WO2023071104A1 - 用于二次电池的充电方法、装置、设备及计算机存储介质 - Google Patents

用于二次电池的充电方法、装置、设备及计算机存储介质 Download PDF

Info

Publication number
WO2023071104A1
WO2023071104A1 PCT/CN2022/089479 CN2022089479W WO2023071104A1 WO 2023071104 A1 WO2023071104 A1 WO 2023071104A1 CN 2022089479 W CN2022089479 W CN 2022089479W WO 2023071104 A1 WO2023071104 A1 WO 2023071104A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
charging
lithium
voltage
preset
Prior art date
Application number
PCT/CN2022/089479
Other languages
English (en)
French (fr)
Inventor
骆晨旭
何建福
刘倩
颜昱
叶永煌
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22764288.1A priority Critical patent/EP4195355A4/en
Priority to KR1020227031404A priority patent/KR102495663B1/ko
Priority to JP2022554615A priority patent/JP7487327B2/ja
Priority to US18/182,841 priority patent/US11865943B2/en
Publication of WO2023071104A1 publication Critical patent/WO2023071104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a charging method, device, equipment and computer storage medium for secondary batteries.
  • Embodiments of the present application provide a method, device, device, and computer storage medium for a secondary battery, capable of replenishing lithium to the secondary battery during a cycle.
  • the embodiment of the present application provides a charging method for a secondary battery, the secondary battery includes a lithium supplement material, and the method includes: when the secondary battery is at a preset charging node, obtaining the The first state of health value SOH 1 ; when SOH 1 is less than or equal to the first threshold value, activate the lithium replenishing material to replenish lithium to the secondary battery; perform the first charging process for the secondary battery; perform the first charging process according to the secondary battery
  • the working parameters of the charging process determine the second state-of-health value SOH 2 of the secondary battery; when the SOH 2 is greater than the second threshold, the secondary battery is charged.
  • the above technical solution detects the State Of Health (SOH) value of the secondary battery when the secondary battery is at a preset charging node, and performs post-replenishment of lithium on the secondary battery when the SOH value is low.
  • SOH State Of Health
  • the active lithium content of the lithium secondary battery reaches the standard, a normal charge and discharge cycle is performed. In this way, the loss of active lithium in the secondary battery can be judged in time, and the active lithium can be effectively replenished. As such, it is possible to extend the cycle life of the secondary battery and increase the energy density of the secondary battery.
  • the embodiment of the present application is to supplement the lithium after the secondary battery, avoiding a series of problems such as phase change of the material on the surface of the positive and negative electrodes, increase of Directive Current Resistance (DCR), and decomposition of the electrolyte to generate gas. problem, thereby improving the cycle performance and rate performance of the secondary battery.
  • DCR Directive Current Resistance
  • the method further includes: when the SOH 2 is less than or equal to the second threshold, determining that the secondary battery is at the next charging node of the preset charging node; activating the lithium replenishing material to replenish the secondary battery lithium.
  • lithium supplementation when the effect of lithium supplementation does not meet the working needs of the secondary battery, lithium supplementation is performed on the secondary battery again, so that the content of active lithium in the secondary battery can be kept in a relatively high range, thereby prolonging the life of the secondary battery.
  • the cycle life of the secondary battery is improved, and the energy density of the secondary battery is improved.
  • activating the lithium supplement material to supplement lithium to the secondary battery includes: setting the overcharge protection voltage as the lithium supplement voltage, and the lithium supplement voltage is the charging cut-off voltage corresponding to the charging node where the secondary battery is located ;Constant current charging at the preset first rate to the lithium supplement voltage; constant voltage charging at the lithium supplement voltage to the preset first charge cut-off current; constant current discharge at the preset second rate to the preset first cut-off voltage.
  • the method further includes: heating the secondary battery to a first temperature. Before performing the first charging process on the secondary battery, the method further includes: controlling the temperature of the secondary battery to be the second temperature.
  • the above technical solution heats the secondary battery before replenishing lithium, and circulates at a lower temperature after replenishing lithium, which reduces the capacity loss caused by battery polarization during the lithium replenishing process, so that the lithium replenishing material can release more Active lithium, and speed up the speed of lithium supplementation.
  • the first temperature is 25°C-60°C
  • the second temperature is 20°C-30°C.
  • Controlling the first temperature and the second temperature within an appropriate range can further improve the efficiency of lithium supplementation and ensure the electrochemical performance of the secondary battery.
  • the first charging process includes: constant current discharge at a preset third rate to a preset second cut-off voltage; constant current charging at a preset fourth rate to the first cut-off voltage; Charge at a constant voltage at the first cut-off voltage to a preset second cut-off current for charging; discharge at a constant current at a preset third rate to reach the second cut-off voltage.
  • performing the first charging process on the secondary battery can facilitate the acquisition of charging parameters of the secondary battery, so as to determine the effect of lithium supplementation.
  • the first rate is 0.1C ⁇ 1C.
  • the first rate is 0.1C ⁇ 0.5C.
  • the active lithium can be fully and uniformly deintercalated from the electrode material, and the lithium storage capacity of the negative electrode can be increased.
  • charging the secondary battery includes: when the SOH 2 is greater than the second threshold, performing the following steps on the secondary battery cycle until the preset is satisfied
  • the stop conditions of the current constant current charging at the preset fourth rate to the first cut-off voltage; constant voltage charging at the first cut-off voltage to the preset second charging cut-off current; constant current discharge at the third preset rate to the
  • the preset stop condition includes: the number of times the secondary battery is discharged to the second cut-off voltage reaches a preset number threshold, or the secondary battery is at a preset charging node.
  • the method further includes: setting N charging nodes and a plurality of first thresholds corresponding to each charging node one-to-one according to the cycle times and cycle capacity of the secondary battery, wherein, N ⁇ 2; setting A plurality of second thresholds corresponding to the N charging nodes one-to-one; setting a plurality of charging cut-off voltages corresponding to the N charging nodes one-to-one according to the second thresholds.
  • the above technical solution can monitor the state of health of the secondary battery at each charging node, so that active lithium can be replenished in time, thereby ensuring the energy density and cycle life of the battery.
  • the charging cut-off voltage is 4.4V-4.8V.
  • the lithium supplementary material can be better activated for lithium supplementation.
  • the molecular formula of the lithium-supplementing material is Li 1+x My O z , wherein the M element is selected from at least one of Ni and Co and at least one of Mn, Mo, Ru, and Ti ; 0.05 ⁇ x ⁇ 0.5, 0.10 ⁇ y ⁇ 0.95, 2 ⁇ z ⁇ 4; based on the total mass of the positive electrode sheet in the secondary battery, the mass ratio w of the lithium supplement material satisfies: 0 ⁇ w ⁇ 0.35.
  • composition and content of the lithium-supplementing material are within the above suitable range, which can further prolong the cycle life of the secondary battery and ensure the energy density of the secondary battery.
  • the first coulombic efficiency e of the lithium-supplementing material satisfies: 0.2 ⁇ e ⁇ 0.9.
  • the irreversible capacity loss of the secondary battery during the first charge and discharge can be reduced, thereby improving the cycle performance and energy density of the secondary battery.
  • the ratio C.B. of the charge capacity of the negative active material to the charge capacity of the positive active material satisfies 1.05 ⁇ C.B. ⁇ 1.15.
  • Controlling the ratio C.B. of the charge capacity of the negative electrode active material to the charge capacity of the positive electrode active material within an appropriate range can improve the energy density of the secondary battery and reduce the manufacturing cost of the secondary battery while ensuring the cycle performance of the secondary battery .
  • the secondary battery has a gas-permeable top cover.
  • the secondary battery has a breathable top cover, which can discharge the gas in time when the secondary battery recharges lithium and generates gas during the cycle, thereby avoiding safety hazards such as battery expansion.
  • the embodiment of the present application provides a charging device for a secondary battery
  • the secondary battery includes a lithium supplement material
  • the device includes: an acquisition module, configured to, when the secondary battery is at a preset charging node, Obtain the first state of health value SOH 1 of the secondary battery; the processing module is used to activate the lithium replenishing material to replenish lithium to the secondary battery when the SOH 1 is less than or equal to the first threshold; the first charging module is used to Carry out the first charging process for the secondary battery; the first determination module is used to determine the second state of health value SOH 2 of the secondary battery according to the working parameters of the first charging process of the secondary battery; the second charging module is used for When SOH 2 is greater than the second threshold, the secondary battery is charged.
  • the embodiment of the present application provides a charging device, the device includes: a processor and a memory storing computer program instructions; when the processor executes the computer program instructions, any one of the charging devices according to the first aspect of the present application can be realized.
  • the charging method provided by the embodiment is not limited to: a processor and a memory storing computer program instructions; when the processor executes the computer program instructions, any one of the charging devices according to the first aspect of the present application can be realized.
  • an embodiment of the present application provides a computer storage medium, which is characterized in that computer program instructions are stored on the computer storage medium, and when the computer program instructions are executed by a processor, the computer program instructions provided in any embodiment of the first aspect of the application are implemented. charging method.
  • Fig. 1 is a schematic flow chart of a charging method provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a charging device provided by another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a charging device provided in another embodiment of the present application.
  • FIG. 4 is a test chart of the 25° C. cycle capacity retention rate of the secondary battery of Example 7 and Comparative Example 3 of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • lithium supplementation technology can be used to increase the content of active lithium to compensate for the loss of active lithium during the first charging process of secondary batteries.
  • the main lithium supplementation process with high technical maturity is to directly add lithium ribbon or lithium powder to the negative electrode, or add lithium-rich materials (such as lithium-rich transition metal oxides) to the positive electrode to increase additional active lithium.
  • this part of active lithium is released from the lithium-rich material to compensate for the loss of active lithium caused by the formation of the SEI film of the negative electrode active material.
  • lithium supplementation of secondary batteries usually requires high-voltage charging when the battery is formed or charged for the first time, which also causes a series of phase changes in the materials on the surface of the positive and negative electrodes, the decomposition of the electrolyte to produce gas, and a large DCR. These problems will also become more serious as the number of cycles increases.
  • embodiments of the present application provide a charging method, device, equipment and computer storage medium for a secondary battery.
  • the charging method for a secondary battery provided in the embodiment of the present application will firstly be introduced below.
  • Fig. 1 shows a schematic flowchart of a charging method for a secondary battery provided by an embodiment of the present application
  • the secondary battery includes a lithium supplement material.
  • the lithium-replenishing material may be a positive electrode lithium-replenishing material added to the positive pole piece.
  • the charging method for a secondary battery may specifically include the following steps S110-S150.
  • the preset charging node may be any one of at least two charging nodes set according to experimental data such as cycle life or capacity fading of the secondary battery.
  • the preset charging node may be a time node or a cycle number node at which active lithium loss is predicted to be large according to the above experimental data.
  • SOH 1 may represent the remaining battery life SOH of the secondary battery at the current moment, which has a well-known meaning in the art. Specifically, the SOH can be defined based on the cycle life (Cycling Life), and can also be defined based on the capacity fade (Capacity Fade).
  • the first threshold may be a preset SOH value used to measure the degree of active lithium loss of the secondary battery.
  • the SOH 1 is less than or equal to the first threshold, it can be considered that the secondary battery is in a state where active lithium needs to be supplemented.
  • the lithium supplementary material can be activated to supplement lithium to the secondary battery.
  • the lithium-replenishing material can be activated by increasing the charging voltage or charging rate, increasing the temperature, etc., or charging and discharging at a certain voltage or rate to realize the activation of the lithium-replenishing material.
  • a prompt signal may also be sent to the user to remind the user that the secondary battery is in a state where active lithium needs to be supplemented.
  • the first charging procedure may be charging and discharging with parameters of a normal charging and discharging cycle of the secondary battery.
  • SOH 2 may represent the remaining battery life SOH of the secondary battery after lithium supplementation, and its meaning is similar to that of SOH 1 .
  • the above-mentioned second threshold may be a preset SOH value used to measure whether the active lithium content of the secondary battery meets the standard. When the SOH 2 is greater than the second threshold, it can be considered that after the secondary battery is supplemented with lithium, the lost active lithium has been sufficiently replenished, and the content of active lithium in the secondary battery can meet the working requirements. At this time, it can be considered that the lithium supplementation is completed, and a normal charge and discharge cycle is performed on the secondary battery.
  • the SOH value of the secondary battery is detected when the secondary battery is at the preset charging node, and the secondary battery is supplemented with lithium after the SOH value is low, and the activity of the secondary battery after lithium supplementation is When the lithium content reaches the standard, carry out normal charge and discharge cycles. In this way, the loss of active lithium in the secondary battery can be judged in time, and the active lithium can be effectively replenished. In this way, the cycle life of the secondary battery can be extended and the energy density of the secondary battery can be improved.
  • the embodiment of the present application is to supplement the lithium after the secondary battery, avoiding a series of problems such as phase change of the material on the surface of the positive and negative electrodes, DCR growth, electrolyte decomposition and gas production, etc., thereby improving the secondary battery. cycle performance and rate performance.
  • the method may further include: when the SOH 2 is less than or equal to the second threshold, determining that the secondary battery is at the next charging node of the preset charging node; Lithium supplementation.
  • the secondary battery can enter the next charging node to replenish lithium again.
  • the active lithium content of the secondary battery after lithium supplementation it can be determined whether the state of the secondary battery can meet the work requirements, and if the state of the secondary battery cannot meet the work requirements, lithium supplementation is performed on the secondary battery again. In this way, the content of active lithium in the secondary battery can be kept in a relatively high range, thereby prolonging the cycle life of the secondary battery and increasing the energy density of the secondary battery.
  • activating the lithium supplement material to supplement lithium to the secondary battery may specifically include: setting the overcharge protection voltage as the lithium supplement voltage, and the lithium supplement voltage is the charging cut-off voltage corresponding to the charging node where the secondary battery is located ;Constant current charging at the preset first rate to the lithium supplement voltage; constant voltage charging at the lithium supplement voltage to the preset first charge cut-off current; constant current discharge at the preset second rate to the preset first cut-off voltage.
  • the overcharge protection voltage can be understood as: the maximum value of the charging voltage set to ensure the safety performance of the secondary battery. When the charging voltage is greater than the overcharge protection voltage, the charging circuit is disconnected.
  • the aforementioned lithium supplementary voltage can be understood as the charging cut-off voltage required to activate the lithium supplementary material.
  • the magnitude of the charge cut-off voltage can be set according to the charging node, and the charge cut-off voltage is generally higher than the charge cut-off voltage when the secondary battery performs a normal charge-discharge cycle.
  • the charging cut-off voltage may be 4.4V ⁇ 4.8V, 4.4V ⁇ 4.7V or 4.5V ⁇ 4.7V.
  • the size of the charging cut-off voltage is within an appropriate range, which can take into account the safety and efficiency of the lithium supplementation process.
  • the corresponding charging cut-off voltages may be the same or different.
  • the charging cut-off voltage corresponding to the charging node can be increased. In this way, it is equivalent to cutting the high-voltage charging process of pre-replenishing lithium into multiple post-replenishing lithium processes, and the electrode material obtains buffer time and space for releasing surface stress and restoring structure.
  • the stability of the surface structure of the positive and negative electrodes can be improved, thereby improving the electrochemical properties such as the initial capacity and the first Coulombic efficiency of the secondary battery.
  • the first rate and the second rate may be preset smaller charge and discharge rates.
  • the first magnification and the second magnification may be the same or different, for example, the first magnification and the second magnification may be independently selected from 0.1C to 1C, or independently selected from 0.1C to 0.5C. Specifically, the first magnification and the second magnification may each independently be 0.1C, 0.2C, 0.33C, 0.5C or 1C.
  • controlling the charge-discharge rate within an appropriate and small range can fully and uniformly deintercalate active lithium from the electrode material, thereby reducing transition metal migration and material degradation.
  • the first charge cut-off current may be a charge cut-off current set according to the properties of the electrode material and lithium-supplementing material in the secondary battery, which may be 0.05C, 0.04C, 0.02C, etc.
  • the first cut-off voltage may be a charging cut-off voltage during a normal cycle.
  • the battery is charged at a low rate and high voltage, and discharged at a relatively small rate.
  • the activation of the lithium-replenishing material is realized, thereby realizing the lithium-replenishing of the secondary battery.
  • it is possible to supplement active lithium while avoiding the phase change of the material on the surface of the positive and negative electrodes, the decomposition of the electrolyte to produce gas, and the increase in DCR, thereby further ensuring that the secondary battery has high energy density, long cycle life and Good cycle performance and rate performance.
  • the method may further include: heating the secondary battery to a first temperature. Before performing the first charging process on the secondary battery, the method may further include: controlling the temperature of the secondary battery to be the second temperature.
  • the first temperature may be 25°C-60°C, 30°C-55°C, 35°C-50°C or 40°C-45°C. Specifically, the first temperature may be 25°C, 35°C, 45°C or 55°C.
  • the second temperature may be the temperature when the secondary battery performs a normal charge-discharge cycle, for example, 20°C-30°C. It is easy to understand that the second temperature may be lower than the first temperature. If the first temperature is in an appropriate range, the capacity loss caused by battery polarization during the lithium supplementation process can be reduced, the lithium supplementation material can release more active lithium, and the lithium supplementation speed can be accelerated. If the second temperature is within an appropriate range, the cycle performance and rate performance of the secondary battery can be guaranteed.
  • the temperature of the secondary battery is increased to reduce the capacity loss caused by battery polarization during the lithium-replenishing process, so that the lithium-replenishing material can release more lithium. More active lithium, and speed up the speed of lithium supplementation. In this way, the efficiency of lithium supplementation is improved, thereby improving the energy density and cycle performance of the secondary battery.
  • the first charging process may include: constant current discharge at a preset third rate to a preset second cut-off voltage; constant current charging at a preset fourth rate to the first cut-off voltage; Charge at a constant voltage at a cut-off voltage to a preset second cut-off current for charging; discharge at a constant current at a preset third rate to reach the second cut-off voltage.
  • the secondary battery can work at the charge and discharge rate and charge and discharge cut-off voltage in the normal cycle process.
  • the third magnification may be 0.2C ⁇ 1C.
  • the second cut-off voltage may be a discharge cut-off voltage corresponding to a normal cycle of the secondary battery.
  • the fourth magnification may be 0.2C ⁇ 1C.
  • the second cut-off current for charging may be a cut-off current for charging corresponding to a normal cycle of the secondary battery, specifically, the second cut-off current for charging may be 0C ⁇ 0.05C.
  • the secondary battery works at the charge-discharge rate and charge-discharge cut-off voltage in the normal cycle process.
  • the SOH value of the secondary battery in the normal cycle process can be determined according to the working parameters of the secondary battery in the first charging process, thereby judging whether the content of active lithium in the secondary battery after lithium supplementation can meet the work requirements, and thus facilitate Determine the lithium replenishment process for secondary batteries.
  • charging the secondary battery may specifically include: when SOH 2 is greater than the second threshold, performing the following steps on the secondary battery until the preset value is satisfied.
  • the stop conditions of the current constant current charging at the preset fourth rate to the first cut-off voltage; constant voltage charging at the first cut-off voltage to the preset second charging cut-off current; constant current discharge at the third preset rate to the second cut-off voltage.
  • the preset stop condition may include: the number of times the secondary battery is discharged to the second cut-off voltage reaches a preset number threshold, or the secondary battery is at a preset charging node.
  • the method may further include: setting N charging nodes and a plurality of first thresholds corresponding to each charging node according to the number of cycles and cycle capacity of the secondary battery, wherein, N ⁇ 2; setting A plurality of second thresholds corresponding to the N charging nodes one-to-one; setting a plurality of charging cut-off voltages corresponding to the N charging nodes one-to-one according to the second thresholds.
  • the above N charging nodes may be any one of at least two charging nodes set according to experimental data such as cycle life or capacity fading of the secondary battery.
  • the charging node may be a time node or a cycle number node when the active lithium loss is predicted to be large according to the above experimental data. It is easy to understand that among the N charging nodes, each charging node has a different cycle time or number of cycles, and its corresponding first threshold and second threshold are also different. As the cycle time or the number of cycles increases, the first threshold and the second threshold corresponding to the charging node may gradually decrease. Similarly, as the cycle time or number of cycles increases, the voltage required to activate the lithium-replenishing material changes accordingly. Specifically, the charging cut-off voltage corresponding to each charging node can be set according to the active lithium content that the secondary battery needs to achieve at different charging nodes, such as the second threshold.
  • two or more multiple charging nodes can be set in advance, and the state of health of the secondary battery can be monitored at each charging node, so that active lithium can be replenished in time, thereby ensuring the energy density and energy density of the battery. cycle life.
  • the molecular formula of the lithium-supplementing material may be Li 1+x My O z .
  • the M element can be selected from at least one of Ni and Co and at least one of Mn, Mo, Ru and Ti.
  • 0.05 ⁇ x ⁇ 0.5 optionally, 0.1 ⁇ x ⁇ 0.3, more specifically, 0.15 ⁇ x ⁇ 0.25.
  • the mass ratio w of the lithium-supplementing material can satisfy: 0 ⁇ w ⁇ 0.35.
  • the lithium-supplementing material in this embodiment can be added to the positive electrode sheet of the secondary battery.
  • the lithium-supplementing material has a suitable active lithium content and a suitable activation voltage, and can be activated during the battery cycle, so as to realize the supplement of active lithium to the secondary battery.
  • the inventors found that if the amount of lithium-supplementing materials added is too low, the effect of improving the cycle life of the secondary battery will be reduced, and if the amount added is too high, the energy density of the secondary battery will be reduced.
  • the mass proportion of the lithium-supplementing material in the positive electrode sheet is within the above-mentioned appropriate range, which can take into account the cycle life and energy density of the secondary battery. In this way, the cycle life of the secondary battery is further extended, and the energy density of the secondary battery is ensured.
  • the first Coulombic efficiency e of the lithium-supplementing material can satisfy: 0.20 ⁇ e ⁇ 0.90, optionally, 0.30 ⁇ e ⁇ 0.80, 0.40 ⁇ e ⁇ 0.75, 0.40 ⁇ e ⁇ 0.65 or 0.50 ⁇ e ⁇ 0.65 .
  • the first coulombic efficiency of the lithium-supplementing material can be controlled by various means.
  • the first coulombic efficiency can be adjusted by adjusting the composition, crystal phase, preparation process, and looseness of the lithium-supplementing material particles. Adjustment. No matter which method is adopted, it is sufficient to make the first coulombic efficiency of the lithium-supplementing material within the above-mentioned suitable range, which is not limited in the present application. In this way, the irreversible capacity loss of the secondary battery during the first charge and discharge can be reduced, thereby improving the cycle performance and energy density of the secondary battery.
  • the lithium storage of the positive electrode relative to the negative electrode can meet: 0.01 ⁇ lithium storage ⁇ 0.99, 0.05 ⁇ lithium storage ⁇ 0.60, 0.09 ⁇ lithium storage ⁇ 0.3, thereby significantly improving the The effect of improving the life of the secondary battery and securing the energy density of the secondary battery.
  • the ratio C.B. of the charge capacity of the negative active material to the charge capacity of the positive active material may satisfy: 1.05 ⁇ C.B. ⁇ 1.15, 1.1 ⁇ C.B. ⁇ 1.15 or 1.1 ⁇ C.B. ⁇ 1.13.
  • the negative electrode active material can provide a large number of lithium intercalation and deintercalation sites.
  • the content of the negative electrode active material can be designed according to the normal cycle capacity, and accordingly there is no need to increase the usage of the electrolyte.
  • the first-cycle charge capacity of the positive electrode in the cycle voltage interval is defined as Q
  • the first-cycle charge capacity of the positive electrode within the lithium supplementation voltage interval is defined as R
  • the first-cycle charge specific capacity of the negative electrode is defined as P.
  • the first-week charge capacity of the negative electrode is required to be C.B.*(Q+R).
  • the negative electrode is designed according to the normal cycle capacity
  • the first-week charge capacity of the negative electrode is C.B.*Q.
  • the ratio C.B. of the charging capacity of the negative electrode active material to the charging capacity of the positive electrode active material is in an appropriate range, while ensuring the cycle performance of the secondary battery, the battery life of the secondary battery can be improved. Energy density, reducing the manufacturing cost of secondary batteries.
  • the secondary battery may have a gas-permeable top cover.
  • the secondary battery has a breathable top cover, which can discharge the gas in time when the secondary battery recharges lithium and generates gas during the cycle, thereby avoiding safety hazards such as battery expansion.
  • the embodiment of the present application also provides a charging device 200 for a secondary battery.
  • the secondary battery includes a lithium supplement material. It will be described in detail with reference to FIG. 2 .
  • the charging device 200 may include an acquisition module 201 , a processing module 202 , a first charging module 203 , a first determination module 204 and a second charging module 205 .
  • An acquisition module 201 configured to acquire a first state-of-health value SOH 1 of the secondary battery when the secondary battery is at a preset charging node.
  • the processing module 202 is configured to activate the lithium replenishing material to replenish lithium to the secondary battery when the SOH 1 is less than or equal to the first threshold.
  • the first charging module 203 is configured to perform a first charging process on the secondary battery.
  • the first determination module 204 is configured to determine the second state of health value SOH 2 of the secondary battery according to the working parameters of the secondary battery in the first charging process.
  • the second charging module 205 is configured to charge the secondary battery when the SOH 2 is greater than the second threshold.
  • the charging device 200 may further include: a second determining module, configured to determine that the secondary battery is at a charging node next to a preset charging node when the SOH 2 is less than or equal to a second threshold.
  • the above-mentioned processing module 202 is also used for activating the lithium supplement material to supplement lithium to the secondary battery.
  • the processing module 202 may specifically include: a setting submodule, configured to set the overcharge protection voltage as the lithium supplementary voltage, and the lithium supplementary voltage is the charging cut-off voltage corresponding to the charging node where the secondary battery is located; the first The constant current charging sub-module is used for constant current charging at a preset first rate to the lithium supplementary voltage; the first constant voltage charging submodule is used for constant voltage charging at the lithium supplementary voltage to the preset first charging cut-off Current; the first constant current discharge electronic module is used for constant current discharge at a preset second rate to a preset first cut-off voltage.
  • a setting submodule configured to set the overcharge protection voltage as the lithium supplementary voltage, and the lithium supplementary voltage is the charging cut-off voltage corresponding to the charging node where the secondary battery is located; the first The constant current charging sub-module is used for constant current charging at a preset first rate to the lithium supplementary voltage; the first constant voltage charging submodule is used for constant voltage charging at the lithium supplementary voltage to the preset
  • the processing module 202 may further include: a heating submodule, configured to heat the secondary battery to a first temperature; a control submodule, configured to control the temperature of the secondary battery to a second temperature.
  • the first temperature may range from 25°C to 60°C, from 30°C to 55°C, from 35°C to 50°C, or from 40°C to 45°C.
  • the second temperature may be 20°C to 30°C.
  • the first charging module 203 may specifically include: a second constant current discharge sub-module, used for constant current discharge at a preset third rate to a preset second cut-off voltage; the second constant current charging sub-module , for constant current charging at a preset fourth rate to the first cut-off voltage; the second constant voltage charging sub-module is used for constant voltage charging at the first cut-off voltage to the preset second charging cut-off current; the third The constant current discharge electronic module is used for constant current discharge at a preset third rate to the second cut-off voltage.
  • the first magnification may be 0.1C ⁇ 1C.
  • the first magnification may be 0.1C ⁇ 0.5C.
  • the second charging module may specifically include: a processing submodule, configured to perform the following steps on the secondary battery cycle until the preset stop condition is met when the SOH 2 is greater than the second threshold: Constant current charging at a preset fourth rate to the first cut-off voltage; constant voltage charging at the first cut-off voltage to a preset second charging cut-off current; constant current discharge at a preset third rate to the second cut-off voltage.
  • the preset stop condition may include: the number of times the secondary battery is discharged to the second cut-off voltage reaches a preset number threshold, or the secondary battery is at a preset charging node.
  • the charging device 200 may further include: a first setting module, configured to set N charging nodes and a plurality of first thresholds corresponding to each charging node according to the cycle times and cycle capacity of the secondary battery , wherein, N ⁇ 2; the second setting module is used to set a plurality of second thresholds corresponding to N charging nodes one-to-one; the third setting module is used to set one-to-one correspondence with N charging nodes according to the second threshold Multiple charge cut-off voltages.
  • a first setting module configured to set N charging nodes and a plurality of first thresholds corresponding to each charging node according to the cycle times and cycle capacity of the secondary battery , wherein, N ⁇ 2
  • the second setting module is used to set a plurality of second thresholds corresponding to N charging nodes one-to-one
  • the third setting module is used to set one-to-one correspondence with N charging nodes according to the second threshold Multiple charge cut-off voltages.
  • the charging cut-off voltage may be 4.4V-4.8V, 4.4V-4.7V or 4.5V-4.7V.
  • the molecular formula of the lithium-supplementing material may be Li 1+x My O z .
  • the M element can be selected from at least one of Ni and Co and one or more of Mn, Mo, Ru and Ti.
  • 0.05 ⁇ x ⁇ 0.5 optionally, 0.1 ⁇ x ⁇ 0.3, more specifically, 0.15 ⁇ x ⁇ 0.25.
  • the mass ratio w of the lithium-supplementing material can satisfy: 0 ⁇ w ⁇ 0.35.
  • the first Coulombic efficiency e of the lithium-supplementing material can satisfy: 0.20 ⁇ e ⁇ 0.90, optionally, 0.30 ⁇ e ⁇ 0.80, 0.40 ⁇ e ⁇ 0.75, 0.40 ⁇ e ⁇ 0.65 or 0.50 ⁇ e ⁇ 0.65 .
  • the ratio C.B. of the charge capacity of the negative active material to the charge capacity of the positive active material may satisfy 1.05 ⁇ C.B. ⁇ 1.15, 1.1 ⁇ C.B. ⁇ 1.15 or 1.1 ⁇ C.B. ⁇ 1.13.
  • the secondary battery may have a gas-permeable top cover.
  • the SOH value of the secondary battery can be detected when the secondary battery is at the preset charging node, and the secondary battery is supplemented with lithium after the SOH value is low, and the activity of the secondary battery after lithium supplementation When the lithium content reaches the standard, carry out normal charge and discharge cycles. In this way, the loss of active lithium in the secondary battery can be judged in time, and the active lithium can be effectively replenished. In this way, the cycle life of the secondary battery can be extended and the energy density of the secondary battery can be improved.
  • the embodiment of the present application is to supplement the lithium after the secondary battery, avoiding a series of problems such as phase change of the material on the surface of the positive and negative electrodes, DCR growth, electrolyte decomposition and gas production, etc., thereby improving the secondary battery. cycle performance and rate performance.
  • an embodiment of the present application further provides a charging device, which will be described in detail with reference to FIG. 3 .
  • the charging device may include a processor 301 and a memory 302 storing computer program instructions.
  • the above-mentioned processor 301 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 302 may include mass storage for data or instructions.
  • memory 302 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (Universal Serial Bus, USB) drive or two or more Combinations of multiple of the above.
  • Storage 302 may include removable or non-removable (or fixed) media, where appropriate. Under appropriate circumstances, the storage 302 can be inside or outside the comprehensive gateway disaster recovery device.
  • memory 302 is a non-volatile solid-state memory.
  • Memory may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices magnetic disk storage media devices
  • optical storage media devices flash memory devices
  • electrical, optical, or other physical/tangible memory storage devices include one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software comprising computer-executable instructions, and when the software is executed (e.g., by one or multiple processors) operable to perform the operations described with reference to the method according to an aspect of the present disclosure.
  • the processor 301 can implement any charging method in the above-mentioned embodiments by reading and executing the computer program instructions stored in the memory 302 .
  • the charging device may further include a communication interface 303 and a bus 310 .
  • the processor 301 , the memory 302 , and the communication interface 303 are connected through a bus 310 to complete mutual communication.
  • the communication interface 303 is mainly used to realize the communication between various modules, devices, units and/or devices in the embodiments of the present application.
  • the bus 310 includes hardware, software or both, and couples the components of the online data traffic charging device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infiniband Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • Bus 310 may comprise one or more buses, where appropriate. Although the embodiments of this application describe and illustrate a particular bus, this application contemplates any suitable bus or interconnect.
  • the charging device can execute the multi-round dialogue intent recognition method in the embodiment of the present application, so as to implement the charging method and device described in conjunction with FIG. 1 and FIG. 2 .
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer program instructions are stored; when the computer program instructions are executed by a processor, the implementation of the embodiment shown in FIG. 1 provided by the embodiment of the present application is realized. method.
  • the functional blocks shown in the above structural block diagrams may be implemented as hardware, software, firmware or a combination thereof.
  • hardware When implemented in hardware, it can be, for example, an electronic circuit, an Application Specific Integrated Circuit (ASIC), appropriate firmware, a plug-in, a function card, and the like.
  • ASIC Application Specific Integrated Circuit
  • the elements of the present application are the programs or code segments employed to perform the required tasks.
  • Programs or code segments can be stored in machine-readable media, or transmitted over transmission media or communication links by data signals carried in carrier waves.
  • "Machine-readable medium” may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, Read-Only Memory (ROM), flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, optical media, radio frequency (Radio Frequency, RF) link, and so on.
  • Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.
  • the positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 , lithium supplement material, binder polyvinylidene fluoride (PVDF), conductive agent Super P in N-methylpyrrolidone according to the mass ratio of 80:10:5:5 (NMP), mixed evenly and coated on the surface of aluminum foil, dried and cold pressed to obtain the positive electrode sheet.
  • PVDF binder polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the prepared positive pole piece and negative pole piece are wound, hot pressed, liquid injected and packaged to obtain a lithium ion secondary battery.
  • the secondary battery is cycled under normal conditions: 1C constant current charge to 4.40V, constant voltage charge to 0.05C, 0.2C constant current discharge to 2.5V.
  • One charging node is set for the secondary battery of embodiment 5, two charging nodes are set for the secondary batteries of embodiments 6 and 7, and three charging nodes are set for the secondary batteries of the remaining embodiments.
  • the first node is when the secondary battery cycles to 500cls, the corresponding first threshold is 93%SOH, the second threshold is 98%SOH, and the charging cut-off voltage is Vc1 ;
  • the second node is when the secondary battery cycles to 1000cls, the corresponding first
  • the first threshold is 88% SOH, the second threshold is 93% SOH, and the charging cut-off voltage is Vc 2 ;
  • the third node is the secondary battery cycle to 1500cls.
  • the corresponding first threshold is 83% SOH, and the second threshold is 85% SOH.
  • the charging cut-off voltage is Vc 3 .
  • the first rate, first temperature, and first cut-off voltage during the lithium replenishment process are shown in Table 1.
  • the first charge cut-off current is 0.05C.
  • the second magnification is 0.2C. If the SOH of the secondary battery after lithium supplementation is lower than the corresponding second threshold, it will directly enter the next charging node for lithium supplementation.
  • the preparation of the positive electrode sheet, the preparation of the negative electrode sheet, the preparation of the secondary battery, and the formation of the secondary battery are the same as in Examples 1 to 17, the difference is that no lithium supplement material is added, and in the preparation of the positive electrode sheet, the positive active material
  • the mass ratio of PVDF, conductive agent Super P is 90:5:5.
  • the preparation of the positive electrode sheet, the preparation of the negative electrode sheet, the preparation of the secondary battery, and the formation of the secondary battery are the same as in Examples 1-17.
  • the preparation of the positive electrode sheet, the preparation of the negative electrode sheet, the preparation of the secondary battery, and the formation of the secondary battery are the same as in Examples 1-17.
  • Example 7 The test results of Example 7 and Comparative Example 3 are shown in FIG. 4 .
  • the lithium supplement material, the binder polyvinylidene fluoride (PVDF), and the conductive agent Super P were dissolved in N-methylpyrrolidone (NMP) according to the mass ratio of 90:5:5, mixed evenly, and then coated on the surface of the aluminum foil. After drying and cold pressing, the positive electrode sheet was prepared. Dissolve the negative electrode active material, styrene-butadiene rubber SBR, and conductive agent Super P in deionized water according to the mass ratio of 90:5:5, mix evenly and apply it on the surface of copper foil, dry and cold press to obtain the negative electrode sheet .
  • NMP N-methylpyrrolidone
  • a secondary battery is obtained by assembling the positive pole piece and the negative pole piece above.
  • the secondary battery At 25°C, charge the secondary battery with a constant current of 0.1C to 4.7V, then charge it with a constant voltage to 0.05C, and record the charging capacity at this time, which is the first cycle charging capacity C 0 ; charge the secondary battery at a rate of 0.1C Discharge at a constant current to 2.5V, and record the discharge capacity at this time, which is the first-week discharge capacity D 0 ; the first Coulombic efficiency e of the lithium-supplementing material is D 0 /C 0 .
  • Lithium storage is the ratio of lithium element content in the negative electrode active material to all elements.
  • the dried negative electrode sheet is baked at a certain temperature and time (for example, 400°C, 2h), and a negative electrode active material is sampled in any area of the baked negative electrode sheet (a blade scraper can be used for sampling).
  • a blade scraper can be used for sampling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供了一种用于二次电池的充电方法、装置、设备及计算机存储介质。其中,方法包括:在二次电池处于预设充电节点的情况下,获取二次电池的第一健康状态值SOH 1;在SOH 1小于或等于第一阈值的情况下,激活补锂材料对二次电池进行补锂;对二次电池进行第一充电流程;根据二次电池进行第一充电流程的工作参数确定二次电池的第二健康状态值SOH 2;在SOH 2大于第二阈值的情况下,对二次电池充电。

Description

用于二次电池的充电方法、装置、设备及计算机存储介质
相关申请的交叉引用
本申请要求享有于2021年10月29日提交的名称为“用于二次电池的充电方法、装置、设备及计算机存储介质”的中国专利申请202111277631.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体涉及一种用于二次电池的充电方法、装置、设备及计算机存储介质。
背景技术
近年来,随着二次电池在各类电子产品和新能源汽车等产业的应用及推广,其能量密度受到越来越多的关注。但是,二次电池在首次充电过程中,负极活性材料表面不可避免地形成固体电解质界面(solid electrolyte interface,SEI)膜,造成活性离子不可逆消耗,由此导致二次电池的不可逆容量损失难以消除,给二次电池能量密度的提升带来挑战。
发明内容
本申请实施例提供一种用于二次电池的方法、装置、设备及计算机存储介质,能够在循环过程中对二次电池进行补锂。
第一方面,本申请实施例提供一种用于二次电池的充电方法,二次电池包括补锂材料,该方法包括:在二次电池处于预设充电节点的情况下,获取二次电池的第一健康状态值SOH 1;在SOH 1小于或等于第一阈值的情况下,激活补锂材料对二次电池进行补锂;对二次电池进行第一充电流程;根据二次电池进行第一充电流程的工作参数确定二次电池的第二健康状态值SOH 2;在SOH 2大于第二阈值的情况下,对二次电池充电。
上述技术方案在二次电池处于预设的充电节点时检测二次电池的健康状态(State Of Health,SOH)值,在SOH值较低的情况下对二次电池进行后置补锂,在补锂后二次电池的活性锂含量达标的情况下,进行正常的充放电循环。这样,能够及时对二次电池的活性锂损失情况进行判断,并有效地补充活性锂。如此,能够延长二次 电池的循环寿命并提高二次电池的能量密度。此外,本申请实施例是对二次电池后置补锂,避免了正负极极片表面的材料发生相变、直流阻抗(Directive Current Resistance,DCR)增长、电解液分解产气等一系列的问题,从而提高了二次电池的循环性能和倍率性能。
在一些可能的实施例中,方法还包括:在SOH 2小于或等于第二阈值的情况下,确定二次电池处于预设充电节点的下一充电节点;激活补锂材料对二次电池进行补锂。
上述技术方案在补锂的效果不满足二次电池的工作需要的情况下,再次对二次电池进行补锂,从而能够使二次电池中活性锂的含量保持在较高的范围,进而延长二次电池的循环寿命、提高二次电池的能量密度。
在一些可能的实施例中,激活补锂材料对二次电池进行补锂,包括:将过充保护电压设置为补锂电压,补锂电压为与二次电池所处充电节点对应的充电截止电压;以预设的第一倍率恒流充电至补锂电压;在补锂电压下恒压充电至预设的第一充电截止电流;以预设的第二倍率恒流放电至预设的第一截止电压。
通过上述方式实现对补锂材料的激活,能够在实现对二次电池补充活性锂的同时避免二次电池的电化学性能下降。
在一些可能的实施例中,将过充保护电压设置为补锂电压之后,方法还包括:将二次电池加热至第一温度。对二次电池进行第一充电流程之前,方法还包括:控制二次电池的温度为第二温度。
上述技术方案在补锂之前对二次电池进行加热,补锂后以较低的温度进行循环,减少了补锂过程中电池极化带来的容量损失,从而可以使补锂材料释放出更多的活性锂,并加快补锂的速度。
在一些可能的实施例中,第一温度为25℃~60℃,第二温度为20℃~30℃。
第一温度、第二温度控制在合适的范围内,能够进一步提高补锂的效率并保证二次电池的电化学性能。
在一些可能的实施例中,第一充电流程包括:以预设的第三倍率恒流放电至预设的第二截止电压;以预设的第四倍率恒流充电至第一截止电压;在第一截止电压下恒压充电至预设的第二充电截止电流;以预设的第三倍率恒流放电至第二截止电压。
上述技术方案中,对二次电池进行第一充电流程,能够便于获取二次电池的充电参数,从而确定补锂效果。
在一些可能的实施例中,第一倍率为0.1C~1C。
在一些可能的实施例中,第一倍率为0.1C~0.5C。
第一倍率在合适的范围内,能够使活性锂充分、均匀地从电极材料中脱嵌,并且能够提高负极的锂存量。
在一些可能的实施例中,在SOH 2大于第二阈值的情况下,对二次电池充电,包括:SOH 2大于第二阈值的情况下,对二次电池循环执行以下步骤,直至满足预设的停止条件:以预设的第四倍率恒流充电至第一截止电压;在第一截止电压下恒压充电至预设的第二充电截止电流;以预设的第三倍率恒流放电至第二截止电压,预设的停 止条件包括:二次电池放电至第二截止电压的次数达到预设次数阈值,或者二次电池处于预设的充电节点。
上述技术方案中,可以在活性锂的含量足够的情况下进行正常的充放电循环,从而保证二次电池的循环性能。
在一些可能的实施例中,方法还包括:根据二次电池的循环次数以及循环容量设置N个充电节点以及与每个充电节点一一对应的多个第一阈值,其中,N≥2;设置与N个充电节点一一对应的多个第二阈值;根据第二阈值设置与N个充电节点一一对应的多个充电截止电压。
上述技术方案能够在每一充电节点对二次电池的健康状况态进行监测,从而能够及时补充活性锂,进而保证电池的能量密度和循环寿命。
在一些可能的实施例中,充电截止电压为4.4V~4.8V。
充电截止电压在上述合适的范围内,能够更好地激活补锂材料进行补锂。
在一些可能的实施例中,补锂材料的分子式为Li 1+xM yO z,其中,M元素选自Ni、Co中的至少一种以及Mn、Mo、Ru、Ti中的至少一种;0.05≤x≤0.5,0.10<y≤0.95,2≤z<4;基于二次电池中正极极片的总质量,补锂材料的质量占比w满足:0≤w≤0.35。
补锂材料的组成及含量在上述合适的范围内,能够进一步延长二次电池的循环寿命、保证二次电池的能量密度。
在一些可能的实施例中,补锂材料的首次库伦效率e满足:0.2≤e≤0.9。
首次库伦效率在上述合适的范围内,能够减少二次电池在首次充放电时的不可逆容量损失,从而提高二次电池的循环性能和能量密度。
在一些可能的实施例中,在二次电池中,负极活性材料的充电容量与正极活性材料的充电容量之比C.B.满足1.05≤C.B.≤1.15。
控制负极活性材料的充电容量与正极活性材料的充电容量之比C.B.在合适的范围内,能够在保证二次电池的循环性能的同时,提高二次电池的能量密度,降低二次电池的制造成本。
在一些可能的实施例中,二次电池具有透气顶盖。
二次电池具有透气顶盖,能够在二次电池补锂及循环过程中产生气体的情况下,及时将气体排出,从而避免电池膨胀等安全隐患。
第二方面,本申请实施例提供了一种用于二次电池的充电装置,二次电池包括补锂材料,装置包括:获取模块,用于在二次电池处于预设充电节点的情况下,获取二次电池的第一健康状态值SOH 1;处理模块,用于在SOH 1小于或等于第一阈值的情况下,激活补锂材料对二次电池进行补锂;第一充电模块,用于对二次电池进行第一充电流程;第一确定模块,用于根据二次电池进行第一充电流程的工作参数确定二次电池的第二健康状态值SOH 2;第二充电模块,用于在SOH 2大于第二阈值的情况下,对二次电池充电。
第三方面,本申请实施例提供了一种充电设备,该设备包括:处理器以及存储有计算机程序指令的存储器;所述处理器执行所述计算机程序指令时实现如本申请第 一方面任一实施例提供的充电方法。
第四方面,本申请实施例提供了一种计算机存储介质,其特征在于,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现如本申请第一方面任一实施例提供的充电方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的充电方法的流程示意图;
图2是本申请另一个实施例提供的充电装置的结构示意图;
图3是本申请又一个实施例提供的充电设备的结构示意图;
图4为本申请实施例7及对比例3的二次电池25℃循环容量保持率测试图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两 片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
为了满足二次电池在高能量密度方面的需求,可采用补锂技术来增加活性锂含量,以补偿二次电池首次充电过程中的活性锂损失。目前主要的、且技术成熟度较高的补锂工艺是向负极直接添加锂带或者锂粉,或正极极片中加入富锂材料(例如富锂过渡金属氧化物)来增加额外的活性锂,电池化成或首次充电过程中,这部分活性锂从富锂材料脱出,以补偿负极活性材料形成SEI膜造成的活性锂损失。
发明人经研究发现,由于相关的补锂工艺都是在电池化成之前对材料预锂化或者首次充电化成时对二次电池进行补锂,富锂材料在首周循环时即大量脱出活性锂,这就需要过量的负极活性材料来提供活性锂的嵌入位点。并且,由于首次库伦效率较低,这部分过量的负极活性材料无法参与后期循环的脱嵌锂过程,导致二次电池的能量密度有所下降。此外,在电池化成或首次充电时对二次电池进行补锂通常需要高电压充电,这也造成了正负极极片表面的材料发生相变、电解液分解产气、DCR较大等一系列的问题,这些问题还会随着循环次数的增加而趋于严重。
为了解决相关技术问题,发明人经深入思考,发现在二次电池循环过程中对其进行补锂,能够大大弥补补锂技术的不足。
基于此,本申请实施例提供了一种用于二次电池的充电方法、装置、设备及计算机存储介质。下面首先对本申请实施例所提供的用于二次电池的充电方法进行介绍。
图1示出了本申请一个实施例提供的用于二次电池的充电方法的流程示意图,该二次电池包括补锂材料。在二次电池中,补锂材料可以为添加于正极极片的正极补锂材料。如图1所示,该用于二次电池的充电方法具体可以包括以下步骤S110~S150。
S110,在二次电池处于预设充电节点的情况下,获取二次电池的第一健康状态值SOH 1
S120,在SOH 1小于或等于第一阈值的情况下,激活补锂材料对二次电池进行补锂。
S130,对二次电池进行第一充电流程。
S140,根据二次电池进行第一充电流程的工作参数确定二次电池的第二健康状态值SOH 2
S150,在SOH 2大于第二阈值的情况下,对二次电池充电。
步骤S110中,预设的充电节点可以为根据二次电池的循环寿命或容量衰减情况等实验数据设置的至少两个充电节点中的任一充电节点。具体地,预设的充电节点可以为根据上述实验数据预测的活性锂损失较大的时间节点或循环次数节点。
SOH 1可以表示二次电池当前时刻的剩余电池寿命SOH,其具有本领域公知的含义。具体地,SOH可以基于循环寿命(Cycling Life)定义,也可以基于容量衰减(Capacity Fade)定义。
步骤S120中,第一阈值可以为预先设置的用于衡量二次电池的活性锂损失程度的SOH值。SOH 1小于或等于第一阈值时,可认为二次电池处于需要补充活性锂的状态,此时可以激活补锂材料对二次电池进行补锂。激活补锂材料的手段可以有多种,例如可以通过提高充电电压或充电倍率、提高温度等激活补锂材料,或者以一定的电压或倍率充放电以实现补锂材料的激活。在一个示例中,在SOH 1小于或等于第一阈值的情况下,还可以对用户发送提示信号,以提示用户二次电池处于需要补充活性锂的状态。
步骤S130中,第一充电流程可以为以二次电池进行正常充放电循环的参数进行充放电。
步骤S140、S150中,SOH 2可以表示二次电池补锂之后的剩余电池寿命SOH,其含义与SOH 1类似。上述第二阈值可以为预先设置的用于衡量二次电池的活性锂含量是否达标的SOH值。SOH 2大于第二阈值时,可认为二次电池经补锂后,其损失的活性锂已经得到足够的补充,二次电池中的活性锂含量能够满足工作需要。此时可以认为补锂完成,对二次电池进行正常的充放电循环。
本申请实施例在二次电池处于预设的充电节点时检测二次电池的SOH值,在SOH值较低的情况下对二次电池进行后置补锂,在补锂后二次电池的活性锂含量达标的情况下,进行正常的充放电循环。这样,能够及时对二次电池的活性锂损失情况进行判断,并有效地补充活性锂。如此,能够延长二次电池的循环寿命并提高二次电池的能量密度。此外,本申请实施例是对二次电池后置补锂,避免了正负极极片表面的材料发生相变、DCR增长、电解液分解产气等一系列的问题,从而提高了二次电池的循环性能和倍率性能。
在一些实施例中,该方法还可以包括:在SOH 2小于或等于第二阈值的情况下,确定二次电池处于该预设充电节点的下一充电节点;激活补锂材料对二次电池进行补锂。
在SOH 2小于或等于第二阈值的情况下,可认为二次电池经补锂后,其活性锂含量仍不满足二次电池的工作需要。此时,二次电池可以进入下一充电节点,再次进行补锂。这样,能够根据补锂后二次电池的活性锂含量,确定二次电池的状态能否满足工作需要,在二次电池的状态不能满足工作需要的情况下,再次对二次电池进行补 锂。如此,能够使二次电池中活性锂的含量保持在较高的范围,从而延长二次电池的循环寿命、提高二次电池的能量密度。
在一些实施例中,激活补锂材料对二次电池进行补锂,具体可以包括:将过充保护电压设置为补锂电压,补锂电压为与二次电池所处充电节点对应的充电截止电压;以预设的第一倍率恒流充电至补锂电压;在补锂电压下恒压充电至预设的第一充电截止电流;以预设的第二倍率恒流放电至预设的第一截止电压。
过充保护电压可以理解为:为了保证二次电池的安全性能而设置的充电电压的最大值。当充电电压大于过充保护电压时,即断开充电电路。
上述补锂电压可以理解为用于激活补锂材料所需要达到的充电截止电压。充电截止电压的大小可以根据充电节点设置,充电截止电压一般高于二次电池进行正常的充放电循环时的充电截止电压。在一个示例中,该充电截止电压可以为4.4V~4.8V,4.4V~4.7V或4.5V~4.7V。充电截止电压的大小在合适的范围内,可以兼顾补锂过程的安全性和补锂效率。
二次电池处于不同的充电节点时,对应的充电截止电压可以相同,也可以不同。在一个示例中,可以随着充电节点对应的循环次数的增加,提高充电节点对应的充电截止电压。这样,相当于将预补锂的高压充电过程切割成多次后置补锂过程,电极材料获得了释放表面应力和恢复结构的缓冲时间和空间。由此,可以提高正负极极片表面结构的稳定性,从而提高二次电池的初始容量、首次库伦效率等电化学性能。
第一倍率、第二倍率可以为预设的较小的充放电倍率。第一倍率和第二倍率可以相同,也可以不同,例如,第一倍率和第二倍率可以各自独立地选自0.1C~1C,或者各自独立地选自0.1C~0.5C。具体地,第一倍率和第二倍率可以各自独立地为0.1C、0.2C、0.33C、0.5C或1C。激活补锂材料对二次电池进行补锂的过程中,控制充放电倍率在适当且较小的范围内,可以使活性锂从电极材料中充分、均匀地脱嵌,从而减少过渡金属迁移和材料表面相变的程度,并提高负极的锂存量,补充更多的活性锂,进而提高二次电池的能量密度和循环性能。
第一充电截止电流可以为根据二次电池中电极材料、补锂材料的性质设置的充电截止电流,其可以为0.05C、0.04C、0.02C等。第一截止电压可以为正常循环时的充电截止电压。
该实施例中,以小倍率、高电压充电,以较小的倍率放电,如此,实现对补锂材料的激活,从而实现对二次电池进行补锂。这样,能够在补充活性锂的同时,避免正负极极片表面的材料发生相变、电解液分解产气、DCR增大等问题,从而进一步保证二次电池具有高能量密度、长循环寿命以及良好的循环性能和倍率性能。
在一些实施例中,将过充保护电压设置为补锂电压之后,该方法还可以包括:将二次电池加热至第一温度。对二次电池进行第一充电流程之前,方法还可以包括:控制二次电池的温度为第二温度。
第一温度可以为25℃~60℃,30℃~55℃,35℃~50℃或40℃~45℃。具体地,第一温度可以为25℃,35℃,45℃或者55℃。第二温度可以为二次电池进行正常的充放电循环时的温度,例如20℃~30℃。容易理解的,第二温度可以低于第一温度。第 一温度在合适的范围内,可以减少补锂过程中电池极化带来的容量损失,使补锂材料释放出更多的活性锂,并加快补锂的速度。第二温度在合适的范围内,可以保证二次电池的循环性能和倍率性能。
该实施例中,激活补锂材料对二次电池进行补锂之前,通过升高二次电池的温度,减少了补锂过程中电池极化带来的容量损失,从而可以使补锂材料释放出更多的活性锂,并加快补锂的速度。如此,提高了补锂效率,从而提高了二次电池的能量密度和循环性能。
在一些实施例中,第一充电流程可以包括:以预设的第三倍率恒流放电至预设的第二截止电压;以预设的第四倍率恒流充电至第一截止电压;在第一截止电压下恒压充电至预设的第二充电截止电流;以预设的第三倍率恒流放电至所述第二截止电压。
在第一充电流程中,二次电池可以以正常循环过程中的充放电倍率及充放电截止电压工作。第三倍率可以为0.2C~1C。第二截止电压可以为二次电池正常循过程对应的放电截止电压。第四倍率可以为0.2C~1C。第二充电截止电流可以为二次电池正常循过程对应的充电截止电流,具体地,第二充电截止电流可以为0C~0.05C。
该实施例中,在补锂之后,二次电池以正常循环过程中的充放电倍率及充放电截止电压工作。这样,可以根据二次电池在第一充电流程中的工作参数确定二次电池在正常循环过程中的SOH值,从而判断补锂后二次电池中活性锂的含量能否满足工作需要,进而便于确定二次电池的补锂流程。
在一些实施例中,在SOH 2大于第二阈值的情况下,对二次电池充电,具体可以包括:SOH 2大于第二阈值的情况下,对二次电池循环执行以下步骤,直至满足预设的停止条件:以预设的第四倍率恒流充电至第一截止电压;在第一截止电压下恒压充电至预设的第二充电截止电流;以预设的第三倍率恒流放电至第二截止电压。预设的停止条件可以包括:二次电池放电至第二截止电压的次数达到预设次数阈值,或者二次电池处于预设的充电节点。
该实施例中,可以在补锂后,二次电池中活性锂的含量能够满足工作需要的情况下,进行正常的充放电循环,直至二次电池的寿命终止,或者直至二次电池需要补充活性锂。如此,能够使二次电池在补锂量达标后迅速进入正常的工作状态,保证了二次电池的循环性能。
在一些实施例中,该方法还可以包括:根据二次电池的循环次数以及循环容量设置N个充电节点以及与每个充电节点一一对应的多个第一阈值,其中,N≥2;设置与N个充电节点一一对应的多个第二阈值;根据第二阈值设置与N个充电节点一一对应的多个充电截止电压。
上述N个充电节点可以为根据二次电池的循环寿命或容量衰减情况等实验数据设置的至少两个充电节点中的任一充电节点。具体地,充电节点可以为根据上述实验数据预测的活性锂损失较大的时间节点或循环次数节点。容易理解的,N个充电节点中,每个充电节点对应的循环时间或循环次数不同,其对应的第一阈值和第二阈值也不同。随着循环时间或循环次数的增加,充电节点对应的第一阈值和第二阈值可以逐 步减小。类似地,随着循环时间或循环次数的增加,激活补锂材料所需的电压也会相应地变化。具体地,可以根据二次电池在不同充电节点所需要达到的活性锂含量,例如第二阈值,来设置与每一充电节点对应的充电截止电压。
该实施例中,可以预先设置2个或2个以上的多个充电节点,在每一充电节点对二次电池的健康状况态进行监测,从而能够及时补充活性锂,进而保证电池的能量密度和循环寿命。
在一些实施例中,补锂材料的分子式可以为Li 1+xM yO z
其中,M元素可选自Ni、Co中的至少一种以及Mn、Mo、Ru、Ti中的至少一种。0.05≤x≤0.5,可选地,0.1≤x≤0.3,更具体地,0.15≤x≤0.25。0.10<y≤0.95,可选地,0.55≤y≤0.90,更具体地,0.65≤y≤0.85。2≤z≤4,可选地,2≤z≤3,更具体地,2≤z≤2.5。
基于二次电池中正极极片的总质量,补锂材料的质量占比w可满足:0≤w≤0.35。可选地,0≤w≤0.25,0.02≤w≤0.15或0.03≤w≤0.10。
该实施例中的补锂材料可以添加于二次电池的正极极片中。该补锂材料具有合适的活性锂含量以及合适的激活电压,能够在电池循环过程中被激活,从而实现对二次电池补充活性锂。此外,发明人发现,补锂材料添加量过低,对二次电池的循环寿命改善效果有所下降,添加量过高,则会降低二次电池的能量密度。补锂材料在正极极片中的质量占比在上述合适的范围内,能够兼顾二次电池的循环寿命和能量密度。如此,进一步延长了二次电池的循环寿命、保证了二次电池的能量密度。
在一些实施例中,补锂材料的首次库伦效率e可满足:0.20≤e≤0.90,可选地,0.30≤e≤0.80,0.40≤e≤0.75,0.40≤e≤0.65或0.50≤e≤0.65。
该实施例中,可以通过多种手段控制补锂材料的首次库伦效率,例如,可以通过调节补锂材料的组成、晶相、制备工艺以及补锂材料颗粒的疏松程度等手段对首次库伦效率进行调整。无论采用何种方式,能够使补锂材料的首次库伦效率在上述合适的范围内即可,本申请对此不作限定。如此,能够减少二次电池在首次充放电时的不可逆容量损失,从而提高二次电池的循环性能和能量密度。
通过控制补锂材料的组成、质量占比、首次库伦效率,正极相对负极的锂存量可满足:0.01≤锂存量≤0.99,0.05≤锂存量≤0.60,0.09≤锂存量≤0.3,从而显著提高对二次电池的寿命改善效果以及保证二次电池的能量密度。
在一些实施例中,在二次电池中,负极活性材料的充电容量与正极活性材料的充电容量之比C.B.可满足:1.05≤C.B.≤1.15,1.1≤C.B.≤1.15或1.1≤C.B.≤1.13。
在预锂化补锂技术中,考虑到首次充电时补锂材料中富锂相的活化和正极活性材料在更宽区间充电带来更多的充电容量,通常会使用过量的负极活性材料匹配正极容量,这部分过量的负极活性材料在后续循环过程中无法被利用,由此造成了能量密度的降低。本申请采用后置补锂的手段进行补锂,在循环过程中进行补锂时,能够充分利用隐藏的放电深度区间(Depth of Discharge,DOD)对应的负极活性材料脱嵌锂位点,例如0~5%或95~100%的DOD对应的负极活性材料脱嵌锂位点。并且,随着循环中活性锂损失逐渐增多,负极活性材料可提供大量脱嵌锂位点。这样,可以按照正 常的循环容量设计负极活性材料的含量,相应地也不需要增加电解液的使用量。
示例性地,正极在循环电压区间内的首周充电容量定义为Q,在补锂电压区间内正极首周充电容量定义为R,负极首周充电比容量定义为P。预锂化补锂技术中,设计二次电池时,所需负极的首周充电容量为C.B.*(Q+R)。而按照正常循环容量设计负极,所需负极的首周充电容量为C.B.*Q。当两种设计C.B.值相同时,本实施方式可节省C.B.*R/P的负极活性材料使用量。
该实施例中,控制二次电池中,负极活性材料的充电容量与正极活性材料的充电容量之比C.B.在合适的范围内,能够在保证二次电池的循环性能的同时,提高二次电池的能量密度,降低二次电池的制造成本。
在一些实施例中,二次电池可以具有透气顶盖。
二次电池具有透气顶盖,能够在二次电池补锂及循环过程中产生气体的情况下,及时将气体排出,从而避免电池膨胀等安全隐患。
基于相同的发明构思,本申请实施例还提供了一种用于二次电池的充电装置200。该二次电池包括补锂材料。具体结合图2进行说明。
如图2所示,充电装置200可以包括获取模块201、处理模块202、第一充电模块203、第一确定模块204和第二充电模块205。
获取模块201,用于在二次电池处于预设充电节点的情况下,获取二次电池的第一健康状态值SOH 1
处理模块202,用于在SOH 1小于或等于第一阈值的情况下,激活补锂材料对二次电池进行补锂。
第一充电模块203,用于对二次电池进行第一充电流程。
第一确定模块204,用于根据二次电池进行第一充电流程的工作参数确定二次电池的第二健康状态值SOH 2
第二充电模块205,用于在SOH 2大于第二阈值的情况下,对二次电池充电。
在一些实施例中,充电装置200还可以包括:第二确定模块,用于在SOH 2小于或等于第二阈值的情况下,确定述二次电池处于预设充电节点的下一充电节点。上述处理模块202还用于激活所述补锂材料对所述二次电池进行补锂。
在一些实施例中,处理模块202具体可以包括:设置子模块,用于将过充保护电压设置为补锂电压,补锂电压为与二次电池所处充电节点对应的充电截止电压;第一恒流充电子模块,用于以预设的第一倍率恒流充电至述补锂电压;第一恒压充电子模块,用于在补锂电压下恒压充电至预设的第一充电截止电流;第一恒流放电子模块,用于以预设的第二倍率恒流放电至预设的第一截止电压。
在一些实施例中,处理模块202还可以包括:加热子模块,用于将二次电池加热至第一温度;控制子模块,用于控制二次电池的温度为第二温度。
在一些实施例中,第一温度可以为25℃~60℃,30℃~55℃,35℃~50℃或40℃~45℃。第二温度可以为20℃~30℃。
在一些实施例中,第一充电模块203具体可以包括:第二恒流放电子模 块,用于以预设的第三倍率恒流放电至预设的第二截止电压;第二恒流充电子模块,用于以预设的第四倍率恒流充电至第一截止电压;第二恒压充电子模块,用于在第一截止电压下恒压充电至预设的第二充电截止电流;第三恒流放电子模块,用于以预设的第三倍率恒流放电至第二截止电压。
在一些实施例中,第一倍率可以为0.1C~1C。
在一些实施例中,第一倍率可以为0.1C~0.5C。
在一些实施例中,第二充电模块具体可以包括:处理子模块,用于在SOH 2大于第二阈值的情况下,对二次电池循环执行以下步骤,直至满足预设的停止条件:以预设的第四倍率恒流充电至第一截止电压;在第一截止电压下恒压充电至预设的第二充电截止电流;以预设的第三倍率恒流放电至第二截止电压。预设的停止条件可以包括:二次电池放电至第二截止电压的次数达到预设次数阈值,或者二次电池处于预设的充电节点。
在一些实施例中,充电装置200还可以包括:第一设置模块,用于根据二次电池的循环次数以及循环容量设置N个充电节点以及与每个充电节点一一对应的多个第一阈值,其中,N≥2;第二设置模块,用于设置与N个充电节点一一对应的多个第二阈值;第三设置模块,用于根据第二阈值设置与N个充电节点一一对应的多个充电截止电压。
在一些实施例中,充电截止电压可以为4.4V~4.8V,4.4V~4.7V或4.5V~4.7V。
在一些实施例中,补锂材料的分子式可为Li 1+xM yO z
其中,M元素可选自Ni、Co中的至少一种以及Mn、Mo、Ru、Ti中的一种或几种。0.05≤x≤0.5,可选地,0.1≤x≤0.3,更具体地,0.15≤x≤0.25。0.10<y≤0.95,可选地,0.55≤y≤0.90,更具体地,0.65≤y≤0.85。2≤z≤4,可选地,2≤z≤3,更具体地,2≤z≤2.5。
基于二次电池中正极极片的总质量,补锂材料的质量占比w可满足:0≤w≤0.35。可选地,0≤w≤0.25,0.02≤w≤0.15或0.03≤w≤0.10。
在一些实施例中,补锂材料的首次库伦效率e可满足:0.20≤e≤0.90,可选地,0.30≤e≤0.80,0.40≤e≤0.75,0.40≤e≤0.65或0.50≤e≤0.65。
在一些实施例中,在二次电池中,负极活性材料的充电容量与正极活性材料的充电容量之比C.B.可满足1.05≤C.B.≤1.15,1.1≤C.B.≤1.15或1.1≤C.B.≤1.13。
在一些实施例中,二次电池可以具有透气顶盖。
由此,可以在二次电池处于预设的充电节点时检测二次电池的SOH值,在SOH值较低的情况下对二次电池进行后置补锂,在补锂后二次电池的活性锂含量达标的情况下,进行正常的充放电循环。这样,能够及时对二次电池的活性锂损失情况进行判断,并有效地补充活性锂。如此,能够延长二次电池的循环寿命并提高二次电池的能量密度。此外,本申请实施例是对二次电池后置补锂,避免了正负极极片表面的材料发生相变、DCR增长、电解液分解产气等一系列的问题,从而提高了二次电池的循环性能和倍率性能。
基于同一发明构思,本申请实施例还提供了一种充电设备,具体结合图3进行详细说明。
如图3所示,充电设备可以包括处理器301以及存储有计算机程序指令的存储器302。
具体地,上述处理器301可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器302可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器302可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器302可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器302可在综合网关容灾设备的内部或外部。在特定实施例中,存储器302是非易失性固态存储器。
存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器301通过读取并执行存储器302中存储的计算机程序指令,以实现上述实施例中的任意一种充电方法。
作为一个示例,充电设备还可包括通信接口303和总线310。其中,如图3所示,处理器301、存储器302、通信接口303通过总线310连接并完成相互间的通信。
通信接口303,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线310包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线310可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该充电设备可以执行本申请实施例中的多轮对话意图识别方法,从而实现结合图1和图2描述的充电方法和装置。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现本申请实施例提供的 图1所示实施例的方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和展示出了若干具体地步骤作为示例。但是,本申请的方法过程并不限于所描述和展示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,做出各种改变、修改和添加,或者改变步骤之间的顺序。
以上的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(Application Specific Integrated Circuit,ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、只读存储器(Read-Only Memory,ROM)、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(Radio Frequency,RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1~17
正极极片的制备
将正极活性材料LiNi 0.5Co 0.2Mn 0.3O 2、补锂材料、粘结剂聚偏氟乙烯(PVDF)、导电剂Super P按照80:10:5:5的质量比溶解于N-甲基吡咯烷酮(NMP),混合均匀后涂布于铝箔表面,经烘干、冷压后得到正极极片。
负极极片的制备
将负极活性材料、丁苯橡胶SBR、导电剂Super P按照90:5:5的质量比溶解于去离子水,混合均匀后涂布于铜箔表面,经烘干、冷压后得到负极极片。
二次电池的制备
将制备的正极极片、负极极片进行卷绕,热压,注液和封装,得到锂离子二次电池。
二次电池的化成
以0.1C的倍率恒流充电至3.0V截止,再以0.2C的倍率恒流充电至 3.75V。
二次电池的循环
25℃下二次电池在正常状态下循环进行:1C恒流充电至4.40V,恒压充电至0.05C,0.2C恒流放电至2.5V。
二次电池的补锂
对实施例5的二次电池设置1个充电节点,实施例6、7的二次电池设置2个充电节点,对其余实施例的二次电池设置3个充电节点。第一节点为二次电池循环至500cls,对应的第一阈值为93%SOH,第二阈值为98%SOH,充电截止电压为Vc 1;第二节点为二次电池循环至1000cls,对应的第一阈值为88%SOH,第二阈值为93%SOH,充电截止电压为Vc 2;第三节点为二次电池循环至1500cls对应的第一阈值为83%SOH,第二阈值为85%SOH,充电截止电压为Vc 3。在二次电池到达充电节点时激活补锂材料对二次电池进行补锂,补锂过程中的第一倍率、第一温度、第一截止电压见表1,第一充电截止电流为0.05C,第二倍率为0.2C。若补锂后二次电池的SOH低于对应的第二阈值,则直接进入下一充电节点进行补锂。
对比例1
正极极片的制备、负极极片的制备、二次电池的制备、二次电池的化成与实施例1~17相同,不同在于:未添加补锂材料,正极极片的制备中,正极活性材料、PVDF、导电剂Super P的质量比为90:5:5。
二次电池的循环
25℃下循环进行:1C恒流充电至4.40V,恒压充电至0.05C,0.2C恒流放电至2.5V。
对比例2
正极极片的制备、负极极片的制备、二次电池的制备、二次电池的化成与实施例1~17相同。
二次电池的补锂
化成流程结束后,继续以0.2C的倍率恒流充电至4.7V截止,再恒压充电,截止电流为0.05C;0.33C恒流放电至2.5V。
二次电池的循环
25℃下循环进行:1C恒流充电至4.40V,恒压充电至0.05C,0.2C恒流放电至2.5V。
对比例3
正极极片的制备、负极极片的制备、二次电池的制备、二次电池的化成与实施例1~17相同。
二次电池的补锂
化成流程结束后,继续以0.2C的倍率恒流充电至4.5V截止,再恒压充电,截止电流为0.05C;0.33C恒流放电至2.5V。
二次电池的循环
25℃下循环进行:1C恒流充电至4.40V,恒压充电至0.05C,0.2C恒流放 电至2.5V。
具体参数详见表1。
测试部分
(1)二次电池的容量保持率测试
在25℃下,将二次电池以1C倍率恒流充电到4.4V,然后恒压充电至0.05C,记录此时的充电容量,即为第一圈充电容量;将二次电池以0.2C恒流放电至2.5V,静置5min,此为一个循环充放电过程,记录此时的放电容量,即为第一圈放电容量。将二次电池按照上述方式进行循环充放电测试,记录每周循环后的放电容量,则二次电池循环到第N圈的容量保持率定义为第N圈的放电容量除以第一圈的放电容量的百分比值。
实施例7及对比例3的测试结果如图4所示。
(2)二次电池的循环寿命测试
在25℃下,将二次电池以1C倍率恒流充电到上限截止电压4.4V,然后恒压充电至0.05C,记录此时的充电容量,即为第一圈充电容量;将二次电池以0.2C恒流放电至2.5V,之后静置5min,此为一个循环充放电过程,记录此时的放电容量,即为第一圈放电容量。将二次电池按照上述方式进行循环充放电测试,记录每周循环后的放电容量,直至二次电池的放电衰减容量为第一圈放电容量的80%,用此时的循环圈数作为二次电池的循环寿命。
(3)补锂材料的首次库伦效率e的测试
将补锂材料、粘结剂聚偏氟乙烯(PVDF)、导电剂Super P按照90:5:5的质量比溶解于N-甲基吡咯烷酮(NMP),混合均匀后涂布于铝箔表面,经烘干、冷压后制备得到正极极片。将负极活性材料、丁苯橡胶SBR、导电剂Super P按照90:5:5的质量比溶解于去离子水,混合均匀后涂布于铜箔表面,经烘干、冷压后得到负极极片。
用上述正极极片、负极极片组装得到二次电池。
在25℃下,将二次电池以0.1C倍率恒流充电至4.7V,然后恒压充电至0.05C,记录此时的充电容量,即为首圈充电容量C 0;将二次电池以0.1C恒流放电至2.5V,记录此时的放电容量,即为首周放电容量D 0;补锂材料的首次库伦效率e即为D 0/C 0
(4)锂存量测试方法
锂存量为负极活性材料内锂元素含量占所有元素的比例。
干燥后的负极极片在一定温度及时间下烘烤(例如400℃,2h),在烘烤后的负极极片中任选一区域,对负极活性材料取样(可以选用刀片刮粉取样)。用浓硝酸将负极活性材料样品溶解后稀释后配制成500μg/mL的溶液之后,利用电感耦合等离子体发射光谱仪(ICP-OES),采用ICP标准测试流程测试即可。
测试结果详见表1。
表1:实施例1~17及对比例1~3的参数及测试结果
Figure PCTCN2022089479-appb-000001
根据上述测试结果可知,实施例1~24采用本申请提供的充电方法进行后置补锂,其循环寿命均有所提高。对比例2与实施例5均只进行了一次补锂,且补锂电压相等,区别仅在于对比例2是在二次电池化成后激活补锂材料,而实施例5是在循环过程中进行后置补锂,但是实施例5的二次电池,循环寿命明显长于对比例2的二次电池。此外,补锂材料种类、首次库伦效率e、补锂材料的质量占比w、第一温度、第一倍率、C.B.也是影响二次电池循环寿命的重要因素。
以上,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解 到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (18)

  1. 一种用于二次电池的充电方法,所述二次电池包括补锂材料,所述方法包括:
    在所述二次电池处于预设充电节点的情况下,获取所述二次电池的第一健康状态值SOH 1
    在所述SOH 1小于或等于第一阈值的情况下,激活所述补锂材料对所述二次电池进行补锂;
    对所述二次电池进行第一充电流程;
    根据所述二次电池进行所述第一充电流程的工作参数确定所述二次电池的第二健康状态值SOH 2
    在所述SOH 2大于第二阈值的情况下,对所述二次电池充电。
  2. 根据权利要求1所述的方法,所述方法还包括:
    在所述SOH 2小于或等于所述第二阈值的情况下,确定所述二次电池处于所述预设充电节点的下一充电节点;
    激活所述补锂材料对所述二次电池进行补锂。
  3. 根据权利要求1或2所述的方法,其中,所述激活所述补锂材料对所述二次电池进行补锂,包括:
    将过充保护电压设置为补锂电压,所述补锂电压为与所述二次电池所处充电节点对应的充电截止电压;
    以预设的第一倍率恒流充电至所述补锂电压;
    在所述补锂电压下恒压充电至预设的第一充电截止电流;
    以预设的第二倍率恒流放电至预设的第一截止电压。
  4. 根据权利要求3所述的方法,其中,所述将过充保护电压设置为补锂电压之后,所述方法还包括:
    将所述二次电池加热至第一温度,
    所述对所述二次电池进行第一充电流程之前,所述方法还包括:
    控制所述二次电池的温度为第二温度。
  5. 根据权利要求4所述的方法,其中,所述第一温度为25℃~60℃,所述第二温度为20℃~30℃。
  6. 根据权利要求1-5任一项所述的方法,其中,
    所述第一充电流程包括:
    以预设的第三倍率恒流放电至预设的第二截止电压;
    以预设的第四倍率恒流充电至所述第一截止电压;
    在所述第一截止电压下恒压充电至预设的第二充电截止电流;
    以预设的第三倍率恒流放电至所述第二截止电压。
  7. 根据权利要求3-6任一项所述的方法,其中,所述第一倍率为0.1C~1C。
  8. 根据权利要求3-7任一项所述的方法,其中,所述第一倍率为0.1C~0.5C。
  9. 根据权利要求1-8任一项所述的方法,其中,所述在所述SOH 2大于第二阈值的情况下,对所述二次电池充电,包括:
    SOH 2大于第二阈值的情况下,对所述二次电池循环执行以下步骤,直至满足预设的停止条件:
    以预设的第四倍率恒流充电至所述第一截止电压;
    在所述第一截止电压下恒压充电至预设的第二充电截止电流;
    以预设的第三倍率恒流放电至所述第二截止电压,
    所述预设的停止条件包括:所述二次电池放电至所述第二截止电压的次数达到预设次数阈值,或者所述二次电池处于所述预设的充电节点。
  10. 根据权利要求1-9任一项所述的方法,所述方法还包括:
    根据所述二次电池的循环次数以及循环容量设置N个充电节点以及与每个所述充电节点一一对应的多个所述第一阈值,其中,N≥2;
    设置与所述N个充电节点一一对应的多个所述第二阈值;
    根据所述第二阈值设置与所述N个充电节点一一对应的多个所述充电截止电压。
  11. 根据权利要求3-9任一项所述的方法,其中,所述充电截止电压为4.4V~4.8V。
  12. 根据权利要求1-11任一项所述的方法,其中,所述补锂材料的分子式为Li 1+xM yO z
    其中,M元素选自Ni、Co中的至少一种以及Mn、Mo、Ru、Ti中的至少一种,0.05≤x≤0.5,0.10<y≤0.95,2≤z<4;
    基于所述二次电池中正极极片的总质量,所述补锂材料的质量占比w满足:0≤w≤0.35。
  13. 根据权利要求1-12任一项所述的方法,其中,所述补锂材料的首次库伦效率e满足:0.2≤e≤0.9。
  14. 根据权利要求1-13任一项所述的方法,其中,在所述二次电池中,负极活性材料的充电容量与正极活性材料的充电容量之比C.B.满足1.05≤C.B.≤1.15。
  15. 根据权利要求1-14任一项所述的方法,其中,所述二次电池具有透气顶盖。
  16. 一种用于二次电池的充电装置,所述二次电池包括补锂材料,所述装置包括:
    获取模块,用于在二次电池处于预设充电节点的情况下,获取所述二次电池的第一健康状态值SOH 1
    处理模块,用于在所述SOH 1小于或等于第一阈值的情况下,激活所述补锂材料对所述二次电池进行补锂;
    第一充电模块,用于对所述二次电池进行第一充电流程;
    第一确定模块,用于根据所述二次电池进行所述第一充电流程的工作参数确定所述二次电池的第二健康状态值SOH 2
    第二充电模块,用于在所述SOH 2大于第二阈值的情况下,对所述二次电池充电。
  17. 一种充电设备,包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时实现如权利要求1-15任意一项所述的充电方法。
  18. 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-15任意一项所述的充电方法。
PCT/CN2022/089479 2021-10-29 2022-04-27 用于二次电池的充电方法、装置、设备及计算机存储介质 WO2023071104A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22764288.1A EP4195355A4 (en) 2021-10-29 2022-04-27 CHARGING METHOD AND APPARATUS FOR SECONDARY BATTERY, AND COMPUTER STORAGE DEVICE AND MEDIUM
KR1020227031404A KR102495663B1 (ko) 2021-10-29 2022-04-27 이차 전지의 충전 방법, 장치, 설비 및 컴퓨터 저장매체
JP2022554615A JP7487327B2 (ja) 2021-10-29 2022-04-27 二次電池用の充電方法、装置、設備、及びコンピュータ記憶媒体
US18/182,841 US11865943B2 (en) 2021-10-29 2023-03-13 Charging method for secondary battery, charging apparatus for secondary battery, charging device, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111277631.4A CN116073000B (zh) 2021-10-29 2021-10-29 用于二次电池的充电方法、装置、设备及计算机存储介质
CN202111277631.4 2021-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/182,841 Continuation US11865943B2 (en) 2021-10-29 2023-03-13 Charging method for secondary battery, charging apparatus for secondary battery, charging device, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2023071104A1 true WO2023071104A1 (zh) 2023-05-04

Family

ID=85556783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089479 WO2023071104A1 (zh) 2021-10-29 2022-04-27 用于二次电池的充电方法、装置、设备及计算机存储介质

Country Status (6)

Country Link
US (1) US11865943B2 (zh)
EP (1) EP4195355A4 (zh)
JP (1) JP7487327B2 (zh)
KR (1) KR102495663B1 (zh)
CN (1) CN116073000B (zh)
WO (1) WO2023071104A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539124A (zh) * 2017-03-01 2018-09-14 北京卫蓝新能源科技有限公司 具有补锂电极的二次电池及其制备方法
CN110112479A (zh) * 2019-04-25 2019-08-09 浙江锋锂新能源科技有限公司 一种高容量保持率锂离子电池的充放电方式
WO2021100247A1 (ja) * 2019-11-21 2021-05-27 株式会社日立ハイテク 二次電池の容量回復方法及び製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353741B2 (ja) 2010-02-02 2013-11-27 トヨタ自動車株式会社 リチウムイオン二次電池の充放電制御装置
CN102148410B (zh) * 2010-02-09 2014-02-12 新普科技股份有限公司 电池充电方法
JP2016091613A (ja) 2014-10-30 2016-05-23 株式会社日立製作所 電池システム及び容量回復方法
CN105655554B (zh) * 2016-01-11 2018-05-01 山东玉皇新能源科技有限公司 一种富锂锰基正极材料的水热改性方法
CN107221650B (zh) * 2017-07-07 2019-10-01 安普瑞斯(无锡)有限公司 一种补锂添加剂及其制备方法
JP6965839B2 (ja) * 2018-07-12 2021-11-10 トヨタ自動車株式会社 二次電池の充電方法
US11460510B1 (en) 2019-09-13 2022-10-04 Nissan Motor Co., Ltd. All-solid-state lithium ion secondary battery system and charging device for all-solid-state lithium ion secondary batteries
CN112582696B (zh) * 2019-09-29 2022-05-20 宁德新能源科技有限公司 充电方法、电子装置及存储介质
JP7494458B2 (ja) 2019-09-30 2024-06-04 株式会社Gsユアサ 制御方法、制御装置、及びコンピュータプログラム
CN110783652B (zh) * 2019-10-23 2021-06-29 北京小米移动软件有限公司 电池充电方法、电池充电装置及存储介质
KR20210074001A (ko) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 전극의 상대적 퇴화도를 이용한 이차 전지의 동작 제어 장치 및 방법
JP2021150029A (ja) * 2020-03-16 2021-09-27 株式会社日立ハイテク 容量回復装置、二次電池の製造方法、容量回復方法および二次電池システム
CN112701277A (zh) 2020-12-24 2021-04-23 中国科学院宁波材料技术与工程研究所 一种锂离子电池预锂化添加剂及其应用
CN113258147B (zh) * 2021-03-30 2022-04-01 清华大学 智能电池
CN113540591B (zh) * 2021-09-17 2021-12-17 中航锂电科技有限公司 一种锂离子电池补锂方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539124A (zh) * 2017-03-01 2018-09-14 北京卫蓝新能源科技有限公司 具有补锂电极的二次电池及其制备方法
CN110112479A (zh) * 2019-04-25 2019-08-09 浙江锋锂新能源科技有限公司 一种高容量保持率锂离子电池的充放电方式
WO2021100247A1 (ja) * 2019-11-21 2021-05-27 株式会社日立ハイテク 二次電池の容量回復方法及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195355A4 *

Also Published As

Publication number Publication date
JP2023549299A (ja) 2023-11-24
EP4195355A1 (en) 2023-06-14
US11865943B2 (en) 2024-01-09
CN116073000B (zh) 2024-01-23
US20230211701A1 (en) 2023-07-06
CN116073000A (zh) 2023-05-05
KR102495663B1 (ko) 2023-02-06
JP7487327B2 (ja) 2024-05-20
EP4195355A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
JP6498792B2 (ja) 電池充電限界予測方法、それを用いた電池急速充電方法及び装置
CN107112605B (zh) 锂镀敷的检测方法、对二次电池充电的方法和设备以及使用其的二次电池系统
US10320038B2 (en) Charging method for lithium ion secondary battery and charging control system therefor, and electronic apparatus and battery pack having charging control system
JP2012503277A (ja) 迅速な充電方法
TW201232901A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery using the positive electrode active material and non-aqueous electrolyte secondary battery using the positi
JP5699970B2 (ja) リチウムイオン二次電池システム及び析出判定方法
JP2018041529A (ja) 非水電解質二次電池の放電制御装置及び方法
KR20180053411A (ko) 충전식 배터리용 리튬 전이금속 산화물 캐소드 재료를 위한 전구체
JP2002208440A (ja) リチウム二次電池の初期充電方法および製造方法
EP3709433B1 (en) Method of reusing positive electrode material
CN103887560B (zh) 一种非水电解液及含有该非水电解液的锂离子电池
JP6493762B2 (ja) 電池システム
KR102477915B1 (ko) 리튬 이온 전지의 제조 방법
WO2023071104A1 (zh) 用于二次电池的充电方法、装置、设备及计算机存储介质
JP2014082121A (ja) 非水電解液二次電池の製造方法
CN105355878A (zh) 一种用作锂离子电池正极的材料及其制备方法
JP2014022317A (ja) 非水系二次電池の充電方法
JP6244623B2 (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
JP4478856B2 (ja) 二次電池保護制御システムおよび二次電池保護制御方法
KR20060021252A (ko) 지르코니아로 코팅된 이차 전지용 양극활물질 및 그제조방법, 그리고 이를 사용한 이차전지
JP2015138654A (ja) 非水電解質二次電池及び非水電解質二次電池システム
JP3691380B2 (ja) 非水電解質二次電池
US12021205B2 (en) Method of reusing positive electrode material
KR20220041356A (ko) 리튬 몰리브데늄 화합물이 코팅된 리튬 이차전지용 양극 활물질 및 그 제조 방법
JP2015138651A (ja) 非水電解質二次電池の制御方法及び非水電解質二次電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022554615

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022764288

Country of ref document: EP

Effective date: 20220912

ENP Entry into the national phase

Ref document number: 2022764288

Country of ref document: EP

Effective date: 20220912

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22764288

Country of ref document: EP

Kind code of ref document: A1