WO2023074665A1 - 水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法 - Google Patents

水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法 Download PDF

Info

Publication number
WO2023074665A1
WO2023074665A1 PCT/JP2022/039663 JP2022039663W WO2023074665A1 WO 2023074665 A1 WO2023074665 A1 WO 2023074665A1 JP 2022039663 W JP2022039663 W JP 2022039663W WO 2023074665 A1 WO2023074665 A1 WO 2023074665A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium hydroxide
less
hydroxide powder
mass
drying
Prior art date
Application number
PCT/JP2022/039663
Other languages
English (en)
French (fr)
Inventor
拓 西川
定寛 柳下
Original Assignee
第一稀元素化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一稀元素化学工業株式会社 filed Critical 第一稀元素化学工業株式会社
Priority to KR1020247008310A priority Critical patent/KR20240045293A/ko
Priority to CN202280061485.8A priority patent/CN117940376A/zh
Publication of WO2023074665A1 publication Critical patent/WO2023074665A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium

Definitions

  • the present invention relates to zirconium hydroxide powder and a method for producing zirconium hydroxide powder.
  • calcium compounds such as calcium oxide and calcium chloride are known as inorganic compounds that exhibit hygroscopicity.
  • calcium compounds due to their chemical properties, calcium compounds generate heat when they react with water, and the absorbed water exhibits alkalinity, which is harmful to the human body.
  • US Pat. No. 5,300,003 discloses amorphous zirconium hydroxide having a surface area of at least 300 m 2 /g, a total pore volume of at least 0.70 cm 3 /g, and an average pore size between 5 nm and 15 nm. It is
  • Patent Document 2 has one peak at 3300 to 3500 cm ⁇ 1 and two or more infrared absorption bands at 1300 to 1700 cm ⁇ 1 in infrared absorption spectrum measurement, and after heat treatment at 300 to 400 ° C., oxidation Zirconium hydroxide is disclosed which exhibits an X-ray diffraction pattern belonging to the monoclinic system of zirconium and has a BET specific surface area of 200 m 2 /g or more.
  • Patent Document 3 discloses a porous crystalline zirconia material which is a crystalline zirconia material consisting of a tetragonal phase and a monoclinic phase and has a specific surface area of 150 to 500 m 2 /g. It also discloses that the pore volume is 0.2 to 1.2 cm 3 /g, and the pore diameter of pores occupying 60% or more of the volume is 2 to 50 nm.
  • Patent Document 4 discloses zirconium oxide hydrate particles represented by the general formula ZrO 2 ⁇ nH 2 O, wherein the particles have an average pore diameter of 1.5 nm or more and 1.75 nm as determined by a nitrogen gas adsorption method. and n in the general formula is a number exceeding 2.5, and the n is the particles dispersed in water, filtered, and then dried in the air at 60°C for 6 hours. Zirconium oxide hydrate particles are disclosed, the values of which are measured after
  • the present invention has been made in view of the above-mentioned problems, and its object is to provide a zirconium hydroxide powder that exhibits high hygroscopicity, is less harmful to the human body, and can be handled safely. It is in. Another object of the present invention is to provide a method for producing the zirconium hydroxide powder.
  • the present inventors have conducted extensive research on zirconium hydroxide powder. As a result, it was surprisingly found that a zirconium hydroxide powder having the following composition exhibits high hygroscopicity, is less harmful to the human body, and can be handled safely, thus completing the present invention. reached.
  • the zirconium hydroxide powder according to the present invention is In the pore size distribution based on the BJH method, having a peak top in the pore size range of 1 nm or more and 5 nm or less,
  • the pore volume in the pore diameter range of 1 nm or more and 5 nm or less is 0.15 cm 3 /g or more.
  • the peak top is present in the pore size range of 1 nm or more and 5 nm or less, the absorption of moisture in the atmosphere is promoted.
  • the present inventors speculate that the phenomenon is caused by fine pores of 1 nm or more and 5 nm or less absorbing moisture in the atmosphere due to capillary action.
  • the pore volume in the pore diameter range of 1 nm or more and 5 nm or less is 0.15 cm 3 /g or more, and the proportion of fine pores of 1 nm or more and 5 nm or less is large, so it absorbs a large amount of moisture in the atmosphere. be able to.
  • the peak top is in the pore size range of 1 nm or more and 5 nm or less, and the pore volume in the pore size range of 1 nm or more and 5 nm or less is 0.15 cm 3 /g or more. Therefore, it can absorb a large amount of moisture in the air.
  • the amorphous zirconium hydroxide of Patent Document 1 has an average pore size between 5 nm and 15 nm, and does not have a peak top in the pore size range of 1 nm or more and 5 nm or less.
  • the zirconium hydroxide of Patent Document 2 can have a peak top in a pore size range of 1 nm or more and 5 nm or less, while its pore volume is less than 0.15 cm 3 /g, Does not have sufficient pore volume.
  • the pores occupying 60% or more of the volume have a pore diameter of 2 to 50 nm
  • the pores are concentrated in the pore diameter region of 1 nm or more and 5 nm or less. It does not mean that pores are present. That is, it does not have a peak top in the pore size range of 1 nm or more and 5 nm or less.
  • the average pore size of the zirconium oxide hydrate particles of Patent Document 4 is 1.5 nm or more and 1.75 nm or less, but the zirconium oxide hydrate particles described in Patent Document 4 are Since the amount of water is relatively large and the amount of water of hydration present in pores of 1 nm or more and 5 nm or less is large, the pore volume in the pore diameter range of 1 nm or more and 5 nm or less becomes small. That is, the zirconium oxide hydrate particles of Patent Document 4 do not have a sufficient pore volume. Moreover, the compounds of Patent Documents 1 to 4 do not exhibit hygroscopicity. Furthermore, Patent Documents 1 to 4 do not describe hygroscopicity.
  • the pore volume in the pore diameter range of 1 nm or more and 5 nm or less is preferably 0.2 cm 3 /g or more.
  • the pore volume in the pore diameter range of 1 nm or more and 5 nm or less is 0.2 cm 3 /g or more, a larger amount of moisture in the air can be absorbed.
  • the bulk density is preferably 0.10 g/cm 3 or more and 0.25 g/cm 3 or less.
  • the bulk density is 0.25 g/cm 3 or less
  • the specific surface area is preferably 350 m 2 /g or more.
  • the specific surface area is 350 m 2 /g or more, a larger amount of moisture in the atmosphere can be absorbed.
  • the method for producing zirconium hydroxide powder according to the present invention includes: A first drying step of drying a zirconium hydroxide wet cake produced by a wet method until the solid content concentration is 60% by mass or more and 87% by mass or less,
  • the drying conditions in the first drying step are characterized in that the rate of increase in solid content concentration is in the range of 5 mass %/h or more and 120 mass %/h or less.
  • the drying conditions in the first drying step that is, drying conditions in which the rate of increase in solid content concentration is within the range of 120% by mass/h or less, a pore diameter of 1 nm or more and 5 nm or less It becomes possible to easily obtain a zirconium hydroxide powder having a peak top in the region.
  • the present inventors conjecture as follows. Zirconium hydroxide powder is composed of secondary particles in which primary particles are agglomerated.
  • the first drying step is initial drying until the wet cake has a solid content concentration of 60% by mass or more and 87% by mass or less.
  • drying conditions in the first drying step when vigorous conditions, that is, drying conditions in which the rate of increase in solid content exceeds 120% by mass/h are adopted, the secondary particles of zirconium hydroxide in the state of wet cake The water will evaporate rapidly. As a result, the force of agglomeration due to the surface tension increases at once, and the water agglomerates so as to fill up the places where water existed, and the fine pores disappear.
  • drying conditions in the first drying step that is, drying conditions in which the rate of increase in solid content concentration is within the range of 120% by mass / h or less, hydroxylation in the state of wet cake
  • relatively mild conditions that is, drying conditions in which the rate of increase in solid content concentration is within the range of 120% by mass / h or less, hydroxylation in the state of wet cake
  • the water in the secondary particles of zirconium evaporates, the cohesive force is reduced, so the locations where water was present remain as pores without being crushed. Therefore, a large number of pores having a size of 1 nm or more and 5 nm or less are formed.
  • the drying conditions in the first drying step by adopting drying conditions in which the rate of increase in solid content concentration is in the range of 5 mass% / h or more, the peak top is obtained in the pore diameter region of 1 nm or more and 5 nm or less. It becomes possible to easily obtain a zirconium hydroxide powder having Regarding this point, the present inventors conjecture as follows. If the rate of increase in the solid content concentration in the first drying step is less than 5% by mass/h, the water in the secondary particles evaporates and fine pores are formed in the process of forming primary particles by hydrogen bonding. agglomeration is likely to proceed, and as a result, fine pores disappear.
  • the rate of increase in the solid content concentration in the first drying step is 5% by mass/h or more, the evaporation of water proceeds faster than the formation of a network of hydrogen bonds, so aggregation of primary particles is suppressed. As a result, a large number of fine pores of 1 nm or more and 5 nm or less are formed.
  • the solid content concentration of the wet cake is more than 87% by mass and 92% by mass or less.
  • the final water content of the zirconium hydroxide powder can be adjusted to a solid content concentration of more than 87% by mass and 92% by mass or less.
  • a zirconium hydroxide powder that exhibits high hygroscopicity, is less harmful to the human body, and can be handled safely. Also, a method for producing the zirconium hydroxide powder can be provided.
  • zirconia is generally used and includes 10% by mass or less of impurity metal compounds including hafnia (except when WO3 is included).
  • the zirconium hydroxide powder according to the present embodiment has a peak top in the pore size range of 1 nm or more and 5 nm or less in the pore distribution based on the BJH method. Since it has a peak top in the pore size range of 1 nm or more and 5 nm or less, it promotes absorption of moisture in the air. The present inventors speculate that the phenomenon is caused by fine pores of 1 nm or more and 5 nm or less absorbing moisture in the atmosphere due to capillary action.
  • the peak top preferably exists in a pore size region of 1.5 nm or more, more preferably in a pore size region of 2.0 nm or more, and further preferably in a pore size region of 3.0 nm or more. Preferably, it is present in the pore size range of 3.2 nm or more, and particularly preferably in the pore size range of 3.3 nm or more.
  • the peak top preferably exists in a pore diameter region of 4.5 nm or less, more preferably in a pore diameter region of 4 nm or less.
  • the zirconium hydroxide powder has a pore volume of 0.15 cm 3 /g or more in the pore size range of 1 nm or more and 5 nm or less (hereinafter also referred to as Vp 1-5 ).
  • the pore volume (Vp 1-5 ) in the pore diameter range of 1 nm or more and 5 nm or less is 0.15 cm 3 /g or more, and the ratio of fine pores of 1 nm or more and 5 nm or less is large, so that moisture in the atmosphere is removed. It can be absorbed in large amounts.
  • the Vp 1-5 is preferably 0.2 cm 3 /g or more, more preferably 0.22 cm 3 /g or more, still more preferably 0.24 cm 3 /g or more, and particularly preferably 0.25 cm 3 /g. As mentioned above, it is particularly preferably 0.26 cm 3 /g or more, particularly preferably 0.27 cm 3 /g or more. Although Vp 1-5 is preferably as large as possible, it is, for example, 0.8 cm 3 /g or less, 0.6 cm 3 /g or less, or 0.4 cm 3 /g or less.
  • the zirconium hydroxide powder has a peak top in the pore size range of 1 nm or more and 5 nm or less, and the pore volume in the pore size range of 1 nm or more and 5 nm or less is 0.15 cm 3 /g or more. Therefore, it can absorb a large amount of moisture from the atmosphere.
  • the zirconium hydroxide powder has a ratio of the pore volume (Vp 1-5 ) in the pore size range of 1 nm to 5 nm to the pore volume (hereinafter also referred to as Vp 1-50 ) in the pore size range of 1 nm to 50 nm.
  • Vp 1-5 /Vp 1-50 is preferably 0.5 or more.
  • the ratio (Vp 1-5 /Vp 1-50 ) is 0.5 or more and the pore volume in the pore diameter range of 1 nm or more and 5 nm or less is 0.15 cm 3 /g or more, can absorb more water.
  • the ratio (Vp 1-5 /Vp 1-50 ) is more preferably 0.6 or more, still more preferably 0.65 or more, and particularly preferably 0.7 or more. Although the ratio (Vp 1-5 /Vp 1-50 ) is preferably as large as possible, it is, for example, 1.0 or less, or 0.9 or less.
  • the Vp 1-50 is preferably 0.2 cm 3 /g or more, more preferably 0.25 cm 3 /g or more, still more preferably 0.3 cm 3 /g or more, and particularly preferably 0.32 cm 3 /g. More preferably, it is 0.34 cm 3 /g or more.
  • the Vp 1-50 is preferably 1.0 cm 3 /g or less, more preferably 0.8 cm 3 /g or less, still more preferably 0.6 cm 3 /g or less.
  • the zirconium hydroxide powder preferably has a pore volume (hereinafter also referred to as Vp all ) of 0.3 cm 3 /g or more, more preferably 0.4 cm 3 /g or more.
  • the Vp all is preferably 1.2 cm 3 /g or less, more preferably 1.0 cm 3 /g or less.
  • the zirconium hydroxide powder preferably has an average pore diameter of 3 nm or more and 6 nm or less. When the average pore diameter is 3 nm or more and 6 nm or less, a larger amount of moisture in the air can be absorbed.
  • the average pore diameter is preferably 3.3 nm or more, more preferably 3.6 nm or more, still more preferably 3.9 nm or more, particularly preferably 4.0 nm or more, particularly preferably 4.04 nm or more, and particularly preferably 4.04 nm or more. It is preferably 4.2 nm or more.
  • the average pore diameter is preferably 5.5 nm or less, more preferably 5 nm or less.
  • Vp 1-5 , Vp 1-50 , Vp all and average pore size refer to values obtained by the method described in Examples.
  • the zirconium hydroxide powder preferably has a bulk density of 0.10 g/cm 3 or more and 0.25 g/cm 3 or less.
  • the bulk density is 0.25 g/cm 3 or less, it can be said that the pore volume of more than 100 nm and 1000 nm or less, which indicates inter-particle spacing, is large. This makes it easier for the particles to disaggregate and, for example, when they are mixed with other materials and used, they can be highly dispersed. As a result, it is easy to use for various purposes. For example, when mixed with a resin material and used as a moisture absorbent, it is easily dispersed in the resin material.
  • the bulk density is more preferably 0.23 g/cm 3 or less, still more preferably 0.21 g/cm 3 or less, and particularly preferably 0.19 g/cm 3 or less.
  • the bulk density is preferably as small as possible .
  • the bulk density refers to the value obtained by the method described in Examples.
  • the zirconium hydroxide powder preferably has a specific surface area of 350 m 2 /g or more.
  • the specific surface area is 350 m 2 /g or more, a larger amount of moisture in the atmosphere can be absorbed.
  • the specific surface area is more preferably 360 m 2 /g or more, still more preferably 370 m 2 /g or more, and particularly preferably 380 m 2 /g or more. Although the specific surface area is preferably as large as possible, it is, for example, 500 m 2 /g or less, 450 m 2 /g or less. The specific surface area refers to the value obtained by the method described in Examples.
  • the zirconium hydroxide powder preferably has a water absorption of 20% or more as measured by the following method for measuring water absorption. When the water absorption rate is 20% or more, it can be said that the film has a sufficient water absorption function.
  • the zirconium hydroxide powder does not generate heat when it absorbs water. In this specification, the term "no heat generation upon absorption of water” means that the temperature rise is 1°C or less when 10 g of zirconium hydroxide powder is added to 100 g of water at room temperature (25°C).
  • the water absorption rate is more preferably 23% or more, and still more preferably 25% or more.
  • the water absorption rate is preferably as high as possible, it is, for example, 50% or less, or 40% or less.
  • Zirconium hydroxide is a compound represented by the general formula ZrO(OH) 2.nH 2 O (n>0).
  • Hydrous zirconium oxide is a compound represented by the general formula ZrO 2 ⁇ nH 2 O (n>0).
  • the zirconium hydroxide powder according to the present embodiment includes both zirconium hydroxide powder and hydrous zirconium oxide powder.
  • the n is preferably 2 or less, more preferably 1.5 or less.
  • n is 2 or less, the moisture content is low and the hygroscopicity is higher. In addition, since it contains little moisture, it is easy to handle.
  • the number n can be adjusted, for example, by the temperature and time of the second drying step described later.
  • the zirconium hydroxide powder is preferably amorphous.
  • the amount of hydroxyl groups present on the surfaces of the powder particles is greater than when the zirconium hydroxide powder is crystalline. Therefore, the hydroxyl group easily adsorbs moisture.
  • the zirconium hydroxide powder is amorphous, it is more excellent in hygroscopicity.
  • zirconium hydroxide powder is not particularly limited, for example, it can be used alone or mixed with other materials as a moisture absorbent.
  • the method for producing zirconium hydroxide powder according to the present embodiment includes: A first drying step of drying a zirconium hydroxide wet cake produced by a wet method until the solid content concentration is 60% by mass or more and 87% by mass or less,
  • the drying conditions in the first drying step are such that the rate of increase in solid content concentration is in the range of 5 mass %/h or more and 120 mass %/h or less.
  • Second drying step> In the method for producing zirconium hydroxide powder according to the present embodiment, first, a wet cake of zirconium hydroxide produced by a wet method is dried until the solid content concentration is 60% by mass or more and 87% by mass or less (second one drying step).
  • Drying conditions in the first drying step are such that the rate of increase in solid content concentration is in the range of 5 mass %/h or more and 120 mass %/h or less.
  • the rate of increase in solid content concentration refers to a value obtained by the following formula (2).
  • Formula (2): [Increase rate of solid content concentration (mass% / h)] [[Solid content concentration of zirconium hydroxide powder after first drying (mass%)] - [Solid content concentration of zirconium hydroxide powder before drying (mass %)]]/[Drying time (h)]
  • drying conditions in the first drying step that is, drying conditions in which the rate of increase in solid content concentration is within the range of 120% by mass / h or less.
  • the drying conditions in the first drying step can be adjusted by appropriately selecting the drying method and drying temperature.
  • the drying temperature in the first drying step is preferably 360°C or lower, more preferably 350°C or lower.
  • the rate of increase in solid content concentration can be prevented from exceeding 120 mass %/h.
  • the drying temperature in the first drying step is preferably 150° C. or higher, more preferably 200° C. or higher.
  • Examples of the drying method include a method using a shelf dryer, a method using a flash dryer, and the like.
  • the drying speed is slower than when using a flash dryer, so it is easy to adjust the drying speed so that the rate of increase in solid content concentration does not exceed 120% by mass / h. .
  • the drying rate is faster than when the shelf dryer is used, so even if the drying temperature is lowered, high productivity can be maintained.
  • the first drying step is a step of drying the zirconium hydroxide wet cake produced by the wet method until the solid content concentration is 60% by mass or more and 87% by mass or less.
  • the drying conditions in the drying step are such that the rate of increase in solid content concentration is in the range of 5 mass %/h or more and 120 mass %/h or less.
  • the rate of increase in solid content concentration is preferably 10% by mass or more and 100% by mass or less, more preferably 20% by mass or more and 90% by mass or less, and still more preferably is 30 mass %/h or more and 90 mass %/h or less, particularly preferably 40 mass %/h or more and 80 mass %/h or less, particularly preferably 60 mass %/h or more and 75 mass %/h or less. Pores of 1 nm or more and 5 nm or less can be formed by appropriately adjusting the drying conditions in a state where the solid concentration is low.
  • pores of 1 nm or more and 5 nm or less are preferably formed by appropriately adjusting the drying conditions until the solid content concentration becomes 60 mass % or more and 87 mass % or less.
  • drying is preferably performed until the solid content concentration of the wet cake is 60% by mass or more, more preferably 65% by mass or more.
  • drying is preferably performed until the solid content concentration of the wet cake is 87% by mass or less, more preferably 85% by mass or less.
  • the starting material for producing the zirconium hydroxide wet cake is not particularly limited, but it is preferable to use basic zirconium sulfate as the starting material because it facilitates control of the particle aggregation form.
  • the zirconium hydroxide wet cake can be obtained by using basic zirconium sulfate as a starting material and adding a base.
  • the basic zirconium sulfate can be obtained by hydrolyzing an aqueous solution of a soluble zirconium salt.
  • the soluble zirconium salt is not particularly limited as long as it is soluble in water, and those obtained by known production methods or commercially available products can also be used.
  • nitrates such as zirconium oxynitrate
  • chlorides such as zirconium chloride and zirconium oxychloride
  • acetates such as zirconium acetate can be used.
  • zirconium oxychloride is preferred.
  • the concentration of the soluble zirconium salt aqueous solution may be appropriately set according to the type (solubility) of the soluble zirconium salt to be used. .
  • an inorganic acid such as sulfuric acid
  • an inorganic acid salt such as ammonium sulfate, aluminum sulfate, or the like
  • the amount of the hydrolyzing agent to be added can be appropriately changed depending on the type of hydrolyzing agent used, the type of the aqueous solution, etc., but in general, it is sufficient to react with all the soluble zirconium salts in the aqueous solution to form a slurry. Any amount may be sufficient, and the hydrolyzing agent may be added in excess of the stoichiometric amount.
  • the hydrolyzing agent may remain as long as it does not significantly decrease the specific surface area of zirconium hydroxide.
  • the type of the base is not particularly limited, and sodium hydroxide, potassium hydroxide, ammonia, sodium carbonate, ammonium carbonate, etc. can be used, for example.
  • the amount of the base to be added is not particularly limited as long as the hydroxide can be produced, but it is usually adjusted so that the pH of the slurry is 9 or more, preferably 12.5 or more.
  • ⁇ Second drying step> After the first drying step, it is preferable to dry the wet cake until the solid content concentration is more than 87% by mass and 92% by mass or less (second drying step).
  • the final water content of the zirconium hydroxide powder can be adjusted to a solid content concentration of more than 87% by mass and 92% by mass or less.
  • the amount of water of crystallization contained in the zirconium hydroxide powder can be reduced, and the zirconium hydroxide powder has less moisture and higher hygroscopicity. be able to.
  • the drying conditions in the second drying step are not particularly limited as long as the final water content of the zirconium hydroxide powder can be adjusted to a solid content concentration of more than 87% by mass and 92% by mass or less.
  • the drying temperature in the second drying step is preferably 200° C. or lower, more preferably 150° C. or lower. By setting the drying temperature to 200° C. or lower, the resulting zirconium hydroxide powder is likely to be amorphous. If the drying temperature is too high, the obtained zirconium hydroxide powder tends to be crystalline. From the viewpoint of productivity, the drying temperature in the second drying step is preferably 100° C. or higher, more preferably 110° C. or higher. Examples of the drying method include a method using a shelf dryer, a method using a flash dryer, and the like.
  • the zirconium hydroxide powders obtained in Examples and Comparative Examples contain 1.3 to 2.5% by mass of hafnium oxide relative to zirconium oxide as an unavoidable impurity (calculated by the following formula (X)). are doing. ⁇ Formula (X)> ([mass of hafnium oxide]/([mass of zirconium oxide] + [mass of hafnium oxide])) x 100 (%)
  • Example 1 Basic zirconium sulfate (containing 1 kg of zirconium oxide) was dispersed in 10 kg of pure water to prepare a basic zirconium sulfate slurry. After adding a 25% by mass aqueous sodium hydroxide solution to the slurry until the pH of the slurry reaches 13.5 to obtain a precipitate, the formed precipitate is solid-liquid separated and washed with water to wet the zirconium hydroxide. Collected the cake. The solid content concentration in the wet cake was 31.9% by mass. Next, the obtained wet cake was dried at 350° C.
  • the obtained zirconium hydroxide powder had a chemical formula of ZrO 2 ⁇ 0.45H 2 O and was amorphous.
  • the chemical formula of the obtained zirconium hydroxide powder was specified by the weight loss rate from room temperature to 200° C. in thermogravimetry. Moreover, it was confirmed by powder X-ray diffraction measurement that the obtained zirconium hydroxide powder was amorphous.
  • Example 2 A wet cake of zirconium hydroxide was obtained in the same manner as in Example 1. Next, the obtained wet cake was dried at 200° C. for 2 hours using a shelf dryer to obtain a zirconium hydroxide powder having a solid content concentration of 72.5% by mass. This drying corresponds to the first drying step in the present invention. The rate of increase in solid content concentration in this first drying step was 20.3% by mass/h. Next, it was dried at 120° C. using a shelf dryer until it reached a constant weight, thereby obtaining a zirconium hydroxide powder according to this example. This drying corresponds to the second drying step in the present invention. The solid content concentration of the obtained zirconium hydroxide powder was 89.5% by mass. Moreover, the chemical formula of the obtained zirconium hydroxide powder was ZrO 2 ⁇ 0.44H 2 O, and it was amorphous.
  • Example 3 A wet cake of zirconium hydroxide was obtained in the same manner as in Example 1, except that the base was changed from the 25% by mass aqueous sodium hydroxide solution to the 25% by mass aqueous ammonia solution. The solid content concentration in the wet cake was 29.3% by mass. Next, the obtained wet cake was dried at 250° C. for 1.2 hours using a tray dryer to obtain a zirconium hydroxide powder having a solid concentration of 73.4% by mass. This drying corresponds to the first drying step in the present invention. The rate of increase in solid content concentration in this first drying step was 36.8% by mass/h. Next, it was dried at 160° C.
  • the solid content concentration of the obtained zirconium hydroxide powder was 91.4% by mass.
  • the chemical formula of the obtained zirconium hydroxide powder was ZrO 2 ⁇ 0.42H 2 O, and it was amorphous.
  • Example 4 A wet cake of zirconium hydroxide was obtained in the same manner as in Example 1, except that the base was changed from the 25% by mass aqueous sodium hydroxide solution to the 25% by mass aqueous potassium hydroxide solution. The solid content concentration in the wet cake was 29.8% by mass. Next, the obtained wet cake was dried at 250° C. for 1.2 hours using a tray dryer to obtain a zirconium hydroxide powder having a solid concentration of 71.5% by mass. This drying corresponds to the first drying step in the present invention. The rate of increase in solid content concentration in this first drying step was 34.8% by mass/h. Next, it was dried at 140° C.
  • the obtained zirconium hydroxide powder had a chemical formula of ZrO 2 ⁇ 0.43H 2 O and was amorphous.
  • Example 1 A wet cake of zirconium hydroxide was obtained in the same manner as in Example 1. Next, the obtained wet cake was dried at 300° C. for 0.3 hours using a flash dryer to obtain a zirconium hydroxide powder having a solid content concentration of 72.8% by mass. The rate of increase in solid content concentration in this drying process was 136.3% by mass/h. Next, it was dried at 120° C. using a shelf dryer until it reached a constant weight to obtain a zirconium hydroxide powder according to this comparative example. The solid content concentration of the obtained zirconium hydroxide powder was 89.0% by mass. The chemical formula of the obtained zirconium hydroxide powder was ZrO 2 ⁇ 0.42H 2 O, and it was amorphous.
  • Example 2 A wet cake of zirconium hydroxide was obtained in the same manner as in Example 1. Next, the obtained wet cake was dried at 350° C. for 0.18 hours using a flash dryer to obtain a zirconium hydroxide powder having a solid content concentration of 86.6% by mass. The rate of increase in solid content concentration in this drying process was 298.4% by mass/h. Next, it was dried at 120° C. using a shelf dryer until it reached a constant weight to obtain a zirconium hydroxide powder according to this comparative example. The solid content concentration of the obtained zirconium hydroxide powder was 89.8% by mass. The obtained zirconium hydroxide powder had a chemical formula of ZrO 2 ⁇ 0.41H 2 O and was amorphous.
  • FIG. 1 shows pore distributions of zirconium hydroxide powders of Examples and Comparative Examples.
  • the pore diameter at the peak top of the log differential pore volume, the pore volume (Vp 1-5 ) in the pore diameter region of 1 nm or more and 5 nm or less, and the fineness in the pore diameter region of 1 nm or more and 50 nm or less The pore volume (Vp 1-50 ), the pore volume of the entire pore size region (Vp all ), and the average pore size were determined. Also, the ratio (Vp 1-5 /Vp 1-50 ) was calculated. Table 1 shows the results.
  • the bulk density of the zirconium hydroxide powders was obtained according to JIS K 5101 from the weight of the zirconium hydroxide powders filled in a volume of 30 ml. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

BJH法に基づく細孔分布において、1nm以上5nm以下の細孔径領域にピークトップを有し、1nm以上5nm以下の細孔径領域における細孔容積が0.15cm/g以上である水酸化ジルコニウム粉末。

Description

水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法
 本発明は、水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法に関する。
 従来、吸湿性を示す無機化合物としては、例えば、酸化カルシウムや塩化カルシウムといったカルシウム化合物が知られている。しかしながら、カルシウム化合物はその化学的性質上、水と反応すると発熱が生じる他、吸収された水はアルカリ性を示すため人体に対して有害であることから、取り扱い上の注意が必要となる。
 特許文献1には、表面積が少なくとも300m/gであり、全気孔体積が少なくとも0.70cm/gであり、かつ平均気孔寸法が5nmと15nmの間にある非晶質水酸化ジルコニウムが開示されている。
 特許文献2には、赤外吸収スペクトル測定において3300~3500cm-1に1つのピーク及び1300~1700cm-1に2以上の赤外吸収帯を有し、300~400℃での熱処理後において、酸化ジルコニウムの単斜晶系に属するX線回折像を示し、BET比表面積が200m/g以上である水酸化ジルコニウムが開示されている。
 特許文献3には、正方晶相と単斜晶相とからなる結晶質ジルコニア材料であり、該材料の比表面積が150~500m/gである多孔質結晶性ジルコニア材料が開示されている。また、細孔容積が0.2~1.2cm/g、かつ、該容積の60%以上を占める細孔の細孔直径が2~50nmであることが開示されている。
 特許文献4には、一般式ZrO・nHOで表される酸化ジルコニウム水和物粒子であって、前記粒子の窒素ガス吸着法により求められる平均細孔径は、1.5nm以上1.75nm以下であり、前記一般式中のnは、2.5を超える数であり、前記nは、前記粒子を水に分散させた後、濾過し、その後、空気中において60℃で6時間乾燥させた後に測定した数値である酸化ジルコニウム水和物粒子が開示されている。
特表2009-525250号公報 特開2000-247641号公報 特開2005-35860号公報 特開2009-274897号公報
 上述の通り、従来、高い吸湿性を示し、かつ、人体に対する有害性が低く、安全に取り扱うことが可能な化合物の開発が望まれている。
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、高い吸湿性を示し、かつ、人体に対する有害性が低く、安全に取り扱うことが可能な水酸化ジルコニウム粉末を提供することにある。また、当該水酸化ジルコニウム粉末の製造方法を提供することにある。
 本発明者らは、水酸化ジルコニウム粉末について鋭意研究を行った。その結果、驚くべきことに、下記構成を有する水酸化ジルコニウム粉末は、高い吸湿性を示し、かつ、人体に対する有害性が低く、安全に取り扱うことが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明に係る水酸化ジルコニウム粉末は、
 BJH法に基づく細孔分布において、1nm以上5nm以下の細孔径領域にピークトップを有し、
 前記1nm以上5nm以下の細孔径領域における細孔容積が0.15cm/g以上であることを特徴とする。
 前記構成によれば、1nm以上5nm以下の細孔径領域にピークトップを有するため、大気中の水分の吸収が促進される。本発明者らは、現象について、1nm以上5nm以下の微細な細孔が、毛細管現象により大気中の水分を吸収していると推察している。また、前記1nm以上5nm以下の細孔径領域における細孔容積が0.15cm/g以上であり、1nm以上5nm以下の微細な細孔の割合が大きいため、大気中の水分を多量に吸収することができる。
 このように、前記構成によれば、1nm以上5nm以下の細孔径領域にピークトップを有し、且つ、前記1nm以上5nm以下の細孔径領域における細孔容積が0.15cm/g以上であるため、大気中の水分を多量に吸収することができる。
 なお、特許文献1の非晶質水酸化ジルコニウムは、平均気孔寸法が5nmと15nmの間にあり、1nm以上5nm以下の細孔径領域にピークトップを有さない。
 また、特許文献2の水酸化ジルコニウムは、明示の記載はないが、1nm以上5nm以下の細孔径領域にピークトップを有し得る一方、その細孔容積は0.15cm/g未満であり、十分な細孔容積を有さない。
 また、特許文献3の結晶質ジルコニア材料は、容積の60%以上を占める細孔の細孔直径が2~50nmであることが開示されているものの、1nm以上5nm以下の細孔径領域に集中して細孔が存在しているわけではない。すなわち、1nm以上5nm以下の細孔径領域にピークトップを有さない。
 また、特許文献4の酸化ジルコニウム水和物粒子の平均細孔径は、1.5nm以上1.75nm以下であるが、特許文献4に記載の酸化ジルコニウム水和物粒子は粒子内に含まれる水和水の量が相対的に多く、1nm以上5nm以下の細孔に存在する水和水が多くなるために、1nm以上5nm以下の細孔径領域における細孔容積は小さくなる。すなわち、特許文献4の酸化ジルコニウム水和物粒子は十分な細孔容積を有さない。
 また、特許文献1~4の化合物は、吸湿性を示さない。さらに、特許文献1~4には、吸湿性に関する記載がない。
 前記構成においては、前記1nm以上5nm以下の細孔径領域における細孔容積が0.2cm/g以上であることが好ましい。
 前記1nm以上5nm以下の細孔径領域における細孔容積が0.2cm/g以上であると、大気中の水分をより多量に吸収することができる。
 前記構成においては、かさ密度が、0.10g/cm以上0.25g/cm以下であることが好ましい。
 かさ密度が0.25g/cm以下であると、粒子間隙を示す100nm超1000nm以下の細孔容積が多いといえる。これにより、粒子同士の凝集が解れやすくなり、例えば、他の材料と混合して使用する際に、高分散させることができる。その結果、種々の用途に使用しやすい。例えば、樹脂材料と混合して吸湿剤として使用する際に、樹脂材料に高分散させやすい。
 前記構成においては、比表面積が350m/g以上であることが好ましい。
 比表面積が350m/g以上であると、大気中の水分をさらに多量に吸収することができる。
 また、本発明に係る水酸化ジルコニウム粉末の製造方法は、
 湿式法により作製される水酸化ジルコニウムのウェットケーキを、固形分濃度が60質量%以上87質量%以下になるまで乾燥する第一乾燥工程を含み、
 前記第一乾燥工程における乾燥条件は、固形分濃度の増加速度が5質量%/h以上120質量%/h以下の範囲内となる乾燥条件であることを特徴とする。
 前記第一乾燥工程における乾燥条件として比較的穏やかな条件、すなわち、固形分濃度の増加速度が120質量%/h以下の範囲内となる乾燥条件を採用することにより、1nm以上5nm以下の細孔径領域にピークトップを有する水酸化ジルコニウム粉末を容易に得ることが可能となる。
 この点について、本発明者らは、以下のように推察している。
 水酸化ジルコニウム粉末は、一次粒子が凝集した二次粒子で構成されている。
 前記第一乾燥工程は、ウェットケーキの固形分濃度が60質量%以上87質量%以下になるまでの初期の乾燥である。
 前記第一乾燥工程における乾燥条件として、激しい条件、すなわち、固形分濃度の増加速度が120質量%/hを超える乾燥条件を採用すると、ウェットケーキの状態の水酸化ジルコニウムの二次粒子中にある水が急激に蒸発することになる。そのため、表面張力により凝集しようとする力が一気に高まり、水の存在していた箇所を埋めるように凝集し、微細な細孔は消滅することになる。
 一方、前記第一乾燥工程における乾燥条件として比較的穏やかな条件、すなわち、固形分濃度の増加速度が120質量%/h以下の範囲内となる乾燥条件を採用すると、ウェットケーキの状態の水酸化ジルコニウムの二次粒子中にある水が蒸発する際、凝集力は小さくなるため、水の存在していた箇所が潰されることなく、孔としてそのまま残ることになる。そのため、1nm以上5nm以下の細孔が多数形成されることになる。
 また、前記第一乾燥工程における乾燥条件として、固形分濃度の増加速度が5質量%/h以上の範囲内となる乾燥条件を採用することにより、1nm以上5nm以下の細孔径領域にピークトップを有する水酸化ジルコニウム粉末を容易に得ることが可能となる。
 この点について、本発明者らは、以下のように推察している。
 前記第一乾燥工程における固形分濃度の増加速度が5質量%/h未満であると、二次粒子中にある水が蒸発し微細な細孔が形成される過程において、水素結合による一次粒子同士の凝集が進行しやすくなり、結果として微細な細孔が消滅する。
 一方、前記第一乾燥工程における固形分濃度の増加速度が5質量%/h以上であると、水素結合のネットワークが形成されるよりも早く水の蒸発が進行するため一次粒子同士の凝集が抑制され、結果として1nm以上5nm以下の微細な細孔が多数形成されることになる。
 前記構成においては、前記第一乾燥工程の後、前記ウェットケーキの固形分濃度が87質量%超92質量%以下になるまで乾燥する第二乾燥工程を含むことが好ましい。
 前記第二乾燥工程を含むと、水酸化ジルコニウム粉末の最終的な水分量を、固形分濃度87質量%超92質量%以下に調整することができる。
 本発明によれば、高い吸湿性を示し、かつ、人体に対する有害性が低く、安全に取り扱うことが可能な水酸化ジルコニウム粉末を提供することができる。また、当該水酸化ジルコニウム粉末の製造方法を提供することができる。
実施例、比較例の水酸化ジルコニウム粉末の細孔分布である。
 以下、本発明の実施形態について説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。なお、本明細書において、ジルコニアとは一般的なものであり、ハフニアを含めた10質量%以下の不純物金属化合物を含む(ただし、WOを含む場合を除く)ものである。
 [水酸化ジルコニウム粉末]
 本実施形態に係る水酸化ジルコニウム粉末は、BJH法に基づく細孔分布において、1nm以上5nm以下の細孔径領域にピークトップを有する。1nm以上5nm以下の細孔径領域にピークトップを有するため、大気中の水分の吸収が促進される。本発明者らは、現象について、1nm以上5nm以下の微細な細孔が、毛細管現象により大気中の水分を吸収していると推察している。
 前記ピークトップは、1.5nm以上の細孔径領域に存在することが好ましく、2.0nm以上の細孔径領域に存在することがより好ましく、3.0nm以上の細孔径領域に存在することがさらに好ましく、3.2nm以上の細孔径領域に存在することが特に好ましく、3.3nm以上の細孔径領域に存在することが特別に好ましい。前記ピークトップは、4.5nm以下の細孔径領域に存在することが好ましく、4nm以下の細孔径領域に存在することがより好ましい。
 前記水酸化ジルコニウム粉末は、前記1nm以上5nm以下の細孔径領域における細孔容積(以下、Vp1-5ともいう)が0.15cm/g以上である。前記1nm以上5nm以下の細孔径領域における細孔容積(Vp1-5)が0.15cm/g以上であり、1nm以上5nm以下の微細な細孔の割合が大きいため、大気中の水分を多量に吸収することができる。
 前記Vp1-5は、好ましくは0.2cm/g以上であり、より好ましくは0.22cm/g以上、さらに好ましくは0.24cm/g以上、特に好ましくは0.25cm/g以上、特別に好ましくは0.26cm/g以上、格別に好ましくは0.27cm/g以上である。前記Vp1-5は、大きいほど好ましいが、例えば、0.8cm/g以下、0.6cm/g以下、0.4cm/g以下等である。
 このように、前記水酸化ジルコニウム粉末は、1nm以上5nm以下の細孔径領域にピークトップを有し、且つ、前記1nm以上5nm以下の細孔径領域における細孔容積が0.15cm/g以上であるため、大気中の水分を多量に吸収することができる。
 前記水酸化ジルコニウム粉末は、1nm以上50nm以下の細孔径領域における細孔容積(以下、Vp1-50ともいう)に対する1nm以上5nm以下の細孔径領域における細孔容積(Vp1-5)の比(Vp1-5/Vp1-50)が、0.5以上であることが好ましい。
 前記比(Vp1-5/Vp1-50)が0.5以上であり、且つ、前記1nm以上5nm以下の細孔径領域における細孔容積が0.15cm/g以上であると、大気中の水分をより多量に吸収することができる。
 前記比(Vp1-5/Vp1-50)は、より好ましくは0.6以上であり、さらに好ましくは0.65以上であり、特に好ましくは0.7以上である。前記比(Vp1-5/Vp1-50)は、大きいほど好ましいが、例えば、1.0以下、0.9以下等である。
 前記Vp1-50は、好ましくは0.2cm/g以上であり、より好ましくは0.25cm/g以上、さらに好ましくは0.3cm/g以上、特に好ましくは0.32cm/g以上、特別に好ましくは0.34cm/g以上である。前記Vp1-50は、好ましくは1.0cm/g以下であり、より好ましくは0.8cm/g以下、さらに好ましくは0.6cm/g以下である。
 前記水酸化ジルコニウム粉末は、全細孔径領域の細孔容積(以下、Vpallともいう)が0.3cm/g以上であることが好ましく0.4cm/g以上がより好ましい。前記Vpallは、1.2cm/g以下であることが好ましく1.0cm/g以下がより好ましい。
 前記水酸化ジルコニウム粉末は、平均細孔径が3nm以上6nm以下であることが好ましい。平均細孔径が3nm以上6nm以下であると、大気中の水分をより多量に吸収することができる。
 前記平均細孔径は、好ましくは3.3nm以上であり、より好ましくは3.6nm以上、さらに好ましくは3.9nm以上、特に好ましくは4.0nm以上、特別に好ましくは4.04nm以上、格別に好ましくは4.2nm以上である。前記平均細孔径は、好ましくは5.5nm以下であり、より好ましくは5nm以下である。
 前記ピークトップ、前記Vp1-5、前記Vp1-50、前記Vpall、前記平均細孔径は、実施例に記載の方法により得られた値をいう。
 前記水酸化ジルコニウム粉末は、かさ密度が0.10g/cm以上0.25g/cm以下であることが好ましい。かさ密度が0.25g/cm以下であると、粒子間隙を示す100nm超1000nm以下の細孔容積が多いといえる。これにより、粒子同士の凝集が解れやすくなり、例えば、他の材料と混合して使用する際に、高分散させることができる。その結果、種々の用途に使用しやすい。例えば、樹脂材料と混合して吸湿剤として使用する際に、樹脂材料に高分散させやすい。
 前記かさ密度は、より好ましくは0.23g/cm以下であり、さらに好ましくは0.21g/cm以下、特に好ましくは0.19g/cm以下である。前記かさ密度は、小さいほど好ましいが、例えば、0.12g/cm以上、0.14g/cm以上、0.16g/cm以上等である。
 前記かさ密度は、実施例に記載の方法により得られた値をいう。
 前記水酸化ジルコニウム粉末は、比表面積が350m/g以上であることが好ましい。前記比表面積が350m/g以上であると、大気中の水分をさらに多量に吸収することができる。
 前記比表面積は、より好ましくは360m/g以上であり、さらに好ましくは370m/g以上、特に好ましくは380m/g以上である。前記比表面積は、大きいほど好ましいが、例えば、500m/g以下、450m/g以下等である。
 前記比表面積は、実施例に記載の方法により得られた値をいう。
 前記水酸化ジルコニウム粉末は、下記吸水率の測定方法により得られる吸水率が20%以上であることが好ましい。前記吸水率が20%以上であると、充分な吸水機能を有するといえる。
 なお、前記水酸化ジルコニウム粉末は、吸水時に発熱がない。本明細書において、吸水時に発熱がないとは、室温(25℃)において、100gの水に10gの水酸化ジルコニウム粉末を添加した際の温度上昇が1℃以下であることをいう。
<吸水率の測定方法>
 1.水酸化ジルコニウム粉末の重量を計量する。
 2.計量後の水酸化ジルコニウム粉末を温度45℃、湿度80%の雰囲気に2時間曝露する。
 3.下記式(1)により吸水率を求める。
  式(1):
 [吸水率(%)]=[[(曝露後の水酸化ジルコニウム粉末の重量)-(曝露前の水酸化ジルコニウム粉末の重量)]/(曝露前の水酸化ジルコニウム粉末の重量)]×100
 前記吸水率は、より好ましくは23%以上であり、さらに好ましくは25%以上である。前記吸水率は、大きいほど好ましいが、例えば、50%以下、40%以下等である。
 水酸化ジルコニウムは、一般式ZrO(OH)・nHO(n>0)で示される化合物である。また、含水酸化ジルコニウムは、一般式ZrO・nHO(n>0)で示される化合物である。本実施形態に係る水酸化ジルコニウム粉末は、水酸化ジルコニウムの粉末と含水酸化ジルコニウムの粉末との両方を含む。
 前記nは、2以下が好ましく、1.5以下がより好ましい。前記nが2以下であると、湿分が少なく、吸湿性がより高い点で優れる。また、湿分が少ないため、ハンドリング性に優れる。前記nの数は、例えば、後に説明する第二乾燥工程の温度や時間により調整することができる。
 前記水酸化ジルコニウム粉末は、非晶質であることが好ましい。前記水酸化ジルコニウム粉末が非晶質であると、結晶質である場合と比較して、粉末粒子の表面に存在する水酸基の量が多くなる。そのため、当該水酸基に水分が吸着しやすくなる。その結果、前記水酸化ジルコニウム粉末が非晶質であると、吸湿性により優れる。
 水酸化ジルコニウム粉末が結晶質であるか非晶質であるかは、粉末X線回折測定により判別する。水酸化ジルコニウム粉末が結晶質である場合、2θ=28°~31°の範囲に明瞭な回折ピークが確認されるが、非晶質である場合は当該範囲のピークがブロードであり、半値幅より算出される結晶子径が3nm以下である。
 前記水酸化ジルコニウム粉末の用途は特に限定されないが、例えば、単独で、又は、他の材料と混合して、吸湿剤として使用することができる。
 [水酸化ジルコニウム粉末の製造方法]
 以下、水酸化ジルコニウム粉末の製造方法の一例について説明する。ただし、本発明の水酸化ジルコニウム粉末の製造方法は、以下の例示に限定されない。
 本実施形態に係る水酸化ジルコニウム粉末の製造方法は、
 湿式法により作製される水酸化ジルコニウムのウェットケーキを、固形分濃度が60質量%以上87質量%以下になるまで乾燥する第一乾燥工程を含み、
 前記第一乾燥工程における乾燥条件は、固形分濃度の増加速度が5質量%/h以上120質量%/h以下の範囲内となる乾燥条件である。
 <第一乾燥工程>
 本実施形態に係る水酸化ジルコニウム粉末の製造方法においては、まず、湿式法により作製される水酸化ジルコニウムのウェットケーキを、固形分濃度が60質量%以上87質量%以下になるまで乾燥する(第一乾燥工程)。
 前記第一乾燥工程における乾燥条件は、固形分濃度の増加速度が5質量%/h以上120質量%/h以下の範囲内となる乾燥条件とする。
 前記固形分濃度の増加速度は、下記式(2)により求まる値をいう。
  式(2):
 [固形分濃度の増加速度(質量%/h)]=[[第一乾燥後の水酸化ジルコニウム粉末の固形分濃度(質量%)]-[乾燥前の水酸化ジルコニウム粉末の固形分濃度(質量%)]]/[乾燥時間(h)]
 前記第一乾燥工程における乾燥条件として比較的穏やかな条件、すなわち、固形分濃度の増加速度が120質量%/h以下の範囲内となる乾燥条件を採用することにより、ウェットケーキの状態の水酸化ジルコニウムの二次粒子中にある水が蒸発する際、凝集力は小さくなるため、水の存在していた箇所が潰されることなく、孔としてそのまま残ることになる。そのため、1nm以上5nm以下の細孔が多数形成されることになる。
 前記第一乾燥工程における乾燥条件は、乾燥方式や乾燥温度を適宜選択することにより調整することができる。
 前記第一乾燥工程における乾燥温度としては、好ましくは360℃以下であり、より好ましくは350℃以下である。前記乾燥温度を360℃以下とすることにより、固形分濃度の増加速度が120質量%/hを超えないようにすることができる。また、前記乾燥温度を360℃以下とすることにより、得られる水酸化ジルコニウム粉末を非晶質とすることがしやすい。前記乾燥温度が高すぎると、得られる水酸化ジルコニウム粉末が結晶質となりやすい。前記第一乾燥工程における乾燥温度としては、生産性の観点から、好ましくは150℃以上であり、より好ましくは200℃以上である。
 前記乾燥方式としては、例えば、棚式乾燥機を使用する方式、気流式乾燥機を使用する方式等が挙げられる。棚式乾燥機を使用した場合、気流式乾燥機を用いる場合と比較して乾燥速度が遅くなるため、固形分濃度の増加速度が120質量%/hを超えないように乾燥速度を調整しやすい。また、気流式乾燥機を使用した場合、棚式乾燥機を用いる場合と比較して乾燥速度が速くなるため、乾燥温度を低くしても、生産性を高く維持することができる。
 上述したように、前記第一乾燥工程は、湿式法により作製される水酸化ジルコニウムのウェットケーキを、固形分濃度が60質量%以上87質量%以下になるまで乾燥する工程であり、前記第一乾燥工程における乾燥条件は、固形分濃度の増加速度が5質量%/h以上120質量%/h以下の範囲内となる乾燥条件である。前記第一乾燥工程における乾燥条件として、固形分濃度の増加速度が好ましくは10質量%/h以上100質量%/h以下、より好ましくは20質量%/h以上90質量%/h以下、さらに好ましくは30質量%/h以上90質量%/h以下、特に好ましくは40質量%/h以上80質量%/h以下、特別に好ましくは60質量%/h以上75質量%/h以下である。
 1nm以上5nm以下の細孔は、固形分濃度が低い状態の乾燥条件を適切に調整することにより形成することができる。すなわち、1nm以上5nm以下の細孔は、固形分濃度が60質量%以上87質量%以下となるまでの間の乾燥条件を適切に調整することにより好適に形成される。
 前記第一乾燥工程は、前記ウェットケーキの固形分濃度が60質量%以上となるまでの乾燥であることが好ましく、65質量%以上となるまでの乾燥であることがより好ましい。前記第一乾燥工程は、前記ウェットケーキの固形分濃度が87質量%以下となるまでの乾燥であることが好ましく、85質量%以下となるまでの乾燥であることがより好ましい。
 前記水酸化ジルコニウムのウェットケーキを作製する際の出発原料は、特に限定されないが、粒子の凝集形態の制御が容易となることから、出発原料として塩基性硫酸ジルコニウムを用いることが好ましい。前記水酸化ジルコニウムのウェットケーキは、出発原料として塩基性硫酸ジルコニウムを用い、塩基を加えることにより得ることができる。
 前記塩基性硫酸ジルコニウムは、可溶性ジルコニウム塩の水溶液を加水分解することにより得ることができる。
 前記可溶性ジルコニウム塩としては、水に可溶性のものであれば特に限定されず、公知の製法で得られるもの又は市販品を用いることもできる。例えば、オキシ硝酸ジルコニウム等の硝酸塩、塩化ジルコニウム、オキシ塩化ジルコニウム等の塩化物、酢酸ジルコニウム等の酢酸塩等を用いることができる。中でも、オキシ塩化ジルコニウムが好ましい。
 可溶性ジルコニウム塩水溶液の濃度は、用いる可溶性ジルコニウム塩の種類(溶解度)等に応じて適宜設定すれば良いが、水溶液1リットル中に酸化ジルコニウムとして10~200g程度、好ましくは50~100gとすれば良い。
 加水分解剤としては、例えば硫酸等の無機酸、硫酸アンモニウム、硫酸アルミニウム等の無機酸塩等を使用することができる。加水分解剤の添加量は、用いる加水分解剤の種類、上記水溶液の種類等によって適宜変更できるが、一般的には上記水溶液中の可溶性ジルコニウム塩すべてと反応してスラリーを生成するのに十分な量であれば良く、その化学量論量よりも過剰量の加水分解剤を添加しても良い。加水分解剤は、水酸化ジルコニウムの比表面積を大幅に低下させない範囲で残存しても良い。
 前記塩基の種類は、特に制限されず、例えば水酸化ナトリウム、水酸化カリウム、アンモニア、炭酸ナトリウム、炭酸アンモニウム等が使用できる。塩基の添加量は、水酸化物を生成させることができれば特に限定されないが、通常はスラリーpHが9以上、好ましくは12.5以上となるように調整すれば良い。
 <第二乾燥工程>
 前記第一乾燥工程の後、前記ウェットケーキの固形分濃度が87質量%超92質量%以下になるまで乾燥する(第二乾燥工程)ことが好ましい。前記第二乾燥工程を行うことにより、水酸化ジルコニウム粉末の最終的な水分量を、固形分濃度87質量%超92質量%以下に調整することができる。固形分濃度87質量%超92質量%以下に調整することにより、水酸化ジルコニウム粉末に含まれる結晶水の量を減らすことができ、湿分が少なく、吸湿性がより高い水酸化ジルコニウム粉末とすることができる。
 前記第二乾燥工程における乾燥条件は、水酸化ジルコニウム粉末の最終的な水分量を、固形分濃度87質量%超92質量%以下に調整することができる条件であれば、特に限定されない。
 前記第二乾燥工程における乾燥温度としては、好ましくは200℃以下であり、より好ましくは150℃以下である。前記乾燥温度を200℃以下とすることにより、得られる水酸化ジルコニウム粉末を非晶質としやすい。前記乾燥温度が高すぎると、得られる水酸化ジルコニウム粉末が結晶質となりやすい。前記第二乾燥工程における乾燥温度としては、生産性の観点から、好ましくは100℃以上であり、より好ましくは110℃以上である。
 前記乾燥方式としては、例えば、棚式乾燥機を使用する方式、気流式乾燥機を使用する方式等が挙げられる。
 以上、本実施形態に係る水酸化ジルコニウム粉末の製造方法について説明した。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例において得られた水酸化ジルコニウム粉末中には、不可避不純物として酸化ハフニウムを酸化ジルコニウムに対して1.3~2.5質量%含有(下記式(X)にて算出)している。
<式(X)>
 ([酸化ハフニウムの質量]/([酸化ジルコニウムの質量]+[酸化ハフニウムの質量]))×100(%)
 以下の実施例で示される各成分の含有量の最大値、最小値は、他の成分の含有量に関係なく、本発明の好ましい最小値、好ましい最大値と考慮されるべきである。
 また、以下の実施例で示される測定値の最大値、最小値は、各成分の含有量(組成)に関係なく、本発明の好ましい最小値、最大値であると考慮されるべきである。
[水酸化ジルコニウム粉末の作製]
 (実施例1)
 塩基性硫酸ジルコニウム(酸化ジルコニウムとして1kg含有)を純水10kg中に分散し、塩基性硫酸ジルコニウムスラリーとした。該スラリーに、25質量%水酸化ナトリウム水溶液をスラリーのpHが13.5となるまで添加して沈殿物を得た後、生成した沈殿物を固液分離し、水洗して水酸化ジルコニウムのウェットケーキを回収した。該ウェットケーキ中の固形分濃度は31.9質量%であった。
 次に、得られたウェットケーキを棚乾燥機を用いて350℃で0.5時間乾燥し、固形分濃度68.5質量%の水酸化ジルコニウムの粉末を得た。この乾燥は、本発明における第一乾燥工程に相当する。この第一乾燥工程における固形分濃度の増加速度は73.2質量%/hであった。
 次に、棚乾燥機を用いて120℃で恒量となるまで乾燥し、本実施例に係る水酸化ジルコニウム粉末を得た。この乾燥は、本発明における第二乾燥工程に相当する。得られた水酸化ジルコニウム粉末の固形分濃度は、89.1質量%であった。
 また、得られた水酸化ジルコニウム粉末の化学式は、ZrO・0.45HOであり、非晶質であった。
 得られた水酸化ジルコニウム粉末の化学式は、熱重量測定において室温から200℃までの重量減率により特定した。また、得られた水酸化ジルコニウム粉末が非晶質であることは、粉末X線回折測定により確認した。
 (実施例2)
 実施例1と同様の方法で水酸化ジルコニウムのウェットケーキを得た。
 次に、得られたウェットケーキを棚乾燥機を用いて200℃で2時間乾燥し、固形分濃度72.5質量%の水酸化ジルコニウム粉末を得た。この乾燥は、本発明における第一乾燥工程に相当する。この第一乾燥工程における固形分濃度の増加速度は20.3質量%/hであった。
 次に、棚乾燥機を用いて120℃で恒量となるまで乾燥し、本実施例に係る水酸化ジルコニウム粉末を得た。この乾燥は、本発明における第二乾燥工程に相当する。得られた水酸化ジルコニウム粉末の固形分濃度は、89.5質量%であった。
 また、得られた水酸化ジルコニウム粉末の化学式は、ZrO・0.44HOであり、非晶質であった。
 (実施例3)
 実施例1において、塩基を25質量%水酸化ナトリウム水溶液から25質量%アンモニア水溶液に変更したこと以外は実施例1と同様の方法で水酸化ジルコニウムのウェットケーキを得た。該ウェットケーキ中の固形分濃度は29.3質量%であった。次に、得られたウェットケーキを棚乾燥機を用いて250℃で1.2時間乾燥し、固形分濃度73.4質量%の水酸化ジルコニウム粉末を得た。この乾燥は、本発明における第一乾燥工程に相当する。この第一乾燥工程における固形分濃度の増加速度は36.8質量%/hであった。
 次に、棚乾燥機を用いて160℃で恒量となるまで乾燥し、本実施例に係る水酸化ジルコニウム粉末を得た。この乾燥は、本発明における第二乾燥工程に相当する。得られた水酸化ジルコニウム粉末の固形分濃度は、91.4質量%であった。
 また、得られた水酸化ジルコニウム粉末の化学式は、ZrO・0.42HOであり、非晶質であった。
 (実施例4)
 実施例1において、塩基を25質量%水酸化ナトリウム水溶液から25質量%水酸化カリウム水溶液に変更したこと以外は実施例1と同様の方法で水酸化ジルコニウムのウェットケーキを得た。該ウェットケーキ中の固形分濃度は29.8質量%であった。次に、得られたウェットケーキを棚乾燥機を用いて250℃で1.2時間乾燥し、固形分濃度71.5質量%の水酸化ジルコニウム粉末を得た。この乾燥は、本発明における第一乾燥工程に相当する。この第一乾燥工程における固形分濃度の増加速度は34.8質量%/hであった。
 次に、棚乾燥機を用いて140℃で恒量となるまで乾燥し、本実施例に係る水酸化ジルコニウム粉末を得た。この乾燥は、本発明における第二乾燥工程に相当する。得られた水酸化ジルコニウム粉末の固形分濃度は、90.4質量%であった。
 また、得られた水酸化ジルコニウム粉末の化学式は、ZrO・0.43HOであり、非晶質であった。
 (比較例1)
 実施例1と同様の方法で水酸化ジルコニウムのウェットケーキを得た。
 次に、得られたウェットケーキを気流式乾燥機を用いて300℃で0.3時間乾燥し、固形分濃度72.8質量%の水酸化ジルコニウム粉末を得た。この乾燥工程における固形分濃度の増加速度は136.3質量%/hであった。
 次に、棚乾燥機を用いて120℃で恒量となるまで乾燥し、本比較例に係る水酸化ジルコニウム粉末を得た。得られた水酸化ジルコニウム粉末の固形分濃度は、89.0質量%であった。
 また、得られた水酸化ジルコニウム粉末の化学式は、ZrO・0.42HOであり、非晶質であった。
 (比較例2)
 実施例1と同様の方法で水酸化ジルコニウムのウェットケーキを得た。
 次に、得られたウェットケーキを気流式乾燥機を用いて350℃で0.18時間乾燥し、固形分濃度86.6質量%の水酸化ジルコニウム粉末を得た。この乾燥工程における固形分濃度の増加速度は298.4質量%/hであった。
 次に、棚乾燥機を用いて120℃で恒量となるまで乾燥し、本比較例に係る水酸化ジルコニウム粉末を得た。得られた水酸化ジルコニウム粉末の固形分濃度は、89.8質量%であった。
 また、得られた水酸化ジルコニウム粉末の化学式は、ZrO・0.41HOであり、非晶質であった。
[固形分濃度の測定]
 実施例、比較例の水酸化ジルコニウム粉末の重量を計量した。計量後の水酸化ジルコニウム粉末を1000℃で1時間焼成した後、下記式(3)により固形分濃度を求めた。
 式(3):
  [固形分濃度(%)]=[(焼成後の水酸化ジルコニウム粉末の重量)/(焼成前の水酸化ジルコニウム粉末の重量)]×100
[細孔容積の測定]
 実施例、比較例の水酸化ジルコニウム粉末について、測定装置「BELSORP mini II(Microtrac BEL製)」を用い、BJH法にて細孔分布を得た。図1に実施例、比較例の水酸化ジルコニウム粉末の細孔分布を示す。
 得られた細孔分布を用い、log微分細孔容積のピークトップの細孔径、1nm以上5nm以下の細孔径領域における細孔容積(Vp1-5)、1nm以上50nm以下の細孔径領域における細孔容積(Vp1-50)、全細孔径領域の細孔容積(Vpall)、平均細孔径を求めた。また、比(Vp1-5/Vp1-50)を算出した。結果を表1に示す。
[かさ密度の測定]
 実施例、比較例の水酸化ジルコニウム粉末について、JIS K 5101に準じ、容積30mlに充填される水酸化ジルコニウム粉末の重量から、水酸化ジルコニウム粉末のかさ密度を求めた。結果を表1に示す。
[比表面積の測定]
 実施例、比較例の水酸化ジルコニウム粉末の比表面積を、比表面積計(「マックソーブ」マウンテック製)を用いてBET法にて測定した。結果を表1に示す。
[吸水率の測定]
 実施例、比較例の水酸化ジルコニウム粉末の重量を計量した。次に、恒温恒湿機を用い、計量後の水酸化ジルコニウム粉末を温度45℃、湿度80%の雰囲気に2時間曝露した。その後、下記式(1)により吸水率を求めた。結果を表1に示す。
  式(1):
 [吸水率(%)]=[[(曝露後の水酸化ジルコニウム粉末の重量)-(曝露前の水酸化ジルコニウム粉末の重量)]/(曝露前の水酸化ジルコニウム粉末の重量)]×100
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  BJH法に基づく細孔分布において、1nm以上5nm以下の細孔径領域にピークトップを有し、
     前記1nm以上5nm以下の細孔径領域における細孔容積が0.15cm/g以上であることを特徴とする水酸化ジルコニウム粉末。
  2.  前記1nm以上5nm以下の細孔径領域における細孔容積が0.2cm/g以上であることを特徴とする請求項1に記載の水酸化ジルコニウム粉末。
  3.  かさ密度が、0.10g/cm以上0.25g/cm以下であることを特徴とする請求項1又は2に記載の水酸化ジルコニウム粉末。
  4.  比表面積が、350m/g以上であることを特徴とする請求項1~3のいずれか1に記載の水酸化ジルコニウム粉末。
  5.  請求項1~4のいずれか1に記載の水酸化ジルコニウム粉末の製造方法であって、
     湿式法により作製される水酸化ジルコニウムのウェットケーキを、固形分濃度が60質量%以上87質量%以下になるまで乾燥する第一乾燥工程を含み、
     前記第一乾燥工程における乾燥条件は、固形分濃度の増加速度が5質量%/h以上120質量%/h以下の範囲内となる乾燥条件であることを特徴とする水酸化ジルコニウム粉末の製造方法。
  6.  前記第一乾燥工程の後、前記ウェットケーキの固形分濃度が87質量%超92質量%以下になるまで乾燥する第二乾燥工程を含むことを特徴とする請求項5に記載の水酸化ジルコニウム粉末の製造方法。
PCT/JP2022/039663 2021-11-01 2022-10-25 水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法 WO2023074665A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247008310A KR20240045293A (ko) 2021-11-01 2022-10-25 수산화 지르코늄 분말 및 수산화 지르코늄 분말의 제조 방법
CN202280061485.8A CN117940376A (zh) 2021-11-01 2022-10-25 氢氧化锆粉末及氢氧化锆粉末的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-178603 2021-11-01
JP2021178603A JP7203180B1 (ja) 2021-11-01 2021-11-01 水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法

Publications (1)

Publication Number Publication Date
WO2023074665A1 true WO2023074665A1 (ja) 2023-05-04

Family

ID=84887113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039663 WO2023074665A1 (ja) 2021-11-01 2022-10-25 水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法

Country Status (4)

Country Link
JP (1) JP7203180B1 (ja)
KR (1) KR20240045293A (ja)
CN (1) CN117940376A (ja)
WO (1) WO2023074665A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247641A (ja) 1999-03-04 2000-09-12 Daiichi Kigensokagaku Kogyo Co Ltd 水酸化ジルコニウム及びその製造方法
JP2005035860A (ja) 2003-07-18 2005-02-10 Asahi Kasei Corp 多孔質結晶性ジルコニア材料
JP2008081392A (ja) * 2006-08-22 2008-04-10 Daiichi Kigensokagaku Kogyo Co Ltd 多孔質ジルコニア系粉末及びその製造方法
JP2009525250A (ja) 2006-02-03 2009-07-09 マグネシウム エレクトロン リミテッド 水酸化ジルコニウム
JP2009274897A (ja) 2008-05-13 2009-11-26 Hitachi Maxell Ltd 酸化ジルコニウム水和物粒子及びそれを用いた分散体と分散膜
JP2019536720A (ja) * 2015-10-27 2019-12-19 マグネシウム エレクトロン リミテッド 酸性ジルコニウム水酸化物
WO2020195973A1 (ja) * 2019-03-28 2020-10-01 第一稀元素化学工業株式会社 ジルコニア系多孔質体
WO2021020104A1 (ja) * 2019-07-30 2021-02-04 第一稀元素化学工業株式会社 ジルコニア系複合酸化物、及び、ジルコニア系複合酸化物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936514B1 (fr) 2008-09-30 2011-10-28 Saint Gobain Ct Recherches Poudre d'hydrate de zirconium
JP6663146B2 (ja) 2015-08-21 2020-03-11 国立研究開発法人産業技術総合研究所 二酸化炭素吸着性を有する水酸化ジルコニウムメソ多孔体、その製造方法及び該水酸化ジルコニウムメソ多孔体からなる二酸化炭素吸着剤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247641A (ja) 1999-03-04 2000-09-12 Daiichi Kigensokagaku Kogyo Co Ltd 水酸化ジルコニウム及びその製造方法
JP2005035860A (ja) 2003-07-18 2005-02-10 Asahi Kasei Corp 多孔質結晶性ジルコニア材料
JP2009525250A (ja) 2006-02-03 2009-07-09 マグネシウム エレクトロン リミテッド 水酸化ジルコニウム
JP2008081392A (ja) * 2006-08-22 2008-04-10 Daiichi Kigensokagaku Kogyo Co Ltd 多孔質ジルコニア系粉末及びその製造方法
JP2009274897A (ja) 2008-05-13 2009-11-26 Hitachi Maxell Ltd 酸化ジルコニウム水和物粒子及びそれを用いた分散体と分散膜
JP2019536720A (ja) * 2015-10-27 2019-12-19 マグネシウム エレクトロン リミテッド 酸性ジルコニウム水酸化物
WO2020195973A1 (ja) * 2019-03-28 2020-10-01 第一稀元素化学工業株式会社 ジルコニア系多孔質体
WO2021020104A1 (ja) * 2019-07-30 2021-02-04 第一稀元素化学工業株式会社 ジルコニア系複合酸化物、及び、ジルコニア系複合酸化物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANG SEONGON, KA DONGWON, JUNG HYUNSOOK, KIM MIN-KUN, JUNG HEESOO, JIN YOUNGHO: "Zr(OH)4/GO Nanocomposite for the Degradation of Nerve Agent Soman (GD) in High-Humidity Environments", MATERIALS, vol. 13, no. 13, pages 2954, XP093060300, DOI: 10.3390/ma13132954 *

Also Published As

Publication number Publication date
KR20240045293A (ko) 2024-04-05
JP7203180B1 (ja) 2023-01-12
CN117940376A (zh) 2024-04-26
JP2023067405A (ja) 2023-05-16

Similar Documents

Publication Publication Date Title
JP5172824B2 (ja) 水酸化マグネシウム粉末及びその製造方法
CN108463513B (zh) 经表面反应的碳酸钙的处理
JP5063252B2 (ja) 多孔質ジルコニア系粉末及びその製造方法
JP4917098B2 (ja) 炭酸セリウム粉末及び製法、これから製造された酸化セリウム粉末及び製法、これを含むcmpスラリー
MX2007003113A (es) Metodo para producir una bohemita de estructura cristalina fino y uso de la bohemita como ignifugo en materiales sinteticos.
EP2298440B1 (en) Oxygen absorber
JP6194618B2 (ja) 四三酸化マンガン及びその製造方法
JP4338470B2 (ja) ハイドロタルサイト粒子及びその製造方法
US20210354995A1 (en) Zinc oxide powder for preparing zinc oxide sintered body with high strength and low thermal conductivity
KR20150117666A (ko) 높은 비표면적을 갖는 봉상의 수산화 마그네슘 입자와 봉상의 산화 마그네슘 입자 및 이들의 제조방법
JP4765051B2 (ja) スズドープ酸化インジウム粉
JP5125258B2 (ja) 球状酸化マグネシウム粒子とその製造方法
WO2023074665A1 (ja) 水酸化ジルコニウム粉末、及び、水酸化ジルコニウム粉末の製造方法
CN1951868A (zh) 钛酸钡微颗粒
JP2007137759A (ja) チタン酸バリウム微粒子粉末及び分散体
KR20090004740A (ko) 산화지르코늄 수화물 입자 및 그 제조방법
WO2016013567A1 (ja) α-アルミン酸リチウムの製造方法
KR102162974B1 (ko) 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법
KR101702123B1 (ko) 졸-겔을 통한 이산화탄소 포집용 흡착제의 제조방법
WO2019235525A1 (ja) 酸化亜鉛焼結体作製用酸化亜鉛粉末および酸化亜鉛焼結体、ならびに、これらの製造方法
WO2015037312A1 (ja) 水素添加用触媒粒子の製造方法及び水素添加用触媒粒子
JP3684297B2 (ja) 紡錘形塩基性炭酸アルミニウム塩粒子及びその製造方法、紡錘形非晶質アルミナ粒子、紡錘形γ−アルミナ粒子及び用途
JP2890021B2 (ja) 易焼結性の酸化アルミニウム粉末の製造方法
JP4177095B2 (ja) マグネシウムアルミニウム水酸化物及びその製造方法
JP2013141656A (ja) 吸湿剤、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061485.8

Country of ref document: CN