WO2023054290A1 - リチウムイオン電池用の負極材料粉末 - Google Patents

リチウムイオン電池用の負極材料粉末 Download PDF

Info

Publication number
WO2023054290A1
WO2023054290A1 PCT/JP2022/035798 JP2022035798W WO2023054290A1 WO 2023054290 A1 WO2023054290 A1 WO 2023054290A1 JP 2022035798 W JP2022035798 W JP 2022035798W WO 2023054290 A1 WO2023054290 A1 WO 2023054290A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
negative electrode
sny
compound phase
material powder
Prior art date
Application number
PCT/JP2022/035798
Other languages
English (en)
French (fr)
Inventor
恭平 下村
優太 木村
Original Assignee
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同特殊鋼株式会社 filed Critical 大同特殊鋼株式会社
Priority to KR1020247010205A priority Critical patent/KR20240050411A/ko
Priority to CN202280064927.4A priority patent/CN117999672A/zh
Publication of WO2023054290A1 publication Critical patent/WO2023054290A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to negative electrode material powder for lithium ion batteries.
  • Lithium-ion batteries have the advantage of high capacity, high voltage, and the ability to be miniaturized, and are widely used as power sources for mobile phones and laptop computers. Moreover, in recent years, great expectations have been placed on power sources for power applications such as electric vehicles and hybrid vehicles, and the development thereof has been actively promoted.
  • Li ions lithium cobalt oxide
  • graphite graphite as a negative electrode active material has a theoretical capacity of only 372 mAh/g, and a much higher capacity has been desired.
  • metal materials such as Si, which can be expected to increase capacity, are being considered.
  • the theoretical capacity of Si is 4198 mAh/g, but since Si absorbs Li ions through an alloying reaction with Li, large volume expansion/contraction occurs as the Li ions are absorbed/desorbed. As a result, the Si particles crack or separate from the current collector, and the cycle characteristics, which are capacity retention characteristics when charging and discharging are repeated, deteriorate.
  • Patent Literature 1 discloses providing a Si compound phase together with a Si phase in Si-based alloy particles.
  • the Si compound phase is effective in suppressing expansion of the Si phase and improving cycle characteristics.
  • Such means for improving cycle characteristics may reduce the initial characteristics of the battery, such as initial discharge capacity and initial coulombic efficiency. , there is still room for improvement.
  • the present invention was made with the object of providing a negative electrode material powder for lithium ion batteries capable of improving battery characteristics in consideration of initial characteristics and cycle characteristics.
  • the present invention contains Si, Sn, element X, element Y, A negative electrode material powder for a lithium ion battery containing a Si phase, a SiX compound phase and a SnY compound phase at a phase ratio represented by the following formula (1),
  • the Si phase, the SiX compound phase, and the SnY compound phase exist separately in separate states,
  • the particle size at an integrated value of 50% in the particle size distribution is the average particle size mdSi, mdSix, and mdSnY in each phase
  • the average particle diameters mdSi, mdSiX, and mdSnY are all within the range of 0.1 to 50 ⁇ m, It is characterized in that the average grain size ratios represented by mdSi/mdSiX and mdSi/mdSnY are both in the range of 0.1 to 5.0.
  • a[Si]-b[SiX]-c[SnY]...Equation (1) provided that the element X is one or more elements selected from the group consisting of Fe, Ni, Cr, Zr, and Ti, The element Y is one or more elements selected from the group consisting of Cu, Fe, Ni, Cr, Co, Mn, Zr, and Ti,
  • the Si phase which expands as Li is absorbed, exists independently from other SiX compound phases and SnY compound phases. is likely to form a space that allows the expansion of the Si phase, and this space serves as a buffer region against the expansion of the Si phase, suppressing the collapse of the SiX compound phase that serves as a skeleton in the electrode, and cycle characteristics can be improved.
  • the ratio of the average grain size of the Si phase and the SiX compound phase (mdSi/mdSix) and the ratio of the average grain size of the Si phase and the SnY compound phase (mdSi/mdSnY) are both 0.1 to It is within the range of 5.0. More preferably, it is within the range of 0.3 to 3.0. By doing so, it is possible to avoid excessive deterioration of the initial characteristics or the cycle characteristics, and improve the battery characteristics considering the initial characteristics and the cycle characteristics.
  • a, b, and c in the formula (1) should be 30 ⁇ a ⁇ 90, 1 ⁇ b ⁇ 70, and 0.1 ⁇ c ⁇ 30, respectively. is preferred.
  • FIG. 1 is a schematic diagram showing the structure of a negative electrode material powder according to one embodiment of the present invention.
  • FIG. 1A is a schematic diagram of Si alloy particles having a Si phase, a SiX compound phase and a SnY compound phase.
  • 1(B) is a schematic diagram of a negative electrode material powder of one embodiment of the present invention obtained by pulverizing the Si alloy particles of FIG. 1(A).
  • FIG. 2 is a schematic diagram for explaining the effect of the negative electrode material powder of one embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining the effect of the negative electrode material powder of another embodiment of the present invention.
  • a negative electrode material powder for a lithium ion battery according to one embodiment of the present invention and a lithium ion battery (hereinafter sometimes simply referred to as a battery) using this negative electrode material powder for a negative electrode will be specifically described.
  • "-" indicating a numerical range is used in the sense that the numerical values described before and after it are included as a lower limit and an upper limit.
  • the present negative electrode material powder contains Si, Sn, element X and element Y as main constituent elements.
  • the element X is one or more elements selected from the group consisting of Fe, Ni, Cr, Zr, and Ti
  • the element Y is Cu, Fe, Ni, Cr, Co, Mn, Zr. , and Ti.
  • Elements other than the main constituent elements of these Si, Sn, element X, and element Y are not included unless unavoidable.
  • unavoidable impurity elements include nitrogen (N), sulfur (S), phosphorus (P), oxygen (O), and the like.
  • the respective upper limits are N ⁇ 0.10% by mass, S ⁇ 0.10% by mass, P ⁇ 0.10% by mass, and O ⁇ 15% by mass.
  • the present negative electrode material powder contains Si phase, SiX compound phase and SnY compound phase in the phase ratio represented by the following formula (1) as its metal structure.
  • [Si] in formula (1) means a Si phase
  • [SiX] means a SiX compound phase
  • [SnY] means a SnY compound phase, respectively.
  • non-compound Sn simple substance (Sn phase) may be contained as an impurity as long as the proportion of the total is 5% by mass or less.
  • the Si phase is a phase that mainly contains Si and occludes Li ions. From the viewpoint of increasing the amount of Li absorption, it is preferable to use a single phase of Si. However, the Si phase may contain unavoidable impurities.
  • the ratio of the Si phase (value of "a" in formula (1)) is 10 to 95% by mass, preferably 30 to 90% by mass.
  • the proportion of the Si phase is 10% by mass or more, preferably 30% by mass or more.
  • the ratio of the Si phase is 95% by mass or less, preferably 90% by mass or less.
  • the SiX compound that constitutes the SiX compound phase has poor Li-absorbing properties and undergoes very little expansion due to reaction with Li ions. Therefore, the SiX compound phase plays a role of a skeleton that maintains the structure of the electrode.
  • the SiX compound may have different properties such as the Li-absorbing property and conductivity. Fe, Ni, Cr, and Zr as the element X are particularly excellent in the low expansion properties and high electrical conductivity expected of SiX compounds. Elements X effective for increasing the initial coulomb efficiency are Ni and Ti. The element X that is effective in improving discharge rate characteristics is Ti. Thus, it is preferable to appropriately select the element X according to the desired properties.
  • the SiX compound phase may be composed of only one type of compound, or may be composed of two or more types of compounds such as a SiFe compound and a SiNi compound.
  • the SnY compound that constitutes the SnY compound phase has a theoretical capacity lower than that of Si and higher than that of SiX compound.
  • the theoretical capacity of SiZr compounds corresponding to SiX compounds is 100 mAh/g, while the theoretical capacity of SnY compounds is 150-600 mAh/g. Therefore, in this example, a diffusion path for Li ions is easily ensured through the SnY compound phase.
  • the degree of expansion due to reaction with Li ions is small compared to Si and Sn alone, which are highly reactive with Li ions. can.
  • the SnCu compound formed when Cu is selected as the element Y has excellent conductivity. It is also effective in improving cycle characteristics. Therefore, the element Y preferably contains Cu.
  • the SnY compound phase may be composed of only one type of compound, or may be composed of two or more types of compounds.
  • the SiX compound phase and the SnY compound phase play different roles, and the ratio of these compound phases also changes the obtained battery characteristics.
  • the SnY compound phase expands more than the SiX compound phase due to reaction with Li ions, albeit to a lesser extent. Therefore, when the ratio of the SnY compound phase is high and the ratio of the SiX compound phase is low, the cycle characteristics deteriorate. On the other hand, when the ratio of the SiX compound phase is high and the ratio of the SnY compound phase is low, the initial discharge capacity becomes low.
  • the ratio of the SiX compound phase (the value of "b" in formula (1)) is 1 to 90% by mass, preferably 1 to 70% by mass or 5 to 90% by mass, and 5 to 70% by mass. More preferably, 10 to 70% by mass is even more preferable.
  • a + b + c 100
  • b 90% by mass
  • a and c are the minimum values of 10% by mass and 0.07% by mass
  • the total of a + b + c is 100.07% by mass. and exceeds 100% by mass. In terms of significant figures, this can be regarded as 100% by mass, but if exceeding 100% by mass becomes a problem, the upper limit of b is not 90% by mass, but 89.93% by mass. %.
  • b 90% by mass
  • the upper limit of b is 89.9% by weight instead of 90% by weight.
  • b is 70% by mass
  • a and c are the minimum values of 30% by mass, 0.1% by mass, and 0.1% by mass.
  • the value is 1% by mass
  • the sum of a+b+c is 100.1% by mass, which can be regarded as 100% by mass in terms of significant figures.
  • the upper limit of b should be 89.9% by mass instead of 90% by mass.
  • the ratio of the SiX compound phase (value of "b" in formula (1)) is 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of obtaining high cycle characteristics. Also, from the viewpoint of obtaining a high initial discharge capacity, the proportion of the SiX compound phase is 90% by mass or less, in some cases 89.97% by mass or less, preferably 89.9% by mass or less, and more preferably 70% by mass or less. .
  • the proportion of the SnY compound phase (value of "c” in formula (1)) is 0.07 to 50% by mass, preferably 0.1 to 50% by mass, more preferably 0.1 to 30% by mass.
  • the ratio of the SnY compound phase (the value of "c” in formula (1)) is 0.07% by mass or more, preferably 0.1% by mass or more, from the viewpoint of obtaining a high initial discharge capacity.
  • the proportion of the SnY compound phase is 50% by mass or less, preferably 30% by mass or less.
  • the relationships among a indicating the ratio of the Si phase, b indicating the ratio of the SiX compound phase, and c indicating the ratio of the SnY compound phase are 10 ⁇ a ⁇ 95, 1 ⁇ b ⁇ 90, and 0.07 ⁇ c ⁇ 50.
  • each main element suitable for obtaining the above constituent phases in the negative electrode material powder is as follows. In the following description, “%” means “% by mass” unless otherwise specified.
  • the Si content is preferably 50-95%, more preferably 60-80%, and still more preferably 73-79%.
  • the Si content is preferably 50% or more, more preferably 60% or more, and even more preferably 73% or more.
  • the Si content is preferably 95% or less, more preferably 80% or less, and even more preferably 79% or less.
  • the content of element X is preferably 1.0-38%, more preferably 5.0-30%, and even more preferably 13-23%.
  • the content of element X is preferably 1.0% or more, more preferably 5.0% or more, and even more preferably 13% or more, from the viewpoint of obtaining good cycle characteristics.
  • the content of element X is preferably 38% or less, more preferably 30% or less, and even more preferably 23% or less.
  • the total content thereof is preferably within the above range.
  • the Sn content is preferably 0.7 to 30%, more preferably 1.0 to 10%, still more preferably 1.5 to 5.0%.
  • the Sn content is preferably 0.7% or more, more preferably 1.0% or more, and even more preferably 1.5% or more, from the viewpoint of obtaining the effect as a Li diffusion path.
  • the Sn content is preferably 30% or less, more preferably 10% or less, and even more preferably 5.0% or less.
  • the content of element Y is preferably 1.0-15%, more preferably 1.5-10%, and even more preferably 1.5-4.0%.
  • the content of the element Y is preferably 1.0% or more, more preferably 1.5% or more, from the viewpoint of obtaining the effect as a Li diffusion path.
  • the content of element Y is preferably 15% or less, more preferably 10% or less, and even more preferably 4.0% or less.
  • the total content thereof is preferably within the above range.
  • FIG. 1B shows a schematic diagram of negative electrode material powder 3 according to one embodiment of the present invention, which is obtained by pulverizing Si alloy particles having Si phase, SiX compound phase and SnY compound phase. ing.
  • the Si phase 3a, the SiX compound phase 3b, and the SnY compound phase 3c are separately present in a separated state.
  • the average particle diameters of the Si phase 3a, the SiX compound phase 3b, and the SnY compound phase 3c are respectively mdSi, mdSiX, and mdSnY
  • the average particle diameters mdSi, mdSiX, and mdSnY are all within the range of 0.1 to 50 ⁇ m.
  • the average particle size mdSi is more preferably 1.0 to 20 ⁇ m, particularly preferably 1.0 to 10 ⁇ m.
  • each of the average particle diameters mdSi, mdSiX and mdSnY is 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 1.0 ⁇ m or more.
  • the average particle diameters mdSi, mdSiX and mdSnY are all 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and the average particle diameter mdSi is more preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • particle size refers to the diameter of a circle having the same area measured by measuring the area of each phase constituting the present negative electrode material powder under electron microscope observation, that is, the equivalent circle diameter.
  • the "average particle size” means the particle size at an integrated value of 50% in the particle size distribution. 5000 times) to mean the average value of 100 particles analyzed.
  • the amount of expansion of the Si phase is suppressed by miniaturization, and the collapse of the Si phase is suppressed.
  • this Si phase exists independently of other SiX compound phases and SnY compound phases, a space that allows expansion of Si is likely to be formed around the Si phase, and this space serves as a buffer region against the expansion of Si. As a result, it is possible to suppress the collapse of the SiX compound phase that serves as a framework within the electrode.
  • the Si phase 3a if the grain size of the Si phase 3a is excessively large relative to the SiX compound phase 3b or the SnY compound phase 3c, the Si phase 3a repeatedly expands and contracts, causing the electrode to collapse. and cycle characteristics deteriorate.
  • 4 in the same figure is a conductive base material which comprises a part of electrode.
  • the Si phase 3a when the grain size of the Si phase 3a is excessively smaller than that of the SiX compound phase 3b or SnY compound phase 3c, the Si phase 3a is surrounded by the SiX compound phase 3b or SnY compound phase 3c. As a result, the absorption and release of Li ions in the Si phase 3a is hindered, and the initial coulombic efficiency and initial capacity deteriorate.
  • a more preferred average particle size ratio is in the range of 0.3 to 5.0 or 0.1 to 3.0, and more preferably in the range of 0.3 to 3.0.
  • Each raw material is weighed so that it has a predetermined chemical composition, and the weighed raw material is melted using a melting means such as an arc furnace, a high-frequency induction furnace, or a heating furnace. to obtain a Si alloy as a quenched alloy.
  • a melting means such as an arc furnace, a high-frequency induction furnace, or a heating furnace.
  • a gas such as N 2 , Ar, He or the like is sprayed at a high pressure, for example, 1 to 10 MPa, against the molten alloy that is discharged into a spray chamber and continuously (rod-like) flows downward to pulverize the molten alloy. cool down.
  • the cooled molten metal freely falls in the atomization chamber while remaining semi-molten, and approaches a spherical shape to obtain, for example, Si alloy particles as shown in FIG. 1(A).
  • Si phase, SiX compound phase and SnY compound phase are formed in the structure of the Si alloy particles 1 shown in the figure.
  • high-pressure water may be sprayed instead of gas from the viewpoint of improving the cooling effect.
  • the obtained Si alloy particles are finely pulverized, and as shown in FIG. to obtain a negative electrode material powder.
  • the Si alloy particles 1 are pulverized by a dry pulverization method, pulverization and agglomeration are repeated, and it is difficult to separate the Si phase 3a, the SiX compound phase 3b, and the SnY compound phase 3c independently, and these phases adhere to each other.
  • wet pulverization method a wet pulverization method using a bead mill or planetary ball mill can be adopted.
  • a solvent is used together with the Si alloy particles to be pulverized.
  • Ethanol, methanol, isopropyl alcohol, naphthesol, and the like can be used as solvents. It is also possible to add dispersants.
  • the Si alloy particles have a chemical composition adjusted so that the Si, SiX compound, and SnY compound have the above-mentioned phase ratio, the average particle diameters mdSi, mdSix, and mdSnY are all 0.1 to 0.1 by wet pulverization.
  • Si particles, SiX compound particles, and SnY compound particles are separately formed directly from the molten metal instead of the method of pulverizing the Si alloy particles having the three phases inside. It is also possible to adopt a method of pulverizing these particles to a predetermined particle size and then mixing them.
  • the negative electrode has a conductive substrate and a conductive film laminated on the surface of the conductive substrate.
  • the conductive film contains at least the present negative electrode material powder described above in a binder.
  • the conductive film may also contain a conductive aid, if necessary. When a conductive additive is contained, it becomes easier to secure a conductive path for electrons.
  • the conductive film may contain aggregate as necessary.
  • aggregate When the aggregate is contained, expansion and contraction of the negative electrode during charging and discharging can be easily suppressed, and collapse of the negative electrode can be suppressed, so that cycle characteristics can be further improved.
  • the conductive base material functions as a current collector.
  • the material include Cu, Cu alloys, Ni, Ni alloys, Fe, Fe-based alloys, and the like. Preferably, it should be Cu or a Cu alloy.
  • a foil shape, a plate shape, and the like can be exemplified. A foil shape is preferable from the viewpoints of reducing the volume of the battery and improving the degree of freedom in shape.
  • the material of the binder examples include polyvinylidene fluoride (PVdF) resin, fluorine resin such as polytetrafluoroethylene, polyvinyl alcohol resin, polyimide resin, polyamide resin, polyamideimide resin, styrene-butadiene rubber (SBR), polyacrylic acid. etc. can be suitably used. These can be used alone or in combination of two or more.
  • PVdF polyvinylidene fluoride
  • fluorine resin such as polytetrafluoroethylene
  • polyvinyl alcohol resin polyimide resin
  • polyamide resin polyamideimide resin
  • SBR styrene-butadiene rubber
  • polyacrylic acid etc.
  • these resins can be used alone or in combination of two or more.
  • polyimide resin is particularly preferable because it has high mechanical strength, can withstand volume expansion of the active material well, and effectively prevents the conductive film from being peeled off from the current collector due to breakage of the binder.
  • Examples of the conductive aid include carbon black such as ketjen black, acetylene black, furnace black, graphite, carbon nanotubes, fullerene, and the like. These may be used singly or in combination of two or more. Among these, ketjen black, acetylene black, and the like can be preferably used from the viewpoint of easily ensuring electron conductivity.
  • the content of the conductive aid is preferably 0 to 30 parts by mass, more preferably 4 to 13 parts by mass, with respect to 100 parts by mass of the present negative electrode material powder, from the viewpoint of conductivity improvement, electrode capacity, etc. is within.
  • the average particle diameter (d50) of the conductive aid is preferably 10 nm to 1 ⁇ m, more preferably 20 to 50 nm, from the viewpoint of dispersibility, ease of handling, and the like.
  • a material that does not expand or contract during charge/discharge or that expands or contracts very little.
  • examples include graphite, alumina, calcia, zirconia, and activated carbon. These may be used singly or in combination of two or more. Among these, graphite and the like can be preferably used from the viewpoint of conductivity, Li activity, and the like.
  • the content of the aggregate is preferably in the range of 10 to 400 parts by mass, more preferably 43 to 100 parts by mass, with respect to 100 parts by mass of the negative electrode material powder, from the viewpoint of improving cycle characteristics.
  • the average particle size of the aggregate is preferably 10 to 50 ⁇ m, more preferably 20 to 30 ⁇ m, from the viewpoint of functionality as an aggregate and control of electrode film thickness.
  • the average particle size of the aggregate is a value measured using a laser diffraction/scattering particle size distribution analyzer.
  • the present negative electrode is made into a paste by adding the required amount of the present negative electrode material powder and, if necessary, a conductive aid and an aggregate to a binder dissolved in an appropriate solvent. It can be produced by coating, drying, and, if necessary, consolidation, heat treatment, or the like.
  • the positive electrode include those in which a layer containing a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiFePO 4 and LiMnO 2 is formed on the surface of a current collector such as aluminum foil. can be done.
  • a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiFePO 4 and LiMnO 2
  • the electrolyte examples include an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • a polymer in which a lithium salt is dissolved a polymer solid electrolyte in which a polymer is impregnated with the above electrolytic solution, and the like can also be used.
  • non-aqueous solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. One or more of these may be contained.
  • lithium salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 and LiAsF 6 . One or more of these may be contained.
  • battery components include separators, cans (battery cases), gaskets, and the like. Any of these can be appropriately used as long as they are commonly used in lithium ion batteries.
  • a battery can be constructed by combining them.
  • the shape of the battery is not particularly limited, and may be any shape such as cylindrical, rectangular, or coin-shaped, and can be appropriately selected according to the specific application.
  • % of the alloy composition is mass % unless otherwise specified.
  • each raw material shown in Table 1 was weighed. Each weighed raw material was heated and melted using a high-frequency induction furnace to obtain a molten alloy. Powdered Si alloy particles were produced from the above molten alloy by a gas atomization method. An argon atmosphere was used as the atmosphere during the production of the molten alloy and the gas atomization. Further, at the time of gas atomization, high-pressure (4 MPa) argon gas was sprayed onto the molten alloy falling like a rod in the atomization chamber. The obtained Si alloy particles were mechanically pulverized using a wet bead mill to obtain negative electrode material powder.
  • Each coin-type half-cell was produced as follows.
  • an electrode prepared using negative electrode material powder was used as a test electrode, and a Li foil was used as a counter electrode.
  • each paste is applied to the surface of stainless steel (SUS) 316L foil (thickness 20 ⁇ m) to be a negative electrode current collector using a doctor blade method so as to have a thickness of 50 ⁇ m, and dried to form each negative electrode active material layer. bottom.
  • the negative electrode active material layer was densified by roll pressing.
  • test electrodes were produced using the negative electrode material powders according to the examples and the comparative examples as negative electrode active materials.
  • test poles were punched into discs with a diameter of 11 mm to obtain test poles.
  • Li foil (thickness: 500 ⁇ m) was punched out in substantially the same shape as the test electrode to prepare each counter electrode. Also, LiPF 6 was dissolved at a concentration of 1 mol/l in a mixed solvent of equal volume ratios of ethylene carbonate (EC) and diethyl carbonate (DEC) to prepare a non-aqueous electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • each test electrode was accommodated in each positive electrode can, and a counter electrode was accommodated in each negative electrode can, and a polyolefin-based microporous film separator was placed between each test electrode and each counter electrode.
  • Each test electrode should be a negative electrode in a lithium ion battery, but when a Li foil is used as a counter electrode, the Li foil becomes a negative electrode and the test electrode becomes a positive electrode.
  • each negative electrode can and each positive electrode can were crimped and fixed.
  • Example 1 Calculation of Ratios of Si Phase, SiX Compound Phase, and SnY Compound Phase
  • the method of calculating the ratios of Si phase, SiX compound phase, and SnY compound phase shown in Tables 2 and 3 below will be described using Example 1 as an example.
  • the ratio of the SiX compound phase (Si 2 Fe) is the sum of the amount of compounded Si (17.50%) and the amount of Fe (17.43%) in Table 1, and is 35% in this example.
  • the ratio of Si phase is a value obtained by subtracting the amount of compounded Si (17.50%) from the total amount of Si (77.57%) in Table 1, and is 60% in this example.
  • the proportion of the SnY compound phase is the sum of the Sn content (3.05%) and the Cu content (1.96%) in Table 1, and is 5% in this example.
  • the average grain size ratios represented by mdSi/mdSiX and mdSi/mdSnY were calculated. These results are shown in Tables 2 and 3.
  • the average particle diameters mdSi, mdSiX, and mdSnY are respectively indicated as Si, SiX, and SnY in the "average particle diameter ( ⁇ m)", and are represented by mdSi/mdSiX and mdSi/mdSnY.
  • the average grain size ratios are indicated respectively as Si/SiX and Si/SnY in the "mean grain size ratio".
  • the charge/discharge test was performed at a rate of 1/5C.
  • the current value for (charging) and discharging the amount of electricity C 0 required to (charge) and discharge the electrode for the C rate in 1 hour is assumed to be 1C. That is, the battery is (charged) and discharged in 12 minutes at 5C and in 5 hours at 1/5C.
  • the cycle characteristics were evaluated by performing the charge/discharge cycle 100 times.
  • a capacity retention ratio discharge capacity after 100 cycles/initial discharge capacity (discharge capacity at 1st cycle) ⁇ 100) was obtained from each of the obtained discharge capacities.
  • the determination of the capacity retention rate was as follows: " ⁇ " when it was over 70%, " ⁇ " when it was over 50% to 70% or less, and " ⁇ " when it was over 40% to 50% or less. The results are shown in Tables 2 and 3.
  • Comparative Example 1 is an example in which the ratio of the Si phase in the negative electrode material powder exceeds the upper limit (95%), the average particle size ratio (mdSi/mdSiX and mdSi/mdSnY) is larger than the upper limit (5.0), The evaluation of the cycle characteristics was "xx”.
  • Comparative Example 2 is an example in which the ratio of the Si phase in the negative electrode material powder is below the lower limit (10%), and the average particle size ratio (mdSi/mdSiX and mdSi/mdSnY) is lower than the lower limit (0.1). The coulombic efficiency and the initial discharge capacity were evaluated as "xx".
  • Comparative Example 3 the ratio of the SnY compound phase exceeded the upper limit (50%), and the initial coulombic efficiency and initial discharge capacity were evaluated as "xx". In Comparative Example 4, the ratio of the SnY compound phase was below the lower limit (0.07%), and the cycle characteristics were evaluated as "xx".
  • Comparative Example 5 the average particle size ratios (mdSi/mdSiX and mdSi/mdSnY) were smaller than the lower limit (0.1), and the initial coulombic efficiency and initial discharge capacity were evaluated as "xx".
  • Comparative Example 6 the average particle size ratio (mdSi/mdSiX and mdSi/mdSnY) was greater than the upper limit (5.0), and the cycle characteristics were evaluated as "xx".
  • Comparative Example 7 the average particle diameters mdSi, mdSiX, and mdSnY were larger than the upper limit (50 ⁇ m), and the cycle characteristics were evaluated as “xx”.
  • Comparative Example 8 the average particle diameters mdSi, mdSiX, and mdSnY were smaller than the lower limit (0.1 ⁇ m), and the initial coulombic efficiency and initial discharge capacity were evaluated as “xx”.
  • the ratio of Si phase, SiX compound phase and SnY compound phase is adjusted within a predetermined range, and the average particle size of the Si phase, SiX compound phase and SnY compound phase that exist independently mdSi, mdSiX, and mdSnY are all in the range of 0.1 to 50 ⁇ m, and the average particle size ratios represented by mdSi/mdSiX and mdSi/mdSnY are all in the range of 0.1 to 5.0.
  • there is no particularly low evaluation of "xx” and the battery characteristics are enhanced in consideration of initial coulombic efficiency, initial discharge capacity and cycle characteristics.
  • Examples 22 to 27 have different average particle size ratios (mdSi/mdSiX and mdSi/mdSnY). It can be seen that each characteristic is enhanced in a well-balanced manner when the ratio of the average particle diameters is within the range of 0.3 to 3.0.
  • the negative electrode material powder for lithium ion batteries and the lithium ion battery of the present invention have been described in detail above, the present invention is not limited to the above embodiments and examples.
  • the negative electrode material powder of the present invention can be applied not only to the negative electrode material powder for liquid lithium ion batteries as in the above embodiment, but also to the negative electrode material powder for all-solid lithium ion batteries.
  • Various modifications are possible without departing from the spirit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、Si、Sn、元素X(X=Fe,Ni,Cr,Zr,Ti)、及び元素Y(Y=Cu,Fe,Ni,Cr,Co,Mn,Zr,Ti)を含有し、a[Si]-b[SiX]-c[SnY](a+b+c=100、10≦a≦95、1≦b≦90、0.07≦c≦50)で表される相割合で、それぞれ分離した状態で別々に存在するSi相、SiX化合物相およびSnY化合物相を含み、各相における平均粒径mdSi、mdSiX、mdSnYはいずれも0.1~50μmの範囲内であり、mdSi/mdSiXおよびmdSi/mdSnYの比がいずれも0.1~5.0の範囲内である、リチウムイオン電池用の負極材料粉末に関する。

Description

リチウムイオン電池用の負極材料粉末
 この発明はリチウムイオン電池用の負極材料粉末に関する。
 リチウムイオン電池は高容量、高電圧で小型化が可能である利点を有し、携帯電話やノートパソコン等の電源として広く用いられている。また近年、電気自動車やハイブリッド自動車等のパワー用途の電源として大きな期待を集め、その開発が活発に進められている。
 このリチウムイオン電池では、正極と負極との間でリチウムイオン(以下Liイオンとする場合がある)が移動して充電と放電とが行われ、負極側では充電時に負極活物質中にLiイオンが吸蔵され、放電時には負極活物質からLiイオンが放出される。
 従来、一般には正極側の活物質としてコバルト酸リチウム(LiCoO)が用いられ、また負極活物質として黒鉛が広く使用されていた。しかしながら、負極活物質の黒鉛は、その理論容量が372mAh/gに過ぎず、より一層の高容量化が望まれていた。
日本国特開2017-224499号公報
 炭素系電極材料の代替として、高容量化が期待できるSi等の金属材料が検討されている。Siの理論容量は4198mAh/gであるが、SiはLiとの合金化反応によりLiイオンの吸蔵を行うため、Liイオンの吸蔵・放出に伴って大きな体積膨張・収縮を生じる。このためSiの粒子が割れたり集電体から剥離したりし、充放電を繰り返したときの容量維持特性であるサイクル特性が悪化する。
 上記への手段としては、Si自体を微細化してその膨張量を抑えることや、Siを合金化することが提案されている。例えば上記特許文献1では、Si系合金粒子内にSi相とともにSi化合物相を設けることが開示されている。Si化合物相はSi相の膨張を抑え込んでサイクル特性を向上させるのに有効である。
 しかしながら、このようなサイクル特性を高めるための手段は、初期放電容量、初期クーロン効率といった電池の初期特性を低下させてしまう場合もあり、初期特性およびサイクル特性を考慮した電池特性を高めることについては、未だ改善の余地があった。
 本発明は以上のような事情を背景とし、初期特性およびサイクル特性を考慮した電池特性を高めることが可能なリチウムイオン電池用の負極材料粉末を提供することを目的としてなされたものである。
 而して本発明は、Si、Sn、元素X、元素Yを含有し、
 下記式(1)で表される相割合で、Si相、SiX化合物相およびSnY化合物相を含むリチウムイオン電池用の負極材料粉末であって、
 前記Si相、前記SiX化合物相および前記SnY化合物相は、それぞれ分離した状態で別々に存在し、
 前記Si相、前記SiX化合物相および前記SnY化合物相のそれぞれについて、粒径分布における積算値50%での粒径を、各相における平均粒径mdSi、mdSiX、およびmdSnYとしたとき、
 前記平均粒径mdSi、mdSiX、mdSnYはいずれも0.1~50μmの範囲内であり、
 mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.1~5.0の範囲内であることを特徴とする。
 a[Si]-b[SiX]-c[SnY]…式(1)
 但し、前記元素XはFe,Ni,Cr,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
 前記元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
 前記式(1)中、a、b、cは、それぞれ前記Si相、前記SiX化合物相、前記SnY化合物相の含有量(質量%)を示し、a+b+c=100であり、10≦a≦95、1≦b≦90、0.07≦c≦50である。
 このように規定されたリチウムイオン電池用の負極材料粉末では、Liの吸蔵に伴ない膨張するSi相が、他のSiX化合物相、SnY化合物相から分離独立して存在するためSi相の周りにはSi相の膨張を許容するスペースが形成され易く、このスペースがSi相の膨張に対する緩衝領域となって、電極内で骨格としての役割を果たすSiX化合物相の崩壊を抑制することができ、サイクル特性を向上させることができる。
 ここで、互いに分離独立して存在するSi相とSiX化合物相およびSnY化合物相の化合物相との平均粒径の比が過度に小さいもしくは大きいと、リチウムイオン電池の初期特性もしくはサイクル特性が悪化するため、本発明では、Si相とSiX化合物相との平均粒径の比(mdSi/mdSiX)およびSi相とSnY化合物相との平均粒径の比(mdSi/mdSnY)をいずれも0.1~5.0の範囲内としている。より好ましくは0.3~3.0の範囲内である。このようにすることで、初期特性もしくはサイクル特性が過度に悪化するのを回避して、初期特性およびサイクル特性を考慮した電池特性を高めることができる。
 ここで、初期特性とサイクル特性とのバランスを考慮して、前記式(1)におけるa、b、cを、それぞれ30≦a≦90、1≦b≦70、0.1≦c≦30とすることが好ましい。
 また、サイクル特性を高める観点から前記元素YとしてCuを採用することが好ましい。
図1は、本発明の一実施形態の負極材料粉末の構成を示した模式図であり、図1の(A)はSi相、SiX化合物相およびSnY化合物相を備えたSi合金粒子の模式図、図1の(B)は、図1の(A)のSi合金粒子を微粉砕させて得た本発明の一実施形態の負極材料粉末の模式図である。 図2は、本発明の一実施形態の負極材料粉末の効果を説明するための模式図である。 図3は、本発明の別の実施形態の負極材料粉末の効果を説明するための模式図である。
 次に本発明の一実施形態のリチウムイオン電池用の負極材料粉末、および、本負極材料粉末を負極に用いたリチウムイオン電池(以下、単に電池とする場合がある)について具体的に説明する。なお、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
1.負極材料粉末
 本負極材料粉末は、Si、Sn、元素Xおよび元素Yを主構成元素とするものである。ここで、元素XはFe,Ni,Cr,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、また元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素である。
 これらSi、Sn、元素X、及び元素Yの主構成元素以外の元素は不可避的なものを除けば含まれていない。不可避的不純物元素としては、例えば、窒素(N)、硫黄(S)、リン(P)、酸素(O)等が考えられる。それぞれの上限は、N≦0.10質量%、S≦0.10質量%、P≦0.10質量%、O≦15質量%である。
 本負極材料粉末は、その金属組織として、下記式(1)で表される相割合でSi相、SiX化合物相およびSnY化合物相を含んでいる。
 a[Si]-b[SiX]-c[SnY]…式(1)
 式(1)における[Si]はSi相を、[SiX]はSiX化合物相を、[SnY]はSnY化合物相を、それぞれ意味する。また、a、b、c(a+b+c=100である)は、それぞれ順に、Si相、SiX化合物相、SnY化合物相の含有量(質量%)を示しており、本例では、10≦a≦95、1≦b≦90、0.07≦c≦50とする。
 なお、全体に占める割合が5質量%以下であれば非化合物のSn単体(Sn相)が不純物として含まれていてもよい。
 Si相は、Siを主に含有する相であり、Liイオンを吸蔵する。Li吸蔵量が大きくなるなどの観点から、好ましくはSiの単相よりなると良い。もっとも、Si相中には不可避的な不純物が含まれていてもよい。
 本負極材料粉末において、Si相の割合(式(1)における「a」の値)は10~95質量%であり、30~90質量%が好ましい。ここで、高い初期放電容量を得る観点から、Si相の割合は10質量%以上であり、30質量%以上が好ましい。また、高いサイクル特性を得る観点から、Si相の割合は95質量%以下であり、90質量%以下が好ましい。
 一方、SiX化合物相を構成するSiX化合物は、Li吸蔵性に乏しくLiイオンとの反応による膨張は非常に小さい。このためSiX化合物相は、電極の構造を維持する骨格の役割を果たしている。
 SiX化合物は、上記元素Xとして何れの元素を選択するかによりLi吸蔵性や導電性などの特性が異なる場合がある。元素XとしてのFe,Ni,Cr,Zrは、SiX化合物に期待される低膨張性と高導電性において特に優れている。また初期クーロン効率を高めるのに有効な元素XはNi、Tiである。放電レート特性を高めるのに有効な元素XはTiである。このように、所望する特性に合わせて元素Xを適宜選択することが好ましい。
 なお、SiX化合物相は、1種の化合物のみで構成する場合のほか、例えばSiFe化合物とSiNi化合物など、2種以上の化合物で構成することも可能である。
 他方、SnY化合物相を構成するSnY化合物は、理論容量がSiよりも低く、SiX化合物よりも高い。例えばSiX化合物に該当するSiZr化合物の理論容量が100mAh/gであるのに対し、SnY化合物の理論容量は150~600mAh/gである。このため本例ではSnY化合物相を介してLiイオンの拡散パスが確保され易くなる。一方で、Liイオンとの反応による膨張の程度は、Liイオンとの反応性が高いSiやSn単体に比べて小さいため、SnY化合物が形成されたことによるサイクル特性への悪影響も低く抑えることができる。
 特に元素YとしてCuが選択された場合に形成されるSnCu化合物は、導電性に優れている。またサイクル特性を向上させるのにも有効である。そのため、元素YとしてCuを含むことが好ましい。なお、このSnY化合物相においても、1種の化合物のみで構成する場合のほか、2種以上の化合物で構成することも可能である。
 以上のように、SiX化合物相とSnY化合物相は、果たす役割が異なっており、これら化合物相の割合によっても得られる電池特性が変化する。SnY化合物相は、程度は小さいもののLiイオンとの反応によりSiX化合物相よりも膨張する。このため、SnY化合物相の割合が高く、SiX化合物相の割合が低いと、サイクル特性が低下する。一方、SiX化合物相の割合が高く、SnY化合物相の割合が低いと、初期放電容量が低くなる。
 本例では、SiX化合物相の割合(式(1)における「b」の値)は1~90質量%であり、1~70質量%又は5~90質量%が好ましく、5~70質量%がより好ましく、10~70質量%がよりさらに好ましい。
 なお、a+b+c=100を満たすにあたって、bが90質量%であると、aとcがそれぞれ最小値である10質量%、0.07質量%の値をとっても、a+b+cの合計は100.07質量%となり、100質量%を超える。有効数字の関係で、これは100質量%と見做してよいが、100質量%超となることが問題になる場合には、bの上限値は、90質量%ではなく、89.93質量%とする。同様に、bが90質量%であり、aとcがそれぞれ10質量%、0.1質量%であって、a+b+c=100.1質量%となることが許容されない場合には、bの上限値は、90質量%ではなく、89.9質量%とする。
 同様に、例えば、30≦a≦90、1≦b≦70、0.1≦c≦30である場合に、bが70質量%であり、aとcがそれぞれ最小値である30質量%、0.1質量%の値をとっても、a+b+cの合計が100.1質量%となり、これは有効数字の関係で100質量%と見做してよい。ただし、100質量%を超えることが問題になる場合には、bの上限値は90質量%ではなく89.9質量%とする。
 SiX化合物相の割合(式(1)における「b」の値)は、高いサイクル特性を得る観点から1質量%以上であり、5質量%以上が好ましく、10質量%以上がより好ましい。また、高い初期放電容量を得る観点から、SiX化合物相の割合は90質量%以下、場合によっては89.97質量%以下であり、89.9質量%以下が好ましく、70質量%以下がより好ましい。
 SnY化合物相の割合(式(1)における「c」の値)は0.07~50質量%であり、0.1~50質量%が好ましく、0.1~30質量%がより好ましい。ここで、SnY化合物相の割合(式(1)における「c」の値)は、高い初期放電容量を得る観点から、0.07質量%以上であり、0.1質量%以上が好ましい。また、高いサイクル特性を得る観点から、SnY化合物相の割合は50質量%以下であり、30質量%以下が好ましい。
 したがって、Si相の割合を示すa、SiX化合物相の割合を示すb、及び、SnY化合物相の割合を示すcの関係は、10≦a≦95、1≦b≦90、0.07≦c≦50、場合によっては10≦a≦95、1≦b≦89.93、0.07≦c≦50であり、10≦a≦95、1≦b≦90、0.1≦c≦50、場合によっては10≦a≦95、1≦b≦89.9、0.1≦c≦50が好ましく、30≦a≦90、1≦b≦70、0.1≦c≦30、場合によっては30≦a≦90、1≦b≦69.9、0.1≦c≦30がより好ましい。
 以上のような構成相を得るのに好適な各主要元素の負極材料粉末における含有量は以下の通りである。尚、以降の説明では、特にことわりがない限り「%」は「質量%」を意味するものとする。
 Siの含有量は50~95%が好ましく、より好ましくは60~80%、さらに好ましくは73~79%である。ここで、Siの含有量は、高い初期放電容量を得る観点から50%以上が好ましく、60%以上がより好ましく、73%以上がさらに好ましい。また、良好なサイクル特性を得る観点から、Siの含有量は95%以下が好ましく、80%以下がより好ましく、79%以下がさらに好ましい。
 元素Xの含有量は1.0~38%が好ましく、より好ましくは5.0~30%、さらに好ましくは13~23%である。ここで、元素Xの含有量は、良好なサイクル特性を得る観点から1.0%以上が好ましく、5.0%以上がより好ましく、13%以上がさらに好ましい。また、高い初期放電容量を得る観点から、元素Xの含有量は38%以下が好ましく、30%以下がより好ましく、23%以下がさらに好ましい。なお、元素Xとして2種以上の元素が含まれる場合には、それらの合計の含有量が上記範囲であることが好ましい。
 Snの含有量は0.7~30%が好ましく、より好ましくは1.0~10%、さらに好ましくは1.5~5.0%である。ここで、Snの含有量は、Li拡散パスとしての効果をより得る観点から、0.7%以上が好ましく、1.0%以上がより好ましく、1.5%以上がさらに好ましい。また、良好なサイクル特性を得る観点から、Snの含有量は30%以下が好ましく、10%以下がより好ましく、5.0%以下がさらに好ましい。
 元素Yの含有量は1.0~15%が好ましく、より好ましくは1.5~10%、さらに好ましくは1.5~4.0%である。ここで、元素Yの含有量は、Li拡散パスとしての効果をより得る観点から、1.0%以上が好ましく、1.5%以上がより好ましい。また、良好なサイクル特性を得る観点から、元素Yの含有量は15%以下が好ましく、10%以下がより好ましく、4.0%以下がさらに好ましい。なお、元素Yとして2種以上の元素が含まれる場合には、それらの合計の含有量が上記範囲であることが好ましい。
 図1の(B)は、Si相、SiX化合物相およびSnY化合物相を備えたSi合金粒子を微粉砕させることで得られる、本発明の一実施形態に係る負極材料粉末3の模式図を示している。同図で示すように、負極材料粉末3では、Si相3a、SiX化合物相3bおよびSnY化合物相3cがそれぞれ分離した状態で別々に存在する。そして、Si相3a、SiX化合物相3bおよびSnY化合物相3cのそれぞれの平均粒径をmdSi、mdSiX、mdSnYとしたとき、平均粒径mdSi、mdSiX、mdSnYはいずれも0.1~50μmの範囲内であり、0.3~40μmが好ましく、0.5~30μmがより好ましい。また、平均粒径mdSiについては、1.0~20μmがさらに好ましく、1.0~10μmが特に好ましい。ここで、平均粒径mdSi、mdSiX、mdSnYはいずれも、0.1μm以上であり、0.5μm以上がより好ましく、1.0μm以上がさらに好ましい。また、平均粒径mdSi、mdSiX、mdSnYはいずれも50μm以下であり、40μm以下が好ましく、30μm以下がより好ましく、さらに平均粒径mdSiについては、20μm以下がさらに好ましく、10μm以下が特に好ましい。
 ここで、「粒径」とは、電子顕微鏡観察下で本負極材料粉末を構成する各相の面積を測定し、同じ面積を有する円に換算したときの直径、即ち円相当直径をいう。また、「平均粒径」とは、粒径分布における積算値50%での粒径を意味し、具体的には、Si相、SiX化合物相およびSnY化合物相のそれぞれの粉末の断面SEM画像(5000倍)から粒子100個について解析した平均値をいう。
 このように規定された本負極材料粉末では、微細化によりSi相の膨張量が抑えられ、その崩壊が抑制される。またこのSi相は、他のSiX化合物相、SnY化合物相とは独立に存在するためSi相の周りにはSiの膨張を許容するスペースが形成され易く、このスペースがSiの膨張に対する緩衝領域となって、電極内で骨格としての役割を果たすSiX化合物相の崩壊を抑制することができる。
 但し、図2で示すように、Si相3aの粒径がSiX化合物相3bもしくはSnY化合物相3cに対して過度に大きい場合には、Si相3aの膨張および収縮が繰り返されることで電極が崩壊しサイクル特性が悪化する。なお、同図における4は、電極の一部を構成する導電性基材である。
 一方、図3で示すように、Si相3aの粒径がSiX化合物相3bもしくはSnY化合物相3cに対して過度に小さい場合は、Si相3aがSiX化合物相3bもしくはSnY化合物相3cにより囲まれて、Si相3aにおけるLiイオンの吸蔵・放出が妨げられてしまうため、初期クーロン効率および初期容量が悪化する。
 このため本例ではmdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比をいずれも0.1~5.0の範囲内とすることで、初期放電容量及び初期クーロン効率といった初期特性、並びに、サイクル特性の悪化を防いでいる。より好ましい平均粒径の比は0.3~5.0又は0.1~3.0の範囲内であり、さらに好ましくは0.3~3.0の範囲内である。
 次に、本負極材料粉末の製造方法の一例について説明する。
 所定の化学組成となるように各原料を量り取り、量り取った各原料を、アーク炉、高周波誘導炉、加熱炉などの溶解手段を用いて溶解させるなどして得た合金溶湯をアトマイズ法を用いて急冷して急冷合金としてのSi合金を得る。
 アトマイズ法では、噴霧チャンバ内に出湯されて連続的(棒状)に下方に流れ落ちる合金溶湯に対し、N2、Ar、He等によるガスを高圧、例えば、1~10MPaで噴き付け、溶湯を粉砕しつつ冷却する。冷却された溶湯は、半溶融のまま噴霧チャンバ内を自由落下しながら球形に近づき、例えば図1の(A)で示すようなSi合金粒子が得られる。同図で示すSi合金粒子1の組織内にはSi相、SiX化合物相およびSnY化合物相が形成されている。
 なおアトマイズ法においては、冷却効果を向上させる観点からガスに代えて高圧水を噴き付けてもよい。また場合によってはアトマイズ法に代えてロール急冷法を用いて箔片化されたSi合金を得ることも可能である。
 次に得られたSi合金粒子を微粉砕し、図1の(B)で示すように、それぞれ分離した状態で独立に存在するSi相3a、SiX化合物相3bおよびSnY化合物相3cを含んだ状態の負極材料粉末を得る。
 ここで乾式粉砕法によりSi合金粒子1を粉砕した場合には、粉砕と凝集が繰り返され、Si相3a、SiX化合物相3b、SnY化合物相3cを分離独立させることが難しく、これらの相が密着した粉末が形成されてしまうことから、本例では湿式粉砕法が用いてSi合金粒子を微細化することが好ましい。
 本例における湿式粉砕法としては、ビーズミルや遊星ボールミルを用いた湿式粉砕法を採用することができる。湿式粉砕では、粉砕するSi合金粒子とともに溶媒が用いられる。溶媒として、エタノール、メタノール、イソプロピルアルコール、ナフテゾールなどを用いることができる。また、分散材を加えることも可能である。
 粉砕対象のSi合金粒子内のSi相、SiX化合物相およびSnY化合物相の量(割合)に大きな差があると、量の多い相の粉砕が進行せず、相ごとの粒径に差が生じ易いが、Si、SiX化合物およびSnY化合物が上述の相割合となるよう化学組成が調整されたSi合金粒子であれば、湿式粉砕法によって平均粒径mdSi、mdSiX、mdSnYがいずれも0.1~50μmの範囲内で、mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.1~5.0の範囲内である負極材料粉末を得ることができる。
 なお、本負極材料粉末の製造に際しては、上記3種の相を内部に備えたSi合金粒子を粉砕する方法に換えて、溶湯から直接Si粒子、SiX化合物粒子、SnY化合物粒子を別々に形成し、これら粒子をそれぞれ所定の粒径となるよう粉砕し、その後混合する方法を採用することも可能である。
2.電池
 次に、本負極材料粉末を含む負極を用いて構成された電池について説明する。
 負極は、導電性基材と、導電性基材の表面に積層された導電膜とを有している。導電膜は、バインダ中に少なくとも上述した本負極材料粉末を含有している。導電膜は、他にも、必要に応じて、導電助材を含有していてもよい。導電助材を含有する場合には、電子の導電経路を確保しやすくなる。
 また、導電膜は、必要に応じて、骨材を含有していてもよい。骨材を含有する場合には、充放電時の負極の膨張・収縮を抑制しやすくなり、負極の崩壊を抑制できるため、サイクル特性を一層向上させることができる。
 上記導電性基材は、集電体として機能する。その材質としては、例えば、Cu、Cu合金、Ni、Ni合金、Fe、Fe基合金などを例示することができる。好ましくは、Cu、Cu合金であると良い。また、具体的な導電性基材の形態としては、箔状、板状等を例示することができる。好ましくは、電池としての体積を小さくできる、形状自由度が向上するなどの観点から、箔状であると良い。
 上記バインダの材質としては、例えば、ポリフッ化ビニリデン(PVdF)樹脂、ポリテトラフルオロエチレン等のフッ素樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、スチレンブタジエンゴム(SBR)、ポリアクリル酸などを好適に用いることができる。これらは1種または2種以上を併用することができる。これらのうち、機械的強度が強く、活物質の体積膨張に対しても良く耐え得、バインダの破壊によって導電膜の集電体からの剥離を良好に防ぐ意味で、ポリイミド樹脂が特に好ましい。
 上記導電助材としては、例えば、ケッチェンブラック、アセチレンブラック、ファーネスブラック等のカーボンブラック、黒鉛、カーボンナノチューブ、フラーレンなどを例示することができる。これらは1種または2種以上を併用してもよい。これらのうち、好ましくは、電子伝導性を確保しやすいなどの観点から、ケッチェンブラック、アセチレンブラックなどを好適に用いることができる。
 上記導電助材の含有量は、導電性向上度、電極容量などの観点から、本負極材料粉末100質量部に対して、好ましくは0~30質量部、より好ましくは4~13質量部の範囲内である。また、上記導電助材の平均粒径(d50)は、分散性、扱い易さなどの観点から、好ましくは10nm~1μm、より好ましくは20~50nmである。
 上記骨材としては、充放電時に膨張・収縮しない、または、膨張・収縮が非常に小さい材質のものを好適に用いることができる。例えば、黒鉛、アルミナ、カルシア、ジルコニア、活性炭などを例示することができる。これらは1種または2種以上を併用してもよい。これらのうち、好ましくは、導電性、Li活性度などの観点から、黒鉛などを好適に用いることができる。
 上記骨材の含有量は、サイクル特性向上などの観点から、本負極材料粉末100質量部に対して、好ましくは10~400質量部、より好ましくは43~100質量部の範囲内である。また、上記骨材の平均粒径は、骨材としての機能性、電極膜厚の制御などの観点から、好ましくは10~50μm、より好ましくは20~30μmである。なお、上記骨材の平均粒径は、レーザ回折/散乱式粒度分布測定装置を用いて測定した値である。
 本負極は、例えば、適当な溶剤に溶解したバインダ中に、本負極材料粉末、必要に応じて、導電助材、骨材を必要量添加してペースト化し、これを導電性基材の表面に塗工、乾燥させ、必要に応じて、圧密化や熱処理等を施すことにより製造することができる。
 本負極を用いてリチウムイオン電池を構成する場合、本負極以外の電池の基本構成要素である正極、電解質、セパレータなどについては、特に限定されるものではない。
 上記正極としては、具体的には、例えば、アルミニウム箔などの集電体表面に、LiCoO、LiNiO、LiFePO、LiMnOなどの正極活物質を含む層を形成したものなどを例示することができる。
 上記電解質としては、具体的には、例えば、非水溶媒にリチウム塩を溶解した電解液などを例示することができる。その他にも、ポリマー中にリチウム塩が溶解されたもの、ポリマーに上記電解液を含浸させたポリマー固体電解質などを用いることもできる。
 上記非水溶媒としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを例示することができる。これらは1種または2種以上含まれていてもよい。
 上記リチウム塩としては、具体的には、例えば、LiPF、LiBF、LiClO、LiCFSO、LiAsFなどを例示することができる。これらは1種または2種以上含まれていてもよい。
 また、その他の電池構成要素としては、セパレータ、缶(電池ケース)、ガスケット等が挙げられるが、これらについても、リチウムイオン電池で通常採用される物であれば、何れの物であっても適宜組み合わせて電池を構成することができる。
 なお、電池形状は、特に限定されるものではなく、筒型、角型、コイン型など何れの形状であってもよく、その具体的用途に合わせて適宜選択することができる。
 以下、本発明を実施例を用いてより具体的に説明する。なお、合金組成の%は、特に明示する場合を除き、質量%である。
1.負極材料粉末の作製
 下記表1には実施例27種と比較例8種の負極材料粉末についての合金組成を示している。表1で示した各合金組成は、下記表2、表3に記載の目標構成が得られるように規定されている。
 先ず表1に示す各原料を秤量した。秤量した各原料を高周波誘導炉を用いて加熱、溶解し、合金溶湯とした。ガスアトマイズ法により、上記合金溶湯から粉末状のSi合金粒子を作製した。なお、合金溶湯作製時およびガスアトマイズ時の雰囲気はアルゴン雰囲気とした。また、ガスアトマイズ時には、噴霧チャンバ内を棒状に落下する合金溶湯に対して、高圧(4MPa)のアルゴンガスを噴き付けた。得られたSi合金粒子を、湿式ビーズミルを用いて機械的に微粉砕し、負極材料粉末とした。
 但し、各相の粒径の差が大きい比較例5,6については、溶湯から直接Si粒子、SiX化合物粒子、SnY化合物粒子を別々に形成し、これら粒子をそれぞれ所定の粒径となるよう粉砕し、その後混合することにより負極材料粉末とした。
Figure JPOXMLDOC01-appb-T000001
2. 充放電試験用コイン型電池の作製
 作製した負極活物質としての負極材料粉末100質量部と、導電助材としてのケッチェンブラック(ライオン(株)製)6質量部と、結着剤としてのポリイミド(熱可塑性樹脂)バインダ19質量部とを配合し、これを溶剤としてのN-メチル-2-ピロリドン(NMP)と混合し、各負極材料粉末を含む各ペーストを作製した。
 以下の通り、各コイン型半電池を作製した。ここでは、簡易的な評価とするため、負極材料粉末を用いて作製した電極を試験極とし、Li箔を対極とした。先ず、負極集電体となるステンレススチール(SUS)316L箔(厚み20μm)表面に、ドクターブレード法を用いて、50μmになるように各ペーストを塗布し、乾燥させ、各負極活物質層を形成した。形成後、ロールプレスにより負極活物質層を圧密化した。これにより、実施例および比較例に係る負極材料粉末を負極活物質とした試験極を作製した。
 次いで、上記試験極を、直径11mmの円板状に打ち抜き、各試験極とした。
 次いで、Li箔(厚み500μm)を上記試験極と略同形に打ち抜き、各対極を作製した。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積割合での等量混合溶媒に、LiPFを1mol/lの濃度で溶解させ、非水電解液を調製した。
 次いで、各試験極を各正極缶に収容するとともに、対極を各負極缶に収容し、各試験極と各対極との間に、ポリオレフィン系微多孔膜のセパレータを配置した。なお、各試験極はリチウムイオン電池では負極となるべきものであるが、対極をLi箔としたときにはLi箔が負極となり、試験極が正極となる。
 次いで、各缶内に上記非水電解液を注入し、各負極缶と各正極缶とをそれぞれ加締め固定した。
3.負極材料粉末の評価
3-1.負極材料粉末の構成相確認
 作製された各実施例,比較例に係る負極材料粉末について、XRD(X線回折)による分析を行ない、Si相、SiX化合物相およびSnY化合物相を含んでいることを確認した。尚、XRD分析はCo管球を用いて120°~20°の角度の範囲を測定した。
3-2.Si相、SiX化合物相およびSnY化合物相の割合の算出
 下記表2、表3で示すSi相、SiX化合物相、SnY化合物相の割合の算出方法について、実施例1の場合を例に説明する。
 (1)まず作製された負極材料粉末における構成相を確認する。実施例1の場合、上記XRD分析の結果、Si、SiFe、SnCuが確認された。
 (2)SiFeは、質量%比で表すと、50.1[Si]-49.9[Fe]である。これに対応して化合物化するSi量は17.43×50.1/49.9=17.50%となる。よってSiX化合物相(SiFe)の割合は、化合物化したSi量(17.50%)と表1のFe量(17.43%)を合計した値であり、この例では35%である。
 (3)Si相の割合は、表1の全Si量(77.57%)から化合物化したSi量(17.50%)を差し引いて得た値であり、この例では60%である。
 (4)SnY化合物相の割合は、表1のSn量(3.05%)とCu量(1.96%)を合計した値であり、この例では5%である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
3-3.負極材料粉末の平均粒径および平均粒径の比の算出
 得られた負極材料粉末において、Si相、SiX化合物相およびSnY化合物相がそれぞれ離した状態で別々の存在することは、SEM画像により確認した。その上で、任意に選択した、それぞれ分離した状態で別々に存在するSi相、SiX化合物相およびSnY化合物相のそれぞれの粉末の断面SEM画像(倍率5000倍)から各100個について粒径(円相当直径)を測定し、その平均値をそれぞれ平均粒径mdSi、mdSiX、mdSnYとした。また、mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比を算出した。これらの結果を表2、表3に示している。なお、表2、表3では、平均粒径mdSi、mdSiX、mdSnYはそれぞれ、「平均粒径(μm)」におけるSi、SiX、SnYと示しており、mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比はそれぞれ、「平均粒径比」におけるSi/SiX及びSi/SnYと示している。
3-4.充放電試験
 作製した各コイン型電池を用い、電流値0.2mAの定電流充放電を1サイクル分実施した。このLi放出時に使用した容量(mAh)を活物質量(g)で割った値から初期放電容量C(mAh/g)を算出した。また上記充放電サイクルにおける充電容量に対する放電容量の比率を、放電容量/充電容量の百分率で求めて初期クーロン効率(%)を求めた。
 初期放電容量(mAh/g)についての判定は、400超~500以下であった場合を「◎」、350超~400以下であった場合を「○」、300超~350以下であった場合を「△」、250超~300以下であった場合を「×」、250以下であった場合を「××」とし、その結果を表2、表3に示している。
 初期クーロン効率についての判定は、95%超であった場合を「◎」、80%超~95%以下であった場合を「○」、70%超~80%以下であった場合を「△」、60%超~70%以下であった場合を「×」、60%以下であった場合を「××」とし、その結果を表2、表3に示している。
 充放電試験の2サイクル目以降は、1/5Cレートで充放電試験を実施した。ここで、Cレートについて電極を(充)放電するのに要する電気量Cを1時間で(充)放電する電流値を1Cとする。すなわち、5Cならば12分で、1/5Cならば5時間で(充)放電することとなる。そして、上記充放電サイクルを100回行うことにより、サイクル特性の評価を行った。得られた各放電容量から容量維持率(100サイクル後の放電容量/初期放電容量(1サイクル目の放電容量)×100)を求めた。そして、容量維持率についての判定は、70%超であった場合を「◎」、50%超~70%以下であった場合を「○」、40%超~50%以下であった場合を「△」、30%超~40%以下であった場合を「×」、30%以下であった場合を「××」とし、その結果を表2、表3に示している。
 また、表2、表3で示す総合判定は、初期クーロン効率、初期放電容量およびサイクル特性の評価結果に基づいている。具体的には、各実施例および比較例毎に上記3種類の特性評価で「××」の評価がなかった場合を「合格」とし、1つでも「××」の評価があった場合を「不合格」としている。
 以上のようにして得られた表2、表3の結果から次のことが分かる。
 比較例1は、負極材料粉末におけるSi相の割合が上限(95%)を上回っている例で、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が上限(5.0)より大きく、サイクル特性についての評価が「××」であった。
 比較例2は、負極材料粉末におけるSi相の割合が下限(10%)を下回っている例で、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が下限(0.1)より小さく初期クーロン効率および初期放電容量についての評価が「××」であった。
 比較例3は、SnY化合物相の割合が上限(50%)を上回っており、初期クーロン効率および初期放電容量についての評価が「××」であった。
 比較例4は、SnY化合物相の割合が下限(0.07%)を下回っており、サイクル特性についての評価が「××」であった。
 比較例5は、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が下限(0.1)より小さく、初期クーロン効率および初期放電容量についての評価が「××」であった。
 比較例6は、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が上限(5.0)より大きく、サイクル特性についての評価が「××」であった。
 比較例7は、平均粒径mdSi、mdSiX、mdSnYが上限(50μm)より大きく、サイクル特性についての評価が「××」であった。
 比較例8は、平均粒径mdSi、mdSiX、mdSnYが下限(0.1μm)より小さく、初期クーロン効率および初期放電容量についての評価が「××」であった。
 以上のように、いずれの比較例も初期クーロン効率、初期放電容量もしくはサイクル特性の評価が「××」であり、初期特性およびサイクル特性を考慮した電池特性ついては十分に高められていない。
 これに対し負極材料粉末が、Si相、SiX化合物相およびSnY化合物相の割合が所定の範囲内に調整されており、それぞれ独立に存在するSi相、SiX化合物相およびSnY化合物相の平均粒径mdSi、mdSiX、mdSnYがいずれも0.1~50μmの範囲内で、mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.1~5.0の範囲内である各実施例については、特に低い「××」の評価は無く、初期クーロン効率、初期放電容量およびサイクル特性を考慮した電池特性が高められている。
 Si相およびSiX化合物相の割合を変化させた実施例1から実施例8を比較すると、Si相の割合を30~90%の範囲内とし、SiX化合物相の割合を1~70%の範囲内とした実施例1,2,6,7,8において各特性がバランスよく高められていることが分かる。
 また元素Yが異なる実施例1,13,14,15,16を比較すると、元素YがCuで、SnY化合物がSnCu化合物である場合に特に良好な評価が得られている。ここでSnY化合物相の割合を変化させた実施例17から実施例21を比較すると、SnY化合物相の割合は0.07~30%の範囲内とすることが望ましいことが分かる。
 実施例22から実施例27は、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が異なっている。平均粒径の比が0.3から3.0の範囲内において各特性がバランスよく高められていることが分かる。
 以上、本発明のリチウムイオン電池用の負極材料粉末およびリチウムイオン電池について詳しく説明したが、本発明は上記実施形態および実施例に限定されるものではない。例えば、本発明の負極材料粉末は、上記実施形態のような液系リチウムイオン電池用の負極材料粉末ほか、全固体リチウムイオン電池用の負極材料粉末にも適用可能である等、本発明はその趣旨を逸脱しない範囲内で種々の改変が可能である。
 本出願は2021年9月30日出願の日本特許出願(特願2021-161675)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (4)

  1.  Si、Sn、元素X、及び元素Yを含有し、
     下記式(1)で表される相割合で、Si相、SiX化合物相およびSnY化合物相を含むリチウムイオン電池用の負極材料粉末であって、
     前記Si相、前記SiX化合物相および前記SnY化合物相は、それぞれ分離した状態で別々に存在し、
     前記Si相、前記SiX化合物相および前記SnY化合物相のそれぞれについて、粒径分布における積算値50%での粒径を、各相における平均粒径mdSi、mdSiX、およびmdSnYとしたとき、
     前記平均粒径mdSi、mdSiX、mdSnYはいずれも0.1~50μmの範囲内であり、
     mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.1~5.0の範囲内であるリチウムイオン電池用の負極材料粉末。
     a[Si]-b[SiX]-c[SnY]…式(1)
     但し、前記元素XはFe,Ni,Cr,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
     前記元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
     前記式(1)中、a、b、cは、それぞれ前記Si相、前記SiX化合物相、前記SnY化合物相の含有量(質量%)を示し、a+b+c=100であり、10≦a≦95、1≦b≦90、0.07≦c≦50である。
  2.  前記式(1)におけるa、b、cが、それぞれ30≦a≦90、1≦b≦70、0.1≦c≦30である、請求項1に記載のリチウムイオン電池用の負極材料粉末。
  3.  前記元素YがCuであって、
     前記式(1)におけるa、b、cが、それぞれ30≦a≦90、1≦b≦70、0.1≦c≦30である、請求項1に記載のリチウムイオン電池用の負極材料粉末。
  4.  前記mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.3~3.0の範囲内である、請求項1~3のいずれか1項に記載のリチウムイオン電池用の負極材料粉末。
PCT/JP2022/035798 2021-09-30 2022-09-26 リチウムイオン電池用の負極材料粉末 WO2023054290A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247010205A KR20240050411A (ko) 2021-09-30 2022-09-26 리튬 이온 전지용의 부극 재료 분말
CN202280064927.4A CN117999672A (zh) 2021-09-30 2022-09-26 锂离子电池用的负极材料粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161675 2021-09-30
JP2021-161675 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054290A1 true WO2023054290A1 (ja) 2023-04-06

Family

ID=85782703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035798 WO2023054290A1 (ja) 2021-09-30 2022-09-26 リチウムイオン電池用の負極材料粉末

Country Status (4)

Country Link
KR (1) KR20240050411A (ja)
CN (1) CN117999672A (ja)
TW (1) TWI813461B (ja)
WO (1) WO2023054290A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209496A (ja) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2013084549A (ja) * 2011-09-30 2013-05-09 Daido Steel Co Ltd リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
WO2017082369A1 (ja) * 2015-11-10 2017-05-18 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2017224499A (ja) 2016-06-15 2017-12-21 大同特殊鋼株式会社 リチウムイオン電池用負極活物質およびリチウムイオン電池
US20180261837A1 (en) * 2017-03-10 2018-09-13 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2020126835A (ja) * 2019-02-06 2020-08-20 大同特殊鋼株式会社 リチウムイオン電池用負極活物質
JP2021161675A (ja) 2020-03-31 2021-10-11 住友林業株式会社 耐震補強金物、及び、耐震補強構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102243610B1 (ko) * 2018-12-17 2021-04-27 주식회사 티씨케이 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
US11862787B2 (en) * 2019-02-06 2024-01-02 Daido Steel Co., Ltd. Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209496A (ja) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2013084549A (ja) * 2011-09-30 2013-05-09 Daido Steel Co Ltd リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
WO2017082369A1 (ja) * 2015-11-10 2017-05-18 日産自動車株式会社 電気デバイス用負極活物質、およびこれを用いた電気デバイス
JP2017224499A (ja) 2016-06-15 2017-12-21 大同特殊鋼株式会社 リチウムイオン電池用負極活物質およびリチウムイオン電池
US20180261837A1 (en) * 2017-03-10 2018-09-13 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery including the same
JP2020126835A (ja) * 2019-02-06 2020-08-20 大同特殊鋼株式会社 リチウムイオン電池用負極活物質
JP2021161675A (ja) 2020-03-31 2021-10-11 住友林業株式会社 耐震補強金物、及び、耐震補強構造

Also Published As

Publication number Publication date
KR20240050411A (ko) 2024-04-18
TWI813461B (zh) 2023-08-21
CN117999672A (zh) 2024-05-07
TW202332103A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
JP5884573B2 (ja) リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極
JP3726958B2 (ja) 電池
JP5790282B2 (ja) リチウム二次電池用負極活物質およびリチウム二次電池用負極
JP7375569B2 (ja) リチウムイオン電池用負極活物質
JP6808988B2 (ja) リチウムイオン電池用負極活物質およびリチウムイオン電池
JP2012014866A (ja) リチウム二次電池用負極活物質およびその製造方法
US11862787B2 (en) Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery
JP7337580B2 (ja) 多元系シリサイドおよびケイ素を含むリチウムイオン電池用負極材料
WO2023054290A1 (ja) リチウムイオン電池用の負極材料粉末
WO2024095901A1 (ja) リチウムイオン電池用の負極材料粉末
WO2023054289A1 (ja) リチウムイオン電池の電極材料およびSi合金複合粉末
US20240038976A1 (en) Si ALLOY POWDER FOR NEGATIVE ELECTRODE
JP2024018914A (ja) リチウムイオン電池負極用Si合金粉末
US20240038977A1 (en) Si ALLOY POWDER FOR NEGATIVE ELECTRODE
JP7443851B2 (ja) リチウムイオン電池の負極用粉末材料およびその製造方法
JP2024018915A (ja) リチウムイオン電池負極用Si合金粉末
WO2022260110A1 (ja) リチウムイオン電池用負極活物質
JP2014116297A (ja) リチウムイオン二次電池用負極活物質
CN117476918A (zh) 负极用Si合金粉末
JP4955231B2 (ja) 非水電解質二次電池
CN117476888A (zh) 负极用Si合金粉末
JP2015138625A (ja) リチウムイオン電池用負極活物質
JP2023134204A (ja) リチウムイオン電池用負極活物質の製造方法およびリチウムイオン電池用負極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551489

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280064927.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247010205

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022876157

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876157

Country of ref document: EP

Effective date: 20240328

NENP Non-entry into the national phase

Ref country code: DE