a preliminary graphite sheet including an amorphous carbon body, an amorphous carbon body and/or an amorphous carbon body.
  • the polyimide film is heated under reduced pressure or in an inert gas atmosphere. It may include, but is not limited to, raising and maintaining the temperature over 10 to 20 hours from room temperature to a temperature ranging from 1,000° C. to 1,500° C., which is the highest temperature under the present invention.
  • pressure may be applied to the polyimide film using a hot press or the like during carbonization for high carbon orientation, and the pressure at this time is, for example, 5 kg/cm 2 or more, for example, 15 kg/cm 2 or more.
  • Another example may be 25kg/cm 2 or more, but is not limited thereto.
  • Graphitization is a process of forming a graphite sheet by rearranging the carbon of an amorphous carbon body, an amorphous carbon body, and/or an amorphous carbon body, for example, a preliminary graphite sheet, optionally in an inert gas atmosphere from room temperature to the highest temperature of 2,500 It may include the step of raising and maintaining the temperature over 20 to 30 hours to a temperature in the range of °C to 3,000 °C, but is not limited thereto.
  • pressure may be applied to the preliminary graphite sheet using a hot press during graphitization for high orientation of carbon, and the pressure at this time is, for example, 100 kg/cm 2 or more, for example, 200 kg/cm 2 Above, another example may be 300kg/cm 2 or more, but is not limited thereto.
  • the graphite sheet may have a thickness of 20 ⁇ m to 40 ⁇ m (eg, 22 ⁇ m to 32 ⁇ m), and a thermal conductivity of 1,400 W/m ⁇ K or more.
  • the graphite sheet according to an embodiment of the present invention may have excellent thermal conductivity because the sublimable inorganic filler is manufactured using a polyimide film in which the sublimable inorganic filler is uniformly dispersed while having an appropriate size and uniform particle size distribution.
  • the thermal conductivity of the graphite sheet is 1,500 W/m ⁇ K or more, for example, 1,600 W/m ⁇ K or more, for another example, 1,700 W/m ⁇ K or more, for another example, 1,800 W It may be /m ⁇ K or more, but is not limited thereto.
  • a sublimable inorganic filler solution containing 10 g of dicalcium phosphate (average particle diameter (D 50 ): 5 ⁇ m)) as a sublimable inorganic filler and 200 g of dimethylformamide as a solvent was added to the polyamic acid solution having a zeta potential of +40 mV
  • a precursor composition was prepared by adding acetic anhydride as a dehydrating agent and ⁇ -picoline as an imidizing agent in 5 molar ratios and 1 molar ratio, respectively, to 1 mol of the amic acid group of the polyamic acid.
  • the amount of the sublimable inorganic filler per 100 parts by weight of the polyamic acid in the precursor composition was 0.14 parts by weight.
  • the zeta potential is measured in ISO 13099-2 (Colloidal systems-Methods for zeta-potential determination - Part 2: Optical methods) using a Zeta-potential & Particle size Analyzer ELSZ-2000ZS, Photo OTSUKA ELECTRONICS. It was measured according to
  • the precursor composition was cast to a thickness of 80 ⁇ m on a SUS plate (100SA, Sandvik) using a doctor blade, and dried at 100° C. for 5 minutes to prepare a gel film. After separating the gel film from the SUS plate, heat treatment was performed at 300° C. for 5 minutes to prepare a polyimide film having a thickness of 60 ⁇ m.
  • a polyimide film was prepared in the same manner as in Example 1, except that a sublimable inorganic filler solution having a zeta potential described in Table 1 was used.
  • Example comparative example One 2 3 4 5 6 7 8
  • Specimens were prepared by etching the surfaces of the polyimide films prepared in Examples 1 and 2 and Comparative Example 2 by a plasma surface etching method. Etching was performed at 100W for 30 minutes using K1050X RF Plasma Etcher (EMITECH) equipment, and the gas used for etching was air. Then, using a scanning electron microscope (SEM), the surface of the specimen was photographed by selecting ten locations that do not overlap with each other at 1,000 magnification, and all particle diameters of the sublimable inorganic filler particles photographed in the ten places were measured.
  • SEM scanning electron microscope
  • Example 1 As a result of the measurement, in the case of Example 1, among the total measured sublimable inorganic fillers, inorganic fillers having a particle diameter of 2 ⁇ m or less accounted for 54%, and inorganic fillers 5 ⁇ m or more accounted for 8%.
  • Example 2 among the total measured sublimable inorganic fillers, inorganic fillers having a particle diameter of 2 ⁇ m or less accounted for 45%, and inorganic fillers of 5 ⁇ m or more accounted for 16%.
  • Example polyimide film prepared using the sublimable inorganic filler solution having the zeta potential of the present invention has a more uniform sublimable inorganic filler distribution than the Comparative Example polyimide film that does not.
  • the polyimide film prepared in Example 1 was heated to 1,500° C. at a rate of 2.0° C./min under argon gas using an electric furnace, and then maintained at the temperature for 1 hour to carbonize. Thereafter, the carbonized polyimide film was heated to 2,900° C. at a rate of 2.5° C./min under argon gas, and then maintained at the temperature for 1 hour to graphitize to prepare a graphite sheet having a thickness of 30 ⁇ m.
  • a graphite sheet was prepared in the same manner as in Example 9, except that the polyimide film shown in Table 2 was used.
  • Example comparative example 9 10 11 12 13 14 15 16 5 6 7 8 polyimide film
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
  • Thermal conductivity (W/m K) 1800 1800 1700 1500 1400 1700 1600 1500 1400 1300 1200 1100 1300
  • the present invention has the effect of providing a method for manufacturing a polyimide film for a graphite sheet and a method for manufacturing a graphite sheet having excellent thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

폴리아믹산 용액을 준비하고, 상기 폴리아믹산 용액에 제타전위가 +30mV 내지 +40mV 또는 -40mV 내지 -30mV인 승화성 무기 충전제 용액을 첨가하여 폴리이미드 필름용 전구체 조성물을 제조하고, 그리고 상기 전구체 조성물로부터 폴리이미드 필름을 수득하는 단계를 포함한 그라파이트 시트용 폴리이미드 필름 제조방법, 및 이를 이용한 그라파이트 시트 제조방법이 개시된다.

Description

그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법
그라파이트 시트용 폴리이미드 필름의 제조방법 및 그라파이트 시트의 제조방법에 관한 것으로, 보다 상세하게는 열전도도가 우수한 그라파이트 시트용 폴리이미드 필름의 제조방법 및 그라파이트의 시트 제조방법에 관한 것이다.
최근의 전자 기기는 경량화, 소형화, 박형화 및 고집적화되고 있으며, 이로 인해 전자 기기에는 많은 열이 발생하고 있다. 이러한 열은 제품의 수명을 단축시키거나 고장, 오작동 등을 유발할 수 있다. 따라서, 전자 기기에 대한 열관리가 중요한 이슈로 대두되고 있다.
그라파이트 시트는 구리나 알루미늄 등의 금속 시트보다 높은 열전도율을 가져전자 기기의 방열 부재로서 주목 받고 있다. 이러한 그라파이트 시트는 다양한 방법으로 제조될 수 있는데, 예를 들어 고분자 필름을 탄화 및 흑연화시켜 제조될 수 있다. 특히, 폴리이미드 필름은 이들의 우수한 기계적 열적 치수 안정성, 화학적 안정성 등으로 인해 그라파이트 시트 제조용 고분자 필름으로서 각광 받고 있다.
폴리이미드 필름으로부터 제조되는 그라파이트 시트의 물성은 폴리이미드 필름의 물성에 영향을 받는 것으로 알려져 있다. 따라서, 다양한 그라파이트 시트용 폴리이미드 필름의 개발이 이뤄지고 있으나, 보다 높은 열전도도를 갖는 그라파이트 시트를 제조할 수 있는 폴리이미드 필름이 여전히 필요한 실정이다.
본 발명의 목적은 열전도도가 우수한 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법을 제공하는 것이다.
1. 일 측면에 따르면, 그라파이트 시트용 폴리이미드 필름 제조방법이 제공된다. 상기 방법은 폴리아믹산 용액을 준비하고, 상기 폴리아믹산 용액에 제타전위가 +30mV 내지 +40mV 또는 -40mV 내지 -30mV인 승화성 무기 충전제 용액을 첨가하여 폴리이미드 필름용 전구체 조성물을 제조하고, 그리고 상기 전구체 조성물로부터 폴리이미드 필름을 수득하는 단계를 포함할 수 있다.
2. 상기 1에서, 상기 폴리아믹산 용액은 용매 중에 디아민 단량체와 이무수물 단량체를 반응시켜 제조되고, 상기 디아민 단량체는 4,4'-옥시디아닐린(4,4'-oxydianiline), 3,4'-옥시디아닐린, p-페닐렌디아민(p-phenylene diamine), m-페닐렌디아민, 4,4'-메틸렌디아닐린, 3,3'-메틸렌디아닐린 또는 이들의 조합을 포함하고, 상기 이무수물 단량체는 피로멜리트산 이무수물(pyromellitic dianhydride), 3,3',4,4'-비페닐테트라카르복시산 이무수물, 2,3,3',4-비페닐테트라카르복시산 이무수물, 옥시디프탈산 무수물, 비스(3,4-디카르복시페닐)설폰 이무수물, 3,3',4,4'-벤조페논테트라카르복시산 이무수물 또는 이들의 조합을 포함할 수 있다.
3. 상기 1 또는 2에서, 상기 승화성 무기 충전제 용액 중의 상기 승화성 무기 충전제의 평균입경(D50)은 2㎛ 내지 10㎛일 수 있다.
4. 상기 1 내지 3 중 어느 하나에서, 상기 승화성 무기 충전제는 제2인산칼슘, 황산바륨, 탄산칼슘 또는 이들의 조합을 포함할 수 있다.
5. 상기 1 내지 4 중 어느 하나에서, 상기 폴리아믹산 100중량부를 기준으로 상기 승화성 무기 충전제를 0.1중량부 내지 0.3중량부로 첨가할 수 있다.
6. 상기 1 내지 5 중 어느 하나에서, 상기 전구체 조성물은 탈수제 및 이미드화제를 더 포함하고, 상기 전구체 조성물로부터 폴리이미드 필름을 수득하는 단계는 상기 전구체 조성물을 지지체 상에 제막하고 건조하여 겔 필름을 제조하고, 그리고 상기 겔 필름을 열처리하는 단계를 포함할 수 있다.
7. 상기 1 내지 6 중 어느 하나에서, 상기 폴리이미드 필름은 ISO 1997 기준에 의거하여 측정한 조도(Ra)가 10nm 내지 15nm일 수 있다.
8. 다른 측면에 따르면, 그라파이트 시트 제조방법이 제공된다. 상기 방법은 상기 1 내지 7 중 어느 하나에 따라 폴리이미드 필름을 제조하고, 그리고 상기 폴리이미드 필름을 탄화 및 흑연화하여 그라파이트 시트를 수득하는 단계를 포함할 수 있다.
9. 상기 8에서, 상기 그라파이트 시트는 두께가 20㎛ 내지 40㎛이고, 열전도도가 1,400W/m·K 이상일 수 있다.
본 발명은 열전도도가 우수한 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법을 제공하는 효과를 갖는다.
본 명세서 중 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
'~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
본 명세서 중 포함하다 또는 가지다 등의 용어는 명세서 상에 기재된 특징 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
본 명세서에서 수치범위를 나타내는 "a 내지 b"에서 "내지"는 ≥a이고 ≤b으로 정의한다.
본 발명의 일 측면에 따르면, 그라파이트 시트용 폴리이미드 필름 제조방법(이하, '폴리이미드 필름 제조방법')이 제공된다. 상기 방법은 폴리아믹산 용액을 준비하고, 상기 폴리아믹산 용액에 제타전위가 +30mV 내지 +40mV 또는 -40mV 내지 -30mV인 승화성 무기 충전제 용액을 첨가하여 폴리이미드 필름용 전구체 조성물을 제조하고, 그리고 상기 전구체 조성물로부터 폴리이미드 필름을 수득하는 단계를 포함할 수 있다.
이하, 각 단계를 보다 상세히 설명한다.
먼저, 폴리아믹산 용액을 준비한다.
폴리아믹산 용액은 당해 기술분야에 공지된 통상의 방법을 사용하여 준비될 수 있다. 예를 들어, 폴리아믹산 용액은 용매 중에 디아민 단량체와 이무수물 단량체를 반응시켜 제조될 수 있으며, 이때 사용되는 용매, 디아민 단량체 및 이무수물 단량체의 종류 및 개수는 특별히 한정되지 않는다.
용매는 폴리아믹산을 용해시킬 수 있는 것이라면 특별히 한정되지 않는다. 예를 들어, 용매는 비양성자성 극성 용매(aprotic polar solvent)를 포함할 수 있다. 비양성자성 극성 용매의 예로는 N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드(DMAc) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다. 경우에 따라서는 톨루엔, 테트라히드로푸란(THF), 아세톤, 메틸에틸케톤(MEK), 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여 폴리아믹산의 용해도를 조절할 수도 있다.
디아민 단량체로는 본 발명의 목적을 해하지 않는 범위 내에서 당해 기술분야에 공지된 다양한 디아민 단량체가 제한없이 사용될 수 있다. 예를 들어, 디아민 단량체는 4,4'-옥시디아닐린(4,4'-oxydianiline: ODA), 3,4'-옥시디아닐린, p-페닐렌디아민(p-phenylene diamine: PPD), m-페닐렌디아민, 4,4'-메틸렌디아닐린, 3,3'-메틸렌디아닐린 또는 이들의 조합을 포함할 수 있으며, 이러한 경우 분자 배향에 유리한 폴리이미드 필름의 형성이 가능하여, 탄화, 흑연화시 우수한 열전도도를 갖는 그라파이트 시트를 형성할 수 있다.
이무수물 단량체로는 본 발명의 목적을 해하지 않는 범위 내에서 당해 기술분야에 공지된 다양한 이무수물 단량체가 제한없이 사용될 수 있다. 예를 들어, 이무수물 단량체는 피로멜리트산 이무수물(pyromellitic dianhydride: PMDA), 3,3',4,4'-비페닐테트라카르복시산 이무수물, 2,3,3',4-비페닐테트라카르복시산 이무수물, 옥시디프탈산 무수물, 비스(3,4-디카르복시페닐)설폰 이무수물, 3,3',4,4'-벤조페논테트라카르복시산 이무수물 또는 이들의 조합을 포함할 수 있으며, 이러한 경우 분자 배향에 유리한 폴리이미드 필름의 형성이 가능하여, 탄화, 흑연화시 우수한 열전도도를 갖는 그라파이트 시트를 형성할 수 있다.
디아민 단량체와 이무수물 단량체는 실질적으로 등몰을 이루도록 용매 중에 포함되는데, 여기서 '실질적으로 등몰'이란 디아민 단량체 전체 몰수를 기준으로 이무수물 단량체가 99.8 몰% 내지 100.2 몰%로 포함되는 것을 의미할 수 있다. 디아민 단량체와 이무수물 단량체를 실질적으로 등몰로 반응시키는 것은, 예를 들어
(a) 용매 중에 디아민 단량체(또는 이무수물 단량체) 전부를 투입하고, 실질적으로 등몰량으로 이무수물 단량체(또는 디아민 단량체)를 투입하여 반응시키는 방법,
(b) 용매 중에 디아민 단량체(또는 이무수물 단량체) 중 일부를 투입하고, 디아민 단량체(또는 이무수물 단량체)에 대하여 95 몰% 내지 105 몰%의 비율로 이무수물 단량체(또는 디아민 단량체)를 투입한 후, 실질적으로 등몰량이 되도록 디아민 단량체 및/또는 이무수물 단량체를 투입하여 반응시키는 방법,
(c) 용매 중에 디아민 단량체(또는 이무수물 단량체) 중 일부와 이무수물 단량체(또는 디아민 단량체) 중 일부를 어느 하나가 과량이 되도록 투입하여 제1 조성물을 형성하고, 별개의 용매 중에 디아민 단량체(또는 이무수물 단량체) 중 일부와 이무수물 단량체(또는 디아민 단량체) 중 일부를 어느 하나가 과량이 되도록 투입하여 제2 조성물을 형성하고, 제1 조성물과 제2 조성물을 혼합하여 반응시키되, 이때 제1 조성물에서 디아민 단량체(또는 이무수물 단량체)가 과량일 경우 제2 조성물에서는 이무수물 단량체(또는 디아민 단량체)를 과량으로 하는 방법 등을 들 수 있다. 상기 (a) 내지 (c)에서 디아민 단량체 및 이무수물 단량체는 1종 이상(예를 들면, 1종 또는 2종)의 디아민 단량체 및 이무수물 단량체를 의미할 수 있다.
일 구현예에 따르면, 폴리아믹산은 폴리아믹산 용액 100중량부를 기준으로 5중량부 내지 35중량부로 포함될 수 있다. 상기 범위에서 폴리아믹산 용액은 필름을 형성하기에 적당한 분자량과 점도를 가질 수 있다. 예를 들어, 폴리아믹산은 폴리아믹산 용액 100중량부를 기준으로 5중량부 내지 30중량부, 다른 예를 들면 15중량부 내지 20중량부로 포함될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 폴리아믹산 용액은 23℃, 전단속도 1s-1에서 점도가 100,000cP 내지 500,000cP일 수 있다. 상기 범위에서 폴리아믹산이 소정의 분자량을 갖게 하면서도 폴리이미드 필름 제막시 공정성이 우수할 수 있다. 여기서, '점도'는 HAAKE Mars Rheometer를 이용하여 측정될 수 있다. 예를 들어, 폴리아믹산 용액의 점도는 23℃, 전단속도 1s-1에서 150,000cP 내지 450,000cP, 다른 예를 들면 200,000cP 내지 400,000cP, 또 다른 예를 들면 250,000cP 내지 350,000cP일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 폴리아믹산은 중량평균분자량이 100,000g/mol 내지 500,000g/mol일 수 있다. 상기 범위에서, 보다 우수한 열전도도를 갖는 그라파이트 시트를 제조하는데 유리할 수 있다. 여기서, '중량평균분자량'은 겔크로마토그래피(GPC)를 사용하고 폴리스티렌을 표준 시료로 이용하여 측정될 수 있다. 예를 들어, 폴리아믹산의 중량평균분자량은 150,000g/mol 내지 500,000g/mol, 다른 예를 들면 100,000g/mol 내지 400,000g/mol일 수 있으나, 이에 한정되는 것은 아니다.
그 다음, 폴리아믹산 용액에 제타전위가 +30mV 내지 +40mV 또는 -40mV 내지 -30mV인 승화성 무기 충전제 용액을 첨가하여 폴리이미드 필름용 전구체 조성물을 제조한다.
'승화성 무기 충전제'란 그라파이트 시트 제조시 탄화 및/또는 흑연화 공정 중에 열에 의해 승화되는 무기 충전제를 의미한다. 폴리이미드 필름이 승화성 무기 충전제를 포함하는 경우, 그라파이트 시트 제조시 승화성 무기 충전제의 승화를 통해 발생하는 기체에 의해 그라파이트 시트에 공극이 형성될 수 있다. 이는 그라파이트 시트 제조시 발생하는 승화 가스의 배기를 원활하게 해주어 양질의 그라파이트 시트를 얻을 수 있게 할 뿐 아니라, 그라파이트 시트의 유연성을 향상시켜 종국적으로 그라파이트 시트의 취급성 및 성형성을 향상시킬 수 있다. 승화성 무기 충전제의 예로는 제2인산칼슘, 황산바륨, 탄산칼슘 등을 들 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 발명자는 승화성 무기 충전제 용액의 제타전위를 +30mV 내지 +40mV 또는 -40mV 내지 -30mV로 제어하여 폴리아믹산 용액에 첨가한 후 폴리이미드 필름을 제조하는 경우, 승화성 무기 충전제가 폴리이미드 필름 내에서 적정한 크기, 균일한 입도 분포를 가지면서 고르게 분산될 수 있고, 그 결과 열전도도가 우수한 그라파이트 시트의 제조가 가능함을 발견하고 본 발명을 완성하였다. 여기서, '제타전위'는 제타전위 측정 기기를 사용하여 ISO 13099-2(colloidal systems-methods for zeta-potential determination - part 2: optical methods)에 의거하여 측정될 수 있다. 일 구현예에 따르면, 승화성 무기 충전제 용액의 제타전위는 +32mV 내지 +40mV 또는 -40mV 내지 -32mV 일 수 있다. 다른 구현예에 따르면, 승화성 무기 충전제 용액의 제타전위는 +35mV 내지 +40mV 또는 -35mV 내지 -40mV일 수 있으나, 이에 한정되는 것은 아니다.
제타전위 제어 방법은 특별히 제한되지 않으며 당해 기술분야의 통상의 기술자에게 공지된 다양한 방법을 사용할 수 있다. 예를 들어, 승화성 무기 충전제 용액의 제타전위는 승화성 무기 충전제 함유 용액에 계면활성제를 첨가하거나, 전하를 띤 고분자를 첨가하거나, 승화성 무기 충전제 함유 용액의 pH를 조절하거나 하는 등의 방법으로 제어할 수 있다.
승화성 무기 충전제 용액은 용매 및 승화성 무기 충전제를 포함할 수 있다. 승화성 무기 충전제 용액에 포함되는 용매에 대한 설명은 폴리아믹산 용액에 포함되는 용매에 대한 설명을 참조한다.
일 구현예에 따르면, 승화성 무기 충전제 용액 중의 승화성 무기 충전제의 평균입경(D50)은 2㎛ 내지 10㎛일 수 있다. 상기 범위에서 승화성 무기 충전제가 폴리이미드 필름 내에서 적정한 크기, 균일한 입도 분포를 가지면서 고르게 분산될 수 있고, 그 결과 열전도도가 우수한 그라파이트 시트의 제조가 가능할 수 있다. 여기서, '평균입경(D50)'은 승화성 무기 충전제 용액을 25℃에서 5분 동안 초음파 분산시킨 후 입도분석기(laser diffraction particle size analyzer)(SALD-2201, Shimadzu)를 사용하여 측정될 수 있다. 예를 들어, 승화성 무기 충전제 용액 중의 승화성 무기 충전제의 평균입경(D50)은 3㎛ 내지 8㎛, 다른 예를 들면 4㎛ 내지 7㎛일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 승화성 무기 충전제는 폴리아믹산 100중량부를 기준으로 0.05중량부 내지 0.3중량부로 첨가될 수 있다. 상기 범위에서 승화성 무기 충전제가 폴리이미드 필름 내에서 적정한 크기, 균일한 입도 분포를 가지면서 고르게 분산될 수 있고, 그 결과 열전도도가 우수한 그라파이트 시트의 제조가 가능할 수 있다. 예를 들어, 승화성 무기 충전제는 폴리아믹산 100중량부를 기준으로 0.10중량부 내지 0.28중량부, 다른 예를 들면 0.12중량부 내지 0.26중량부로 첨가될 수 있으나, 이에 한정되는 것은 아니다.
이후, 전구체 조성물로부터 폴리이미드 필름을 수득한다.
전구체 조성물로부터 폴리이미드 필름을 수득하는 방법은 특별히 제한되지 않으며 당해 기술분야의 통상의 기술자에게 공지된 다양한 방법이 사용될 수 있다. 예를 들어, 폴리이미드 필름은 열 이미드화법, 화학 이미드화법, 또는 열 이미드화법과 화학 이미드화법을 병용한 복합이미드화법을 사용하여 수득할 수 있다.
열 이미드화법은 탈수제, 이미드화제 등을 사용하지 않고 가열만으로 이미드화 반응을 진행시키는 방법으로, 예를 들어 전구체 조성물을 지지체 상에 도포한 후 40℃ 내지 400℃(예를 들면, 40℃ 내지 300℃)의 온도 범위에서 서서히 승온시키며 1시간 내지 8시간 동안 열처리하여 폴리이미드 필름을 수득하는 방법이다.
화학 이미드화법은 전구체 조성물에 탈수제 및/또는 이미드화제를 적용하여 폴리아믹산의 이미드화를 촉진하는 방법이다.
복합이미드화법은 전구체 조성물에 탈수제 및 이미드화제를 투입하고 지지체상에 도포한 후 80℃ 내지 200℃(예를 들면, 100℃ 내지 180℃)에서 가열하여 탈수제 및 이미드화제를 활성화하고 부분적으로 경화한 후에 200℃ 내지 400℃에서 5초 내지 400초간 가열함으로써 폴리이미드 필름을 수득하는 방법이다.
일 구현예에 따르면, 전구체 조성물은 탈수제 및 이미드화제를 더 포함하고, 상기 전구체 조성물로부터 폴리이미드 필름을 수득하는 단계는 상기 전구체 조성물을 지지체 상에 도포(예를 들면, 캐스팅)하고 건조하여 겔 필름을 제조하고, 그리고 상기 겔 필름을 열처리하는 단계를 포함할 수 있다. 승화성 무기 충전제 용액과 탈수제 및 이미드화제의 첨가 순서는 특별히 한정되지 않으며, 폴리아믹산 용액에 승화성 무기 충전제 용액, 탈수제 및 이미드화제를 동시에 첨가하거나, 폴리아믹산 용액에 승화성 무기 충전제 용액를 첨가한 이후에 탈수제 및 이미드화제를 첨가할 수도 있다.
'탈수제'란 폴리아믹산에 대한 탈수 작용을 통해 폐환 반응을 촉진하는 것이다. 탈수제의 예로는 지방족 산 무수물, 방향족 산 무수물, N,N'-디알킬카르보디이미드, 저급 지방족 할로겐화물, 할로겐화 저급 지방족 산 무수물, 아릴포스폰산디할로겐화물, 티오닐할로겐화물 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다. 그 중에서도 입수의 용이성 및 비용의 관점에서 아세트산 무수물, 프로피온산 무수물, 락트산 무수물 등의 지방족 산 무수물이 사용될 수 있다.
'이미드화제'란 폴리아믹산에 대한 폐환 반응을 촉진하는 것이다. 이미드화제의 예로는 지방족 3급 아민, 방향족 3급 아민, 복소환식 3급 아민 등을 들 수 있다. 그 중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민이 사용될 수 있다. 복소환식 3급 아민의 예로는 퀴놀린, 이소퀴놀린, β-피콜린, 피리딘 등이 있으며, 이들은 단독으로 또는 2종 이상 혼합하여 사용될 수 있다.
탈수제 및 이미드화제의 첨가량은 특별히 한정되는 것은 아니나, 탈수제는 폴리아믹산 중 아믹산기 1몰에 대하여 0.5몰 내지 7몰(다른 예를 들면, 1몰 내지 6몰)의 비율로 사용될 수 있고, 이미드화제는 폴리아믹산 중 아믹산기 1몰에 대하여 0.05몰 내지 3몰(다른 예를 들면, 0.2몰 내지 2몰)의 비율로 사용될 수 있다. 상기 범위에서, 이미드화가 충분하고, 필름형으로 캐스팅하는 것이 용이할 수 있다.
겔 필름 제조 단계에서 사용되는 지지체로는 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 스테인레스 드럼 등을 들 수 있고, 건조 온도는 40℃ 내지 300℃(예를 들면 80℃ 내지 200℃), 건조 시간은 1분 내지 10분(예를 들면, 3분 내지 7분)일 수 있으나, 이에 한정되는 것은 아니다. 여기서, 겔 필름은 폴리아믹산으로부터 폴리이미드로의 경화의 중간 단계에 있고 자기 지지성을 가질 수 있다.
경우에 따라서는 최종 수득되는 폴리이미드 필름의 두께 및 크기를 조절하고 배향성을 향상시키기 위하여 겔 필름을 연신시키는 단계를 더 포함할 수 있으며, 연신은 MD(machine direction) 및 TD(transverse direction) 중 적어도 하나의 방향으로 수행될 수 있다.
겔 필름의 열처리 온도는, 예를 들어 50℃ 내지 700℃, 다른 예를 들면 150℃ 내지 600℃, 또 다른 예를 들면 200℃ 내지 600℃일 수 있고, 열처리 시간은, 예를 들어 1분 내지 10분(예를 들면, 3분 내지 7분)일 수 있으나, 이에 한정되는 것은 아니다. 겔 필름의 열처리에 의해 겔 필름에 잔존하는 용매 등이 제거되고 남아 있는 대부분의 아믹산기가 이미드화하여 폴리이미드 필름을 수득할 수 있다.
경우에 따라서는 이와 같이 수득한 폴리이미드 필름을 400℃ 내지 650℃의 온도로 5초 내지 400초간 가열 마감하여 폴리이미드 필름을 더욱 경화시킬 수도 있으며, 선택적으로 수득한 폴리이미드 필름에 잔류할 수 있는 내부 응력을 완화시키기 위해서 소정의 장력 하에서 가열 마감을 수행할 수도 있다.
일 구현예에 따르면, 폴리이미드 필름은 ISO 1997 기준에 의거하여 측정한 조도(Ra)가 10nm 내지 15nm일 수 있다. 상기 범위에서, 폴리이미드 필름으로부터 그라파이트 시트 제조시 열전도도가 상승하는 효과가 있을 수 있으나, 이에 한정되는 것은 아니다.
상술한 폴리이미드 필름 제조방법으로 제조된 폴리이미드 필름은 승화성 무기 충전제가 폴리이미드 필름에 적정한 크기, 균일한 입도 분포를 가지면서 고르게 분산될 수 있고, 그 결과 열전도도가 우수한 그라파이트 시트를 제조할 수 있다.
다른 측면에 따르면, 상술한 폴리이미드 필름으로부터 그라파이트 시트를 제조하는 방법이 제공된다. 상기 방법은 상술한 방법에 따라 폴리이미드 필름을 제조하고, 상기 폴리이미드 필름을 탄화 및 흑연화하여 그라파이트 시트를 수득하는 단계를 포함할 수 있다.
'탄화'는 폴리이미드 필름의 고분자 사슬을 열분해하여 비정질 탄소체, 비결정질 탄소체 및/또는 무정형 탄소체를 포함한 예비 그라파이트 시트를 형성하는 공정으로, 예를 들어 폴리이미드 필름을 감압 하에서 또는 비활성기체 분위기 하에서 상온에서부터 최고 온도인 1,000℃ 내지 1,500℃ 범위의 온도까지 10시간 내지 20시간에 걸쳐 승온 및 유지하는 단계를 포함할 수 있으나, 이에 한정되는 것은 아니다. 선택적으로, 탄소의 고배향성을 위해 탄화시 핫프레스 등을 이용하여 폴리이미드 필름에 압력을 가할 수도 있으며, 이때의 압력은, 예를 들면 5kg/cm2 이상, 다른 예를 들면 15kg/cm2 이상, 또 다른 예를 들면 25kg/cm2 이상일 수 있으나, 이에 한정되는 것은 아니다.
흑연화는 비정질 탄소체, 비결정질 탄소체 및/또는 무정형 탄소체의 탄소를 재배열하여 그라파이트 시트를 형성하는 공정으로, 예를 들어 예비 그라파이트 시트를, 선택적으로 비활성기체 분위기 하에서 상온에서부터 최고 온도인 2,500℃ 내지 3,000℃ 범위의 온도까지 20시간 내지 30시간에 걸쳐 승온 및 유지하는 단계를 포함할 수 있으나, 이에 한정되는 것은 아니다. 선택적으로, 탄소의 고배향성을 위해 흑연화시 핫프레스 등을 이용하여 예비 그라파이트 시트에 압력을 가할 수도 있으며, 이때의 압력은, 예를 들면 100kg/cm2 이상, 다른 예를 들면 200kg/cm2 이상, 또 다른 예를 들면 300kg/cm2 이상일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 그라파이트 시트는 두께가 20㎛ 내지 40㎛(예를 들면, 22㎛ 내지 32㎛)이고, 열전도도가 1,400W/m·K 이상일 수 있다. 본 발명의 일 구현예에 따른 그라파이트 시트는 승화성 무기 충전제가 적정한 크기, 균일한 입도 분포를 가지면서 고르게 분산되어 있는 폴리이미드 필름을 사용하여 제조되기 때문에 우수한 열전도도를 가질 수 있다. 예를 들어, 그라파이트 시트의 열전도도는 1,500W/m·K 이상, 다른 예를 들면 1,600W/m·K 이상, 또 다른 예를 들면 1,700W/m·K 이상, 또 다른 예를 들면 1,800W/m·K 이상일 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 들어 본 발명을 보다 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며, 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예
실시예 1
이무수물 단량체로서 피로멜리트산 이무수물 15g, 디아민 단량체로서 4,4'-옥시디아닐린 15g, 용매로서 디메틸포름아미드 100g을 혼합하고 반응시켜 점도가 300,000cP인 폴리아믹산 용액을 준비하였다.
상기 폴리아믹산 용액에 제타전위가 +40mV로 제어되고 승화성 무기 충전제로서 제2인산칼슘(평균입경(D50): 5㎛)) 10g, 용매로서 디메틸포름아미드 200g을 포함한 승화성 무기 충전제 용액을 첨가한 뒤, 탈수제로서 아세트산 무수물, 이미드화제로서 β-피콜린을 폴리아믹산의 아믹산기 1몰에 대하여 각각 5 몰비, 1 몰비로 첨가하여 전구체 조성물을 제조하였다. 이때, 전구체 조성물 중 폴리아믹산 100중량부당 승화성 무기 충전제는 0.14중량부였다. 여기서, 제타전위는 제타전위 측정 기기(Zeta-potential & Particle size Analyzer ELSZ-2000ZS, Photo OTSUKA ELECTRONICS)를 사용하여 ISO 13099-2 (Colloidal systems-Methods for zeta-potential determination - Part 2: Optical methods)에 의거하여 측정하였다.
상기 전구체 조성물을 닥터 블레이드를 사용하여 SUS판(100SA, Sandvik社) 위에 80㎛ 두께로 캐스팅하고, 100℃에서 5분간 건조시켜 겔 필름을 제조하였다. 상기 겔 필름을 SUS판과 분리한 뒤, 300℃에서 5분간 열처리하여 60㎛ 두께를 갖는 폴리이미드 필름을 제조하였다.
실시예 2 내지 8 및 비교예 1 내지 4
하기 표 1에 기재된 제타전위를 갖는 승화성 무기 충전제 용액을 사용한 점을 제외하고는 실시예 1과 동일한 방법을 사용하여 폴리이미드 필름을 제조하였다.
평가예 1
실시예 및 비교예에서 제조한 폴리이미드 필름에 대하여 ISO 1997에 의거하여 표면 조도 측정 기기(SE600, Kosaka laboratory Ltd.)를 사용하여 조도(Ra)(단위: nm)를 측정하고 그 결과를 하기 표 1에 나타냈다.
실시예 비교예
1 2 3 4 5 6 7 8 1 2 3 4
제타전위
(mV)
+40 +38 +35 +32 -40 -36 -35 -32 +20 +7 -8 -21
조도(Ra)(nm) 10 11 12 15 10 11 12 15 21 25 24 22
상기 표 1로부터, 본 발명의 제타전위를 갖는 승화성 무기 충전제 용액을 사용하여 제조된 실시예 1 내지 8의 폴리이미드 필름의 조도가 그렇지 않은 비교예 1 내지 4의 조도보다 낮은 것을 알 수 있으며, 이로부터 실시예 1 내지 8의 폴리이미드 필름에 승화성 무기 충전제가 보다 고르게 분산되어 있음을 예측할 수 있다.
평가예 2
실시예 1, 2 및 비교예 2에서 제조한 폴리이미드 필름의 표면을 플라즈마 표면 에칭 방법으로 에칭하여 시편을 제조하였다. 에칭은 K1050X RF Plasma Etcher(EMITECH社) 장비를 이용하여 100W로 30분 동안 수행되었으며, 에칭에 사용한 기체는 공기였다. 이후, 주사전자현미경(SEM)을 이용하여, 시편의 표면을 1,000 배율로 서로 중복되지 않는 위치 열 곳을 선정하여 촬영하고, 상기 열 곳에 촬영된 승화성 무기 충전제 입자의 입경을 모두 측정하였다.
측정 결과, 실시예 1의 경우, 측정된 전체 승화성 무기 충전제 중 입경이 2㎛ 이하인 무기 충전제가 54%를 차지하였고, 5㎛ 이상인 무기 충전제가 8%를 차지하였다.
실시예 2의 경우, 측정된 전체 승화성 무기 충전제 중 입경이 2㎛ 이하인 무기 충전제가 45%를 차지하였고, 5㎛ 이상인 무기 충전제가 16%를 차지하였다.
비교예 2의 경우, 측정된 전체 승화성 무기 충전제 중 입경이 2㎛ 이하인 무기 충전제가 33%를 차지하였고, 5㎛ 이상인 무기 충전제가 52%를 차지하였다.
이로부터, 본 발명의 제타전위를 갖는 승화성 무기 충전제 용액을 사용하여 제조된 실시예 폴리이미드 필름은 그렇지 않은 비교예 폴리이미드 필름보다 균일한 승화성 무기 충전제 분포를 가짐을 알 수 있다.
실시예 9
실시예 1에서 제조한 폴리이미드 필름을 전기로를 사용하여 아르곤 기체 하에서 2.0℃/분의 속도로 1,500℃까지 승온한 뒤, 상기 온도에서 1시간 동안 유지시켜 탄화시켰다. 이후, 탄화된 폴리이미드 필름을 아르곤 기체 하에서 2.5℃/분의 속도로 2,900℃까지 승온한 뒤, 상기 온도에서 1시간 동안 유지시켜 흑연화하여 30㎛의 두께를 갖는 그라파이트 시트를 제조하였다.
실시예 10 내지 16 및 비교예 5 내지 8
하기 표 2에 기재된 폴리이미드 필름을 사용한 점을 제외하고는 실시예 9와 동일한 방법을 사용하여 그라파이트 시트를 제조하였다.
평가예 3
실시예 및 비교예에서 제조한 그라파이트 시트에 대하여 열확산율 측정장치(LFA 467, Netsch社)를 사용하여 laser flash법으로 평면 방향 열확산율을 측정하고, 상기 열확산율 측정값에 밀도(중량/부피) 및 비열(DSC를 사용한 비열 측정값)을 곱하여 열전도도를 산출하여 그 결과를 하기 표 2에 나타냈다.
실시예 비교예
9 10 11 12 13 14 15 16 5 6 7 8
폴리이미드 필름 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 8 비교예 1 비교예 2 비교예 3 비교예 4
열전도도 (W/m·K) 1800 1700 1500 1400 1700 1600 1500 1400 1300 1200 1100 1300
상기 표 2로부터, 본 발명의 제조방법을 사용하여 제조된 폴리이미드 필름으로부터 제조된 실시예 9 내지 16의 그라파이트 시트가 그렇지 않은 비교예 5 내지 8에 비해 열전도도가 우수함을 알 수 있다.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명은 열전도도가 우수한 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법을 제공하는 효과를 갖는다.

Claims (9)

  1. 폴리아믹산 용액을 준비하고,
    상기 폴리아믹산 용액에 제타전위가 +30mV 내지 +40mV 또는 -40mV 내지 -30mV인 승화성 무기 충전제 용액을 첨가하여 폴리이미드 필름용 전구체 조성물을 제조하고, 그리고
    상기 전구체 조성물로부터 폴리이미드 필름을 수득하는 단계를 포함한,
    그라파이트 시트용 폴리이미드 필름 제조방법.
  2. 제1항에 있어서,
    상기 폴리아믹산 용액은 용매 중에 디아민 단량체와 이무수물 단량체를 반응시켜 제조되고,
    상기 디아민 단량체는 4,4'-옥시디아닐린(4,4'-oxydianiline), 3,4'-옥시디아닐린, p-페닐렌디아민(p-phenylene diamine), m-페닐렌디아민, 4,4'-메틸렌디아닐린, 3,3'-메틸렌디아닐린 또는 이들의 조합을 포함하고,
    상기 이무수물 단량체는 피로멜리트산 이무수물(pyromellitic dianhydride), 3,3',4,4'-비페닐테트라카르복시산 이무수물, 2,3,3',4-비페닐테트라카르복시산 이무수물, 옥시디프탈산 무수물, 비스(3,4-디카르복시페닐)설폰 이무수물, 3,3',4,4'-벤조페논테트라카르복시산 이무수물 또는 이들의 조합을 포함하는, 그라파이트 시트용 폴리이미드 필름 제조방법.
  3. 제1항에 있어서,
    상기 승화성 무기 충전제 용액 중의 상기 승화성 무기 충전제의 평균입경(D50)이 2㎛ 내지 10㎛인, 그라파이트 시트용 폴리이미드 필름 제조방법.
  4. 제1항에 있어서,
    상기 승화성 무기 충전제는 제2인산칼슘, 황산바륨, 탄산칼슘 또는 이들의 조합을 포함하는, 그라파이트 시트용 폴리이미드 필름 제조방법.
  5. 제1항에 있어서,
    상기 폴리아믹산 100중량부를 기준으로 상기 승화성 무기 충전제를 0.1중량부 내지 0.3중량부로 첨가하는 것인, 그라파이트 시트용 폴리이미드 필름 제조방법.
  6. 제1항에 있어서,
    상기 전구체 조성물은 탈수제 및 이미드화제를 더 포함하고,
    상기 전구체 조성물로부터 폴리이미드 필름을 수득하는 단계는, 상기 전구체 조성물을 지지체 상에 캐스팅하고 건조하여 겔 필름을 제조하고, 그리고 상기 겔 필름을 열처리하는 단계를 포함하는, 그라파이트 시트용 폴리이미드 필름 제조방법.
  7. 제1항에 있어서,
    상기 폴리이미드 필름은 ISO 1997 기준에 의거하여 측정한 조도(Ra)가 10nm 내지 15nm인, 그라파이트 시트용 폴리이미드 필름 제조방법.
  8. 제1항 내지 제7항 중 어느 한 항에 따라 폴리이미드 필름을 제조하고, 그리고
    상기 폴리이미드 필름을 탄화 및 흑연화하여 그라파이트 시트를 수득하는 단계를 포함한, 그라파이트 시트 제조방법.
  9. 제8항에 있어서,
    상기 그라파이트 시트는 두께가 20㎛ 내지 40㎛이고, 열전도도가 1,400W/m·K 이상인, 그라파이트 시트 제조방법.
PCT/KR2021/011276 2020-08-27 2021-08-24 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법 WO2022045728A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023513300A JP7496472B2 (ja) 2020-08-27 2021-08-24 グラファイトシート用ポリイミドフィルム製造方法およびグラファイトシートの製造方法
CN202180053107.0A CN115989266A (zh) 2020-08-27 2021-08-24 石墨片用聚酰亚胺膜的制造方法和石墨片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200108602A KR102414419B1 (ko) 2020-08-27 2020-08-27 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법
KR10-2020-0108602 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022045728A1 true WO2022045728A1 (ko) 2022-03-03

Family

ID=80355415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011276 WO2022045728A1 (ko) 2020-08-27 2021-08-24 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법

Country Status (3)

Country Link
KR (1) KR102414419B1 (ko)
CN (1) CN115989266A (ko)
WO (1) WO2022045728A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370300B2 (ja) * 2003-03-25 2009-11-25 日本製紙株式会社 オフセット印刷用新聞用紙
JP2017537981A (ja) * 2014-12-09 2017-12-21 ベルモント ユニバーシティ リン酸カルシウムナノ粒子封入医薬用半固体ゲル
JP6386598B2 (ja) * 2017-01-24 2018-09-05 住友ゴム工業株式会社 マスターバッチの製造方法
KR20190102561A (ko) * 2018-02-26 2019-09-04 에스케이씨코오롱피아이 주식회사 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
KR20190103638A (ko) * 2018-02-28 2019-09-05 에스케이씨코오롱피아이 주식회사 그래핀 함유의 구형 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011063209A1 (en) * 2009-11-20 2011-05-26 E. I. Du Pont De Nemours And Company Thin film transistor compositions, and methods relating thereto
KR102063215B1 (ko) * 2018-02-26 2020-01-07 에스케이씨코오롱피아이 주식회사 향상된 열전도도를 가지는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조된 그라파이트 시트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370300B2 (ja) * 2003-03-25 2009-11-25 日本製紙株式会社 オフセット印刷用新聞用紙
JP2017537981A (ja) * 2014-12-09 2017-12-21 ベルモント ユニバーシティ リン酸カルシウムナノ粒子封入医薬用半固体ゲル
JP6386598B2 (ja) * 2017-01-24 2018-09-05 住友ゴム工業株式会社 マスターバッチの製造方法
KR20190102561A (ko) * 2018-02-26 2019-09-04 에스케이씨코오롱피아이 주식회사 구형의 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트
KR20190103638A (ko) * 2018-02-28 2019-09-05 에스케이씨코오롱피아이 주식회사 그래핀 함유의 구형 pi계 필러를 포함하는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조되는 그라파이트 시트

Also Published As

Publication number Publication date
JP2023539248A (ja) 2023-09-13
CN115989266A (zh) 2023-04-18
KR20220027570A (ko) 2022-03-08
KR102414419B1 (ko) 2022-06-30

Similar Documents

Publication Publication Date Title
WO2016117856A1 (ko) 기공을 갖는 입자를 이용한 폴리이미드 필름의 제조방법 및 저유전율의 폴리이미드 필름
WO2019164067A1 (ko) 향상된 열전도도를 가지는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조된 그라파이트 시트
TWI775102B (zh) 用於石墨片之聚醯亞胺膜及此聚醯亞胺膜之製造方法
WO2020054912A1 (ko) 표면 품질이 개선된 폴리이미드 필름 및 이의 제조방법
WO2021085851A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2012081763A1 (ko) 폴리이미드 필름
WO2021095976A1 (ko) 고탄성 및 고내열 폴리이미드 필름 및 그 제조방법
WO2021054515A1 (ko) 폴리이미드 필름, 이의 제조방법, 및 이를 포함한 연성금속박적층판
WO2021091116A1 (ko) 그라파이트 시트용 폴리이미드 필름, 이의 제조방법, 및 이로부터 제조된 그라파이트 시트
WO2019027207A1 (ko) 흄드 실리카 입자를 이용한 폴리이미드 필름의 제조방법 및 저유전율의 폴리이미드 필름
WO2022114852A1 (ko) 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이로부터 제조된 그라파이트 시트
WO2021091012A1 (ko) 저유전 폴리이미드 필름 및 그 제조방법
WO2020218695A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2022045728A1 (ko) 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2021091117A1 (ko) 그라파이트 시트용 폴리이미드 필름, 이의 제조방법, 및 이로부터 제조된 그라파이트 시트
JP7496472B2 (ja) グラファイトシート用ポリイミドフィルム製造方法およびグラファイトシートの製造方法
WO2022103244A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2023090838A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2021015363A1 (ko) 그라파이트 시트 및 이를 포함한 전자 장치
WO2022203327A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
TWI735267B (zh) 石墨片及此石墨片的製造方法
KR102452445B1 (ko) 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법
WO2024010418A1 (ko) 그라파이트 시트용 폴리이미드 필름 및 이로부터 제조된 그라파이트 시트
WO2024112142A1 (ko) 폴리이미드 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21862025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21862025

Country of ref document: EP

Kind code of ref document: A1