WO2023070761A1 - 一种铱基催化剂及其制备方法、醛化方法 - Google Patents

一种铱基催化剂及其制备方法、醛化方法 Download PDF

Info

Publication number
WO2023070761A1
WO2023070761A1 PCT/CN2021/130914 CN2021130914W WO2023070761A1 WO 2023070761 A1 WO2023070761 A1 WO 2023070761A1 CN 2021130914 W CN2021130914 W CN 2021130914W WO 2023070761 A1 WO2023070761 A1 WO 2023070761A1
Authority
WO
WIPO (PCT)
Prior art keywords
iridium
based catalyst
catalyst
reaction
temperature
Prior art date
Application number
PCT/CN2021/130914
Other languages
English (en)
French (fr)
Inventor
张志炳
胡兴邦
姚晨飞
周政
李磊
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Priority to EP21962105.9A priority Critical patent/EP4393589A1/en
Publication of WO2023070761A1 publication Critical patent/WO2023070761A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the field of formylation reaction, in particular to an iridium-based catalyst, a preparation method thereof, and a formylation method.
  • Butyraldehyde and octanol are bulk chemical raw materials with a wide range of uses. At present, butanol is synthesized industrially mainly through olefin hydroformylation to produce n-butyraldehyde and isobutyraldehyde, which are then used as raw materials for subsequent reactions. Olefin hydroformylation is a key step in the synthesis of butanol and octanol.
  • WO0200583, EP3712126A1, and CN102826967A use triphenylphosphine-rhodium as a catalyst; JP2002047294 uses cyclooctadiene acetate-rhodium as a catalyst; CN110156580 uses 6,6'-((3,3'-di-tert-butyl-5 ,5'-Dimethoxy-[1,1'-biphenyl]-2,bis(oxy))dibenzo[d,f][1,3,2]dioxaphospholane Alkene-rhodium is a catalyst; CN103896748A uses acetylmorpholine-rhodium as a catalyst; EP3770144A1 uses acetic acid-rhodium as a catalyst; CN111348995A uses three [2,4-di-tert-butylphenyl] phosphite-rhodium as a catalyst; US9550179 uses long
  • metal rhodium-based catalysts are also commonly used in published papers, such as Angew.Chem.Int.Ed.2019, 58, 2120-2124 using heterocyclic phosphorus ligand-rhodium as a catalyst, with a maximum of 2.6 n-butyraldehyde/isobutyraldehyde ratio;
  • ACS Catal.2018,8,5799-5809 uses N-Triphos ligand-rhodium as a catalyst, and the highest n-butyraldehyde/isobutyraldehyde ratio is 2.3;
  • Journal of Molecular Catalysis A Chemical, 2009, 300, 116-120 uses triphenylphosphine carbonyl rhodium hydride as a catalyst, and the highest n-butyraldehyde/isobutyraldehyde ratio of 12.7 is obtained;
  • Chem.Eur.J.2017, 23, 14769-14777 uses porphyrin modified
  • the first object of the present invention is to provide an iridium-based catalyst. Compared with the existing rhodium-based catalyst, the iridium-based catalyst used in the present invention is cheap and greatly reduces the production cost.
  • the second object of the present invention is to provide a method for preparing an iridium-based catalyst, the preparation method has mild reaction conditions, can significantly reduce energy consumption, and the prepared catalyst has better catalytic effect than previous catalysts.
  • the third object of the present invention is to provide a method for the hydroformylation of olefins with an iridium-based catalyst.
  • the method for the hydroformylation of olefins in the present invention by using the above-mentioned catalyst for catalytic reaction, not only has low reaction temperature and mild reaction conditions, but also greatly improves the selectivity of the target product.
  • the invention provides an iridium-based catalyst, the chemical structural formula of the iridium-based catalyst is:
  • Ph is phenyl
  • R is methyl or ethyl
  • X is one or more of CH 3 CO 2 , NO 3 , Cl, BF 4 , PF 6 , and SbF 6 .
  • the Chinese name of the iridium-based catalyst is 4,5-bis(diphenylphosphino)-9,9-dialkyloxanthene-iridium catalyst, which is abbreviated as POP(R)-Ir-X.
  • the present invention also provides a preparation method for the iridium-based catalyst, comprising the steps of:
  • the solvent is selected as tetraoxyfuran
  • the iridium compound is selected as cyclooctadiene iridium chloride
  • 4,5-bis(diphenylphosphoryl)-9,9-dimethylxanthene and cyclooctene Diene iridium chloride was reacted in tetrahydrofuran at a molar ratio of 2:1 to obtain an iridium-based catalyst POP(R)-Ir-X.
  • the mixing and stirring time is 1.5h-3h, preferably 2h.
  • the temperature when the temperature is raised and stirred, the temperature is increased to 40-60°C, preferably 50°C, and then stirred for 1.5h-3h, preferably 2h.
  • X in the iridium-based catalyst is CH 3 CO 2 , NO 3 , BF 4 , PF 6 , or SbF 6 , first raise the temperature and stir to obtain the substance to be substituted, and then add a compound containing the X group to the Substitutes are to be replaced.
  • the present invention also provides a kind of method that iridium-based catalyst carries out olefin hydroformylation, comprises the steps:
  • olefin, carbon monoxide and hydrogen are used as raw materials to carry out catalytic reaction.
  • the catalyst needs to be dissolved in n-butyraldehyde, isobutyraldehyde, toluene or tetraoxyfuran,
  • the reaction temperature of the catalytic reaction is 70-120°C, preferably 80-110°C.
  • the catalytic reaction time is 6-9 hours, preferably 8 hours, and the reaction time does not need to be too long, and a higher yield of the target product can be obtained within a shorter reaction time.
  • the reaction pressure of the catalytic reaction is 0.5MPa-3.0MPa, preferably 1.0MPa-2.0MPa.
  • the partial pressure ratio of the olefin to the carbon monoxide is 10:1-1:10, preferably 5:1-1:5.
  • the partial pressure ratio of the olefin to the hydrogen is 10:1-1:10, preferably 5:1-1:5.
  • the amount of the catalyst used is 0.005wt%-2.0wt% of the amount of the solvent, preferably 0.05wt%-1.0%.
  • the invention adopts an iridium-based catalyst, uses propylene, carbon monoxide, and hydrogen as raw materials, and carries out hydroformylation to prepare n-butyraldehyde and isobutyraldehyde.
  • the slow loss and deactivation of rhodium metal in the reaction It is unavoidable, and this will inevitably affect the conversion rate and selectivity etc. of reaction, and the price of rhodium metal is also rising rapidly, and the iridium-based catalyst that the present invention adopts is cheap, and preparation condition and hydroformylation reaction condition are gentle, The effect of making n-butyraldehyde and isobutyraldehyde is better.
  • Fig. 1 is the chromatogram of the reaction product in the embodiment of the present invention 6;
  • Figure 2 is a chromatogram of the reaction product in Example 10 of the present invention.
  • the preparation method of iridium-based catalyst is as follows:
  • POP(CH 3 )-Ir- NO Synthesis Add 150ml THF in a 250ml reaction flask, 5.0g POP(CH 3 )-Ir-Cl, 0.92g silver nitrate, 20ml water, The reaction was stirred at room temperature in the dark for 6 hours, and the insoluble matter was filtered off. The solvent was evaporated to dryness, and the obtained solid was washed twice with 20 ml of n-hexane, and dried to obtain 4.5 g of POP(CH 3 )-Ir-NO 3 .
  • POP(CH 3 )-Ir-CH 3 CO 2 Synthesis: Add 150ml tetrahydrofuran, 5.0g POP(CH 3 )-Ir-Cl prepared in Example 1-3, 0.90g silver acetate, 20ml water in a 250ml reaction bottle , stirred and reacted at room temperature in the dark for 6 hours, and filtered off the insoluble matter. The solvent was evaporated to dryness, and the obtained solid was washed twice with 20 ml of n-hexane, and dried to obtain 4.6 g of POP(CH 3 )-Ir-CH 3 CO 2 .
  • the hydroformylation reaction is the best when the temperature is 80°C and the propylene gas pressure is 3bar, and the present invention obtains the highest n-butylene ratio of 29.1:1.
  • Aldehyde/isobutyraldehyde ratio this just illustrates that the present invention still has good reaction selectivity and reaction conversion ratio under the condition of low temperature and low pressure, and can know by comparing with the rhodium catalyst of comparative example 1, novel catalyst of the present invention It not only reduces the cost, but also has a better catalytic effect than traditional catalysts. Therefore, the present invention uses a new iridium-based catalyst to catalyze the reaction, and after exploring the reaction conditions, realizes the reaction under the condition of low energy consumption, and the reaction efficiency is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种铱基催化剂,其特征在于,所述铱基催化剂的化学结构式为(I):其中,Ph为苯基,R为甲基或乙基,X为CH3CO2、NO3、Cl、BF4、PF6、SbF6中的其中一种或几种。本发明通过将现有技术中的铑基催化剂替换成铱基催化剂,降低了反应的成本,提高反应物的产量。

Description

一种铱基催化剂及其制备方法、醛化方法 技术领域
本发明涉及醛基化反应领域,尤其涉及一种铱基催化剂及其制备方法、醛化方法。
背景技术
丁醛和辛醇是用途非常广泛的大宗化工原料。目前,工业上合成丁辛醇主要通过烯烃氢甲酰化反应制得正丁醛和异丁醛,然后以此为原料进行后续反应而得。烯烃氢甲酰化反应是合成丁辛醇的关键步骤。
至今,已有许多关于烯烃氢甲酰化合成正丁醛和异丁醛的专利报道,这些专利以及目前工业方法普遍采用基于金属铑的催化剂。比如,WO0200583、EP3712126A1、CN102826967A使用三苯基磷-铑为催化剂;JP2002047294使用环辛二烯醋酸-铑为催化剂;CN110156580使用6,6'-((3,3'-二-叔丁基-5,5'-二甲氧基-[1,1'-联苯]-2,双(氧基))二苯并[d,f][1,3,2]二氧杂磷杂环戊二烯-铑为催化剂;CN103896748A使用乙酰吗啉-铑为催化剂;EP3770144A1使用醋酸-铑为催化剂;CN111348995A使用三[2,4-二叔丁基苯基]亚磷酸酯-铑为催化剂;US9550179使用长链羧酸-铑为催化剂;CN102826973A使用乙酰丙酮羰基-铑为催化剂;EP2417094B1使用三苯基膦羰基氢化铑为催化剂;EP2417093B1使用二聚醋酸铑+三苯基磷三间磺酸钠盐。
除了以上专利,在公开发表的论文中,也普遍采用基于金属铑的催化剂,比如Angew.Chem.Int.Ed.2019,58,2120-2124使用杂环磷配体-铑为催化剂,最高获得2.6的正丁醛/异丁醛比;ACS Catal.2018,8,5799-5809采用N-Triphos配体-铑为催化剂,最高获得2.3的正丁醛/异丁醛比;Journal of Molecular  Catalysis A:Chemical,2009,300,116-120采用三苯基磷羰基氢化铑为催化剂,最高获得12.7的正丁醛/异丁醛比;Chem.Eur.J.2017,23,14769-14777采用卟啉修饰的三苯基磷配体-铑为催化剂,最高获得2.3的正丁醛/异丁醛比。
尽管铑金属在烯烃氢甲酰化反应中可以多次循环利用,但反应过程中的缓慢流失和失活不可避免。由于国际铑金属价格快速上涨,使得相应工艺过程催化剂成本也快速增加。其次,低正丁醛/异丁醛比值使得生产过程产生大量价值较低的异丁醛。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的是提供一种铱基催化剂,相比于现有的铑基催化剂,本发明使用的铱基催化剂价格便宜,大大降低了生产成本。
本发明的第二目的是提供一种铱基催化剂的制备方法,该制备方法反应条件温和,能够显著降低能耗,而且制得得到的催化剂较以往的催化剂催化效果更佳优异。
本发明的第三目的是提供一种铱基催化剂进行烯烃醛化的方法,本发明进行烯烃醛化的方法,通过采用上述催化剂进行催化反应,不仅反应温度低、反应条件温和,还大大幅度提升了目标产物的选择性。
为了实现本发明的上述目的,特采用一下技术方案:
本发明提供了一种铱基催化剂,所述铱基催化剂的化学结构式为:
Figure PCTCN2021130914-appb-000001
其中,Ph为苯基,R为甲基或乙基,X为CH 3CO 2、NO 3、Cl、BF 4、PF 6、SbF 6中的其中一种或几种。所述铱基催化剂中文名称为4,5-双(二苯基磷基) -9,9-二烷基氧杂蒽-铱催化剂,简写为POP(R)-Ir-X。
本发明还提供了所述铱基催化剂的制备方法,包括如下步骤:
将4,5-双(二苯基磷基)-9,9-二甲基氧杂蒽,溶剂以及铱化合物混合搅拌,再升温搅拌得到所述铱基催化剂。其中,所述溶剂选择为四氧呋喃,铱化合物选择为环辛二烯氯化铱,将4,5-双(二苯基磷基)-9,9-二甲基氧杂蒽与环辛二烯氯化铱按照2:1的摩尔比在四氢呋喃中反应得到铱基催化剂POP(R)-Ir-X。
优选地,所述混合搅拌的时间为1.5h-3h,优选为2h。
优选地,所述升温搅拌时,将温度提升至40-60℃,优选为50℃,然后搅拌1.5h-3h,优选为2h。
优选地,当所述铱基催化剂中的X为CH 3CO 2、NO 3、BF 4、PF 6、SbF 6时,先升温搅拌得到待取代物,再添加含有X基团的化合物对所述待取代物进行取代。
本发明还提供了一种铱基催化剂进行烯烃醛化的方法,包括如下步骤:
在所述催化剂存在的条件下,以烯烃、一氧化碳、氢气为原料,进行催化反应。在反应前,需要将催化剂溶解于正丁醛、异丁醛、甲苯或四氧呋喃中,
优选地,所述催化反应的反应温度为70~120℃,优选为80-110℃。
优选地,所述催化反应的时间为6-9h,优选地为8h,反应时间无需太长,在较短的反应时间内就能得到较高产率的目标产物。
优选地,所述催化反应的反应压力为0.5MPa-3.0MPa,优选为1.0MPa-2.0MPa。
优选地,所述烯烃与所述一氧化碳的分压比为10:1-1:10,优选为5:1-1:5。
优选地,所述烯烃与所述氢气的分压比为10:1-1:10,优选为5:1-1:5。
优选地,所述催化剂用量为所述溶剂量的0.005wt%-2.0wt%,优选为0.05wt%-1.0%。
本发明采用铱基催化剂,以丙烯、一氧化碳、氢气为原料,进行醛化反应制备正丁醛和异丁醛,与现有的铑基催化剂相比,铑金属在反应中的缓慢流 失和失活是无可避免的,这势必会影响反应的转化率和选择性等,而且铑金属的价格也在快速上涨,而本发明采用的铱基催化剂,价格便宜,制备条件和醛化反应条件温和,制得正丁醛和异丁醛的效果更好。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例6中的反应产物的色谱图;
图2为本发明实施例10中的反应产物的色谱图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
铱基催化剂的制备方法如下:
POP(CH 3)-Ir-Cl合成:氮气保护下,在250ml反应瓶中加入100ml四氢呋喃,5.0g环辛二烯氯化铱,8.6g 4,5-双(二苯基磷基)-9,9-二甲基氧杂蒽,室温搅拌反应2小时,然后再升温至50℃搅拌反应2小时。蒸干溶剂,所得固体用20ml正己烷洗涤两次,烘干后得11.9g POP(CH 3)-Ir-Cl。
实施例2
具体操作步骤与实施例1相同,唯一的区别点在于混合搅拌时间为1.5h, 升温搅拌的温度为40℃、搅拌时间为1.5h,最终制得11.4g POP(CH 3)-Ir-Cl。
实施例3
具体操作步骤与实施例1相同,唯一的区别点在于混合搅拌时间为3h,升温搅拌的温度为60℃、搅拌时间为3h,最终制得11.5g POP(CH 3)-Ir-Cl。
实施例4
POP(CH 3)-Ir-NO 3合成:在250ml反应瓶中加入150ml四氢呋喃,5.0g由实施例1-3制得的POP(CH 3)-Ir-Cl,0.92g硝酸银,20ml水,室温避光搅拌反应6小时,滤去不溶物。蒸干溶剂,所得固体用20ml正己烷洗涤两次,烘干后得4.5g POP(CH 3)-Ir-NO 3
实施例5
POP(CH 3)-Ir-CH 3CO 2合成:在250ml反应瓶中加入150ml四氢呋喃,5.0g实施例1-3制得的POP(CH 3)-Ir-Cl,0.90g醋酸银,20ml水,室温避光搅拌反应6小时,滤去不溶物。蒸干溶剂,所得固体用20ml正己烷洗涤两次,烘干后得4.6g POP(CH 3)-Ir-CH 3CO 2
实施例6
醛化反应的操作步骤如下:
在50ml高压反应釜中,加入81mg实施例5的POP(CH 3)-Ir-CH 3CO 2,12ml甲苯,通入氢气置换三次后,依次通入3bar丙烯、8bar一氧化碳、8bar氢气,搅拌下升温至90℃。在此温度下搅拌反应8小时,将反应液冷却至0℃。缓慢泄压后,取样进行气相色谱分析,根据气相结果可计算得催化剂转化数TON为78.8,正、异丁醛选择性为99.8%(正丁醛/异丁醛=29.1:1)。
实施例7-11
采用实施例6的丙烯氢甲酰化反应方法,改变不同温度进行反应,结果如表1所示:
表1 温度对丙烯氢甲酰化反应影响
Figure PCTCN2021130914-appb-000002
实施例12-17
采用实施例6的丙烯氢甲酰化反应方法,改变气体压力,结果如表2所示:
表2 压力对丙烯氢甲酰化反应影响
Figure PCTCN2021130914-appb-000003
比较例1
其它操作步骤与实施例6相同,唯一的区别是采用的催化剂为 CN111348995A所公开的三[2,4-二叔丁基苯基]亚磷酸酯-铑,结果如下所示:
表3 不同催化剂对醛化反应的影响
Figure PCTCN2021130914-appb-000004
从上述表格可以看出,采用铱基催化剂进行醛化反应的过程中,在温度为80℃、丙烯气体压力为3bar时的醛化反应最好,并且本发明获得了最高29.1:1的正丁醛/异丁醛比,这就是说明了本发明在低温低压的条件下仍然具有良好的反应选择性和反应转化率,并且通过与比较例1的铑催化剂相比可以知晓,本发明的新型催化剂不仅降低了成本,还比传统的催化剂的催化效果好。所以本发明通过采用的新的铱基催化剂进行催化反应,并对反应条件进行摸索后,实现了在低能耗的条件下进行反应,且反应效率好。
最后,可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域普通技术人员而言,在不脱离本发明的原理和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

  1. 一种铱基催化剂,其特征在于,所述铱基催化剂的化学结构式为:
    Figure PCTCN2021130914-appb-100001
    其中,Ph为苯基,R为甲基或乙基,X为CH 3CO 2、NO 3、Cl、BF 4、PF 6、SbF 6中的其中一种或几种。
  2. 权利要求1所述的铱基催化剂的制备方法,其特征在于,包括如下步骤:
    将4,5-双(二苯基磷基)-9,9-二甲基氧杂蒽,溶剂以及铱化合物混合搅拌,再升温搅拌得到所述铱基催化剂。
  3. 根据权利要求2所述的制备方法,其特征在于,所述混合搅拌的时间为1.5h-3h,优选为2h。
  4. 根据权利要求2所述的制备方法,其特征在于,所述升温搅拌时,将温度提升至40-60℃,优选为50℃,然后搅拌1.5h-3h,优选为2h;
    优选地,当所述铱基催化剂中的X为CH 3CO 2、NO 3、BF 4、PF 6、SbF 6时,先升温搅拌得到待取代物,再添加含有X基团的化合物对所述待取代物进行取代。
  5. 一种采用权利要求1或权利要求2-3任一项所述的制备方法制备的催化剂进行烯烃醛化的方法,其特征在于,包括如下步骤:
    在所述催化剂存在的条件下,以烯烃、一氧化碳、氢气为原料,进行催化反应。
  6. 根据权利要求4所述的方法,其特征在于,所述催化反应的反应温度为70-120℃,优选为80-110℃。
  7. 根据权利要求4所述的方法,其特征在于,所述催化反应的反应压力为0.5MPa-3.0MPa,优选为1.0MPa-2.0MPa。
  8. 根据权利要求4所述的方法,其特征在于,所述烯烃与所述一氧化碳的分压比为10:1-1:10,优选为5:1-1:5。
  9. 根据权利要求4所述的方法,其特征在于,所述烯烃与所述氢气的分压比为10:1-1:10,优选为5:1-1:5。
  10. 根据权利要求4所述的方法,其特征在于,所述催化剂质量为所述溶剂质量的0.005wt%-2.0wt%,优选为0.05wt%-1.0wt%。
PCT/CN2021/130914 2021-10-27 2021-11-16 一种铱基催化剂及其制备方法、醛化方法 WO2023070761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21962105.9A EP4393589A1 (en) 2021-10-27 2021-11-16 Iridium-based catalyst and preparation method therefor, and hydroformylation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111256879.2A CN113877635B (zh) 2021-10-27 2021-10-27 一种铱基催化剂及其制备方法、醛化方法
CN202111256879.2 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023070761A1 true WO2023070761A1 (zh) 2023-05-04

Family

ID=79014759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130914 WO2023070761A1 (zh) 2021-10-27 2021-11-16 一种铱基催化剂及其制备方法、醛化方法

Country Status (3)

Country Link
EP (1) EP4393589A1 (zh)
CN (1) CN113877635B (zh)
WO (1) WO2023070761A1 (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367623A (en) * 1971-11-08 1974-09-18 Ici Ltd Hydroformylation using iridium catalyst
CN86106770A (zh) * 1985-09-05 1987-05-13 联合碳化公司 双-亚磷酸酯化合物
CN1222903A (zh) * 1996-04-24 1999-07-14 联合碳化化学品及塑料技术公司 醇醛的生产方法
CN1249738A (zh) * 1997-03-17 2000-04-05 巴斯福股份公司 正丁醛和/或正丁醇的制备方法
WO2002000583A1 (de) 2000-06-28 2002-01-03 Basf Aktiengesellschaft Verfahren zur hydroformylierung von olefinen mit 2 bis 8 kohlenstoffatomen
JP2002047294A (ja) 2000-07-28 2002-02-12 Mitsubishi Chemicals Corp 二座リン化合物及びそれを用いるヒドロホルミル化方法
CN102826967A (zh) 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种烯烃氢甲酰化反应制备醛的方法
CN102826973A (zh) 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种低碳烯烃氢甲酰化制备醛的方法
EP2417094B1 (de) 2009-04-07 2012-12-26 OXEA GmbH Verfahren zur aufarbeitung eines flüssigen hydroformylierungsaustrags
EP2417093B1 (de) 2009-04-07 2014-01-22 OXEA GmbH Verfarhen zur herstellung von aldehyden
CN103896748A (zh) 2014-04-04 2014-07-02 西南化工研究设计院有限公司 一种铑催化剂的用途及采用该催化剂生产醛的方法
CN106140302A (zh) * 2015-04-03 2016-11-23 中国科学院大连化学物理研究所 一种含膦有机混聚物-金属多相催化剂及其方法和应用
US9550179B1 (en) 2015-09-09 2017-01-24 Eastman Chemical Company Hydroformylation catalyst
CN107107048A (zh) * 2015-10-05 2017-08-29 Lg化学株式会社 含有磷系配体的催化剂组合物和使用其用于加氢甲酰化的方法
CN110156580A (zh) 2019-06-24 2019-08-23 上海华谊(集团)公司 烯烃制醛的方法和设备
CN111348995A (zh) 2020-04-14 2020-06-30 万华化学集团股份有限公司 一种烯烃氢甲酰化制备醛的方法
CN111484437A (zh) * 2019-01-28 2020-08-04 中国科学院大连化学物理研究所 一种在吲哚c3位引入叔异戊烯基的方法
EP3712126A1 (en) 2017-11-15 2020-09-23 Mitsubishi Chemical Corporation Method for producing aldehyde and method for producing alcohol
EP3770144A1 (de) 2019-07-24 2021-01-27 OQ Chemicals GmbH Kontinuierliches hydroformylierungsverfahren mit katalysatorsubstitution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166652A (ja) * 1991-10-31 1994-06-14 Nippon Steel Corp アルドール化合物の製造方法
EP0839787A1 (en) * 1996-11-04 1998-05-06 Dsm N.V. Process for the preparation of an aldehyde
US7939694B2 (en) * 2007-05-29 2011-05-10 Lg Chem, Ltd. Method for the hydroformylation of olefins and apparatus using the same
DE102010043558A1 (de) * 2010-11-08 2012-05-10 Evonik Oxeno Gmbh Verfahren zur Hydroformylierung von ungesättigten Verbindungen

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1367623A (en) * 1971-11-08 1974-09-18 Ici Ltd Hydroformylation using iridium catalyst
CN86106770A (zh) * 1985-09-05 1987-05-13 联合碳化公司 双-亚磷酸酯化合物
CN1222903A (zh) * 1996-04-24 1999-07-14 联合碳化化学品及塑料技术公司 醇醛的生产方法
CN1249738A (zh) * 1997-03-17 2000-04-05 巴斯福股份公司 正丁醛和/或正丁醇的制备方法
WO2002000583A1 (de) 2000-06-28 2002-01-03 Basf Aktiengesellschaft Verfahren zur hydroformylierung von olefinen mit 2 bis 8 kohlenstoffatomen
JP2002047294A (ja) 2000-07-28 2002-02-12 Mitsubishi Chemicals Corp 二座リン化合物及びそれを用いるヒドロホルミル化方法
EP2417094B1 (de) 2009-04-07 2012-12-26 OXEA GmbH Verfahren zur aufarbeitung eines flüssigen hydroformylierungsaustrags
EP2417093B1 (de) 2009-04-07 2014-01-22 OXEA GmbH Verfarhen zur herstellung von aldehyden
CN102826973A (zh) 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种低碳烯烃氢甲酰化制备醛的方法
CN102826967A (zh) 2011-06-17 2012-12-19 中国石油化工股份有限公司 一种烯烃氢甲酰化反应制备醛的方法
CN103896748A (zh) 2014-04-04 2014-07-02 西南化工研究设计院有限公司 一种铑催化剂的用途及采用该催化剂生产醛的方法
CN106140302A (zh) * 2015-04-03 2016-11-23 中国科学院大连化学物理研究所 一种含膦有机混聚物-金属多相催化剂及其方法和应用
US9550179B1 (en) 2015-09-09 2017-01-24 Eastman Chemical Company Hydroformylation catalyst
CN107107048A (zh) * 2015-10-05 2017-08-29 Lg化学株式会社 含有磷系配体的催化剂组合物和使用其用于加氢甲酰化的方法
EP3712126A1 (en) 2017-11-15 2020-09-23 Mitsubishi Chemical Corporation Method for producing aldehyde and method for producing alcohol
CN111484437A (zh) * 2019-01-28 2020-08-04 中国科学院大连化学物理研究所 一种在吲哚c3位引入叔异戊烯基的方法
CN110156580A (zh) 2019-06-24 2019-08-23 上海华谊(集团)公司 烯烃制醛的方法和设备
EP3770144A1 (de) 2019-07-24 2021-01-27 OQ Chemicals GmbH Kontinuierliches hydroformylierungsverfahren mit katalysatorsubstitution
CN111348995A (zh) 2020-04-14 2020-06-30 万华化学集团股份有限公司 一种烯烃氢甲酰化制备醛的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ACS CATAL., vol. 8, 2018, pages 5799 - 5809
ANGEW. CHEM. INT. ED., vol. 58, 2019, pages 2120 - 2124
CHEM. EUR. J., vol. 23, 2017, pages 14769 - 14777
JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 300, 2009, pages 116 - 120

Also Published As

Publication number Publication date
EP4393589A1 (en) 2024-07-03
CN113877635A (zh) 2022-01-04
CN113877635B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
JP5134687B2 (ja) リンを含むオレフィン系化合物のヒドロホルミル化反応のための触媒組成物およびそれを用いたヒドロホルミル化方法
JP4309057B2 (ja) 担持されたビス(リン)配位子を用いるオレフィンのヒドロホルミル化
US20160332953A1 (en) A process for vapor-phase methanol carbonylation to methyl formate, a catalyst used in the process and a method for preparing the catalyst
JP4571140B2 (ja) 燐を含む触媒組成物及びそれを利用したヒドロホルミル化の方法
CN111253258A (zh) 一种乙烯均相氢酯基化合成丙酸甲酯的方法
How et al. A modular family of phosphine-phosphoramidite ligands and their hydroformylation catalysts: steric tuning impacts upon the coordination geometry of trigonal bipyramidal complexes of type [Rh (H)(CO) 2 (P^ P*)]
Zhang et al. Transfer hydrogenation of aldehydes catalyzed by silyl hydrido iron complexes bearing a [PSiP] pincer ligand
NL7908788A (nl) Watergasverschuivingsreactie alsmede hydroformy- lerings- en hydrohydroxymethyleringsreacties.
BRPI1010643B1 (pt) “processo para hidroformilação de álcool alílico para produzir 4-hidroxibutiraldeído”
CN113713862A (zh) 烯烃氢甲酰化反应的Co基多相催化剂及制备和应用
WO2023070761A1 (zh) 一种铱基催化剂及其制备方法、醛化方法
KR930003649B1 (ko) 에틸리덴 디 아세테이트 제조용 고체촉매, 그의 제조방법 및 이를 이용한 연속식, 공정에 의한 에틸리덴 디 아세테이트의 제조방법
CN111039765B (zh) 一种制备3-烷氧基丙醛的方法
CN115007218A (zh) 一种用于烯烃氢甲酰化反应的催化剂及其制备方法和应用
CN104909970A (zh) Meyer-Schuster重排的新催化方法
CN110372513B (zh) 一种醋酸乙烯酯氢甲酰化的方法
CN114522735A (zh) 一种用于乙烯基酯类化合物氢甲酰化反应的固体催化剂及其制备方法
JPS6133238A (ja) グリコ−ルエ−テル生成の為のホルムアルデヒドアセタ−ルのデアルコキシヒドロキシメチル化用ルテニウム促進コバルト触媒
WO2023070760A1 (zh) 一种催化进行烯烃羰基化的方法
CN111875637A (zh) 一种膦配体及其合成方法和应用
CN107497494B (zh) 乙烯合成丙酸甲酯用催化剂组合物及其合成方法
JPH0798765B2 (ja) アルデヒドの製造方法
CN112898139B (zh) 一种由RaffinateⅡ制备正戊醛的方法
CN114988991B (zh) 一种烯烃氢甲酰化制备异构醛的方法
US11993566B2 (en) Hydroformylation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021962105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021962105

Country of ref document: EP

Effective date: 20240329

WWE Wipo information: entry into national phase

Ref document number: 18705067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE