WO2023054289A1 - リチウムイオン電池の電極材料およびSi合金複合粉末 - Google Patents

リチウムイオン電池の電極材料およびSi合金複合粉末 Download PDF

Info

Publication number
WO2023054289A1
WO2023054289A1 PCT/JP2022/035797 JP2022035797W WO2023054289A1 WO 2023054289 A1 WO2023054289 A1 WO 2023054289A1 JP 2022035797 W JP2022035797 W JP 2022035797W WO 2023054289 A1 WO2023054289 A1 WO 2023054289A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
alloy composite
composite powder
compound
electrode material
Prior art date
Application number
PCT/JP2022/035797
Other languages
English (en)
French (fr)
Inventor
和希 南
優太 木村
Original Assignee
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同特殊鋼株式会社 filed Critical 大同特殊鋼株式会社
Priority to EP22876156.5A priority Critical patent/EP4394948A1/en
Priority to CN202280064937.8A priority patent/CN117999676A/zh
Priority to KR1020247010204A priority patent/KR20240050410A/ko
Priority to JP2023551488A priority patent/JPWO2023054289A1/ja
Publication of WO2023054289A1 publication Critical patent/WO2023054289A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to lithium ion battery electrode materials and Si alloy composite powders.
  • Lithium-ion batteries have the advantage of high capacity, high voltage, and the ability to be miniaturized, and are widely used as power sources for mobile phones and laptop computers. Moreover, in recent years, great expectations have been placed on power sources for power applications such as electric vehicles and hybrid vehicles, and the development thereof has been actively promoted.
  • Li ions lithium ions move between the positive electrode and the negative electrode for charging and discharging.
  • Li ions are released from the negative electrode active material.
  • lithium cobalt oxide LiCoO 2
  • graphite has been widely used as the negative electrode active material.
  • graphite as a negative electrode active material has a theoretical capacity of only 372 mAh/g, and a much higher capacity has been desired.
  • Si As an alternative to carbon-based electrode materials, metal materials such as Si, which can be expected to increase capacity, are being studied, and electrodes in which Si-based material powder is mixed with graphite powder, which is a conventional electrode material, are being researched.
  • the theoretical capacity of this Si is 4198 mAh/g.
  • Si absorbs Li ions through an alloying reaction with Li large volume expansion/contraction occurs as the Li ions are absorbed/desorbed.
  • the Si particles crack or separate from the current collector, and the cycle characteristics, which are capacity retention characteristics when charging and discharging are repeated, deteriorate.
  • Patent Literature 1 a Si compound phase is provided together with a Si phase within Si-based alloy particles.
  • the Si compound phase is effective in suppressing expansion of the Si phase and improving cycle characteristics.
  • the Si compound phase itself that binds the Si phase cannot withstand the expansion stress of the Si phase and collapses. There was still room for improvement.
  • the present invention has been made for the purpose of providing an electrode material and a Si alloy composite powder for a lithium ion battery capable of enhancing battery characteristics in consideration of initial discharge capacity and cycle characteristics. is.
  • the present invention provides an electrode material for a lithium ion battery in which graphite powder and Si alloy composite powder are mixed
  • the Si alloy composite powder has an average particle size of 5 ⁇ m or less, and contains Si particles, Si—X compound particles, and at least one of Sn—Y compound particles and Al—Y compound particles
  • the element X constituting the Si—X compound particles is one or more elements selected from the group consisting of Fe, Ni, Cr, Co, Mn, Zr, and Ti
  • the element Y constituting the Sn—Y compound particles and the Al—Y compound particles is at least one element selected from the group consisting of Cu, Fe, Ni, Cr, Co, Mn, Zr, and Ti.
  • the proportion of the Si particles in the Si alloy composite powder is 30 to 95% by mass
  • the Si alloy composite powder is characterized in that the surface coverage of the graphite particles is 5% or more.
  • the Si alloy composite powder constituting the electrode material is made finer to an average particle size of 5 ⁇ m or less, and Si particles, Si—X compound particles, and Sn- At least one of Y particles and Al—Y compound particles is included. Since the Si alloy composite powder contains Si particles, Si—X compound particles, and at least one of Sn—Y compound particles and Al—Y compound particles, a space is formed around the Si particles to allow expansion of Si. As a result, Si particles can expand independently without being constrained by other compound particles when absorbing Li ions. As a result, collapse of Si particles during expansion is suppressed.
  • the Si particles are made finer, the amount of expansion is suppressed, and the collapse of the Si particles is suppressed more effectively.
  • the space around the Si particles serves as a buffer area against the expansion of Si, suppressing the collapse of the Si--X compound particles that serve as a skeleton in the electrode.
  • the coverage of the graphite particle surface with the Si alloy composite powder is set to 5% or more. This makes it possible to avoid local stress concentration due to expansion of Si and improve battery characteristics in consideration of initial discharge capacity and cycle characteristics.
  • the proportion of the graphite powder in the mixed powder of the graphite powder and the Si alloy composite powder is preferable to set the proportion of the graphite powder in the mixed powder of the graphite powder and the Si alloy composite powder to 97 to 20% by mass.
  • the element X is preferably one or more elements selected from the group consisting of Fe, Ni, Cr, and Zr. This is effective especially when it is desired to improve cycle characteristics.
  • the mass ratio represented by ⁇ Si--X compound/(total of Sn--Y compound and Al--Y compound) ⁇ is preferably 1-39. By setting the mass ratio to 39 or less, high initial discharge capacity is maintained, and by setting the mass ratio to 1 or more, high cycle characteristics are maintained.
  • the Y element is a Cu element. This is effective because it is excellent in conductivity and can suppress deterioration in cycle characteristics.
  • the average particle size of the Si alloy composite powder is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less.
  • the average particle size is 5 ⁇ m or less, and includes Si particles, Si—X compound particles, and at least one of Sn—Y compound particles and Al—Y compound particles, and constitutes the Si—X compound particles
  • the element X is one or more elements selected from the group consisting of Fe, Ni, Cr, Co, Mn, Zr, and Ti, and constitutes the Sn—Y compound particles and the Al—Y compound particles
  • the element Y is one or more elements selected from the group consisting of Cu, Fe, Ni, Cr, Co, Mn, Zr, and Ti, and the proportion of the Si particles in the Si alloy composite powder is 30 It is a Si alloy composite powder with a content of ⁇ 95% by mass.
  • the Si alloy composite powder is preferably used as an electrode material together with graphite powder.
  • FIG. 1 is a schematic diagram showing the structure of an electrode material according to one embodiment of the present invention
  • FIG. 1(A) shows Si alloy particles before fine pulverization
  • FIG. 1(C) shows a state in which the graphite powder and the Si alloy composite powder are mixed.
  • an electrode material for a lithium-ion battery according to one embodiment of the present invention and a lithium-ion battery (hereinafter sometimes simply referred to as a battery) using this electrode material for the negative electrode will be specifically described.
  • "-" is used in the sense of including the numerical values described before and after it as a lower limit and an upper limit.
  • FIG. 1 is a diagram showing the structure of the present electrode material.
  • 1 is an electrode material
  • 2 is Si alloy particles before pulverization
  • 3 is Si alloy composite powder after pulverization
  • 3a is Si particles
  • 3b is Si—X compound particles
  • 3c is Sn—Y.
  • the present electrode material is a mixture of graphite powder and Si alloy composite powder.
  • Sn—Y compound particles or Al—Y compound particles 3c partially coat the surfaces of graphite particles 4.
  • Graphite powder has been conventionally used as a negative electrode material for lithium ion batteries. Graphite hardly expands or shrinks due to the insertion/extraction of Li ions, so its characteristics do not deteriorate even after repeated charging and discharging. However, as described above, graphite has a low theoretical capacity, and an increase in battery capacity cannot be expected. Therefore, in this example, the capacity as a negative electrode material is increased by mixing with the Si alloy composite powder described below.
  • the proportion of graphite powder in the mixed powder of graphite powder and Si alloy composite powder is preferably 97 to 20% by mass. This is for balancing capacity (initial discharge capacity) and cycle characteristics.
  • the particle size (average particle size) of the graphite powder used in this example can be exemplified from 0.5 to 50 ⁇ m.
  • the Si alloy composite powder is an alloy powder having respective phases of simple Si, a Si—X compound, and at least one of a Sn—Y compound and an Al—Y compound.
  • the element X constituting the Si—X compound is one or more elements selected from the group consisting of Fe, Ni, Cr, Co, Mn, Zr, and Ti.
  • Element Y constituting the Sn--Y compound and Al--Y compound is one or more elements selected from the group consisting of Cu, Fe, Ni, Cr, Co, Mn, Zr, and Ti.
  • the Si alloy composite powder consists of these main constituent elements, that is, at least one of Si, Sn and Al, the element X, and the element Y, and elements other than these main constituent elements are included unless unavoidable.
  • unavoidable impurities include nitrogen (N), sulfur (S), phosphorus (P), and the like.
  • the respective upper limits are N ⁇ 0.10% by mass, S ⁇ 0.10% by mass, P ⁇ 0.10% by mass, and O ⁇ 15% by mass.
  • the Si alloy composite powder has an average particle size of 5 ⁇ m or less and contains Si particles, Si—X compound particles, and at least one of Sn—Y compound particles and Al—Y compound particles.
  • the reason why the Si alloy composite powder is specified to have an average particle size of 5 ⁇ m or less is to reduce the absolute amount of expansion of Si alone (Si particles) that absorbs Li, and the average particle size is preferably 3 ⁇ m or less, more preferably 3 ⁇ m or less. is 2 ⁇ m or less, more preferably 1 ⁇ m or less, particularly preferably 0.7 ⁇ m or less.
  • the lower limit of the average particle size of the Si alloy composite powder is not particularly limited, it is usually 0.05 ⁇ m or more.
  • the average particle size of the Si alloy composite particles is preferably smaller than the average particle size of the graphite particles.
  • the “particle diameter” is the diameter of a circle having the same area as the area of the particles constituting the Si alloy composite powder obtained by analyzing the cross-sectional scanning electron microscope (SEM) image, i.e. Equivalent circle diameter.
  • the term "average particle size” refers to the average value obtained by analyzing 100 particles from a cross-sectional SEM image (magnification: 5000) of the Si alloy composite powder.
  • the Si particles are particles composed only of the Si phase or particles composed of the Si phase in an amount of 95% by mass or more.
  • the ratio of the Si particles to the entire Si alloy composite powder is 30 to 95% by mass, more preferably 45 to 90% by mass, still more preferably 50 to 80% by mass, particularly preferably 60 to 70% by mass. %.
  • the ratio of the Si particles is 30% by mass or more, more preferably 45% by mass or more, still more preferably 50% by mass or more, and particularly preferably 60% by mass or more, from the viewpoint of preventing a decrease in initial discharge capacity.
  • the proportion of the Si particles is 95% by mass or less, more preferably 90% by mass or less, and 80% by mass or less. is more preferable, and 70% by mass or less is particularly preferable.
  • the Si—X compound particles are particles composed only of Si—X compounds or particles in which 95% by mass or more of the particles are composed of Si—X compounds.
  • Si--X compounds have poor Li-absorbing properties and exhibit very little expansion upon reaction with Li ions. Therefore, the Si—X compound particles play a role of a skeleton that maintains the structure of the electrode material.
  • the Si—X compound has high electrical conductivity and is effective in ensuring electrical conductivity between the Si alloy composite powder and the graphite powder.
  • the Si—X compound in this example may have different properties such as the Li-absorbing property and conductivity.
  • the elements X, Fe, Ni, Cr, and Zr are particularly excellent in the low expansion properties and high conductivity expected of Si—X compounds.
  • One or more elements selected from the group consisting of are preferred.
  • the Si—X compound particles may be composed of only one type of compound, or may be composed of two types such as a Si—Fe compound and an Si—Ni compound.
  • the Sn—Y compound particles are particles consisting only of a Sn—Y compound or particles in which 95% by mass or more of the particles are an Sn—Y compound.
  • Sn--Y compounds have lower theoretical capacities than Si and higher than Si--X compounds.
  • Si--Zr compounds Si--X compounds
  • Si--X compounds are 100 mAh/g
  • Sn--Y compounds are 150-600 mAh/g. Therefore, in this example, it becomes easier to secure a diffusion path for Li ions through the Sn—Y compound particles.
  • the degree of expansion due to the reaction with Li ions is small compared to Si and Sn alone, which are highly reactive with Li ions, so the adverse effect on cycle characteristics due to the formation of Sn—Y compounds is kept low. be able to.
  • the Sn--Y compound has the effect of increasing the electrical conductivity like the Si--X compound.
  • the Sn—Cu compound or Al—Cu compound in which Cu is selected as the element Y is preferable because it has excellent conductivity and is characterized by less deterioration in cycle characteristics than other Sn compounds or Al compounds. .
  • the Si--X compound and at least one of the Sn--Y compound and Al--Y compound play different roles, and the ratio of these compounds also changes the obtained battery characteristics.
  • Sn--Y compounds and Al--Y compounds expand more than Si--X compounds due to reaction with Li ions, albeit to a lesser degree. Therefore, the mass ratio represented by ⁇ Si—X compound/(Sn—Y compound or Al—Y compound) ⁇ is preferably 0.5 to 45, more preferably 1 to 39, and further 1.5 to 39. 2.5 to 10 are particularly preferred.
  • the mass ratio is preferably 0.5 or more, more preferably 1 or more, still more preferably 1.5 or more, and particularly preferably 2.5 or more.
  • the mass ratio is preferably 45 or less, more preferably 39 or less, and even more preferably 10 or less.
  • each main element suitable for obtaining the above constituent phases in the entire Si alloy composite powder is as follows. In the following description, “%” means “% by mass” unless otherwise specified.
  • the Si content is preferably 50-95%, more preferably 60-80%, and still more preferably 71-80%.
  • the Si content is preferably 50% or more, more preferably 60% or more, and even more preferably 71% or more.
  • the Si content is preferably 95% or less, more preferably 80% or less.
  • the content of element X is preferably 1-30%, more preferably 5-20%.
  • the content of the element X is preferably 1% or more, more preferably 5% or more.
  • the content of the element X is preferably 30% or less, more preferably 20% or less, in order to easily obtain a high initial discharge capacity.
  • each of Sn and Al is preferably 0.1 to 20%, more preferably 1 to 10%, still more preferably 2 to 9%.
  • each content of Sn and Al is preferably 0.1% or more, more preferably 1% or more, and even more preferably 2% or more, from the viewpoint of obtaining the effect as a Li diffusion path.
  • each content of Sn and Al is preferably 20% or less, more preferably 10% or less, and 9% or less because it is easy to suppress the deterioration of cycle characteristics due to expansion due to Sn—Y compounds and Al—Y compounds. is more preferred.
  • the total content of Sn and Al is preferably within the above range, specifically, preferably 0.1 to 20%, more preferably 1 to 10%. , more preferably 2 to 9%.
  • the content of element Y is preferably 0.1-15%, more preferably 1-10%.
  • the content of the element Y is preferably 0.1% or more, more preferably 1% or more, from the viewpoint of obtaining the effect as a Li diffusion path.
  • the content of the element Y is preferably 15% or less, more preferably 10% or less.
  • the Si alloy composite powder thus constituted is mixed with the graphite powder, and the Si alloy composite powder covers the surfaces of the graphite particles (coverage) at 5% or more.
  • the coverage is a value (percentage) obtained by dividing the length of the portion where the particles constituting the Si alloy composite powder and the graphite particles are in contact with each other by the total circumferential length of the graphite particles in cross-sectional observation with an electron microscope. This coverage is also an indicator of the degree of dispersion of the Si alloy composite powder in the electrode material. When the coverage is low and the Si alloy composite powder is locally unevenly distributed, the unevenly distributed portion expands more than other portions, and the unevenly distributed portion is more likely to peel off or collapse.
  • a preferable coverage is 7% or more, and a more preferable coverage is 10% or more.
  • Each raw material is weighed so that it has a predetermined chemical composition, and the molten alloy obtained by melting each weighed raw material using melting means such as an arc furnace, a high-frequency induction furnace, and a heating furnace is subjected to the atomization method. to obtain a Si alloy as a quenched alloy.
  • a gas such as N 2 , Ar, He or the like is sprayed at a high pressure, for example, 1 to 10 MPa, against the molten alloy that is discharged into a spray chamber and continuously (rod-shaped) flows downward to pulverize the molten alloy. cool down.
  • the molten metal that has been cooled is free-falling in the atomization chamber while remaining semi-molten, and approaches a spherical shape to obtain a powdered Si alloy (see, for example, (A) in FIG. 1).
  • high-pressure water may be sprayed instead of the gas.
  • the obtained Si alloy is pulverized by a suitable pulverizing means such as a ball mill, bead mill, disc mill, coffee mill, mortar pulverization, etc. to make the average particle size 5 ⁇ m or less, and independently existing Si particles,
  • a suitable pulverizing means such as a ball mill, bead mill, disc mill, coffee mill, mortar pulverization, etc. to make the average particle size 5 ⁇ m or less, and independently existing Si particles.
  • the obtained Si alloy composite powder and graphite powder are prepared according to a predetermined compounding ratio, and mixed by a ball mill, mixer, or the like to produce the electrode material of this example.
  • the coverage of the graphite powder by the Si alloy composite powder can be adjusted by appropriately changing conditions such as the mixing time.
  • the present battery is constructed using a negative electrode comprising the present electrode material.
  • the negative electrode has a conductive substrate and a conductive film laminated on the surface of the conductive substrate.
  • the conductive film contains at least the present electrode material described above in a binder.
  • the conductive base material functions as a current collector.
  • the material include Cu, Cu alloys, Ni, Ni alloys, Fe, Fe-based alloys, and the like. Preferably, it should be Cu or a Cu alloy.
  • a foil shape, a plate shape, and the like can be exemplified. A foil shape is preferable from the viewpoints of reducing the volume of the battery and improving the degree of freedom in shape.
  • the material of the binder examples include polyvinylidene fluoride (PVdF) resin, fluorine resin such as polytetrafluoroethylene, polyvinyl alcohol resin, polyimide resin, polyamide resin, polyamideimide resin, styrene-butadiene rubber (SBR), polyacrylic acid. etc. can be suitably used. These can be used alone or in combination of two or more.
  • PVdF polyvinylidene fluoride
  • fluorine resin such as polytetrafluoroethylene
  • polyvinyl alcohol resin polyimide resin
  • polyamide resin polyamideimide resin
  • SBR styrene-butadiene rubber
  • polyacrylic acid etc.
  • these resins can be used alone or in combination of two or more.
  • polyimide resin is particularly preferable because it has high mechanical strength, can withstand volume expansion of the active material well, and effectively prevents the conductive film from being peeled off from the current collector due to breakage of the binder.
  • the conductive film may also contain a conductive aid as needed. When a conductive additive is contained, it becomes easier to secure a conductive path for electrons. Moreover, the conductive film may contain an aggregate as needed. When the aggregate is contained, expansion and contraction of the negative electrode during charging and discharging can be easily suppressed, and collapse of the negative electrode can be suppressed, so that cycle characteristics can be further improved.
  • a binder dissolved in an appropriate solvent is added with the present negative electrode material and, if necessary, the required amount of a conductive aid and an aggregate to form a paste, which is then applied to the surface of a conductive substrate. It can be produced by processing, drying, and, if necessary, consolidation, heat treatment, or the like.
  • the positive electrode include those in which a layer containing a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiFePO 4 and LiMnO 2 is formed on the surface of a current collector such as aluminum foil. can be done.
  • a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiFePO 4 and LiMnO 2
  • the electrolyte examples include an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • a polymer in which a lithium salt is dissolved a polymer solid electrolyte in which a polymer is impregnated with the above electrolytic solution, and the like can also be used.
  • non-aqueous solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. One or more of these may be contained.
  • lithium salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 and LiAsF 6 . One or more of these may be contained.
  • battery components include separators, cans (battery cases), gaskets, and the like. Any of these can be appropriately used as long as they are commonly used in lithium ion batteries.
  • a battery can be constructed by combining them.
  • the shape of the battery is not particularly limited, and may be any shape such as cylindrical, rectangular, or coin-shaped, and can be appropriately selected according to the specific application.
  • % of the alloy composition is mass % unless otherwise specified.
  • Electrode Material for Negative Electrode Table 1 shows the alloy compositions of the Si alloy composite powders in Example 33 and Comparative Example 6. Each alloy composition shown in Table 1 is defined so as to obtain the target compositions shown in Tables 2 and 3 below. In Table 1, the sum of all the chemical compositions is 100.1%, but this is due to rounding off the significant figures.
  • each raw material shown in Table 1 was weighed. Each weighed raw material was heated and melted using a high-frequency induction furnace to obtain a molten alloy. A powdery Si alloy was produced from the molten alloy by a gas atomization method. An argon atmosphere was used as the atmosphere during the production of the molten alloy and the gas atomization.
  • the resulting Si alloy composite powder and graphite powder were prepared according to the prescribed proportions shown in Tables 2 and 3 below, and mixed with a mixer to prepare an electrode material for a negative electrode.
  • the graphite powder used here has an average particle size of 20 ⁇ m.
  • Each coin-type half-cell was produced as follows.
  • an electrode prepared using the negative electrode material was used as a test electrode, and a Li foil was used as a counter electrode.
  • each paste was applied to the surface of stainless steel (SUS) 316L foil (thickness 20 ⁇ m) to be a negative electrode current collector using a doctor blade method so as to have a thickness of 50 ⁇ m, and dried to form a negative electrode active material layer. .
  • the negative electrode active material layer was densified by roll pressing.
  • test electrodes according to the examples and the comparative examples were punched into discs with a diameter of 11 mm to obtain test electrodes.
  • Li foil (thickness: 500 ⁇ m) was punched out in substantially the same shape as the test electrode to prepare each counter electrode. Also, LiPF 6 was dissolved at a concentration of 1 mol/l in a mixed solvent of equal volume ratios of ethylene carbonate (EC) and diethyl carbonate (DEC) to prepare a non-aqueous electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • each test electrode was accommodated in each positive electrode can, and a counter electrode was accommodated in each negative electrode can, and a polyolefin-based microporous film separator was placed between each test electrode and each counter electrode.
  • Each test electrode should be a negative electrode in a lithium ion battery, but when a Li foil is used as a counter electrode, the Li foil becomes a negative electrode and the test electrode becomes a positive electrode.
  • each negative electrode can and each positive electrode can were crimped and fixed.
  • Electrode material 3-1 Confirmation of the constituent phases of the electrode material
  • the pulverized Si alloy composite powder is analyzed by XRD (X-ray diffraction) to determine the presence or absence of Si particles, Si—X compound particles, Sn—Y compound particles, and Al—Y compound particles. confirmed.
  • the Si—X compound phase (Si 2 Fe) ratio is the sum of the amount of compounded Si (17.4% by mass) and the amount of Fe (17.3% by mass) in Table 1. In this example, the ratio is 35%. %.
  • the Si phase ratio is a value obtained by subtracting the amount of compounded Si (17.4% by mass) from the total amount of Si (77.7% by mass), which is 60% in this example.
  • the Sn—Y phase ratio ratio of the Sn—Y compound phase to the whole
  • SiX/(SnY or AlY) indicates a mass ratio expressed by ⁇ Si--X compound/(total of Sn--Y compound and Al--Y compound) ⁇ .
  • the initial discharge capacity C 0 (mAh/g) is the value obtained by dividing the capacity (mAh) used when releasing Li by the amount (g) of the active material.
  • a charge/discharge test was performed at a rate of 1/5C.
  • the C rate the current value for (charging) and discharging the amount of electricity C0 required to (charge) and discharge the electrode in one hour is defined as 1C. That is, the battery is (charged) and discharged in 12 minutes at 5C and in 5 hours at 1/5C.
  • the cycle characteristics were evaluated by performing the charge/discharge cycle 100 times.
  • a capacity retention ratio (discharge capacity after 100 cycles/initial discharge capacity (discharge capacity at 1st cycle) ⁇ 100) was obtained from each of the obtained discharge capacities.
  • Comparative Example 1 the coverage of the graphite particle surface with the Si alloy composite powder is below the lower limit (5%) of the present invention, and it is presumed that the Si alloy composite powder is unevenly distributed.
  • Comparative Example 1 the evaluation of cycle characteristics was x.
  • Comparative Example 2 is an example in which the average particle size of the Si alloy composite powder exceeds the upper limit (5 ⁇ m) of the present invention, and the cycle characteristics were evaluated as x.
  • Comparative Example 3 did not have a Sn--Y compound phase (Sn--Y compound particles) or an Al--Y compound phase (Al--Y compound particles), and was evaluated as x for the initial discharge capacity.
  • Comparative Example 4 did not have a Si—X compound phase (Si—X compound particles), and was evaluated as x in terms of cycle characteristics.
  • Comparative Example 5 the ratio of the Si phase was below the lower limit (30%) of the present invention, and the initial discharge capacity was evaluated as x.
  • Comparative Example 6 the ratio of the Si phase exceeded the upper limit (95%) of the present invention, and the cycle characteristics were evaluated as x.
  • the initial discharge capacity or cycle characteristics were evaluated as x, and the battery characteristics considering the initial discharge capacity and cycle characteristics have not yet been sufficiently improved.
  • the Si alloy composite powder has an average particle size of 5 ⁇ m or less and contains Si particles, Si—X compound particles, and at least one of Sn—Y compound particles and Al—Y compound particles, and Si particles The ratio of 30 to 95% by mass, and the Si alloy composite powder covering the surface of the graphite particles by 5% or more has better battery characteristics than the comparative example. None of the examples was evaluated as x in the initial discharge capacity or cycle characteristics, indicating that the initial discharge capacity and cycle characteristics were improved in a well-balanced manner. In particular, in Examples 25 and 26 in which the Si alloy composite powder was refined to an average particle size of 1 ⁇ m or less, excellent cycle characteristics were obtained without impairing the initial discharge capacity.
  • Example 27 in which the proportion of graphite powder was increased to 95%, the initial discharge capacity was evaluated as ⁇ , but the cycle characteristics were evaluated as ⁇ , which is very high. It is suitable when particularly high cycle characteristics are required.
  • Example 28 in which the proportion of graphite powder was lowered to 30%, the evaluation of cycle characteristics was ⁇ , but the evaluation of initial discharge capacity was very high with ⁇ , and a particularly high initial discharge capacity was required. is suitable in some cases.
  • the present invention is not limited to the above embodiments and examples.
  • Si particles, Si—X compound particles, etc. are obtained by pulverizing Si alloy particles having each phase, but in some cases, Si particles or Si—X compounds are obtained directly from the molten metal.
  • the present invention can be modified in various ways without departing from the gist of the invention, such as forming particles and mixing them to obtain a Si alloy composite powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、黒鉛粉末とSi合金複合粉末とが混合されてなり、Si合金複合粉末は、平均粒径が5μm以下であり、Si粒子、Si-X化合物粒子(X=Fe,Ni,Cr,Co,Mn,Zr,Ti)、並びに、Sn-Y化合物粒子(Y=Cu,Fe,Ni,Cr,Co,Mn,Zr,Ti)及びAl-Y化合物粒子の少なくとも一方を含み、Si粒子のSi合金複合粉末に占める割合は30~95質量%であり、Si合金複合粉末による黒鉛粒子表面の被覆率は5%以上である、リチウムイオン電池の電極材料に関する。

Description

リチウムイオン電池の電極材料およびSi合金複合粉末
 この発明はリチウムイオン電池の電極材料およびSi合金複合粉末に関する。
 リチウムイオン電池は高容量、高電圧で小型化が可能である利点を有し、携帯電話やノートパソコン等の電源として広く用いられている。また近年、電気自動車やハイブリッド自動車等のパワー用途の電源として大きな期待を集め、その開発が活発に進められている。
 このリチウムイオン電池では、正極と負極との間でリチウムイオン(以下Liイオンとする)が移動して充電と放電とが行われ、負極側では充電時に負極活物質中にLiイオンが吸蔵され、放電時には負極活物質からLiイオンが放出される。
 従来、一般には正極側の活物質としてコバルト酸リチウム(LiCoO)が用いられ、また負極活物質として黒鉛が広く使用されていた。しかしながら、負極活物質の黒鉛は、その理論容量が372mAh/gに過ぎず、より一層の高容量化が望まれていた。
日本国特開2017-224499号公報
 炭素系電極材料の代替として、高容量化が期待できるSi等の金属材料が検討されており、従来の電極材料である黒鉛粉末にSi系材料粉末を混合させた電極が研究されている。このSiの理論容量は4198mAh/gである。しかしながら、SiはLiとの合金化反応によりLiイオンの吸蔵を行うため、Liイオンの吸蔵・放出に伴って大きな体積膨張・収縮を生じる。このためSiの粒子が割れたり集電体から剥離したりし、充放電を繰り返したときの容量維持特性であるサイクル特性が悪化する。
 上記に対し、Siを含む電極材料において、Siを合金化することが提案されている。例えば上記特許文献1では、Si系合金粒子内にSi相とともにSi化合物相が設けられている。Si化合物相はSi相の膨張を抑え込んでサイクル特性を向上させるのに有効である。
 しかしながらSi相を拘束するSi化合物相自体がSi相の膨張応力に耐え切れずに崩壊する場合もあり、Siを含む電極材料において初期放電容量およびサイクル特性を考慮した電池特性を高めることについては、未だ改善の余地があった。
 本発明は以上のような事情を背景とし、初期放電容量およびサイクル特性を考慮した電池特性を高めることが可能なリチウムイオン電池の電極材料およびSi合金複合粉末を提供することを目的としてなされたものである。
 而して本発明は、黒鉛粉末とSi合金複合粉末とが混合されてなるリチウムイオン電池用の電極材料であって、
 前記Si合金複合粉末は、平均粒径が5μm以下であり、Si粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含み、
 前記Si-X化合物粒子を構成する元素XはFe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
 前記Sn-Y化合物粒子及び前記Al-Y化合物粒子を構成する元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
 前記Si粒子の前記Si合金複合粉末に占める割合は30~95質量%であり、
 前記Si合金複合粉末による黒鉛粒子表面の被覆率が5%以上であることを特徴とする。
 以上のように本発明に係るリチウムイオン電池の電極材料では、電極材料を構成するSi合金複合粉末を、平均粒径5μm以下に微細化し、且つSi粒子、Si-X化合物粒子、並びに、Sn-Y粒子及びAl-Y化合物粒子の少なくとも一方を含む。
 Si合金複合粉末がSi粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含むことで、Si粒子の周りにはSiの膨張を許容するスペースが形成され易くなり、その結果、Si粒子はLiイオン吸蔵時に他の化合物粒子に拘束されず単独で膨張できるようになる。その結果、膨張時のSi粒子の崩壊が抑制される。加えてSi粒子は微細化されることで膨張量が抑えられ、Si粒子の崩壊がより効果的に抑制される。
 またこのSi粒子周りのスペースがSiの膨張に対する緩衝領域となって、電極中で骨格としての役割を果たすSi-X化合物粒子の崩壊も抑制される。
 また、本発明に係る電極材料では、上記Si合金複合粉末による黒鉛粒子表面に対する被覆率を5%以上とする。これにより、Siの膨張に起因する局所的な応力集中を回避して、初期放電容量およびサイクル特性を考慮した電池特性を高めることを可能とする。
 初期放電容量およびサイクル特性とのバランスを考慮して、前記黒鉛粉末と前記Si合金複合粉末との混合粉における前記黒鉛粉末の割合を97~20質量%とすることが好ましい。
 前記元素XをFe,Ni,Cr,及びZrよりなる群の中から選択された1種以上の元素とすることが好ましい。これは、特にサイクル特性を高めたい場合に有効である。
 {Si-X化合物/(Sn-Y化合物及びAl-Y化合物の合計)}で表される質量比を1~39とすることが好ましい。上記質量比を39以下とすることにより高い初期放電容量を維持し、また、上記質量比を1以上とすることにより、高いサイクル特性を維持する。
 前記Y元素がCu元素であることが好ましい。これは、導電性に優れ、サイクル特性の低下も抑制できるために有効である。
 Siの膨張を抑える観点から、前記Si合金複合粉末の平均粒径を1μm以下とすることが好ましく、更には0.7μm以下とすることがより好ましい。
 また本発明の別の態様は、上記電極材料に用いるにあたって有用なSi合金複合粉末に関する。具体的には、平均粒径が5μm以下であり、Si粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含み、前記Si-X化合物粒子を構成する元素XはFe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、前記Sn-Y化合物粒子及び前記Al-Y化合物粒子を構成する元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、前記Si粒子のSi合金複合粉末に占める割合は30~95質量%である、Si合金複合粉末である。
 前記Si合金複合粉末は、黒鉛粉末と共に電極材料に用いられることが好ましい。
図1は、本発明の一実施形態の電極材料の構成を示した模式図であり、図1の(A)は微粉砕前のSi合金粒子を示し、図1の(B)は微粉砕された後のSi合金複合粉末を示し、図1の(C)は黒鉛粉末とSi合金複合粉末とが混合された状態を示している。
 次に本発明の一実施形態のリチウムイオン電池用の電極材料、および、本電極材料を負極に用いたリチウムイオン電池(以下、単に電池とする場合がある)について具体的に説明する。なお、「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
1.本電極材料
 図1は本電極材料の構成を示した図である。同図において、1は電極材料、2は微粉砕前のSi合金粒子、3は微粉砕された後のSi合金複合粉末、3aはSi粒子、3bはSi-X化合物粒子、3cはSn-Y化合物粒子もしくはAl-Y化合物粒子、4は黒鉛粒子、である。同図で示すように、本電極材料は、黒鉛粉末とSi合金複合粉末とが混合されたもので、詳しくは、Si合金複合粉末3を構成する微細なSi粒子3a、Si-X化合物粒子3b、Sn-Y化合物粒子もしくはAl-Y化合物粒子3cにより、黒鉛粒子4の表面の一部が被覆されたものである。
 黒鉛粉末は、従来よりリチウムイオン電池の負極材料として用いられている。黒鉛はLiイオンの挿入・脱離による膨張・収縮がほとんど生じないため、充放電を繰り返しても特性が劣化しない。但し、前述のように黒鉛は理論容量が低く、電池容量の増加が望めない。このため本例では、以下に述べるSi合金複合粉末と混合させることで負極材料としての容量を高めている。
 ここで本例では、黒鉛粉末とSi合金複合粉末との混合粉における黒鉛粉末の割合を97~20質量%が好ましい。これは、容量(初期放電容量)とサイクル特性とをバランスさせるためである。
 なお、本例で使用される黒鉛粉末の粒径(平均粒径)としては、0.5~50μmを例示することができる。
 一方、Si合金複合粉末は、Si単体と、Si-X化合物と、Sn-Y化合物及びAl-Y化合物の少なくとも一方と、の各相を備えた合金粉末である。ここで、Si-X化合物を構成する元素XはFe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素である。またSn-Y化合物及びAl-Y化合物を構成する元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素である。
 即ち、Si合金複合粉末はこれら主構成元素、すなわち、Si、Sn及びAlの少なくとも一方、元素X、並びに、元素Yからなり、これら主構成元素以外の元素は不可避的なものを除けば含まれていない。不可避的不純物としては、例えば、窒素(N)、硫黄(S)、リン(P)等が考えられる。それぞれの上限は、N≦0.10質量%、S≦0.10質量%、P≦0.10質量%、O≦15質量%である。
 Si合金複合粉末は、平均粒径が5μm以下とされ、Si粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含んで構成される。Si合金複合粉末を平均粒径5μm以下に規定するのは、主にLiを吸蔵するSi単体(Si粒子)の膨張の絶対量を小さくするためであり、好ましい平均粒径は3μm以下、より好ましくは2μm以下、さらに好ましくは1μm以下、特に好ましくは0.7μm以下である。Si合金複合粉末の平均粒径の下限は特に限定されないが、通常0.05μm以上となる。Si合金複合粒子の平均粒径は、黒鉛粒子の平均粒径よりも小さいことが好ましい。
 ここで、「粒径」とは、断面走査型電子顕微鏡(SEM)画像から解析して得たSi合金複合粉末を構成する粒子の面積を、同じ面積を有する円に換算したときの直径、即ち円相当直径をいう。また、「平均粒径」とは、Si合金複合粉末の断面SEM画像(倍率5000倍)から粒子100個について解析した平均値をいう。
 Si粒子は、Si相のみからなる粒子もしくは粒子の95質量%以上がSi相からなる粒子である。
 Si粒子の、Si合金複合粉末全体に占める割合は30~95質量%であり、より好ましくは45~90質量%であり、さらに好ましくは50~80質量%であり、特に好ましくは60~70質量%である。ここで、上記Si粒子の割合は、初期放電容量の低下を防ぐ観点から30質量%以上であり、45質量%以上がより好ましく、50質量%以上がさらに好ましく、60質量%以上が特に好ましい。また、相対的にSi-X化合物粒子が減り、サイクル特性が低下するのを抑制する観点から、上記Si粒子の割合は95質量%以下であり、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下が特に好ましい。
 Si-X化合物粒子は、Si-X化合物のみからなる粒子もしくは粒子の95質量%以上がSi-X化合物からなる粒子である。
 Si-X化合物は、Li吸蔵性に乏しくLiイオンとの反応による膨張は非常に小さい。このためSi-X化合物粒子は、電極材の構造を維持する骨格の役割を果たしている。またSi-X化合物は導電性が高く、Si合金複合粉末と黒鉛粉末との間での導電性確保に有効である。
 本例においてSi-X化合物は、元素Xとして何れの元素を選択するかによりLi吸蔵性や導電性などの特性が異なる場合がある。上記元素XのなかでFe,Ni,Cr,Zrは、Si-X化合物に期待される低膨張性と高導電性において特に優れていることから、元素Xは、Fe,Ni,Cr,及びZrよりなる群の中から選択された1種以上の元素が好ましい。
 なお、Si-X化合物粒子は、1種の化合物のみで構成する場合のほか、例えばSi-Fe化合物およびSi-Ni化合物などの2種で構成することも可能である。
 Sn-Y化合物粒子は、Sn-Y化合物のみからなる粒子もしくは粒子の95質量%以上がSn-Y化合物からなる粒子である。
 Sn-Y化合物は、理論容量がSiよりも低く、Si-X化合物よりも高い。例えばSi-Zr化合物(Si-X化合物)が100mAh/gであるのに対し、Sn-Y化合物は150~600mAh/gである。このため本例では、Sn-Y化合物粒子を介してLiイオンの拡散パスが確保され易くなる。一方で、Liイオンとの反応による膨張の程度は、Liイオンとの反応性が高いSiやSn単体に比べて小さいため、Sn-Y化合物が形成されたことによるサイクル特性への悪影響も低く抑えることができる。またSn-Y化合物は、上記Si-X化合物と同様に導電性を高める効果を備えている。
 なお、Sn-Y化合物におけるこのような効果は、Al-Y化合物を用いることによっても得ることができる。このため本例のSi合金複合粉末では、Sn-Y化合物粒子の全部もしくは一部に代えてAl-Y化合物粒子を用いることも可能である。
 ここで、元素YとしてCuが選択されたSn-Cu化合物もしくはAl-Cu化合物は、導電性に優れ、他のSn化合物もしくはAl化合物に比べてサイクル特性が低下し難い特徴を備えているため好ましい。
 以上のように、Si-X化合物と、Sn-Y化合物及びAl-Y化合物の少なくとも一方とは、果たす役割が異なっており、これら化合物の割合によっても得られる電池特性が変化する。Sn-Y化合物やAl-Y化合物は、程度は小さいもののLiイオンとの反応によりSi-X化合物よりも膨張する。このため、{Si-X化合物/(Sn-Y化合物もしくはAl-Y化合物)}で表される質量比は0.5~45が好ましく、1~39がより好ましく、1.5~39がさらに好ましく、2.5~10が特に好ましい。ここで、サイクル特性の低下を抑制する観点から、上記質量比は0.5以上が好ましく、1以上がより好ましく、1.5以上がさらに好ましく、2.5以上が特に好ましい。一方、高い初期放電容量を得る観点から、上記質量比は45以下が好ましく、39以下がより好ましく、さらに好ましくは10以下である。
 以上のような構成相を得るのに好適な各主要元素のSi合金複合粉末全体における含有量は以下の通りである。尚、以降の説明では、特にことわりがない限り「%」は「質量%」を意味するものとする。
 Siの含有量は50~95%が好ましく、より好ましくは60~80%、さらに好ましくは71~80%である。ここで、Siの含有量は、高い初期放電容量を得る観点から、50%以上が好ましく、60%以上がより好ましく、71%以上がさらに好ましい。また、良好なサイクル特性を得る観点から、Siの含有量は95%以下が好ましく、80%以下がより好ましい。
 元素Xの含有量は、1~30%が好ましく、より好ましくは5~20%である。ここで、元素Xの含有量は、良好なサイクル特性を得る観点から、1%以上が好ましく、5%以上がより好ましい。また、高い初期放電容量を得る簡単から、元素Xの含有量は30%以下が好ましく、20%以下がより好ましい。
 Sn、Alの各々の含有量は、0.1~20%が好ましく、より好ましくは1~10%、さらに好ましくは2~9%である。ここで、Sn、Alの各含有量は、Li拡散パスとしての効果をより得る観点から、0.1%以上が好ましく、1%以上がより好ましく、2%以上がさらに好ましい。また、Sn-Y化合物やAl-Y化合物による膨張に伴うサイクル特性の低下を抑制する簡単から、Sn、Alの各含有量は、20%以下が好ましく、10%以下がより好ましく、9%以下がさらに好ましい。
 また、SnとAlを共に含有させる場合は、SnとAlの合計の含有量を上記範囲とすることが好ましく、具体的には、0.1~20%が好ましく、より好ましくは1~10%、さらに好ましくは2~9%である。
 元素Yの含有量は、0.1~15%が好ましく、1~10%がより好ましい。ここで、元素Yの含有量は、Li拡散パスとしての効果をより得る観点から、0.1%以上が好ましく、1%以上がより好ましい。また、Sn-Y化合物やAl-Y化合物による膨張に伴うサイクル特性の低下を抑制する観点から、元素Yの含有量は15%以下が好ましく、より好ましくは10%以下である。
 本例では、このように構成されたSi合金複合粉末が黒鉛粉末と混合されて、Si合金複合粉末が黒鉛粒子表面を被覆する割合(被覆率)は5%以上とされている。ここで被覆率は、電子顕微鏡による断面観察において、Si合金複合粉末を構成する粒子と黒鉛粒子とが接触する部分の長さを、黒鉛粒子の全周長で除した値(百分率)である。この被覆率は、電極材料中におけるSi合金複合粉末の分散の度合いを示す指標でもある。被覆率が低く、Si合金複合粉末が局所的に偏在している場合には、かかる偏在部分での膨張が他部に比べて大きくなり、かかる偏在部分での剥離や崩壊の虞が高くなる。
 本発明者らが評価した結果によれば、被覆率が5%以上となるように、Si合金複合粉末を分散混合させることで、初期放電容量を高めつつサイクル特性の低下を抑制することができる。好ましい被覆率は7%以上、より好ましい被覆率は10%以上である。
 次に、黒鉛粉末とSi合金複合粉末と含む本負極材料の製造方法について説明する。
 先ずSi合金複合粉末の製造方法の一例について説明する。
 所定の化学組成となるように各原料を量り取り、量り取った各原料を、アーク炉、高周波誘導炉、加熱炉などの溶解手段を用いて溶解させるなどして得た合金溶湯を、アトマイズ法を用いて急冷して急冷合金としてのSi合金を得る。
 アトマイズ法では、噴霧チャンバ内に出湯されて連続的(棒状)に下方に流れ落ちる合金溶湯に対し、N、Ar、He等によるガスを高圧、例えば、1~10MPaで噴き付け、溶湯を粉砕しつつ冷却する。冷却された溶湯は、半溶融のまま噴霧チャンバ内を自由落下しながら球形に近づき、粉末状のSi合金が得られる(例えば図1の(A)参照)。また、冷却効果を向上させる観点からガスに代えて高圧水を噴き付けてもよい。
 また場合によってはアトマイズ法に代えてロール急冷法を用いて箔片化されたSi合金を得ることも可能である。
 次に得られたSi合金をボールミル、ビーズミル、ディスクミル、コーヒーミル、乳鉢粉砕等の適当な粉砕手段により微粉砕し、その平均粒径を5μm以下にするとともに、それぞれ独立に存在するSi粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含んだSi合金複合粉末とする。
 次に、得られたSi合金複合粉末と黒鉛粉末を所定の配合比率に沿って準備し、これらをボールミルやミキサー等により混合して本例の電極材料が作製される。この際、混合時間等の条件を適宜変更することでSi合金複合粉末の黒鉛粉末に対する被覆率を調整することができる。
2.本電池
 本電池は、本電極材料を含む負極を用いて構成されている。
 負極は、導電性基材と、導電性基材の表面に積層された導電膜とを有している。導電膜は、バインダ中に少なくとも上述した本電極材料を含有している。
 上記導電性基材は、集電体として機能する。その材質としては、例えば、Cu、Cu合金、Ni、Ni合金、Fe、Fe基合金などを例示することができる。好ましくは、Cu、Cu合金であると良い。また、具体的な導電性基材の形態としては、箔状、板状等を例示することができる。好ましくは、電池としての体積を小さくできる、形状自由度が向上するなどの観点から、箔状であると良い。
 上記バインダの材質としては、例えば、ポリフッ化ビニリデン(PVdF)樹脂、ポリテトラフルオロエチレン等のフッ素樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、スチレンブタジエンゴム(SBR)、ポリアクリル酸などを好適に用いることができる。これらは1種または2種以上併用することができる。これらのうち、機械的強度が強く、活物質の体積膨張に対しても良く耐え得、バインダの破壊によって導電膜の集電体からの剥離を良好に防ぐ意味で、ポリイミド樹脂が特に好ましい。
 導電膜は、他にも、必要に応じて、導電助材を含有していてもよい。導電助材を含有する場合には、電子の導電経路を確保しやすくなる。また、導電膜は、必要に応じて、骨材を含有していてもよい。骨材を含有する場合には、充放電時の負極の膨張・収縮を抑制しやすくなり、負極の崩壊を抑制できるため、サイクル特性を一層向上させることができる。
 本負極は、例えば、適当な溶剤に溶解したバインダ中に、本負極材料、必要に応じて、導電助材、骨材を必要量添加してペースト化し、これを導電性基材の表面に塗工、乾燥させ、必要に応じて、圧密化や熱処理等を施すことにより製造することができる。
 本負極を用いてリチウムイオン電池を構成する場合、本負極以外の電池の基本構成要素である正極、電解質、セパレータなどについては、特に限定されるものではない。
 上記正極としては、具体的には、例えば、アルミニウム箔などの集電体表面に、LiCoO、LiNiO、LiFePO、LiMnOなどの正極活物質を含む層を形成したものなどを例示することができる。
 上記電解質としては、具体的には、例えば、非水溶媒にリチウム塩を溶解した電解液などを例示することができる。その他にも、ポリマー中にリチウム塩が溶解されたもの、ポリマーに上記電解液を含浸させたポリマー固体電解質などを用いることもできる。
 上記非水溶媒としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを例示することができる。これらは1種または2種以上含まれていてもよい。
 上記リチウム塩としては、具体的には、例えば、LiPF、LiBF、LiClO、LiCFSO、LiAsFなどを例示することができる。これらは1種または2種以上含まれていてもよい。
 また、その他の電池構成要素としては、セパレータ、缶(電池ケース)、ガスケット等が挙げられるが、これらについても、リチウムイオン電池で通常採用される物であれば、何れの物であっても適宜組み合わせて電池を構成することができる。
 なお、電池形状は、特に限定されるものではなく、筒型、角型、コイン型など何れの形状であってもよく、その具体的用途に合わせて適宜選択することができる。
 以下、本発明を実施例を用いてより具体的に説明する。なお、合金組成の%は、特に明示する場合を除き、質量%である。
1.負極用電極材料の作製
 下記表1には実施例33種と比較例6種におけるSi合金複合粉末についての合金組成を示している。表1で示した各合金組成は、下記表2、表3に記載の目標構成が得られるように規定されている。なお、表1では、すべての化学組成の合計が100.1%となるものがあるが、有効数字を揃えて四捨五入したことによるものである。
 先ず表1に示す各原料を秤量した。秤量した各原料を高周波誘導炉を用いて加熱、溶解し、合金溶湯とした。ガスアトマイズ法により、上記合金溶湯から粉末状のSi合金を作製した。なお、合金溶湯作製時およびガスアトマイズ時の雰囲気はアルゴン雰囲気とした。また、ガスアトマイズ時には、噴霧チャンバ内を棒状に落下する合金溶湯に対して、高圧(4MPa)のアルゴンガスを噴き付けた。
 得られた各Si合金を、湿式ビーズミルを用いて機械的に微粉砕し、負極用電極材料に使用するSi合金複合粉末とした。
 得られたSi合金複合粉末と黒鉛粉末を下記表2,表3で示す所定の割合に沿って準備し、これらをミキサーにより混合して負極用の電極材料を作製した。ここで使用した黒鉛粉末は、平均粒径20μmである。
Figure JPOXMLDOC01-appb-T000001
2. 充放電試験用コイン型電池の作製
 初めに、作製した負極活物質としての電極材料100質量部と、導電助材としてのケッチェンブラック(ライオン(株)製)6質量部と、結着剤としてのポリイミド(熱可塑性樹脂)バインダ19質量部とを配合し、これを溶剤としてのN-メチル-2-ピロリドン(NMP)と混合し、各電極材料を含む各ペーストを作製した。なお、ペースト作成時における混錬時間を実施例27~33は1時間とした。比較例1は混錬時間を5分とした。その他の実施例および比較例は、混錬時間を15~30分とした。
 以下の通り、各コイン型半電池を作製した。ここでは、簡易的な評価とするため、負極用電極材料を用いて作製した電極を試験極とし、Li箔を対極とした。先ず、負極集電体となるステンレススチール(SUS)316L箔(厚み20μm)表面に、ドクターブレード法を用いて、50μmになるように各ペーストを塗布し、乾燥させ、負極活物質層を形成した。形成後、ロールプレスにより負極活物質層を圧密化した。これにより、実施例および比較例に係る電極材料からなる試験極を作製した。
 次いで、実施例および比較例に係る試験極を、直径11mmの円板状に打ち抜き、各試験極とした。
 次いで、Li箔(厚み500μm)を上記試験極と略同形に打ち抜き、各対極を作製した。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積割合での等量混合溶媒に、LiPFを1mol/lの濃度で溶解させ、非水電解液を調製した。
 次いで、各試験極を各正極缶に収容するとともに、対極を各負極缶に収容し、各試験極と各対極との間に、ポリオレフィン系微多孔膜のセパレータを配置した。なお、各試験極はリチウムイオン電池では負極となるべきものであるが、対極をLi箔としたときにはLi箔が負極となり、試験極が正極となる。
 次いで、各缶内に上記非水電解液を注入し、各負極缶と各正極缶とをそれぞれ加締め固定した。
3.電極材料の評価
3-1.電極材料の構成相確認
 微粉砕されたSi合金複合粉末について、XRD(X線回折)による分析を行ない、Si粒子、Si-X化合物粒子、Sn-Y化合物粒子、Al-Y化合物粒子の有無を確認した。
3-2.相比率の算出
 下記表2、表3で示す相比率(全体に占める各相の割合)の算出方法について、実施例1の場合を例に説明する。
 (1)まず作製された粉末における構成相を確認する。実施例1の場合、上記XRD分析の結果、Si、SiFe、SnCuが確認された(表2参照)。
 (2)SiFeは、質量%比で表すと、50.1[Si]-49.9[Fe]である。これに対応して化合物化するSiの量は17.3×50.1/49.9=17.4(質量%)となる。よってSi-X化合物相(SiFe)比率は、化合物化したSi量(17.4質量%)と表1のFe量(17.3質量%)を合計した値であり、この例では35%である。
 (4)Si相比率は、全Si量(77.7質量%)から化合物化したSi量(17.4質量%)を差し引いた値であり、この例では60%である。
 なお、Sn-Y相比率(全体に占めるSn-Y化合物相の割合)は、表1のSn量と元素Y(実施例1の場合はCu)量を合計した値であり、この例では5%である。
 表2、表3中、SiX/(SnY or AlY)とは、{Si-X化合物/(Sn-Y化合物及びAl-Y化合物の合計)}で表される質量比を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
3-3.Si合金複合粉末の平均粒径
 Si合金複合粉末の断面SEM画像(倍率5000倍)から粒子100個について解析した粒径の平均値をSi合金複合粉末の平均粒径とした。その結果を表2、表3のSi複合粉末平均粒径(μm)に示している。
3-4.Si合金複合粉末による黒鉛粒子表面の被覆率
 バインダにより固められた黒鉛粉末とSi合金複合粉末を含む前記負極活物質層を電子顕微鏡により断面観察し、黒鉛粒子10個についてSi合金複合粉末による被覆率を求め、その平均値を被覆率とした。その結果を表2、表3の黒鉛被覆率(%)に示している。
3-5.充放電試験
 作製した各コイン型電池を用い、電流値0.2mAの定電流充放電を1サイクル分実施した。このLi放出時に使用した容量(mAh)を活物質量(g)で割った値が初期放電容量C(mAh/g)である。
 測定した上記初期放電容量Cについて、600(mAh/g)以上を「◎」、450以上600未満を「〇」、400以上450未満を「△」、400未満を「×」と評価し、その結果を表2、表3に示している。
 2サイクル目以降は、1/5Cレートで充放電試験を実施した。ここでCレートについて、電極を(充)放電するのに要する電気量Cを1時間で(充)放電する電流値を1Cとする。すなわち、5Cならば12分で、1/5Cならば5時間で(充)放電することとなる。そして、上記充放電サイクルを100回行うことにより、サイクル特性の評価を行った。得られた各放電容量から容量維持率(100サイクル後の放電容量/初期放電容量(1サイクル目の放電容量)×100)を求めた。そして、容量維持率が95%以上であった場合を「◎」、80%以上95%未満であった場合を「〇」、70%以上80%未満であった場合を「△」、70%未満であった場合を「×」と評価し、その結果を表2、表3に示している。
 以上のようにして得られた表2、表3の結果から次のことが分かる。
 比較例1は、Si合金複合粉末による黒鉛粒子表面の被覆率が本発明の下限(5%)を下回っており、Si合金複合粉末が偏在していることが推定される。この比較例1では、サイクル特性についての評価が×であった。
 比較例2は、Si合金複合粉末の平均粒径が本発明の上限(5μm)を上回っている例で、サイクル特性についての評価が×であった。
 比較例3は、Sn-Y化合物相(Sn-Y化合物粒子)もAl-Y化合物相(Al-Y化合物粒子)も備えておらず、初期放電容量についての評価が×であった。
 比較例4は、Si-X化合物相(Si-X化合物粒子)を備えておらず、サイクル特性についての評価が×であった。
 比較例5は、Si相の割合が本発明の下限(30%)を下回っており、初期放電容量についての評価が×であった。
 比較例6は、Si相の割合が本発明の上限(95%)を上回っており、サイクル特性についての評価が×であった。
 以上のように、いずれの比較例も初期放電容量もしくはサイクル特性の評価が×であり、初期放電容量およびサイクル特性を考慮した電池特性ついては未だ十分に高められていない。
 これに対しSi合金複合粉末が、平均粒径が5μm以下で、Si粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含んで構成され、Si粒子の割合が30~95質量%で、Si合金複合粉末による黒鉛粒子表面の被覆率が5%以上である各実施例は、上記比較例よりも電池特性が高められている。
 実施例はいずれも、初期放電容量もしくはサイクル特性において×の評価はなく、初期放電容量およびサイクル特性がバランスよく高められていることが分かる。特にSi合金複合粉末を平均粒径1μm以下にまで微細化させた実施例25,26において初期放電容量を損なうことなく優れたサイクル特性が得られている。
 なお、黒鉛粉末の割合を95%まで高くした実施例27については、初期放電容量の評価が△であるが、サイクル特性の評価は◎と非常に高い。特に高いサイクル特性が必要とされる場合に好適である。
 また、黒鉛粉末の割合を30%まで低くした実施例28については、サイクル特性の評価が△であるが、初期放電容量の評価は◎と非常に高く、特に高い初期放電容量が必要とされる場合に好適である。
 以上、本発明のリチウムイオン電池の電極材料およびリチウムイオン電池について詳しく説明したが、本発明は上記実施形態および実施例に限定されるものではない。例えば、上記実施形態では、各相を備えたSi合金粒子を微粉砕することでSi粒子やSi-X化合物粒子等を得ているが、場合によっては、溶湯から直接Si粒子やSi-X化合物粒子等を形成してこれを混合させてSi合金複合粉末とすることも可能である等、本発明はその趣旨を逸脱しない範囲内で種々の改変が可能である。
 本出願は2021年9月30日出願の日本特許出願(特願2021-161674)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (9)

  1.  黒鉛粉末とSi合金複合粉末とが混合されてなるリチウムイオン電池用の電極材料であって、
     前記Si合金複合粉末は、平均粒径が5μm以下であり、Si粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含み、
     前記Si-X化合物粒子を構成する元素XはFe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
     前記Sn-Y化合物粒子及び前記Al-Y化合物粒子を構成する元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
     前記Si粒子の前記Si合金複合粉末に占める割合は30~95質量%であり、
     前記Si合金複合粉末による黒鉛粒子表面の被覆率が5%以上である、リチウムイオン電池の電極材料。
  2.  前記黒鉛粉末と前記Si合金複合粉末との混合粉における前記黒鉛粉末の割合が97~20質量%である、請求項1に記載のリチウムイオン電池の電極材料。
  3.  前記元素XはFe,Ni,Cr,及びZrよりなる群の中から選択された1種以上の元素である、請求項1又は2に記載のリチウムイオン電池の電極材料。
  4.  {Si-X化合物/(Sn-Y化合物及びAl-Y化合物の合計)}で表される質量比が1~39である、請求項1~3の何れか1項に記載のリチウムイオン電池の電極材料。
  5.  前記元素YがCuである、請求項1~4の何れか1項に記載のリチウムイオン電池の電極材料。
  6.  前記Si合金複合粉末の平均粒径が1μm以下である、請求項1~5の何れか1項に記載のリチウムイオン電池の電極材料。
  7.  前記Si合金複合粉末の平均粒径が0.7μm以下である、請求項1~5の何れか1項に記載のリチウムイオン電池の電極材料。
  8.  平均粒径が5μm以下であり、Si粒子、Si-X化合物粒子、並びに、Sn-Y化合物粒子及びAl-Y化合物粒子の少なくとも一方を含み、
     前記Si-X化合物粒子を構成する元素XはFe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
     前記Sn-Y化合物粒子及び前記Al-Y化合物粒子を構成する元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
     前記Si粒子のSi合金複合粉末に占める割合は30~95質量%である、Si合金複合粉末。
  9.  黒鉛粉末と共に電極材料に用いられる、請求項8に記載のSi合金複合粉末。
PCT/JP2022/035797 2021-09-30 2022-09-26 リチウムイオン電池の電極材料およびSi合金複合粉末 WO2023054289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22876156.5A EP4394948A1 (en) 2021-09-30 2022-09-26 Electrode material for lithium-ion battery and si alloy composite powder
CN202280064937.8A CN117999676A (zh) 2021-09-30 2022-09-26 锂离子电池的电极材料以及Si合金复合粉末
KR1020247010204A KR20240050410A (ko) 2021-09-30 2022-09-26 리튬 이온 전지의 전극 재료 및 Si 합금 복합 분말
JP2023551488A JPWO2023054289A1 (ja) 2021-09-30 2022-09-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161674 2021-09-30
JP2021161674 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054289A1 true WO2023054289A1 (ja) 2023-04-06

Family

ID=85782707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035797 WO2023054289A1 (ja) 2021-09-30 2022-09-26 リチウムイオン電池の電極材料およびSi合金複合粉末

Country Status (6)

Country Link
EP (1) EP4394948A1 (ja)
JP (1) JPWO2023054289A1 (ja)
KR (1) KR20240050410A (ja)
CN (1) CN117999676A (ja)
TW (1) TWI827285B (ja)
WO (1) WO2023054289A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209496A (ja) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2013084549A (ja) * 2011-09-30 2013-05-09 Daido Steel Co Ltd リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
WO2017082369A1 (ja) * 2015-11-10 2017-05-18 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2017224499A (ja) 2016-06-15 2017-12-21 大同特殊鋼株式会社 リチウムイオン電池用負極活物質およびリチウムイオン電池
US20180261837A1 (en) * 2017-03-10 2018-09-13 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2020126835A (ja) * 2019-02-06 2020-08-20 大同特殊鋼株式会社 リチウムイオン電池用負極活物質
JP2021161674A (ja) 2020-03-31 2021-10-11 有限会社善徳丸建設 捨石マウンド均し用重錘

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209496A (ja) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2013084549A (ja) * 2011-09-30 2013-05-09 Daido Steel Co Ltd リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
WO2017082369A1 (ja) * 2015-11-10 2017-05-18 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2017224499A (ja) 2016-06-15 2017-12-21 大同特殊鋼株式会社 リチウムイオン電池用負極活物質およびリチウムイオン電池
US20180261837A1 (en) * 2017-03-10 2018-09-13 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2020126835A (ja) * 2019-02-06 2020-08-20 大同特殊鋼株式会社 リチウムイオン電池用負極活物質
JP2021161674A (ja) 2020-03-31 2021-10-11 有限会社善徳丸建設 捨石マウンド均し用重錘

Also Published As

Publication number Publication date
CN117999676A (zh) 2024-05-07
TWI827285B (zh) 2023-12-21
TW202324816A (zh) 2023-06-16
KR20240050410A (ko) 2024-04-18
JPWO2023054289A1 (ja) 2023-04-06
EP4394948A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
JP5884573B2 (ja) リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
JP5790282B2 (ja) リチウム二次電池用負極活物質およびリチウム二次電池用負極
JP7375569B2 (ja) リチウムイオン電池用負極活物質
JP6808988B2 (ja) リチウムイオン電池用負極活物質およびリチウムイオン電池
JP2012014866A (ja) リチウム二次電池用負極活物質およびその製造方法
WO2023054289A1 (ja) リチウムイオン電池の電極材料およびSi合金複合粉末
KR102317162B1 (ko) 리튬-이온 전지용 부극 활물질, 리튬-이온 전지용 부극 및 리튬-이온 전지
JP7337580B2 (ja) 多元系シリサイドおよびケイ素を含むリチウムイオン電池用負極材料
WO2023054290A1 (ja) リチウムイオン電池用の負極材料粉末
JP4883894B2 (ja) リチウム二次電池用負極及びその製造方法
JP7443851B2 (ja) リチウムイオン電池の負極用粉末材料およびその製造方法
WO2024095901A1 (ja) リチウムイオン電池用の負極材料粉末
WO2022260110A1 (ja) リチウムイオン電池用負極活物質
JP2024018914A (ja) リチウムイオン電池負極用Si合金粉末
US20240038976A1 (en) Si ALLOY POWDER FOR NEGATIVE ELECTRODE
JP2024018915A (ja) リチウムイオン電池負極用Si合金粉末
US20240038977A1 (en) Si ALLOY POWDER FOR NEGATIVE ELECTRODE
JP2015138625A (ja) リチウムイオン電池用負極活物質
WO2024190760A1 (ja) リチウムイオン電池負極活物質
CN117476918A (zh) 负极用Si合金粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551488

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18693463

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280064937.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247010204

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022876156

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876156

Country of ref document: EP

Effective date: 20240328

NENP Non-entry into the national phase

Ref country code: DE