WO2015037312A1 - 水素添加用触媒粒子の製造方法及び水素添加用触媒粒子 - Google Patents

水素添加用触媒粒子の製造方法及び水素添加用触媒粒子 Download PDF

Info

Publication number
WO2015037312A1
WO2015037312A1 PCT/JP2014/068000 JP2014068000W WO2015037312A1 WO 2015037312 A1 WO2015037312 A1 WO 2015037312A1 JP 2014068000 W JP2014068000 W JP 2014068000W WO 2015037312 A1 WO2015037312 A1 WO 2015037312A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst particles
hydrogenation
slurry
aqueous solution
producing
Prior art date
Application number
PCT/JP2014/068000
Other languages
English (en)
French (fr)
Inventor
啓一 田畑
潤 内藤
彰夫 中島
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Publication of WO2015037312A1 publication Critical patent/WO2015037312A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing

Definitions

  • the present invention relates to a method for producing hydrogenation catalyst particles and hydrogenation catalyst particles.
  • the hydrogenation catalyst generally refers to a catalyst used in a hydrogenation reaction for adding hydrogen to a compound.
  • a copper oxide catalyst containing copper oxide as a main component is known.
  • the hydrogenation catalyst is added to the reaction system. For this reason, it is necessary to remove the hydrogenation catalyst from the product by filtration or the like after completion of the reaction.
  • the hydrogenation catalyst is composed of catalyst particles having various particle sizes. If catalyst particles having a particle diameter that cannot be removed by filtration are contained, the catalyst particles cannot be sufficiently removed and remain as impurities in the produced alcohol or the like. It is desirable that such impurities do not exist. Even when filtration separation is possible, if there are many fine particles, clogging occurs and the filtration efficiency deteriorates. Therefore, there has been a demand for a hydrogenation catalyst that contains as little catalyst particles that cannot be removed or cause clogging during filtration.
  • the average particle diameter of the catalyst particles is increased, the abundance ratio of catalyst particles having a particle diameter that cannot be removed by filtration decreases. In addition, an improvement in filtration efficiency can be expected.
  • the specific surface area of the catalyst particles decreases. When the specific surface area of the catalyst particles is reduced, the chance of contact between the catalyst particles and the reaction raw material is reduced, so that the catalyst activity is reduced. Higher catalyst activity is desirable. Therefore, there has been a demand for catalyst particles having a specific surface area as large as possible. In summary, there has been a demand for a hydrogenation catalyst that includes catalyst particles that have as few catalyst particles as possible and cannot be removed or cause clogging during filtration and that have as large a specific surface area as possible.
  • Patent Literature 1 and Patent Literature 2 describe a method for producing a copper-based oxide catalyst.
  • a metal salt aqueous solution in which two or more metal salts containing a copper salt are dissolved and an aqueous solution containing a basic substance are mixed to precipitate a metal hydroxide, A step of aging at a temperature for a predetermined time and a step of drying and baking the precipitate after aging are included, and a copper-based oxide catalyst is produced through these steps.
  • a highly uniform catalyst can be obtained by coprecipitation of a plurality of metal ions.
  • the object of the present invention is to solve the above-mentioned problems, and there are few catalyst particles of a size that cannot be removed or cause clogging during filtration, and a catalyst for hydrogenation having a sufficiently large specific surface area. It is providing the manufacturing method of particle
  • the inventors have intensively studied.
  • the catalyst particles can be produced by reacting the raw water-soluble copper compound and the basic aqueous solution while maintaining the pH at 9 to 14 during the production of the catalyst particles.
  • the present inventors have found that the specific surface area becomes larger and completed the present invention.
  • the first aspect of the present invention is a method for producing hydrogenation catalyst particles containing copper oxide, comprising an acidic aqueous solution A containing a water-soluble copper compound and a basic aqueous solution B in an aqueous medium.
  • the first slurry containing the catalyst precursor by reacting while maintaining the pH at 9 to 14, the step of aging the first slurry, and the catalyst precursor from the first slurry A step of separating the solid content, a step of suspending the separated catalyst precursor solid content in an aqueous medium to prepare a second slurry, and spray drying the second slurry to obtain a substantially spherical powder.
  • the present invention relates to a production method including a step of obtaining and a step of firing the substantially spherical powder.
  • the acidic aqueous solution A further contains at least one water-soluble metal compound selected from zirconium, zinc, aluminum, titanium, and iron.
  • the aging step is preferably performed at 30 to 100 ° C.
  • the spray drying is preferably performed by using a centrifugal sprayer, the spray drying conditions by the centrifugal sprayer are set to a disk rotational speed of 5000 to 25000 rpm, and the outlet temperature is set to 50 to It is set to 150 ° C.
  • the calcination is preferably performed at a calcination temperature of 250 to 550 ° C. for 1 to 10 hours.
  • a second aspect of the present invention is a substantially spherical hydrogenation catalyst particle containing copper oxide, wherein in the particle size distribution of the hydrogenation catalyst particle, the proportion of particles having a particle size of 10 to 100 ⁇ m is 95 to 95% of the total.
  • the present invention relates to catalyst particles for hydrogenation, which account for 100%, the proportion of particles having a particle diameter of less than 10 ⁇ m is less than 5% of the total, and the specific surface area is 120 to 200 m 2 / g.
  • the hydrogenation catalyst particles of the present invention preferably further contain at least one component selected from zirconium, zinc, aluminum, titanium and iron.
  • the hydrogenation catalyst particles of the present invention are preferably obtained by the method for producing hydrogenation catalyst particles of the first aspect of the present invention.
  • a substantially spherical powder is obtained by spray drying the second slurry.
  • the shape of the resulting hydrogenation catalyst particles can be made substantially spherical, and the particle size distribution can be sharpened. That is, the proportion of hydrogenation catalyst particles having a particle size that cannot be removed by filtration can be reduced.
  • an acidic aqueous solution A containing a water-soluble copper compound and a basic aqueous solution B are reacted while maintaining the pH at 9 to 14, thereby producing a catalyst precursor.
  • the production of the catalyst precursor takes precedence over the particle growth.
  • FIGS. 1A and 1B are enlarged photographs of a powder obtained by spray drying the second slurry in the method for producing hydrogenation catalyst particles of the present invention, using a scanning electron microscope (SEM). is there.
  • 2 is a graph showing the particle size distribution of the hydrogenation catalyst particles of Example 1 of the present invention and the particle size distribution of the hydrogenation catalyst particles of Comparative Example 1.
  • FIG. 3 is a diagram showing the relationship between the pH during mixing of the acidic aqueous solution A and the basic aqueous solution B and the specific surface area of the hydrogenation catalyst particles in the method for producing the hydrogenation catalyst particles.
  • the catalyst precursor is prepared by reacting an acidic aqueous solution A containing a water-soluble copper compound with a basic aqueous solution B while maintaining the pH at 9 to 14 in an aqueous medium.
  • a first slurry containing the body is produced.
  • the first slurry is a precipitate generated by the neutralization reaction and a liquid phase of the reaction solution.
  • an organic solvent such as methanol, ethanol, propanol, ethylene glycol, diethylene glycol, or acetone may be added to the aqueous medium for the purpose of improving dispersibility.
  • the addition time of each solution is not particularly limited.
  • the addition time of each solution is 1 to 8 hours.
  • the mixing of the acidic aqueous solution A and the basic aqueous solution B is not particularly limited as long as the pH in the mixed solution is maintained at 9 to 14, but may be in the range of 10 to 14. A range of 12 to 14 is more preferable.
  • the specific surface area of the catalyst precursor can be adjusted by adjusting the pH in the solution at the time of mixing.
  • the acidic aqueous solution A and the above-described aqueous solution A are mixed so that the pH variation during mixing is within the range of ⁇ 0.5 to +0.5 of the set value. It is preferable to control the addition of the basic aqueous solution B.
  • the concentration in terms of oxide of the water-soluble copper compound contained in the acidic aqueous solution A is not particularly limited, but is preferably 10 to 1000 g / L, and more preferably 10 to 100 g / L.
  • the concentration in terms of oxide of the water-soluble copper compound contained in the acidic aqueous solution A is less than 10 g / L, the basic aqueous solution B can be uniformly mixed, but the amount of precipitate generated is small Become. For this reason, it becomes impossible to efficiently produce catalyst particles for hydrogenation. If the concentration of the water-soluble copper compound contained in the acidic aqueous solution A in terms of oxide is higher than 1000 g / L, the catalytic activity of the hydrogenation catalyst particles obtained through the subsequent steps tends to be lowered.
  • the acidic aqueous solution A desirably contains at least one water-soluble metal compound selected from zirconium, zinc, aluminum, titanium, and iron in addition to the water-soluble copper compound. Among these, a water-soluble zirconium compound is preferable.
  • the acidic aqueous solution A contains a water-soluble metal compound other than the water-soluble copper compound
  • the ratio of copper oxide is lower than the above ratio, the catalytic activity decreases.
  • the ratio of copper oxide is higher than the above ratio, the metal easily aggregates due to heat, and the durability of the catalyst is lowered.
  • the substance contained in the basic aqueous solution B is not particularly limited, but alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, sodium hydrogen carbonate and the like.
  • alkali metal hydrogen carbonates such as potassium hydrogen carbonate, amine compounds such as ammonia, methylamine, trimethylamine and alkanolamine, ammonium carbonate, ammonium hydrogencarbonate and the like.
  • an alkali metal hydroxide having excellent reactivity is preferable, and sodium hydroxide is more preferable.
  • the concentration of the substance contained in the basic aqueous solution B is not particularly limited, but is preferably 1 to 400 g / L, and more preferably 1 to 100 g / L. Further, for the purpose of preventing aggregation of the catalyst particles and controlling the particle diameter, 1 to 100 g of sodium metasilicate or sodium orthosilicate may be added to 100 g of the catalyst precursor.
  • the temperature at which the acidic aqueous solution A and the basic aqueous solution B are mixed is not particularly limited, but is preferably 30 ° C to 100 ° C, more preferably 50 ° C to 100 ° C, and more preferably 80 ° C to 100 ° C. More preferably, the temperature is C.
  • the copper ions contained in the acidic aqueous solution A and the hydroxide ions contained in the basic aqueous solution B react to form copper (II) hydroxide and precipitate.
  • Copper hydroxide (II) becomes copper oxide (II) by heat.
  • the higher the temperature in this mixing the faster the production of copper (II) oxide.
  • the proportion of copper hydroxide (II) increases. That is, when the temperature in mixing is in the above range, the ratio of copper (II) oxide contained in the precipitate is increased.
  • a first slurry is produced by mixing the acidic aqueous solution A and the basic aqueous solution B.
  • the first slurry is not particularly limited, but preferably contains a precipitate having a concentration of 5 to 70 g / L in terms of oxide of the metal component contained in the acidic aqueous solution A. If the first slurry contains a precipitate in the above range, the first slurry can be suitably aged as described later. The amount of the precipitate contained in the first slurry can be controlled by adjusting the concentrations of the acidic aqueous solution A and the basic aqueous solution B.
  • the first slurry is aged. Aging is a process of reacting unreacted raw materials contained in the first slurry. If the aging is insufficient, the remaining amount of unreacted raw material increases, and the catalytic activity of the hydrogenation catalyst particles obtained through the subsequent steps tends to decrease. By suitably controlling the aging of the first slurry, the catalytic activity of the hydrogenation catalyst particles obtained through the subsequent steps can be improved.
  • the first slurry preferably contains a precipitate having a concentration of 5 to 70 g / L in terms of the oxide of the metal contained in the acidic aqueous solution A.
  • a precipitate having a concentration of 5 to 70 g / L in terms of the oxide of the metal contained in the acidic aqueous solution A.
  • the content of the precipitate is a concentration of less than 5 g / L in terms of oxide, production efficiency is deteriorated and it is not economical.
  • the content of the precipitate is more than 70 g / L in terms of oxide, the viscosity of the slurry becomes high and it becomes difficult to stir uniformly, so the catalyst for hydrogenation obtained through the subsequent steps The catalytic activity of the particles tends to decrease.
  • the method for producing hydrogenation catalyst particles of the present invention is not particularly limited, but the aging is preferably performed at 30 to 100 ° C., more preferably at 80 to 100 ° C.
  • the aging temperature is lower than 30 ° C.
  • the proportion of copper hydroxide (II) contained in the precipitate after aging increases.
  • the aging temperature is higher than 100 ° C., the water evaporates, so that the first slurry cannot be maintained at an appropriate concentration.
  • the method for producing hydrogenation catalyst particles of the present invention is not particularly limited, but the aging is preferably performed for 30 to 120 minutes, more preferably for 30 to 60 minutes.
  • the aging time is shorter than 30 minutes, the remaining amount of unreacted raw material contained in the liquid content of the first slurry increases. Therefore, it becomes impossible to produce the hydrogenation catalyst particles efficiently.
  • the aging time is longer than 120 minutes, the specific surface area of the hydrogenation catalyst particles obtained through the subsequent steps becomes small. As a result, the catalytic activity of the hydrogenation catalyst particles tends to decrease. In addition, the production efficiency deteriorates and it is not economical.
  • the catalyst precursor solid content is separated from the first slurry.
  • the liquid content of the first slurry after aging contains a water-soluble substance derived from the acidic aqueous solution A and the basic aqueous solution B that has not been precipitated by the above-described step. If the hydrogenation catalyst particles are produced with such a water-soluble substance contained, the catalytic activity is lowered. In particular, it is known that the S component contained when a metal sulfate salt is used reduces the catalytic activity. Furthermore, the specific surface area tends to decrease. Therefore, it is important to remove these water-soluble substances in order to improve the catalytic activity.
  • the solid content of the catalyst precursor is separated from the first slurry after aging. Thereby, the said water-soluble substance can be prevented from being contained in a catalyst precursor. Whether or not the above substances are removed can be confirmed by measuring the conductivity of the filtrate.
  • the conductivity of the filtrate is preferably 30 mS / m or less.
  • the method for separating the catalyst precursor solid content is not particularly limited, and an apparatus used for normal catalyst production can be used. For example, when removing suction filtration, filter press, and moisture, cakeless filtration (dynamic filtration) having a scavenging mechanism that prevents the filter cake from becoming thicker as much as possible can be employed. Further, rotary cylindrical cakeless filtration, multi-chamber cylindrical vacuum filtration, centrifugal slurry filtration, or the like may be employed.
  • the separated catalyst precursor solid content is suspended in an aqueous medium to prepare a second slurry.
  • a 2nd slurry can be used suitably for the spray drying performed at a next process.
  • the second slurry is not particularly limited, but the catalyst precursor solid content is preferably 50 to 300 g / L in terms of oxide, more preferably 75 to 250 g / L, and 75 g to 200 g. More preferably, it is / L.
  • a substantially spherical powder is obtained by spray drying the second slurry.
  • Spray drying is a method in which a slurry is sprayed and dried by blowing hot air on the sprayed slurry.
  • the droplets become substantially spherical due to surface tension.
  • the resulting powder has a substantially spherical shape.
  • the size of the droplet is proportional to the size of the obtained powder. The droplet size can be adjusted according to the spraying conditions. In particular, when spraying the slurry, if the spraying conditions are constant, the sprayed droplets have a certain size. Further, since the droplets are dried quickly, the particle size distribution of the obtained powder becomes sharp, and a powder having a desired particle size can be obtained.
  • the method for spray drying is not particularly limited, and examples thereof include centrifugal spray drying using a centrifugal sprayer and pressurized spraying using a pressure nozzle. Among these, a method using a centrifugal sprayer is preferable.
  • the conditions for spray drying with a centrifugal sprayer are not particularly limited, but the disk rotation speed is preferably 5000 to 25000 rpm, more preferably 12000 to 18000 rpm, and even more preferably 14000 to 15000 rpm.
  • the outlet temperature is preferably 50 to 150 ° C., more preferably 80 to 120 ° C., and further preferably 90 to 100 ° C.
  • the proportion of particles having a particle size of 10 to 100 ⁇ m accounts for 95 to 100% of the total, and the particle size is 10 ⁇ m.
  • the proportion of less than particles can be less than 5% of the total.
  • a dispersant may be added to the second slurry.
  • the dispersant include, but are not limited to, polycarboxylic acids and salts thereof, preferably polymaleic acid and salts thereof, polyacrylic acid and salts thereof, substituted acrylic acid polymers, acrylic copolymers, sodium salts of acrylic copolymers, and / or Or an ammonium salt.
  • Representative examples of dispersants derived from acrylic acid include polyacrylic acid and its sodium salt or ammonium salt, and acrylic acid and monomers such as 2-acrylamide and 2-methylpropanesulfonic acid sulfonic acid derivatives. These copolymers are included.
  • a comonomer copolymerizable with acrylic acid or substituted acrylic acid can contain a carboxyl group.
  • dispersant examples include Dispex A-40 (Ciba Specialty Chemicals, Inc.).
  • Other dispersants such as other types of acrylic dispersants, may be used in forming the compositions of the present invention.
  • the dispersant is preferably added in an amount of 0.1 to 2.0% by weight based on the weight of the solid content of the catalyst precursor contained in the second slurry. When the dispersant is added to the second slurry, the second slurry is less likely to agglomerate, so that it can be suitably sprayed.
  • the substantially spherical powder is calcined.
  • Firing means heating the powder to convert the metal component contained in the powder into an oxide.
  • Catalytic activity can be obtained by firing.
  • Firing is not particularly limited, but is preferably performed at a firing temperature of 250 to 550 ° C. and a firing time of 1 to 10 hours, more preferably at a firing temperature of 300 to 500 ° C. and a firing time of 3 to 5 hours. preferable.
  • the firing atmosphere is not particularly limited, and may be performed in an atmosphere of air, carbon dioxide, nitrogen, hydrogen, argon, or the like.
  • the hydrogenation catalyst particles of the present invention are substantially spherical hydrogenation catalyst particles containing copper oxide.
  • the ratio of particles having a particle size of 10 to 100 ⁇ m is 95% of the total.
  • the proportion of particles having a particle diameter of less than 10 ⁇ m is less than 5%, and the specific surface area is 120 to 200 m 2 / g.
  • the proportion of the hydrogenation catalyst particles having a particle diameter of less than 10 ⁇ m is 5% or more of the total hydrogenation catalyst particles, it becomes difficult to sufficiently remove the hydrogenation catalyst particles from the reaction system in which the catalyst is used. Therefore, a lot of impurities are contained in the product obtained by the catalytic reaction. This is not preferred from the standpoint of product purity. Moreover, the filtration efficiency also deteriorates.
  • the particle diameter of the hydrogenation catalyst particles exceeds 100 ⁇ m, the space between the hydrogenation catalyst particles increases. Therefore, it becomes bulky when storing the hydrogenation catalyst particles.
  • the specific surface area becomes smaller in inverse proportion to the size of the particle diameter, when the particle diameter of the hydrogenation catalyst particles exceeds 100 ⁇ m, the catalytic activity tends to decrease.
  • the particle diameter and particle size distribution of the hydrogenation catalyst particles can be measured by a conventionally known laser diffraction / scattering method.
  • the catalytic activity is proportional to the specific surface area of the hydrogenation catalyst particles. That is, the larger the specific surface area, the higher the catalytic activity.
  • the specific surface area of the hydrogenation catalyst particles of the present invention is 120 to 200 m 2 / g.
  • the hydrogenation catalyst particles of the present invention having such a large specific surface area have a sufficiently high catalytic activity.
  • the specific surface area refers to a value measured by a nitrogen adsorption BET one-point method.
  • the hydrogenation catalyst particles of the present invention preferably further contain at least one component selected from zirconium, zinc, aluminum, titanium, and iron. By including these components, the catalytic activity can be improved. Among these components, it is preferable that zirconium is contained.
  • the catalyst particles for hydrogenation of the present invention may be used as they are or after being subjected to a reduction treatment. By performing the reduction treatment, the catalytic activity is more strongly expressed.
  • Example 1 The hydrogenation catalyst particles according to Example 1 were obtained by performing the following operations.
  • the acidic aqueous solution A and the basic aqueous solution B prepared in the above process were simultaneously added to the reaction tank at a flow rate of 10 mL / min and mixed.
  • the pH during mixing was 12.5 to 13.0.
  • the liquid temperature during mixing was maintained at 80 ° C.
  • the solution in which these solutions were mixed became the first slurry, and the pH was 12.9.
  • the first slurry contains a catalyst precursor which is a precipitate such as copper hydroxide generated by the reaction between the acidic aqueous solution A and the basic aqueous solution B.
  • FIGS. 1A and 1B are enlarged photographs of a powder obtained by spray drying the second slurry in the method for producing hydrogenation catalyst particles of the present invention, using a scanning electron microscope (SEM). is there.
  • FIG. 1A is an enlarged photograph with an observation magnification of 200 times
  • FIG. 1B is an enlarged photograph with an observation magnification of 2000 times.
  • the powder obtained by spray drying was substantially spherical.
  • the powder obtained in the above process was placed in a box-type firing furnace, fired at a firing temperature of 450 ° C., and fired for 5 hours.
  • the fired particles obtained through the above steps are catalyst particles for hydrogenation according to Example 1.
  • the particle size distribution of the hydrogenation catalyst particles of Example 1 is shown in FIG.
  • the particle size and particle size distribution were determined by using a laser diffraction / scattering particle size distribution measuring device (product name: LA-950-V2, manufactured by HORIBA), and the transmittance of the dispersion liquid in a sample bath in which pure water was circulated. Measurement was performed by adding a sample so as to be 85 to 90%.
  • the measurement conditions were a sample refractive index of 2.71, a dispersion medium refractive index of 1.333, and a measurement wavelength of LD655 mm.
  • the specific surface area was measured using an automatic specific surface area measuring device (product name: GEMINI VII2390, manufactured by Micromeritics) in accordance with the provisions of JIS Z 8830.
  • the sample was heat-treated at 200 ° C. for 60 minutes in a nitrogen atmosphere. .
  • Example 2 The composition of the acidic aqueous solution A was changed to 87 g of copper sulfate pentahydrate, 57 g of zirconium oxychloride octahydrate, 1.2 g of sulfuric acid and the total amount to 450 mL, and the composition of the basic aqueous solution B was changed to 43.4 g of sodium hydroxide. Then, hydrogenation catalyst particles according to Example 2 were obtained in the same manner as in Example 1 except that 9 g of sodium metasilicate and the total amount were changed to 450 mL. In Example 2, the pH during mixing of the acidic aqueous solution A and the basic aqueous solution B was 9.9 to 10.2, and the pH of the first slurry was 10.0. Table 1 shows the specific surface area of the hydrogenation catalyst particles of Example 2.
  • Comparative Example 1 A hydrogenation catalyst particle according to Comparative Example 1 was obtained in the same manner as in Example 1 except that a box dryer was used instead of spray drying, the drying temperature was 120 ° C., and drying was performed for 16 hours.
  • the particle size distribution of the hydrogenation catalyst particle medium of Comparative Example 1 is shown in FIG.
  • Comparative Example 2 The composition of the acidic aqueous solution A was changed to 87 g of copper sulfate pentahydrate, 57 g of zirconium oxychloride octahydrate, 1.2 g of sulfuric acid and the total amount to 450 mL, and the composition of the basic aqueous solution B was changed to 42.3 g of sodium hydroxide.
  • the catalyst particles for hydrogenation according to Comparative Example 2 were obtained in the same manner as in Example 1 except that 9 g of sodium metasilicate and the total amount were changed to 450 mL.
  • Comparative Example 2 the pH during mixing of the acidic aqueous solution A and the basic aqueous solution B was 8.4 to 8.7, and the pH of the first slurry was 8.5.
  • Table 1 shows the specific surface area of the hydrogenation catalyst particles of Comparative Example 2.
  • Comparative Example 3 the pH when the acidic aqueous solution A and the basic aqueous solution B were mixed was 7.9 to 8.1, and the pH of the first slurry was 8.0.
  • Table 1 shows the specific surface area of the hydrogenation catalyst particles of Comparative Example 3.
  • Example 2 is a graph showing the particle size distribution of the hydrogenation catalyst particles of Example 1 of the present invention and the particle size distribution of the hydrogenation catalyst particles of Comparative Example 1.
  • FIG. 2 the particle size distribution of the hydrogenation catalyst particles of Example 1 is sharp.
  • the particle size distribution of the hydrogenation catalyst particles of Comparative Example 1 is broad.
  • Example 1 the ratio of particles having a particle diameter of less than 10 ⁇ m was less than 1%, and such particles were hardly present.
  • Comparative Example 1 the ratio of particles having a particle diameter of less than 10 ⁇ m was 11%, and many such particles were present.
  • FIG. 3 is a diagram showing the relationship between the pH during mixing of the acidic aqueous solution A and the basic aqueous solution B and the specific surface area of the hydrogenation catalyst particles in the method for producing the hydrogenation catalyst particles.
  • the specific surface area of the hydrogenation catalyst particles correlates with the pH at the time of mixing the acidic aqueous solution A and the basic aqueous solution B, and the specific surface area of the hydrogenation catalyst particles increases as the pH increases. You can see it grows.
  • the ratio of the catalyst particles for hydrogenation in Example 1 in which the pH of the first slurry produced by mixing the acidic aqueous solution A and the basic aqueous solution B is 12.9 and in Example 2 in which the pH is 10.0.
  • the surface area was larger than the specific surface area of the hydrogenation catalyst particles of each comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本発明の目的は、濾過の際に、除去できない又は目詰まりを引き起こす大きさの触媒粒子がほとんどなく、比表面積が充分大きい水素添加用触媒粒子の製造方法、及び、水素添加用触媒粒子を提供することである。 本発明の水素添加用触媒粒子の製造方法は、酸化銅を含有する水素添加用触媒粒子の製造方法であって、水性媒体中において、水溶性銅化合物を含有する酸性水溶液Aと、塩基性水溶液Bを、pHを9~14に保ちながら反応させることにより、触媒前駆体を含有する第1のスラリーを生成する工程と、上記第1のスラリーを熟成する工程と、上記第1のスラリーから触媒前駆体固形分を分離する工程と、分離した上記触媒前駆体固形分を水性媒体中に懸濁し第2のスラリーを調製する工程と、上記第2のスラリーを噴霧乾燥することにより略球状の粉体を得る工程と、上記略球状の粉体を焼成する工程とを有する。

Description

水素添加用触媒粒子の製造方法及び水素添加用触媒粒子
本発明は、水素添加用触媒粒子の製造方法及び水素添加用触媒粒子に関する。
カルボン酸や、エステルを水素化してアルコール類を製造する方法については数多くの方法が知られている。そのような水素化反応には、水素添加用触媒を用いる方法がある。水素添加用触媒とは、一般的に水素を化合物に付加する水素化反応に用いられる触媒をいう。このような、水素添加用触媒としては、酸化銅を主成分として含む銅系酸化物触媒が知られている。
このような水素添加用触媒を用いてアルコール等を製造する方法では、水素添加用触媒を反応系に加えることになる。そのため、反応終了後に生成物から水素添加用触媒を濾過等により除去することが必要となる。通常、水素添加用触媒は、さまざまな粒子径を持つ触媒粒子からなる。濾過により除去できない粒子径を持つ触媒粒子が含まれていると、その触媒粒子は充分に除去できず、製造されたアルコール等に夾雑物として残存することになる。このような夾雑物は存在しない方が望ましい。また、濾過分離が可能な場合でも、微粒子が多く存在していると、目詰まりを起こし、濾過効率が悪くなる。そのため、濾過の際に、除去できない又は目詰まりを引き起こす触媒粒子ができるだけ含まれていない水素添加用触媒が求められていた。
また、触媒粒子の平均粒子径を大きくすれば、濾過で除去できない粒子径を持つ触媒粒子の存在比率は減少する。また、濾過効率の向上も期待できる。しかし、触媒粒子の平均粒子径が大きくなると、触媒粒子の比表面積は小さくなる。触媒粒子の比表面積が小さくなると、触媒粒子と反応原料とが接触する機会が減少するので触媒活性は小さくなる。触媒活性は高い方が望ましい。そのため、比表面積ができるだけ大きい触媒粒子が求められていた。
以上をまとめると、濾過の際に、除去できない又は目詰まりを引き起こす触媒粒子ができるだけ少なく、かつ、比表面積ができるだけ大きい触媒粒子を含む水素添加用触媒が求められていた。
特許文献1及び特許文献2には、銅系酸化物触媒を製造する方法が記載されている。
これら文献の方法には、銅塩を含む2種以上の金属塩が溶解した金属塩水溶液と、塩基性物質を含む水溶液とを混合し金属水酸化物を沈殿させる工程、該沈殿物を所定の温度で所定の時間熟成させる工程、熟成後の沈殿物を乾燥、焼成する工程が含まれており、これら工程を経て銅系酸化物触媒が製造される。このように、複数の金属イオンを共沈させることで、均一性の高い触媒を得ることができると記載されている。また、金属塩の種類及び比率を制御することにより、触媒活性が良好で、耐久性が顕著にすぐれた再現性のよい銅系酸化物触媒を製造することができると記載されている。
しかし、これらの製造方法では、熟成後の沈殿物を乾燥させる際、得られる触媒粒子の粒子径及び形状を制御するための操作を行っていないので、製造された触媒粒子の形状が一定とならず、粒度分布がブロードとなる。そのため、濾過の際に、除去できない又は目詰まりを引き起こす触媒粒子が比較的多い銅系酸化物触媒が製造される。また、比表面積も充分に大きいとはいえなかった。そのため、触媒粒子の粒子径及び比表面積の制御には改善の余地があった。
特開2012-120979号公報 特開2010-194421号公報
本発明の目的は、上記の問題を解決するためになされたものであり、濾過の際に、除去できない又は目詰まりを引き起こす大きさの触媒粒子がほとんどなく、比表面積が充分大きい水素添加用触媒粒子の製造方法、及び、水素添加用触媒粒子を提供することである。
上記課題を解決する為に、発明者らは鋭意検討を重ねた結果、触媒粒子製造時に原料の水溶性銅化合物と塩基性水溶液を、pHを9~14に保ちながら反応させることで、触媒粒子の比表面積が大きくなることを見いだし本発明を完成させた。
すなわち、本発明の第1の態様は、酸化銅を含有する水素添加用触媒粒子の製造方法であって、水性媒体中において、水溶性銅化合物を含有する酸性水溶液Aと、塩基性水溶液Bを、pHを9~14に保ちながら反応させることにより、触媒前駆体を含有する第1のスラリーを生成する工程と、上記第1のスラリーを熟成する工程と、上記第1のスラリーから触媒前駆体固形分を分離する工程と、分離した上記触媒前駆体固形分を水性媒体中に懸濁し第2のスラリーを調製する工程と、上記第2のスラリーを噴霧乾燥することにより略球状の粉体を得る工程と、上記略球状の粉体を焼成する工程とを有する製造方法に関する。
上記水素添加用触媒粒子の製造方法は、好ましくは上記酸性水溶液Aが、さらにジルコニウム、亜鉛、アルミニウム、チタン、鉄から選ばれる少なくとも一つの水溶性金属化合物を含有するものである。
上記水素添加用触媒粒子の製造方法は、好ましくは上記水溶性銅化合物と、上記水溶性金属化合物との重量比が、各金属の酸化物換算で、酸化銅:金属酸化物=10:85~85:10であるものである。
上記水素添加用触媒粒子の製造方法は、好ましくは上記熟成する工程を、30~100℃で行うものである。
上記水素添加用触媒粒子の製造方法は、好ましくは上記噴霧乾燥を遠心噴霧機を用いることにより行い、上記遠心噴霧機による噴霧乾燥の条件を、ディスク回転数5000~25000rpmとし、出口温度を50~150℃とするものである。
上記水素添加用触媒粒子の製造方法は、好ましくは上記焼成を、焼成温度250~550℃とし、1~10時間行うものである。
本発明の第2の態様は、酸化銅を含む略球状の水素添加用触媒粒子であって、上記水素添加用触媒粒子の粒度分布において、粒子径10~100μmの粒子の割合が全体の95~100%を占め、粒子径10μm未満の粒子の割合が全体の5%未満であり、比表面積が120~200m/gである水素添加用触媒粒子に関する。
本発明の水素添加用触媒粒子は、好ましくはジルコニウム、亜鉛、アルミニウム、チタン、鉄から選ばれる少なくとも一つの成分をさらに含有するものである。
本発明の水素添加用触媒粒子は、好ましくは本発明の第1の態様の水素添加用触媒粒子の製造方法で得られたものである。
本発明の水素添加用触媒粒子の製造方法では、第2のスラリーを噴霧乾燥することにより略球状の粉体を得ている。噴霧乾燥を行うことにより、得られる水素添加用触媒粒子の形状を略球状とすることができ、粒度分布をシャープにすることができる。すなわち、濾過により除去できない粒子径を有する水素添加用触媒粒子の割合を低減することができる。
また、本発明の水素添加用触媒粒子の製造方法では、水溶性銅化合物を含有する酸性水溶液Aと、塩基性水溶液Bを、pHを9~14に保ちながら反応させることにより、触媒前駆体の粒子成長よりも触媒前駆体の生成が優先して起こる。結果、触媒前駆体の粒子成長が起こらず、小さな粒子の触媒前駆体が多数生成するため、触媒前駆体の粒子の比表面積が大きくなる。従って、上記pHの範囲で反応させると、後の工程を経て得られる水素添加用触媒粒子の比表面積を大きくすることができる。触媒活性は、比表面積に比例して大きくなる。すなわち、本発明の水素添加用触媒粒子の製造方法では、高活性な水素添加用触媒粒子を製造することができる。
図1(a)及び(b)は、本発明の水素添加用触媒粒子の製造方法において、第2のスラリーを噴霧乾燥して得られた粉体の走査型電子顕微鏡(SEM)による拡大写真である。 図2は、本発明の実施例1の水素添加用触媒粒子の粒度分布と、比較例1の水素添加用触媒粒子の粒度分布とを示した図である。 図3は、水素添加用触媒粒子の製造方法における酸性水溶液Aと塩基性水溶液Bの混合時のpHと、水素添加用触媒粒子の比表面積との関係を示した図である。
(第1のスラリーの生成)
本発明の水素添加用触媒粒子の製造方法では、水性媒体において、水溶性銅化合物を含有する酸性水溶液Aと、塩基性水溶液Bを、pHを9~14に保ちながら反応させることにより、触媒前駆体を含有する第1のスラリーを生成する。
酸性水溶液Aと塩基性水溶液Bが混ざり合うと、中和反応により水酸化銅を含む沈殿物が生じる。この沈殿物が触媒前駆体となる。第1のスラリーとは、上記中和反応により生成された沈殿物、及び、反応液の液相のことである。
なお、この工程において、分散性を向上させる目的で、メタノール、エタノール、プロパノール、エチレングリコール、ジエチレングリコール、アセトン等の有機溶媒を水性媒体に加えても良い。
上記酸性水溶液Aと、上記塩基性水溶液Bとの混合において、各溶液の添加時間としては、特に限定されないが、例えば、各溶液の添加時間が1~8時間となるようにするのが好ましい。
上記酸性水溶液Aと、上記塩基性水溶液Bとの混合は、混合している溶液中のpHを9~14に保つのであれば、特に範囲は限定されないが、10~14の範囲であることが好ましく、12~14の範囲であることがより好ましい。本発明の水素添加用触媒粒子の製造方法では、混合時の溶液中のpHを調節することで、触媒前駆体の比表面積を調整することが出来る。なお、所望の比表面積を有する触媒前駆体を調製するためには、混合時のpHの変動が設定値の-0.5~+0.5の範囲内になるように、上記酸性水溶液Aと上記塩基性水溶液Bの添加を制御することが好ましい。
酸性水溶液Aに含有される水溶性銅化合物としては、特に限定されないが、硫酸銅(II)、硝酸銅(II)、塩化銅(II)等が挙げられ、これらの中では、反応副生成物の処理のしやすさから硫酸銅(II)であることが好ましい。
酸性水溶液Aに含まれる水溶性銅化合物の酸化物換算での濃度は、特に限定されないが、10~1000g/Lであることが好ましく、10~100g/Lであることがより好ましい。
酸性水溶液Aに含まれる水溶性銅化合物の酸化物換算での濃度が10g/L未満であると、塩基性水溶液Bとを均一に混合することができるものの、生成される沈殿物の量が少なくなる。そのため、効率よく水素添加用触媒粒子を製造することができなくなる。
酸性水溶液Aに含まれる水溶性銅化合物の酸化物換算での濃度が1000g/Lより高いと、後の工程を経て得られる水素添加用触媒粒子の触媒活性が低下しやすくなる。
酸性水溶液Aには、水溶性銅化合物の他に、ジルコニウム、亜鉛、アルミニウム、チタン、鉄から選ばれる少なくとも一つの水溶性金属化合物が含有されていることが望ましい。これらの中では、水溶性のジルコニウム化合物であることが好ましい。
酸性水溶液Aが、水溶性銅化合物以外の水溶性金属化合物を含有する場合、水溶性銅化合物と、水溶性金属化合物との重量比は、特に限定されないが、各金属の酸化物換算で、酸化銅:金属酸化物=10:85~85:10であることが好ましい。酸化銅の比率が上記の比率よりも低いと、触媒活性が低下する。また、酸化銅の比率が上記の比率よりも高いと熱により金属同士の凝集が起こりやすくなり、触媒の耐久性が低下する。
塩基性水溶液Bに含有される物質としては、特に限定されないが、水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、炭酸ナトリウムや炭酸カリウム等のアルカリ金属の炭酸塩、炭酸水素ナトリウムや炭酸水素カリウム等のアルカリ金属の炭酸水素塩、アンモニア、メチルアミン、トリメチルアミン、アルカノールアミン等のアミン系化合物、炭酸アンモニウム、炭酸水素アンモニウム等があげられる。これらの中では、反応性に優れるアルカリ金属の水酸化物であることが好ましく、水酸化ナトリウムであることがより好ましい。上記塩基性水溶液Bに含有される物質の濃度は、特に限定れないが、1~400g/Lであることが好ましく、1~100g/Lであることがより好ましい。さらに、触媒粒子の凝集防止および粒子径の制御を目的に、メタ珪酸ナトリウム、オルトケイ酸ナトリウムを触媒前駆体100gに対して1g~100g加えてもよい。
酸性水溶液Aと、塩基性水溶液Bを混合する際の温度としては、特に限定されないが、30℃~100℃であることが好ましく、50℃~100℃であることがより好ましく、80℃~100℃であることがさらに好ましい。
酸性水溶液Aと、塩基性水溶液Bの混合では、酸性水溶液Aに含有される銅イオンと、塩基性水溶液Bに含有される水酸化物イオンとが反応し、水酸化銅(II)となり沈殿を生じる。水酸化銅(II)は、熱により酸化銅(II)となる。この混合においての温度が、高温であればあるほど、酸化銅(II)の生成が加速される。逆に、低温であると、水酸化銅(II)の割合が増える。すなわち、混合における温度が上記範囲であると、沈殿に含まれる酸化銅(II)の割合が高くなる。
酸性水溶液Aと、塩基性水溶液Bの混合により第1のスラリーが生成する。第1のスラリーは、特に限定されないが、酸性水溶液Aに含まれる金属成分の酸化物換算で5~70g/Lの濃度の沈殿物を含有することが好ましい。第1のスラリーに上記範囲の沈殿物が含まれていると、後述するように好適に第1のスラリーを熟成することができる。
第1のスラリーに含まれる沈殿物の量は、酸性水溶液A及び塩基性水溶液Bの濃度を調整することにより制御することができる。
(第1のスラリーの熟成)
次に、本発明の水素添加用触媒粒子の製造方法では、上記第1のスラリーを熟成する。熟成とは、第1のスラリー中に含まれる未反応の原料を反応させる処理である。熟成が不十分であると未反応の原料の残存量が多くなり、後の工程を経て得られる水素添加用触媒粒子の触媒活性が低下しやすくなる。第1のスラリーの熟成を好適に制御することにより、後の工程を経て得られる水素添加用触媒粒子の触媒活性を向上させることができる。
上記の通り、第1のスラリーは、酸性水溶液Aに含まれる金属の酸化物換算で5~70g/Lの濃度の沈殿物を含有することが好ましい。
上記沈殿物の含有量が、酸化物換算で5g/L未満の濃度であると、生産効率が悪くなり経済的でない。
上記沈殿物の含有量が、酸化物換算で70g/Lを超える濃度であると、スラリーの粘性が高くなり、均一に攪拌する事が難しくなるため、後の工程を経て得られる水素添加用触媒粒子の触媒活性が低下しやすくなる。
本発明の水素添加用触媒粒子の製造方法では、特に限定されないが、上記熟成を、30~100℃で行うことが好ましく、80~100℃で行うことがより好ましい。
熟成の温度が30℃よりも低いと、熟成後の沈殿物に含まれる水酸化銅(II)の割合が多くなる。
熟成の温度が100℃よりも高いと、水分が蒸発するので、第1のスラリーを適切な濃度に保つことができなくなる。
本発明の水素添加用触媒粒子の製造方法では、特に限定されないが、上記熟成を、30~120分間行うことが好ましく、30~60分間行うことがより好ましい。
熟成の時間が30分よりも短いと、第1のスラリーの液体分に含まれる未反応の原料の残存量が多くなる。そのため、効率的に水素添加用触媒粒子を製造することができなくなる。
熟成の時間が120分よりも長いと、後の工程を経て得られる水素添加用触媒粒子の比表面積が小さくなる。その結果、水素添加用触媒粒子の触媒活性が低下しやすくなる。また、生産効率が悪くなり経済的でない。
(触媒前駆体固形分の分離)
次に、本発明の水素添加用触媒粒子の製造方法では、上記第1のスラリーから触媒前駆体固形分を分離する。
熟成後の第1のスラリーの液体分には、上記工程により沈殿しなかった酸性水溶液A及び塩基性水溶液B由来の水溶性物質が含まれている。このような水溶性物質が含まれたまま水素添加用触媒粒子を製造すると、触媒活性が低下することになる。特に、硫酸金属塩を使用した際に含まれるS成分は、触媒活性を低下させる事が知られている。さらに、比表面積も低下する傾向となる。そのため、触媒活性を向上させるため、これら水溶性物質を除去することが重要になる。
そこで、本発明の水素添加用触媒粒子の製造方法では、熟成後の上記第1のスラリーから触媒前駆体固形分の分離を行う。これにより、触媒前駆体に上記水溶性物質が含まれないようにすることができる。上記物質が除去できているかは濾液の導電率を測定する事で確認できる。
濾液の導電率は30mS/m以下とすることが好ましい。触媒前駆体固形分を分離する方法としては、特に限定されず、通常の触媒製造に使用される装置を用いることができる。例えば、吸引濾過、フィルタープレス、水分を除去する際、濾過ケーキの濾過層の厚層化をできる限り阻止する掃流機構を備えたケーキレス濾過(ダイナミック濾過)が採用できる。また、回転円筒型ケーキレス濾過、多室円筒型真空濾過、遠心分離型スラリー濾過等を採用してもよい。
(第2のスラリーの調製)
次に、本発明の水素添加用触媒粒子の製造方法では、分離した上記触媒前駆体固形分を水性媒体中に懸濁し第2のスラリーを調製する。これにより、第2のスラリーは、後の工程で行う噴霧乾燥に好適に用いることができる。
第2のスラリーとしては、特に限定されないが、触媒前駆体固形分の濃度が酸化物換算で50~300g/Lであることが好ましく、75~250g/Lであることがより好ましく、75g~200g/Lであることがさらに好ましい。
(噴霧乾燥)
次に、本発明の水素添加用触媒粒子の製造方法では、上記第2のスラリーを噴霧乾燥することにより略球状の粉体を得る。噴霧乾燥とは、スラリーを噴霧し、この噴霧されたスラリーに熱風を吹きつけることにより乾燥させる方法である。スラリーを噴霧すると、液滴は表面張力により略球状になる。このような液滴を直ちに乾燥すると、得られる粉体の形状は略球状となる。また、液滴の大きさと、得られる粉体の大きさとは比例する。液滴の大きさは噴霧条件により調節することができる。特に、スラリーを噴霧する際、噴霧する条件が一定であれば、噴霧された液滴が一定の大きさとなる。また、液滴は、速やかに乾燥されるので得られる粉体の粒度分布がシャープになり、所望の粒子径を有する粉体を得ることができる。
噴霧乾燥する方法としては、特に限定されないが、遠心噴霧器を用いた遠心噴霧乾燥や、圧力ノズルを用いた加圧噴霧等があげられる。これらの中では、遠心噴霧器を用いる方法が好ましい。遠心噴霧機による噴霧乾燥の条件としては、特に限定されないが、ディスク回転数5000~25000rpmとすることが好ましく、12000~18000rpmとすることがより好ましく、14000~15000rpmとすることがさらに好ましい。出口温度は50~150℃とすることが好ましく、80~120℃とすることがより好ましく、90~100℃とすることがさらに好ましい。
このような条件で噴霧乾燥することにより、後の工程を経て得られる水素添加用触媒粒子の粒度分布において、粒子径10~100μmの粒子の割合が全体の95~100%を占め、粒子径10μm未満の粒子の割合が全体の5%未満とすることができる。
噴霧乾燥を行う際には、第2のスラリーに分散剤を添加してもよい。分散剤としては、特に限定されないが、ポリカルボン酸及びその塩が挙げられ、好ましくはポリマレイン酸及びその塩、ポリアクリル酸及びその塩、置換アクリル酸ポリマー、アクリルコポリマー、アクリルコポリマーのナトリウム塩及び/又はアンモニウム塩である。アクリル酸から誘導された分散剤の代表例は、ポリアクリル酸及びそのナトリウム塩又はそのアンモニウム塩、並びに、アクリル酸と、2-アクリルアミド、2-メチルプロパンスルホン酸であるスルホン酸誘導体等のモノマーとのコポリマーが含まれる。アクリル酸または置換アクリル酸と共重合性のコモノマーは、カルボキシル基を含有することができる。商品化されているものとしてはDispex A-40(Ciba Specialty Chemicals, Inc.)等が挙げられる。他の分散剤、例えば他の種類のアクリル分散剤を本発明の組成物の形成において使用してもよい。分散剤は、第2のスラリー内に含まれる触媒前駆体固形分の重量に対し、0.1~2.0重量%となるように添加されることが好ましい。第2のスラリーに分散剤が添加されていると、第2のスラリーが凝集しにくくなるので、好適に噴霧することができる。
(粉体の焼成)
本発明の水素添加用触媒粒子の製造方法では、上記略球状の粉体を焼成する。
焼成とは、粉体を加熱し粉体に含まれる金属成分を酸化物とすることである。焼成を行うことにより、触媒活性を得ることができる。
焼成は、特に限定されないが焼成温度250~550℃で、焼成時間1~10時間の条件で行うことが好ましく、焼成温度300~500℃で、焼成時間3~5時間の条件で行うことがより好ましい。焼成の雰囲気は、特に限定されず、大気、二酸化炭素、窒素、水素、アルゴン等の雰囲気下で行っても良い。
(水素添加用触媒粒子)
以上の工程を経ることにより、本発明の水素添加用触媒粒子を得ることができる。
本発明の水素添加用触媒粒子は、酸化銅を含む略球状の水素添加用触媒粒子であって、上記水素添加用触媒粒子の粒度分布において、粒子径10~100μmの粒子の割合が全体の95~100%を占め、粒子径10μm未満の粒子の割合が全体の5%未満であり、比表面積が120~200m/gである。
粒子径が10μm未満の水素添加用触媒粒子の割合が、水素添加用触媒粒子全体の5%以上あると、触媒が用いられた反応系から、水素添加用触媒粒子を充分に除去しにくくなる。そのため、触媒反応により得られた生成物に夾雑物が多く含まれることになる。これは、生成物の純度の観点から好ましくない。また、濾過効率も悪くなる。
水素添加用触媒粒子の粒子径が100μmを超えると、各水素添加用触媒粒子同士の間の空間が大きくなる。そのため、水素添加用触媒粒子を保管する際に嵩張ることになる。また、比表面積は、粒子径の大きさに反比例して小さくなるので、水素添加用触媒粒子の粒子径が100μmを超えると触媒活性が低下しやすくなる。
水素添加用触媒粒子の粒子径及び粒度分布は、従来公知のレーザー回折・散乱法により測定することができる。
触媒活性は、水素添加用触媒粒子の比表面積と比例の関係にある。すなわち、比表面積が大きいほど触媒活性は高くなる。
本発明の水素添加用触媒粒子の比表面積は120~200m/gである。このように大きい比表面積を有する本発明の水素添加用触媒粒子は充分に高い触媒活性を有する。
本明細書において、比表面積とは、窒素吸着BET1点法により測定した値をいう。
本発明の水素添加用触媒粒子には、ジルコニウム、亜鉛、アルミニウム、チタン、鉄から選ばれる少なくとも一つの成分をさらに含有することが好ましい。これら成分を含むことにより、触媒活性を向上させることができる。これら成分の中ではジルコニウムが含まれていることが好ましい。
本発明の水素添加用触媒粒子は、そのまま使用してもよく、還元処理を行った後に使用してもよい。還元処理を行うことにより、触媒活性がより強く発現する。
以下に本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
以下の操作を行うことにより実施例1に係る水素添加用触媒粒子を得た。
(酸性水溶液Aの調製)
硫酸銅5水和物348gと、オキシ塩化ジルコニウム8水和物228gと、硫酸4.8gとをイオン交換水に加え攪拌し、全量1.8Lの酸性水溶液Aを得た。
(塩基性水溶液Bの調製)
水酸化ナトリウム260gと、メタ珪酸ナトリウム36gとをイオン交換水に加え攪拌し、全量1.8Lの塩基性水溶液Bを得た。
(酸性水溶液Aと塩基性水溶液Bの混合)
上記工程で作成された酸性水溶液A及び塩基性水溶液Bを10mL/分の流量で反応タンクに同時に添加し混合した。混合時のpHは12.5~13.0であった。この際、混合中の液温を80℃に保った。
これらの溶液が混合された溶液は第1のスラリーとなりpHは12.9であった。
第1のスラリーには、酸性水溶液Aと塩基性水溶液Bが反応して生じた水酸化銅等の沈殿物である触媒前駆体が含まれている。
(第1のスラリーの熟成)
各溶液を完全に反応タンクに添加した後、第1のスラリーを80℃で60分攪拌し、第1のスラリーを熟成させた。
(触媒前駆体固形分の分離)
触媒前駆体の熟成後、第1のスラリーを室温に冷却した。次に、デカント水洗により、濾液の導電率が30mS/mとなるまで水洗を繰り返し、スラリー中のナトリウムイオン、硫酸イオン、塩化物イオン等の水溶性物質を除去した。第1のスラリーから触媒前駆体固形分を吸引濾過により分離した。
(第2のスラリーの調製)
上記洗浄後の触媒前駆体固形分を、スラリーの濃度が75g/Lとなるようにイオン交換水に懸濁した。
(噴霧乾燥)
第2のスラリーを、スプレードライヤー(製品名:L-12型、大川原化工機社製)を用いて入り口温度を230℃とし、出口温度を90℃とし、ディスク回転数を15000rpmとして噴霧乾燥し粉体を得た。
図1(a)及び(b)は、本発明の水素添加用触媒粒子の製造方法において、第2のスラリーを噴霧乾燥して得られた粉体の走査型電子顕微鏡(SEM)による拡大写真である。
図1(a)は、観察倍率が200倍の拡大写真であり、図1(b)は、観察倍率が2000倍の拡大写真である。図1(a)及び(b)に示すように、噴霧乾燥して得られた粉体は略球状となっていた。
(粉体の焼成)
上記工程で得られた粉体を箱型焼成炉に入れ、焼成温度450℃とし、5時間焼成した。
上記工程を経て得られた焼成後の粒子は、実施例1に係る水素添加用触媒粒子である。
実施例1の水素添加用触媒粒子の粒度分布を図2に、比表面積を表1に示す。
なお、粒子径及び粒度分布は、レーザー回折・散乱式粒度分布測定装置(製品名:LA-950-V2、HORIBA社製)を用い、純水を循環させた試料バスに分散液の透過率が85~90%になるようにサンプルを添加して測定した。測定の条件としては、サンプルの屈折率2.71、分散媒の屈折率1.333、測定波長LD655mmとした。
また、比表面積はJIS Z 8830の規定に準じ、試料を窒素雰囲気中、200℃で60分間熱処理し、自動比表面積測定装置(製品名:GEMINI VII2390、マイクロメリティクス社製)を用いて測定した。
(実施例2)
酸性水溶液Aの組成を硫酸銅5水和物87g、オキシ塩化ジルコニウム8水和物57g、硫酸1.2g及び全量を450mLと変更し、並びに、塩基性水溶液Bの組成を水酸化ナトリウム43.4g、メタ珪酸ナトリウム9g及び全量を450mLと変更した以外は実施例1と同様にして実施例2に係る水素添加用触媒粒子を得た。実施例2において、酸性水溶液Aと塩基性水溶液Bの混合時のpHは9.9~10.2であり、第1のスラリーのpHは10.0であった。実施例2の水素添加用触媒粒子の比表面積を表1に示す。
(比較例1)
噴霧乾燥の代わりに箱型乾燥機を用い、乾燥温度120℃とし、16時間乾燥を行ったこと以外は実施例1と同様にして比較例1に係る水素添加用触媒粒子を得た。比較例1の水素添加用触媒粒子媒の粒度分布を図2に示す。
(比較例2)
酸性水溶液Aの組成を硫酸銅5水和物87g、オキシ塩化ジルコニウム8水和物57g、硫酸1.2g及び全量を450mLと変更し、並びに、塩基性水溶液Bの組成を水酸化ナトリウム42.3g、メタ珪酸ナトリウム9g及び全量を450mLと変更した以外は実施例1と同様にして比較例2に係る水素添加用触媒粒子を得た。比較例2において、酸性水溶液Aと塩基性水溶液Bの混合時のpHは8.4~8.7であり、第1のスラリーのpHは8.5であった。比較例2の水素添加用触媒粒子の比表面積を表1に示す。
(比較例3)
酸性水溶液Aの組成を硫酸銅5水和物87g、オキシ塩化ジルコニウム8水和物57g、硫酸1.2g及び全量を450mLと変更し、並びに、塩基性水溶液Bの組成を水酸化ナトリウム41.6g、メタ珪酸ナトリウム9g及び全量を450mLと変更した以外は実施例1と同様にして比較例3に係る水素添加用触媒粒子を得た。比較例3において、酸性水溶液Aと塩基性水溶液Bの混合時のpHは7.9~8.1であり、第1のスラリーのpHは8.0であった。比較例3の水素添加用触媒粒子の比表面積を表1に示す。
Figure JPOXMLDOC01-appb-T000001
図2は、本発明の実施例1の水素添加用触媒粒子の粒度分布と、比較例1の水素添加用触媒粒子の粒度分布とを示した図である。
図2に示すように、実施例1の水素添加用触媒粒子の粒度分布はシャープになっている。一方、比較例1の水素添加用触媒粒子の粒度分布は、ブロードになっている。また、実施例1では、粒子径10μm未満の粒子の割合が1%未満であり、このような粒子がほとんど存在していなかった。一方、比較例1では、粒子径10μm未満の粒子の割合が11%であり、このような粒子が多数存在していた。
図3は、水素添加用触媒粒子の製造方法における酸性水溶液Aと塩基性水溶液Bの混合時のpHと、水素添加用触媒粒子の比表面積との関係を示した図である。
図3に示すように、水素添加用触媒粒子の比表面積は、酸性水溶液Aと塩基性水溶液Bの混合時のpHと相関しており、pHが高くなるほど、水素添加用触媒粒子の比表面積が大きくなることがわかる。
特に、酸性水溶液Aと塩基性水溶液Bを混合して生成した第1のスラリーのpHが12.9である実施例1及びpHが10.0である実施例2の水素添加用触媒粒子の比表面積は、各比較例の水素添加用触媒粒子の比表面積と比較し大きくなっていた。

Claims (9)

  1. 酸化銅を含有する水素添加用触媒粒子の製造方法であって、
    水性媒体中において、水溶性銅化合物を含有する酸性水溶液Aと、塩基性水溶液Bを、pHを9~14に保ちながら反応させることにより、触媒前駆体を含有する第1のスラリーを生成する工程と、
    前記第1のスラリーを熟成する工程と、
    前記第1のスラリーから触媒前駆体固形分を分離する工程と、
    分離した前記触媒前駆体固形分を水性媒体中に懸濁し第2のスラリーを調製する工程と、
    前記第2のスラリーを噴霧乾燥することにより略球状の粉体を得る工程と、
    前記略球状の粉体を焼成する工程と
    を有する製造方法。
  2. 前記酸性水溶液Aが、さらにジルコニウム、亜鉛、アルミニウム、チタン、鉄から選ばれる少なくとも一つの水溶性金属化合物を含有する請求項1に記載の水素添加用触媒粒子の製造方法。
  3. 前記水溶性銅化合物と、前記水溶性金属化合物との重量比が、各金属の酸化物換算で、酸化銅:金属酸化物=10:85~85:10である請求項2に記載の水素添加用触媒粒子の製造方法。
  4. 前記熟成する工程を、30~100℃で行う請求項1~3のいずれか1項に記載の水素添加用触媒粒子の製造方法。
  5. 前記噴霧乾燥を遠心噴霧機を用いることにより行い、前記遠心噴霧機による噴霧乾燥の条件を、ディスク回転数5000~25000rpmとし、出口温度を50~150℃とする請求項1~4のいずれか1項に記載の水素添加用触媒粒子の製造方法。
  6. 前記焼成を、焼成温度250~550℃とし、1~10時間行う請求項1~5のいずれか1項に記載の水素添加用触媒粒子の製造方法。
  7. 酸化銅を含む略球状の水素添加用触媒粒子であって、
    前記水素添加用触媒粒子の粒度分布において、粒子径10~100μmの粒子の割合が全体の95~100%を占め、粒子径10μm未満の粒子の割合が全体の5%未満であり、
    比表面積が120~200m/gである水素添加用触媒粒子。
  8. 前記水素添加用触媒粒子が、ジルコニウム、亜鉛、アルミニウム、チタン、鉄から選ばれる少なくとも一つの成分をさらに含有する請求項7に記載の水素添加用触媒粒子。
  9. 前記水素添加用触媒粒子は、請求項1~6のいずれか1項に記載の製造方法によって得られたものである請求項7又は8に記載の水素添加用触媒粒子。
PCT/JP2014/068000 2013-09-13 2014-07-07 水素添加用触媒粒子の製造方法及び水素添加用触媒粒子 WO2015037312A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-190800 2013-09-13
JP2013190800A JP2015054312A (ja) 2013-09-13 2013-09-13 水素添加用触媒粒子の製造方法及び水素添加用触媒粒子

Publications (1)

Publication Number Publication Date
WO2015037312A1 true WO2015037312A1 (ja) 2015-03-19

Family

ID=52665436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068000 WO2015037312A1 (ja) 2013-09-13 2014-07-07 水素添加用触媒粒子の製造方法及び水素添加用触媒粒子

Country Status (3)

Country Link
JP (1) JP2015054312A (ja)
TW (1) TW201511829A (ja)
WO (1) WO2015037312A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208258A1 (en) * 2016-02-16 2017-08-23 Fundació Privada Institut Català d'Investigació Química (ICIQ) Methanol production process
JP7093627B2 (ja) * 2017-12-21 2022-06-30 小林製薬株式会社 消臭剤組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891094A (en) * 1955-02-17 1959-06-16 American Cyanamid Co New catalyst for reducing nitrobenzene and the process of reducing nitrobenzene thereover
JPS60139340A (ja) * 1983-12-06 1985-07-24 ユニリーバー ナームローゼ ベンノートシヤープ 遷移金属‐珪酸塩触媒の製造方法
JPH03186349A (ja) * 1989-10-17 1991-08-14 Engelhard Corp 水素化触媒、該触媒の製造方法及び使用方法
JPH08108072A (ja) * 1993-11-10 1996-04-30 Nissan Gaadoraa Shokubai Kk 脂肪族アルキルエステル類水素添加反応用触媒の製造法
JP2000507155A (ja) * 1996-03-21 2000-06-13 エンゲルハルト コーポレイション Cu/Cr触媒の用途に用いられるクロム不含触媒の調製と使用
JP2010194421A (ja) * 2009-02-23 2010-09-09 Mitsui Chemicals Inc 銅系触媒の製造方法
JP2011072933A (ja) * 2009-09-30 2011-04-14 Jgc Catalysts & Chemicals Ltd 炭化水素の水素化触媒及び炭化水素の水素化触媒の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891094A (en) * 1955-02-17 1959-06-16 American Cyanamid Co New catalyst for reducing nitrobenzene and the process of reducing nitrobenzene thereover
JPS60139340A (ja) * 1983-12-06 1985-07-24 ユニリーバー ナームローゼ ベンノートシヤープ 遷移金属‐珪酸塩触媒の製造方法
JPH03186349A (ja) * 1989-10-17 1991-08-14 Engelhard Corp 水素化触媒、該触媒の製造方法及び使用方法
JPH08108072A (ja) * 1993-11-10 1996-04-30 Nissan Gaadoraa Shokubai Kk 脂肪族アルキルエステル類水素添加反応用触媒の製造法
JP2000507155A (ja) * 1996-03-21 2000-06-13 エンゲルハルト コーポレイション Cu/Cr触媒の用途に用いられるクロム不含触媒の調製と使用
JP2010194421A (ja) * 2009-02-23 2010-09-09 Mitsui Chemicals Inc 銅系触媒の製造方法
JP2011072933A (ja) * 2009-09-30 2011-04-14 Jgc Catalysts & Chemicals Ltd 炭化水素の水素化触媒及び炭化水素の水素化触媒の製造方法

Also Published As

Publication number Publication date
TW201511829A (zh) 2015-04-01
JP2015054312A (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP7203792B2 (ja) 個別化された無機粒子
JP6616782B2 (ja) 高表面積の層状複水酸化物
JP5066090B2 (ja) 金属(m1)酸化物粒子の表面に金属(m2)酸化物超微粒子をコートする方法
JP6290786B2 (ja) メソポーラス二酸化チタンナノ粒子およびその製造方法
CN102583467B (zh) 一种以锌铝低摩尔比类水滑石为前躯体制备锌铝尖晶石的方法
TW201615553A (zh) 微粒子氧化鈦及其製造方法
CN102923740A (zh) 一水软铝石及其制备方法
CN110092657B (zh) 纳米钛酸钡微晶及其制备方法和钛酸钡粉体及其制备方法
WO2017141931A1 (ja) セシウム又は/及びストロンチウム吸着剤
KR20190078621A (ko) 고강도이며 열전도율이 낮은 산화 아연 소결체 제작용 산화 아연 분말
WO2015037312A1 (ja) 水素添加用触媒粒子の製造方法及び水素添加用触媒粒子
JP5574527B2 (ja) 酸化セリウム微粒子の製造方法
WO2020217830A1 (ja) 希土類元素を含む水酸化チタン及び二酸化チタンの製造方法
JP2008137845A (ja) 酸化マグネシウムの製造方法
JP6986149B2 (ja) 酸化亜鉛焼結体作製用酸化亜鉛粉末および酸化亜鉛焼結体、ならびに、これらの製造方法
JP3708216B2 (ja) 酸化チタン微粒子及びその製造法
CN113120940A (zh) 一种球形碳酸铈及一种氧化铈的合成方法
JP7410249B2 (ja) 負熱膨張材、その製造方法及び複合材料
WO2023181781A1 (ja) 負熱膨張材、その製造方法及び複合材料
JP2011073930A (ja) チタン酸塩粉末の製造方法
JP2023107048A (ja) 球状酸化亜鉛粒子の製造方法
JP4141744B2 (ja) ジルコニアゾルの製造方法及びジルコニア微粉末の製造方法
RU2625388C2 (ru) Способ получения наполнителей для строительных материалов
JP2011073929A (ja) 酸化チタン系粉末及びその製造方法、並びに、チタン酸塩粉末の製造方法
CN105709759B (zh) 一种用于合成1,4‑丁炔二醇的铜铋催化剂制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844482

Country of ref document: EP

Kind code of ref document: A1