WO2023053650A1 - 溶接方法および金属部材の溶接構造 - Google Patents

溶接方法および金属部材の溶接構造 Download PDF

Info

Publication number
WO2023053650A1
WO2023053650A1 PCT/JP2022/026389 JP2022026389W WO2023053650A1 WO 2023053650 A1 WO2023053650 A1 WO 2023053650A1 JP 2022026389 W JP2022026389 W JP 2022026389W WO 2023053650 A1 WO2023053650 A1 WO 2023053650A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
laser beam
shaped laser
bead
assist gas
Prior art date
Application number
PCT/JP2022/026389
Other languages
English (en)
French (fr)
Inventor
誠二 熊澤
佑太 辻
貴之 廣瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023550388A priority Critical patent/JPWO2023053650A1/ja
Priority to CN202280065071.2A priority patent/CN118019610A/zh
Publication of WO2023053650A1 publication Critical patent/WO2023053650A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding

Definitions

  • the present disclosure relates to a welding method and a welded structure of metal members.
  • a line-shaped laser beam is used for laser annealing, especially for p-Si conversion of a-Si thin films of liquid crystal displays.
  • This line-shaped laser beam is shaped by dividing an incident laser beam into a predetermined number, rearranging them into an array different from that of the incident beam, and making the intensity uniform (see, for example, Patent Document 1).
  • line-shaped laser beams are generally not used for welding plate metals.
  • the first reason is that the amount of heat input is different.
  • the melting point of Si is as high as 1430°C, but since the depth of heating is as small as several ⁇ m from the surface, even a ⁇ s-order pulse laser can heat it.
  • the irradiation time is as short as ⁇ to several tens of ⁇ s.
  • welding of a metal with a thickness of several 100 ⁇ m or more requires a heating time of several 10 ms or more, and cannot be welded with a pulse laser of ⁇ s order or less.
  • the second reason is that if the width of the short side of the metal is too short, the width of the joint will be too small and the strength of the joint will not be obtained. Therefore, a bead width of several 100 ⁇ m or more is required. As a result, heat escapes at both ends of the line-shaped laser beam, and the welding quality differs between the central portion and both ends.
  • the present disclosure has been made in view of this situation, and one of its purposes is to provide a technique for improving welding quality in line-shaped welding.
  • a welding method includes the steps of: overlapping a second member on a second surface of a first member having a first surface and a second surface facing in opposite directions; A step of irradiating a first surface of one member with a line-shaped laser beam; and a step of joining the first member and the second member by a solidified portion formed by the irradiation of the line-shaped laser beam.
  • the line-shaped laser beam is longer along the first direction than the second direction, and the length of the line-shaped laser beam in the first direction is longer than the second direction.
  • the beam intensity at the first end and the second end, which are both end portions, is higher than the beam intensity at the central portion sandwiched between the first end and the second end in the line-shaped laser beam.
  • Another aspect of the present disclosure is a welding method.
  • This method includes the steps of: stacking a second member on a second surface of a first member having first and second surfaces facing in opposite directions; and irradiating the first surface of the first member with a line-shaped laser beam. and a step of joining the first member and the second member by the solidified portion formed by the line-shaped laser beam irradiation.
  • the line-shaped laser beam is longer along the first direction than the second direction, and the length of the line-shaped laser beam in the first direction is longer than the second direction.
  • both end portions are the first end and the second end, and the center portion is between the first end and the second end of the line-shaped laser beam, the first end and the second end
  • the beam width in the second direction at the portion is wider than the beam width in the second direction at the central portion.
  • the welded structure is a welded structure of metal members in which a second member is superimposed on a second surface of a first member having a first surface and a second surface facing in opposite directions, and from the first surface of the first member A molten solidified portion is provided across the second member through the second surface.
  • the solidified portion has a bead protruding from the first surface.
  • the welding quality in line-shaped welding can be improved.
  • FIGS. 1(a) to 1(d) are diagrams showing welded structures according to comparative objects of this embodiment. It is a sectional view showing the structure of the metallic member concerning a present Example.
  • 3(a)-(c) are diagrams showing the configuration of the welding apparatus according to the present embodiment.
  • 4(a)-(c) are diagrams showing injection of assist gas in the welding apparatus of FIG. 3(a).
  • 5(a)-(c) are diagrams showing a welded structure according to this embodiment.
  • 6(a)-(d) are other diagrams showing the welded structure according to this embodiment.
  • 7(a) and 7(b) are diagrams showing a welded structure according to a modification.
  • Figs. 1(a)-(d) show a welded structure for comparison with this embodiment.
  • line-shaped laser welding is performed on a plate-shaped metal member 10 having a first surface 12 and a second surface 14 facing in opposite directions.
  • a Cartesian coordinate system is shown including the x, y and z axes as shown in FIGS. 1(a)-(d).
  • the x-axis and the y-axis are orthogonal within the first surface 12 of the metal member 10, and when the x-axis direction is referred to as the "first direction", the y-axis direction is referred to as the "second direction”.
  • the z-axis faces the thickness direction of the metal member 10 .
  • the positive side of the z-axis is called “upper”
  • the negative side of the z-axis is called “lower”.
  • the first surface 12 is irradiated with the laser.
  • welding between metals requires a high power density. is done.
  • FIG. 1(a) is a plan view of the vicinity of the starting point ⁇ in the welded structure to be compared when viewed from the first surface 12 side
  • FIG. 1(b) is the AA' line of FIG. 1(a). It is a cross-sectional view in.
  • the start point ⁇ is a point at which scanning of the laser irradiation of the spot is started.
  • a solidified portion 30 is formed by laser irradiation on the first surface 12 .
  • the solidified portion 30 is a portion of the metal member 10 melted by the laser irradiation and solidified after the laser irradiation ends.
  • the solidified portion 30 has a bead 32 projecting from the first surface 12 .
  • FIG. 1(c) is a plan view of the vicinity of the end point ⁇ in the welded structure to be compared when viewed from the first surface 12 side, and FIG. 1(d) is the BB' line of FIG. 1(c). It is a cross-sectional view in.
  • the end point ⁇ is a point at which scanning of the laser irradiation of the spot ends.
  • a solidified portion 30 is formed in the same manner as in FIGS. 1(a)-(b). However, a dimple 34 is present in the bead 32 .
  • the heat input at the starting point ⁇ and the ending point ⁇ it is difficult to control the heat input at the starting point ⁇ and the ending point ⁇ .
  • the starting point ⁇ it is possible to form the protrusion of the bead 32 to some extent by scanning at a low speed or the like.
  • a depression 34 is formed by any means.
  • the bead 32 having a uniform shape is not formed over the long side direction, for example, the x direction, and the welding quality is degraded.
  • FIG. 2 is a cross-sectional view showing the structure of the metal member 100.
  • Metal member 100 includes a first member 110 and a second member 120 .
  • the first member 110 and the second member 120 may be made of the same metal or different metals.
  • the first member 110 has a first side 112 and a second side 114 facing in opposite directions. For example, the first surface 112 faces upward and the second surface 114 faces downward.
  • the second member 120 has a third side 122 and a fourth side 124 facing in opposite directions.
  • the third surface 122 faces upward and the fourth surface 124 faces downward.
  • the first member 110 and the second member 120 are overlapped so that the second surface 114 of the first member 110 is aligned with the third surface 122 of the second member 120 .
  • a welding device 300 shown in FIG. 3A includes a laser oscillator 200, an optical fiber 210, a collimator 220, a beam homogenizer 230 and a condenser lens 240.
  • a laser oscillator 200 emits a laser beam such as a solid-state laser. The laser beam is applied to collimator 220 via optical fiber 210 . Collimator 220 collimates the laser beam from optical fiber 210 .
  • the beam homogenizer 230 splits the laser beam incident from the collimator 220 into a plurality of beams.
  • the traveling direction of the incident laser beam is, for example, the negative direction of the z-axis.
  • the beam homogenizer 230 rotates and arranges each of the split laser beams by a predetermined angle in the xy plane perpendicular to the negative direction of the z-axis.
  • the split laser beams have different values in the x-direction and in the direction. That is, the split laser beams are rearranged so as to have a different arrangement from the incident laser beams.
  • the beam homogenizer 230 shapes a line-shaped laser beam 250 from the reordered laser beam. For example, the line-shaped laser beam 250 is longer along the x-axis than along the y-axis.
  • FIG. 3(b) shows the beam intensity of the line-shaped laser beam 250 formed by the beam homogenizer 230.
  • the horizontal axis indicates the x-axis along which the line-shaped laser beam 250 extends, and the vertical axis indicates the beam intensity.
  • Both ends of the line-shaped laser beam 250 in the x-axis direction are indicated as a first end 252 and a second end 254 .
  • a central portion 256 is a portion of the line-shaped laser beam 250 sandwiched between the first end portion 252 and the second end portion 254 .
  • the beam intensity at first end 252 and second end 254 is made higher than the beam intensity at central portion 256 .
  • the heating amount at the first end portion 252 and the second end portion 254 is increased more than at the central portion 256. It's for. The greater the heat that escapes during welding, the less likely it is to form a bead.
  • FIG. 3(c) shows the shape of the line-shaped laser beam 250 formed by the beam homogenizer 230.
  • FIG. This shows the xy plane as viewed from the positive side of the z-axis.
  • 3(c) also shows a first end portion 252, a second end portion 254, and a central portion 256 as in FIG. 3(b).
  • the beam width in the y-axis direction at the first end 252 and the second end 254 is made wider than the beam width in the y-axis direction at the central portion 256 .
  • the beam homogenizer 230 irradiates the first surface 112 of the first member 110 with a line-shaped laser beam 250 through the condenser lens 240 .
  • FIG. Welding device 300 injects an assist gas toward a portion irradiated with laser beam 250 on first surface 112 in order to prevent oxidation of metal and promote welding during laser welding.
  • the assist gas is nitrogen gas, for example. That is, when the first surface 112 of the first member 110 is irradiated with the line-shaped laser beam 250 , the assist gas is injected onto the first surface 112 .
  • FIG. 4(a) is an assist gas injection structure to be compared.
  • FIG. 4(a) is shown with the y-axis oriented horizontally.
  • a nozzle 260 is arranged to face the first surface 112 , and the nozzle 260 injects an assist gas 262 onto the first surface 112 .
  • the assist gas 262 is reflected by the first surface 112 and reaches the portion irradiated with the laser beam 250 while entraining air around the first surface 112 .
  • air is involved in the assist gas 262 and the metal is oxidized.
  • FIG. 4(b) shows the injection structure of the assist gas according to this embodiment.
  • FIG. 4(b) is shown with the y-axis oriented horizontally as in FIG. 4(a).
  • a nozzle 270 is arranged along the first surface 112 , and the nozzle 270 injects an assist gas 272 along the first surface 112 .
  • the assist gas 272 reaches the portion irradiated with the laser beam 250 along the first surface 112 . In this case, the amount of air involved is smaller than in FIG. 4(a), so oxidation of the metal is suppressed.
  • FIG. 4(c) shows the first surface 112 viewed from the positive side of the z-axis.
  • a portion of the first surface 112 irradiated with the first end portion 252 and the second end portion 254 of the line-shaped laser beam 250 is indicated as a first portion 274
  • the central portion 256 of the line-shaped laser beam 250 is indicated as a first portion 274
  • the irradiated portion is indicated as second portion 276 .
  • the nozzle 270 extends in the x-axis direction along with the line-shaped laser beam 250 and jets an assist gas 272 .
  • the flow velocity of the assist gas 272 with respect to the first portion 274 is made smaller than the flow velocity of the assist gas 272 with respect to the second portion 276 .
  • first end 252 and the second end 254 are more likely to dissipate heat during welding than the central portion 256, and the assist gas 272 has a heat dissipation effect. This is for reducing the amount of heat radiation at the two end portions 254 .
  • FIG. 5(a)-(c) show a welded structure.
  • FIG. 5(a) is a structure viewed from the same direction as FIG. 2
  • FIG. 5(b) is a cross-sectional view taken along line CC' of FIG. 5(a)
  • FIG. 5(c). is the structure when viewed from the positive side of the z-axis.
  • First member 110 and second member 120 of metal member 100 are shown in the same manner as in FIG.
  • a solidified portion 130 is formed by irradiating the first surface 112 with a line-shaped laser beam 250 .
  • the solidified portion 130 is a portion where the first member 110 and the second member 120 melted by laser irradiation are solidified after the laser irradiation ends.
  • the solidified portion 130 can also be said to be a melted portion from the first surface 112 of the first member 110 through the second surface 114 to the second member 120 .
  • Solidified portion 130 joins first member 110 and second member 120 .
  • the solidified portion 130 has a bead 132 that protrudes from the first surface 112 and is longer in the x-axis direction than in the y-axis direction.
  • the length of the bead 132 in the x-axis direction is ten times or more the length of the bead 132 in the y-axis direction.
  • the bead 132 does not have a depression. It can also be said that the central portion of the bead 132 in cross-section in the y-axis direction swells over the entire x-axis direction. In particular, both ends of the line-shaped bead 132 are swollen.
  • FIG. 6(a)-(d) show a welded structure and are shown for comparison with Figures 1(a)-(d).
  • FIG. 6(a) is a plan view of the vicinity of the negative end of the x-axis in the welded structure viewed from the first surface 112 side, and
  • FIG. 6(b) is DD' of FIG. 6(a).
  • 1 is a cross-sectional view on line;
  • FIG. A bead 132 in the solidified portion 130 protrudes from the first surface 112 .
  • FIG. 6(c) is a plan view of the vicinity of the positive end of the x-axis in the welded structure viewed from the first surface 112 side, and
  • FIG. 6(d) is EE' of FIG. 6(c) 1 is a cross-sectional view on line;
  • FIG. The bead 132 in the solidified portion 130 protrudes from the first surface 112, and the bead 132 has no recess.
  • a battery has, for example, a structure in which an electrode group is housed in an outer can together with an electrolytic solution.
  • the electrode group has a wound structure in which strip-shaped electrode plates and strip-shaped separators are laminated and then spirally wound.
  • a collector plate is arranged on one end side of the electrode plate of the electrode group. The electrode plate and current collector plate are joined by laser welding.
  • FIGS. 7(a)-(b) show a welded structure according to a modified example.
  • This corresponds to a welded structure applied to the end face current collection of the negative electrode of a battery.
  • the current collector plate 140 has a first side 142 and a second side 144 facing in opposite directions.
  • the current collecting plate 140 is made of nickel-plated iron, for example.
  • the current collector plate 140, the first surface 142, and the second surface 144 correspond to the first member 110, the first surface 112, and the second surface 114 described above.
  • the electrode plate 150 is made of copper foil.
  • the electrode plate 150 corresponds to the second member 120 .
  • the collector plate 140 and the electrode plate 150 are joined by the solidified portion 130 .
  • the welded structure may be applied to the end face current collection of the positive electrode of the battery.
  • the current collector plate 140 is made of, for example, an aluminum plate, and the electrode plate 150 is made of aluminum foil.
  • the beam intensity at both ends of the line-shaped laser beam 250 is made higher than the beam intensity at the central portion 256. Therefore, even if heat escapes more easily at both ends than at the central portion 256, the central portion The welding quality in the long side direction can be made close to 256 and both end portions. In addition, since the weld quality in the longitudinal direction is close between the center portion 256 and both end portions, the weld quality in line-shaped welding can be improved. In addition, since the beam width at both ends is made wider than the beam width at the central portion 256, even if heat escapes more easily at both ends than at the central portion 256, the welding quality in the long side direction between the central portion 256 and both ends can be improved. I can do it soon.
  • the flow velocity of the assist gas 272 at both end portions is made smaller than the flow velocity of the assist gas 272 at the central portion, the temperature drop during welding due to the assist gas 272 can be suppressed. In addition, since the temperature drop during welding due to the assist gas 272 is suppressed, the welding quality in line-shaped welding can be improved. Also, since the assist gas 272 is injected along the first surface 112, the amount of air involved in the assist gas 272 can be suppressed. Also, since the amount of air entrained in the assist gas 272 is suppressed, oxidation of the metal member 100 can be suppressed.
  • the welding quality in the long side direction can be made close to the center and both ends.
  • the welding quality in the long side direction is close to the central portion and the both end portions, stable welding can be realized.
  • high-quality welding can be stably supplied at low cost.
  • high-speed welding can be realized with high reliability and high operation rate.
  • high-speed welding is realized with high reliability and high operating rate, high-quality and low-cost batteries can be provided.
  • the length of the bead 132 in the long side direction is 10 times or more as long as the length in the short side direction, the bead 132 having a line shape can be realized.
  • the assist gas (272) is injected along the first surface (112), The welding method according to item 4.
  • the step of injecting an assist gas (272) to the first surface (112) of the first member (110) when irradiating the first surface (112) of the first member (110) with the line-shaped laser beam (250) is further performed.
  • the assist gas (272) is injected along the first surface (112), The welding method according to any one of Items 1 to 3.
  • a metal member (100) comprising a first member (110) having a first side (112) and a second side (114) facing in opposite directions and having a second side (114) overlaid with a second side (120). is a welded structure of a solidified portion (130) melted from the first surface (112) of the first member (110) through the second surface (114) to the second member (120);
  • the solidified portion (130) has a bead (132) protruding from the first surface (112), When defining a first direction and a second direction that intersect in the first surface (112), the bead (132) has a line shape that is longer along the first direction than the second direction. , said bead (132) has no dimples;
  • the length of the bead (132) in the first direction is 10 times or more the length of the bead (132) in the second direction, A welded structure of the metal member (100) according to item 7.
  • the first member (110) is a current collector plate (140) of a battery, wherein said second member (120) is an electrode plate (150) of said battery; Welded structure of the metal member (100) according to item 7 or 8.
  • the current collecting plate (140) is made of nickel-plated iron,
  • the electrode plate (150) is formed of copper foil, A welded structure of the metal member (100) according to item 9.
  • the welding quality in line-shaped welding can be improved.
  • Metal member 12 First surface 14 Second surface 30 Solidified part 32 Bead 34 Recess 100 Metal member 110 First member 112 First surface 114 Second surface 120 Second member 122 Second 3 surface, 124 fourth surface, 130 solidification part, 132 bead, 140 current collector, 142 first surface, 144 second surface, 150 electrode plate, 200 laser oscillator, 210 optical fiber, 220 collimator, 230 beam homogenizer, 240 Condensing lens 250 Laser beam 252 First end 254 Second end 256 Central part 260 Nozzle 262 Assist gas 270 Nozzle 272 Assist gas 274 First part 276 Second part 300 Welding Device, ⁇ start point, ⁇ end point.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)

Abstract

金属部材100では、反対方向を向いた第1面112と第2面114とを有する第1部材110の第2面114に第2部材120が重ねられる。凝固部130は、第1部材110の第1面112から第2面114を介して第2部材120にわたって溶融した部分である。凝固部130は、第1面112から突出するビード132を有する。第1面112内において交差する第1方向と第2方向を規定する場合に、ビード132は、第2方向よりも第1方向に沿って長いライン形状を有し、ビード132は窪みを有さない。

Description

溶接方法および金属部材の溶接構造
 本開示は、溶接方法および金属部材の溶接構造に関する。
 レーザアニール、特に液晶ディスプレイのa-Si薄膜のp-Si化のために、ライン形状のレーザビームが使用される。このライン形状のレーザビームは、入射したレーザビームを所定数に分割し、入射ビームとは異なる配列に並べ替え、均一な強度にすることによって成型される(例えば、特許文献1参照)。
特開2008-177372号公報
 ライン形状のレーザビームでのレーザ加工は従来行われているが、一般的に、板材の金属の溶接に、ライン形状のレーザビームは使用されていない。その理由の1つ目は、入熱量が違うからである。a-Siの再溶融にライン形状のレーザビームを使用する場合、Siの融点は1430℃と高いが、加熱される深さが表面の数μm程度と小さいので、μsオーダのパルスレーザでも加熱でき、照射時間もμから数10μsと短い。一方、数100μm以上の金属溶接では、数10ms以上の加熱時間が必要となり、μsオーダ以下のパルスレーザでは溶接できない。また、理由の2つ目は、金属の溶接で短辺方向を短くし過ぎると、接合幅が小さ過ぎて接合強度が得られないからである。そのためビード幅として、数100μm以上必要となる。これにより、ライン形状のレーザビームの両端での熱の逃げが大きくなり、中央部と両端部とで溶接品質が異なる。
 本開示はこうした状況に鑑みてなされたものであり、その目的の1つは、ライン形状の溶接における溶接品質を向上する技術を提供することにある。
 上記課題を解決するために、本開示のある態様の溶接方法は、反対方向を向いた第1面と第2面とを有する第1部材の第2面に第2部材を重ねるステップと、第1部材の第1面にライン形状のレーザビームを照射するステップと、ライン形状のレーザビームの照射によって形成された凝固部が第1部材と第2部材とを接合するステップとを備える。第1面内において交差する第1方向と第2方向を規定する場合に、ライン形状のレーザビームは、第2方向よりも第1方向に沿って長く、ライン形状のレーザビームにおける第1方向の両端部分である第1端部と第2端部のビーム強度は、ライン形状のレーザビームにおいて第1端部と第2端部とに挟まれた中央部のビーム強度よりも高い。
 本開示の別の態様は、溶接方法である。この方法は、反対方向を向いた第1面と第2面とを有する第1部材の第2面に第2部材を重ねるステップと、第1部材の第1面にライン形状のレーザビームを照射するステップと、ライン形状のレーザビームの照射によって形成された凝固部が第1部材と第2部材とを接合するステップとを備える。第1面内において交差する第1方向と第2方向を規定する場合に、ライン形状のレーザビームは、第2方向よりも第1方向に沿って長く、ライン形状のレーザビームにおける第1方向の両端部分が第1端部と第2端部とされ、ライン形状のレーザビームにおける第1端部と第2端部との間が中央部とされる場合に、第1端部と第2端部における第2方向のビーム幅は、中央部における第2方向のビーム幅よりも広い。
 本開示のさらに別の態様は、金属部材の溶接構造である。この溶接構造は、反対方向を向いた第1面と第2面とを有する第1部材の第2面に第2部材を重ねた金属部材の溶接構造であり、第1部材の第1面から第2面を介して第2部材にわたって溶融した凝固部を備える。凝固部は、第1面から突出するビードを有する。第1面内において交差する第1方向と第2方向を規定する場合に、ビードは、第2方向よりも第1方向に沿って長いライン形状を有する。ビードは窪みを有さない。
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、ライン形状の溶接における溶接品質を向上できる。
図1(a)-(d)は、本実施例の比較対象に係る溶接構造を示す図である。 本実施例に係る金属部材の構造を示す断面図である。 図3(a)-(c)は、本実施例に係る溶接装置の構成を示す図である。 図4(a)-(c)は、図3(a)の溶接装置におけるアシストガスの噴射を示す図である。 図5(a)-(c)は、本実施例に係る溶接構造を示す図である。 図6(a)-(d)は、本実施例に係る溶接構造を示す別の図である。 図7(a)-(b)は、変形例に係る溶接構造を示す図である。
 以下、本開示を好適な実施例をもとに図面を参照しながら説明する。実施例は、本開示を限定するものではなく例示であって、実施例に記述されるすべての特徴やその組合せは、必ずしも本開示の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施例を説明する上で重要ではない部材の一部は省略して表示する。
 図1(a)-(d)は、本実施例の比較対象に係る溶接構造を示す。比較対象では、反対を向いた第1面12と第2面14とを有する板形状の金属部材10に対してライン状のレーザ溶接がなされる。図1(a)-(d)に示されるようにx軸、y軸、z軸を含む直交座標系が示される。x軸とy軸は、金属部材10の第1面12内において直交し、x軸の方向を「第1方向」と呼ぶ場合にy軸の方向は「第2方向」と呼ばれる。また、z軸は、金属部材10の厚さ方向を向く。z軸の正方向側を「上側」と呼ぶ場合、z軸の負方向側は「下側」と呼ばれる。比較対象では、第1面12に対してレーザ照射がなされる。一般的に、板形状の金属部材10が溶接対象である場合、金属同士の溶接には高パワー密度が必要であるので、レーザビームを絞ったスポットをスキャナ等で走査することによってライン状の溶接がなされる。
 図1(a)は、比較対象の溶接構造における始点α近傍を第1面12側から見た場合の平面図であり、図1(b)は、図1(a)のA-A’線における断面図である。始点αとは、スポットのレーザ照射の走査が開始される点である。第1面12に対するレーザ照射により凝固部30が形成される。凝固部30は、レーザ照射によって溶融した金属部材10が、レーザ照射の終了後に凝固した部分である。凝固部30は、第1面12から突出するビード32を有する。図1(c)は、比較対象の溶接構造における終点β近傍を第1面12側から見た場合の平面図であり、図1(d)は、図1(c)のB-B’線における断面図である。終点βとは、スポットのレーザ照射の走査が終了される点である。図1(c)-(d)では、図1(a)-(b)と同様に凝固部30が形成される。しかしながら、ビード32に窪み34が存在する。
 スポットを走査する場合、始点αおよび終点βでの熱の入りを制御することが困難である。始点αでは、低速での走査などによってある程度のビード32の突出を形成することが可能である。一方、終点βではいかなる工夫によっても窪み34が形成されてしまう。その結果、長辺方向、例えばx方向にわたって均一な形状のビード32が形成されず、溶接品質が低下される。
 以下では、ライン状のレーザ溶接における溶接品質を向上するための溶接方法、溶接構造を(1)積層工程、(2)レーザ照射工程、(3)凝固工程の順に説明する。また、x軸、y軸、z軸を含む直交座標系はこれまでと同様に定義される。
 (1)積層工程
 図2は、金属部材100の構造を示す断面図である。金属部材100は、第1部材110と第2部材120を含む。第1部材110と第2部材120は同一の金属であってもよく、異なった金属であってもよい。第1部材110は、反対方向を向いた第1面112と第2面114とを有する。例えば、第1面112は上側を向き、第2面114は下側を向く。第2部材120は、反対方向を向いた第3面122と第4面124とを有する。例えば、第3面122は上側を向き、第4面124は下側を向く。第1部材110の第2面114に第2部材120の第3面122を合わせるように、第1部材110と第2部材120とが重ねられる。
 (2)レーザ照射工程
 図3(a)-(c)は、溶接装置300の構成を示す。図3(a)に示される溶接装置300は、レーザ発振器200、光ファイバ210、コリメータ220、ビームホモジナイザ230、集光レンズ240を含む。レーザ発振器200は、固体レーザ等のレーザビームを照射する。レーザビームは、光ファイバ210を介してコリメータ220に照射される。コリメータ220は、光ファイバ210からのレーザビームを平行にする。
 ビームホモジナイザ230は、コリメータ220から入射したレーザビームを複数に分割する。入射したレーザビームの進行方向は、例えばz軸の負方向である。ビームホモジナイザ230は、分割したレーザビームのそれぞれに対して、z軸の負方向に直交したx-y平面内において所定角度まで回転させて配列する。その結果、分割したレーザビームのそれぞれにおいて、x方向の値と方向の値が互いに異なる。つまり、分割したレーザビームは、入射したレーザビームとは異なる配列になるように並べ替えられる。さらに、ビームホモジナイザ230は、並び替えられたレーザビームからライン形状のレーザビーム250を成形する。例えば、ライン形状のレーザビーム250は、y軸の方向よりもx軸の方向に沿って長くされる。
 図3(b)は、ビームホモジナイザ230において成形されるライン形状のレーザビーム250のビーム強度を示す。横軸は、ライン形状のレーザビーム250が延びるx軸を示し、縦軸は、ビーム強度を示す。ライン形状のレーザビーム250におけるx軸方向の両端部分は、第1端部252、第2端部254と示される。また、ライン形状のレーザビーム250において第1端部252と第2端部254とに挟まれた部分は中央部256と示される。ビームホモジナイザ230において、第1端部252と第2端部254のビーム強度は、中央部256のビーム強度よりも高くされる。これは、中央部256よりも第1端部252と第2端部254において溶接時に熱が逃げやすいので、中央部256よりも第1端部252と第2端部254における加熱量を大きくするためである。溶接時に逃げる熱が大きくなると、ビードが形成されにくくなる。
 図3(c)は、ビームホモジナイザ230において成形されるライン形状のレーザビーム250の形状を示す。これは、z軸の正方向側から見た場合のx-y平面を示す。図3(c)でも、図3(b)と同様に、第1端部252、第2端部254、中央部256が示される。ビームホモジナイザ230では、第1端部252と第2端部254におけるy軸方向のビーム幅が、中央部256におけるy軸方向のビーム幅よりも広くされる。これも、中央部256よりも第1端部252と第2端部254において溶接時に熱が逃げやすいので、中央部256よりも第1端部252と第2端部254における加熱量を大きくするためである。図3(a)に戻る。ビームホモジナイザ230は、集光レンズ240を介して、第1部材110の第1面112にライン形状のレーザビーム250を照射する。
 図4(a)-(c)は、溶接装置300におけるアシストガスの噴射を示す。溶接装置300は、レーザ溶接の際における金属の酸化防止および溶接促進のために、第1面112におけるレーザビーム250の照射部分に向かってアシストガスが噴射される。アシストガスは例えば窒素ガスである。つまり、第1部材110の第1面112にライン形状のレーザビーム250を照射する際に、第1面112にアシストガスが噴射される。
 図4(a)は、比較対象となるアシストガスの噴射構造である。図4(a)は、y軸が横方向になるように示される。第1面112に向かうようにノズル260が配置され、ノズル260は、第1面112に対してアシストガス262を噴射する。アシストガス262は、第1面112において反射して、第1面112の周囲の空気を巻き込みながら、レーザビーム250が照射される部分に到達する。このような構造の場合、アシストガス262に空気が巻き込まれることによって、金属が酸化されてしまう。
 図4(b)は、本実施例に係るアシストガスの噴射構造である。図4(b)は、図4(a)と同様にy軸が横方向になるように示される。第1面112に沿うようにノズル270が配置され、ノズル270は、第1面112に沿ってアシストガス272を噴射する。アシストガス272は、第1面112に沿って、レーザビーム250が照射される部分に到達する。この場合、巻き込まれる空気の量が図4(a)よりも少なくなるので、金属の酸化が抑制される。
 図4(c)は、第1面112をz軸の正方向側から見た場合を示す。第1面112のうち、ライン形状のレーザビーム250における第1端部252と第2端部254が照射される部分が第1部分274と示され、ライン形状のレーザビーム250における中央部256が照射される部分が第2部分276と示される。ノズル270は、ライン形状のレーザビーム250にあわせてx軸方向に延びており、アシストガス272を噴射する。ここで、第1部分274に対するアシストガス272の流速は、第2部分276に対するアシストガス272の流速よりも小さくされる。これは、中央部256よりも第1端部252と第2端部254において溶接時に熱が逃げやく、かつアシストガス272に放熱効果があるので、中央部256よりも第1端部252と第2端部254における放熱量を小さくするためである。
 (3)凝固工程
 ライン形状のレーザビーム250の照射が終了すると、金属部材100は凝固工程となる。図5(a)-(c)は、溶接構造を示す。図5(a)は、図2と同じ方向から見た場合の構造であり、図5(b)は、図5(a)のC-C’線における断面図であり、図5(c)は、z軸の正方向側から見た場合の構造である。金属部材100における第1部材110と第2部材120は図2と同様に示されており、第1部材110の第2面114に第2部材120が重ねられる。第1面112に対してライン形状のレーザビーム250の照射がなされることによって凝固部130が形成される。凝固部130は、レーザ照射によって溶融した第1部材110と第2部材120が、レーザ照射の終了後に凝固した部分である。凝固部130は、第1部材110の第1面112から第2面114を介して第2部材120にわたって溶融した部分であるともいえる。凝固部130が第1部材110と第2部材120とを接合する。
 凝固部130は、第1面112から突出し、かつy軸方向よりもx軸方向に沿って長いビード132を有する。例えば、ビード132のx軸方向の長さは、ビード132のy軸方向の長さの10倍以上にされる。また、ビード132は窪みを有さない。これは、ビード132のy軸方向の断面形状における中央部分が、x軸方向全体にわたって膨らんでいるともいえる。特にライン形状のビード132の両端が膨らんでいる。
 図6(a)-(d)は、溶接構造を示しており、図1(a)-(d)と比較するために示される。図6(a)は、溶接構造におけるx軸の負側端近傍を第1面112側から見た場合の平面図であり、図6(b)は、図6(a)のD-D’線における断面図である。凝固部130におけるビード132は第1面112から突出する。図6(c)は、溶接構造におけるx軸の正側端近傍を第1面112側から見た場合の平面図であり、図6(d)は、図6(c)のE-E’線における断面図である。凝固部130におけるビード132は第1面112から突出しており、ビード132に窪みは存在しない。
 これまで説明した溶接方法と溶接構造は、例えばリチウムイオン二次電池等の電池において使用されてもよい。電池は、例えば、電極群が電解液とともに外装缶に収納された構造を有する。電極群は、帯状の電極板と帯状のセパレータが積層されてから、渦巻き状に巻回された巻回型構造を有する。電極群の電極板の一端側には集電板が配置される。電極板と集電板とは、レーザ溶接によって接合される。
 図7(a)-(b)は、変形例に係る溶接構造を示す。これは、電池の負極の端面集電に適用される溶接構造に相当する。集電板140は、反対を向いた第1面142と第2面144とを有する。集電板140は、例えばニッケルめっきの鉄により形成される。集電板140、第1面142、第2面144は、これまでの第1部材110、第1面112、第2面114に対応する。電極板150は、銅箔により形成される。電極板150は第2部材120に対応する。集電板140と電極板150は凝固部130により接合される。溶接構造は、電池の正極の端面集電に適用されてもよい。その場合、集電板140は、例えばアルミニウム板により形成され、電極板150は、アルミニウム箔により形成される。
 本実施例によれば、ライン形状のレーザビーム250における両端部分におけるビーム強度を、中央部256のビーム強度よりも高くするので、中央部256よりも両端部分において熱が逃げやすくても、中央部256と両端部分とにおいて長辺方向の溶接品質を近くできる。また、中央部256と両端部分とにおいて長辺方向の溶接品質が近くなるので、ライン形状の溶接における溶接品質を向上できる。また、両端部分のビーム幅を中央部256のビーム幅よりも広くするので、中央部256よりも両端部分において熱が逃げやすくても、中央部256と両端部分とにおいて長辺方向の溶接品質を近くできる。
 両端部分におけるアシストガス272の流速を、中央部におけるアシストガス272の流速よりも小さくするので、アシストガス272による溶接の際の温度低下を抑制できる。また、アシストガス272による溶接の際の温度低下が抑制されるので、ライン形状の溶接における溶接品質を向上できる。また、アシストガス272は第1面112に沿って噴射されるので、アシストガス272における空気の巻き込み量を抑制できる。また、アシストガス272における空気の巻き込み量が抑制されるので、金属部材100の酸化を抑制できる。
 また、ライン形状のビード132の両端において窪みが存在しないので、長辺方向の溶接品質を中央部と両端部分で近くできる。また、長辺方向の溶接品質が中央部と両端部分で近くなるので、安定した溶接を実現できる。また、安定した溶接が実現されるので、高品質の溶接を低コストで安定して供給できる。また、スキャナ等のレーザ装置の可動部がなく、高速溶接を高信頼性で高稼働率で実現できる。また、高速溶接が高信頼性で高稼働率で実現されるので、高品質で低コストな電池を提供できる。また、ビード132の長辺方向の長さは短辺方向の長さの10倍以上であるので、ライン形状のビード132を実現できる。
 以上、本開示の実施例について詳細に説明した。前述した実施例は、本開示を実施するにあたっての具体例を示したものにすぎない。実施例の内容は、本開示の技術的範囲を限定するものではなく、請求の範囲に規定された本開示の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施例は、組み合わされる実施例および変形それぞれの効果をあわせもつ。前述の実施例では、このような設計変更が可能な内容に関して、「本実施例の」、「本実施例では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組合せも、本開示の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。
 上述した実施例に係る開示は、以下に記載する項目によって特定されてもよい。
[項目1]
 反対方向を向いた第1面(112)と第2面(114)とを有する第1部材(110)の前記第2面(114)に第2部材(120)を重ねるステップと、
 前記第1部材(110)の前記第1面(112)にライン形状のレーザビーム(250)を照射するステップと、
 前記ライン形状のレーザビーム(250)の照射によって形成された凝固部(130)が前記第1部材(110)と前記第2部材(120)とを接合するステップとを備え、
 前記第1面(112)内において交差する第1方向と第2方向を規定する場合に、前記ライン形状のレーザビーム(250)は、前記第2方向よりも前記第1方向に沿って長く、
 前記ライン形状のレーザビーム(250)における前記第1方向の両端部分である第1端部(252)と第2端部(254)のビーム強度は、前記ライン形状のレーザビーム(250)において前記第1端部(252)と前記第2端部(254)とに挟まれた中央部(256)のビーム強度よりも高い、
 溶接方法。
[項目2]
 前記第1端部(252)と前記第2端部(254)における前記第2方向のビーム幅は、前記中央部(256)における前記第2方向のビーム幅よりも広い、
 項目1に記載の溶接方法。
[項目3]
 反対方向を向いた第1面(112)と第2面(114)とを有する第1部材(110)の前記第2面(114)に第2部材(120)を重ねるステップと、
 前記第1部材(110)の前記第1面(112)にライン形状のレーザビーム(250)を照射するステップと、
 前記ライン形状のレーザビーム(250)の照射によって形成された凝固部(130)が前記第1部材(110)と前記第2部材(120)とを接合するステップとを備え、
 前記第1面(112)内において交差する第1方向と第2方向を規定する場合に、前記ライン形状のレーザビーム(250)は、前記第2方向よりも前記第1方向に沿って長く、
 前記ライン形状のレーザビーム(250)における前記第1方向の両端部分が第1端部(252)と第2端部(254)とされ、前記ライン形状のレーザビーム(250)における前記第1端部(252)と前記第2端部(254)との間が中央部(256)とされる場合に、前記第1端部(252)と前記第2端部(254)における前記第2方向のビーム幅は、前記中央部(256)における前記第2方向のビーム幅よりも広い、
 溶接方法。
[項目4]
 前記第1部材(110)の前記第1面(112)に前記ライン形状のレーザビーム(250)を照射する際に、前記第1面(112)にアシストガス(272)を噴射するステップをさらに備え、
 前記第1面(112)のうち、前記ライン形状のレーザビーム(250)における前記第1端部(252)と前記第2端部(254)が照射される第1部分(274)に対する前記アシストガス(272)の流速は、前記ライン形状のレーザビーム(250)における前記中央部(256)が照射される第2部分(276)に対する前記アシストガス(272)の流速よりも小さい、
 項目1から3のいずれか1項に記載の溶接方法。
[項目5]
 前記アシストガス(272)は、前記第1面(112)に沿って噴射される、
 項目4に記載の溶接方法。
[項目6]
 前記第1部材(110)の前記第1面(112)に前記ライン形状のレーザビーム(250)を照射する際に、前記第1面(112)にアシストガス(272)を噴射するステップをさらに備え、
 前記アシストガス(272)は、前記第1面(112)に沿って噴射される、
 項目1から3のいずれか1項に記載の溶接方法。
[項目7]
 反対方向を向いた第1面(112)と第2面(114)とを有する第1部材(110)の前記第2面(114)に第2部材(120)を重ねた金属部材(100)の溶接構造であり、
 前記第1部材(110)の前記第1面(112)から前記第2面(114)を介して前記第2部材(120)にわたって溶融した凝固部(130)を備え、
 前記凝固部(130)は、前記第1面(112)から突出するビード(132)を有し、
 前記第1面(112)内において交差する第1方向と第2方向を規定する場合に、前記ビード(132)は、前記第2方向よりも前記第1方向に沿って長いライン形状を有し、
 前記ビード(132)は窪みを有さない、
 金属部材(100)の溶接構造。
[項目8]
 前記ビード(132)の前記第1方向の長さは、前記ビード(132)の前記第2方向の長さの10倍以上である、
 項目7に記載の金属部材(100)の溶接構造。
[項目9]
 前記第1部材(110)は、電池の集電板(140)であり、
 前記第2部材(120)は、前記電池の電極板(150)である、
 項目7または8に記載の金属部材(100)の溶接構造。
[項目10]
 前記集電板(140)はニッケルめっきの鉄により形成され、
 前記電極板(150)は銅箔により形成される、
 項目9に記載の金属部材(100)の溶接構造。
 本開示によれば、ライン形状の溶接における溶接品質を向上できる。
 10 金属部材、 12 第1面、 14 第2面、 30 凝固部、 32 ビード、 34 窪み、 100 金属部材、 110 第1部材、 112 第1面、 114 第2面、 120 第2部材、 122 第3面、 124 第4面、 130 凝固部、 132 ビード、 140 集電板、 142 第1面、 144 第2面、 150 電極板、 200 レーザ発振器、 210 光ファイバ、 220 コリメータ、 230 ビームホモジナイザ、 240 集光レンズ、 250 レーザビーム、 252 第1端部、 254 第2端部、 256 中央部、 260 ノズル、 262 アシストガス、 270 ノズル、 272 アシストガス、 274 第1部分、 276 第2部分、 300 溶接装置、 α 始点、 β 終点。

Claims (10)

  1.  反対方向を向いた第1面と第2面とを有する第1部材の前記第2面に第2部材を重ねるステップと、
     前記第1部材の前記第1面にライン形状のレーザビームを照射するステップと、
     前記ライン形状のレーザビームの照射によって形成された凝固部が前記第1部材と前記第2部材とを接合するステップとを備え、
     前記第1面内において交差する第1方向と第2方向を規定する場合に、前記ライン形状のレーザビームは、前記第2方向よりも前記第1方向に沿って長く、
     前記ライン形状のレーザビームにおける前記第1方向の両端部分である第1端部と第2端部のビーム強度は、前記ライン形状のレーザビームにおいて前記第1端部と前記第2端部とに挟まれた中央部のビーム強度よりも高い、
     溶接方法。
  2.  前記第1端部と前記第2端部における前記第2方向のビーム幅は、前記中央部における前記第2方向のビーム幅よりも広い、
     請求項1に記載の溶接方法。
  3.  反対方向を向いた第1面と第2面とを有する第1部材の前記第2面に第2部材を重ねるステップと、
     前記第1部材の前記第1面にライン形状のレーザビームを照射するステップと、
     前記ライン形状のレーザビームの照射によって形成された凝固部が前記第1部材と前記第2部材とを接合するステップとを備え、
     前記第1面内において交差する第1方向と第2方向を規定する場合に、前記ライン形状のレーザビームは、前記第2方向よりも前記第1方向に沿って長く、
     前記ライン形状のレーザビームにおける前記第1方向の両端部分が第1端部と第2端部とされ、前記ライン形状のレーザビームにおける前記第1端部と前記第2端部との間が中央部とされる場合に、前記第1端部と前記第2端部における前記第2方向のビーム幅は、前記中央部における前記第2方向のビーム幅よりも広い、
     溶接方法。
  4.  前記第1部材の前記第1面に前記ライン形状のレーザビームを照射する際に、前記第1面にアシストガスを噴射するステップをさらに備え、
     前記第1面のうち、前記ライン形状のレーザビームにおける前記第1端部と前記第2端部が照射される第1部分に対する前記アシストガスの流速は、前記ライン形状のレーザビームにおける前記中央部が照射される第2部分に対する前記アシストガスの流速よりも小さい、
     請求項1から3のいずれか1項に記載の溶接方法。
  5.  前記アシストガスは、前記第1面に沿って噴射される、
     請求項4に記載の溶接方法。
  6.  前記第1部材の前記第1面に前記ライン形状のレーザビームを照射する際に、前記第1面にアシストガスを噴射するステップをさらに備え、
     前記アシストガスは、前記第1面に沿って噴射される、
     請求項1から3のいずれか1項に記載の溶接方法。
  7.  反対方向を向いた第1面と第2面とを有する第1部材の前記第2面に第2部材を重ねた金属部材の溶接構造であり、
     前記第1部材の前記第1面から前記第2面を介して前記第2部材にわたって溶融した凝固部を備え、
     前記凝固部は、前記第1面から突出するビードを有し、
     前記第1面内において交差する第1方向と第2方向を規定する場合に、前記ビードは、前記第2方向よりも前記第1方向に沿って長いライン形状を有し、
     前記ビードは窪みを有さない、
     金属部材の溶接構造。
  8.  前記ビードの前記第1方向の長さは、前記ビードの前記第2方向の長さの10倍以上である、
     請求項7に記載の金属部材の溶接構造。
  9.  前記第1部材は、電池の集電板であり、
     前記第2部材は、前記電池の電極板である、
     請求項7または8に記載の金属部材の溶接構造。
  10.  前記集電板はニッケルめっきの鉄により形成され、
     前記電極板は銅箔により形成される、
     請求項9に記載の金属部材の溶接構造。
PCT/JP2022/026389 2021-09-28 2022-06-30 溶接方法および金属部材の溶接構造 WO2023053650A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023550388A JPWO2023053650A1 (ja) 2021-09-28 2022-06-30
CN202280065071.2A CN118019610A (zh) 2021-09-28 2022-06-30 焊接方法及金属构件的焊接结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021157831 2021-09-28
JP2021-157831 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023053650A1 true WO2023053650A1 (ja) 2023-04-06

Family

ID=85780576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026389 WO2023053650A1 (ja) 2021-09-28 2022-06-30 溶接方法および金属部材の溶接構造

Country Status (3)

Country Link
JP (1) JPWO2023053650A1 (ja)
CN (1) CN118019610A (ja)
WO (1) WO2023053650A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595670A (en) * 1995-04-17 1997-01-21 The Twentyfirst Century Corporation Method of high speed high power welding
JP2003260583A (ja) * 2002-03-11 2003-09-16 Nippon Steel Corp レーザ加工装置
JP2004174529A (ja) * 2002-11-26 2004-06-24 Suzuki Motor Corp レーザ溶接装置
JP2012086254A (ja) * 2010-10-21 2012-05-10 Toyota Motor Corp 溶接方法および溶接装置および電池の製造方法および電池
JP2015217422A (ja) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 レーザ溶接方法
JP2017177222A (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 レーザ溶接方法およびレーザ溶接装置
WO2019189927A1 (ja) * 2018-03-30 2019-10-03 古河電気工業株式会社 溶接方法および溶接装置
JP2020524373A (ja) * 2017-06-27 2020-08-13 エルジー・ケム・リミテッド 電極タブの溶接方法およびこれにより製造された電極を含むケーブル型二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595670A (en) * 1995-04-17 1997-01-21 The Twentyfirst Century Corporation Method of high speed high power welding
JP2003260583A (ja) * 2002-03-11 2003-09-16 Nippon Steel Corp レーザ加工装置
JP2004174529A (ja) * 2002-11-26 2004-06-24 Suzuki Motor Corp レーザ溶接装置
JP2012086254A (ja) * 2010-10-21 2012-05-10 Toyota Motor Corp 溶接方法および溶接装置および電池の製造方法および電池
JP2015217422A (ja) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 レーザ溶接方法
JP2017177222A (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 レーザ溶接方法およびレーザ溶接装置
JP2020524373A (ja) * 2017-06-27 2020-08-13 エルジー・ケム・リミテッド 電極タブの溶接方法およびこれにより製造された電極を含むケーブル型二次電池
WO2019189927A1 (ja) * 2018-03-30 2019-10-03 古河電気工業株式会社 溶接方法および溶接装置

Also Published As

Publication number Publication date
JPWO2023053650A1 (ja) 2023-04-06
CN118019610A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US11428251B2 (en) Weld structure of metal member and welding process
JP5080199B2 (ja) 二次電池および二次電池の製造方法
US8487211B2 (en) Method and apparatus for using multiple laser beams to weld members that are separated by a gap
US20180361506A1 (en) Laser welding method and laser welding apparatus
US20090266801A1 (en) Method of laser welding metal plated plates
EP2859986A1 (en) Welding device, welding method, and method for producing cell
JP2013220462A (ja) 溶接方法および金属ケース
JP2014140890A (ja) 金属箔の重ね接合方法及び接合構造体
JP6643646B2 (ja) 密閉型電池及びその製造方法
US11302968B2 (en) Electric storage device and method of manufacturing electrode unit
JP2011076776A (ja) 電極体の芯体露出部と集電用部材との溶接方法
JP2014004619A (ja) レーザ接合方法および接合部品
JP2014136242A (ja) 重ね溶接方法及び溶接構造体
JP2013122973A (ja) 金属箔の接続構造及びその接続方法及びコンデンサ
CN106041306A (zh) 焊接方法
US11123817B2 (en) Method of welding laminated metal foils
JP2017059408A (ja) 密閉型電池の製造方法
WO2023053650A1 (ja) 溶接方法および金属部材の溶接構造
JP2020097039A (ja) 異種金属部材の重ね溶接方法
JP6841227B2 (ja) 電極組立体の製造方法及び電極組立体
JP6834982B2 (ja) 電極組立体の製造方法
JP2012043609A (ja) 溶接方法および電池の製造方法および電池
JP7535721B2 (ja) レーザ加工方法およびレーザ加工装置
JP2012228716A (ja) レーザ溶接装置およびレーザ溶接方法
JP2012228717A (ja) レーザ溶接装置およびレーザ溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550388

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280065071.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22875529

Country of ref document: EP

Kind code of ref document: A1