WO2023035667A1 - 一种帕布昔利布的低成本制备方法 - Google Patents

一种帕布昔利布的低成本制备方法 Download PDF

Info

Publication number
WO2023035667A1
WO2023035667A1 PCT/CN2022/094111 CN2022094111W WO2023035667A1 WO 2023035667 A1 WO2023035667 A1 WO 2023035667A1 CN 2022094111 W CN2022094111 W CN 2022094111W WO 2023035667 A1 WO2023035667 A1 WO 2023035667A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
palbociclib
water
reaction
Prior art date
Application number
PCT/CN2022/094111
Other languages
English (en)
French (fr)
Inventor
李太同
苏曼
张庆涛
刘忠华
呼修康
Original Assignee
山东铂源药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东铂源药业股份有限公司 filed Critical 山东铂源药业股份有限公司
Publication of WO2023035667A1 publication Critical patent/WO2023035667A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of chemical synthesis, and in particular relates to a low-cost preparation method of palbociclib.
  • Palbociclib is a new drug for the treatment of breast cancer developed by Pfizer of the United States.
  • the product name is IBRANCE. It is an oral cyclin-dependent kinase (CDKs) 4 and 6 inhibitor. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. CDKs4 and 6 are key regulators of the cell cycle, which can trigger cell cycle progression.
  • IBRANCE oral cyclin-dependent kinase
  • CDK4/6 Cyclin-dependent kinase 4/6
  • CDKs4 and 6 are key regulators of the cell cycle, which can trigger cell cycle progression.
  • the indication of IBRANCE in the United States is combined with letrozole for the treatment of estrogen receptor positive, human epidermal growth factor receptor 2 negative (ER+/HER2-) postmenopausal patients with advanced breast cancer, as an initial endocrine therapy-based regimen Treatment of metastatic disease.
  • the synthetic method of the palbociclib of bibliography mainly contains following several kinds:
  • the yield of compound 4 prepared by this route is low, only 38%.
  • the Stille coupling reaction for preparing compound 7 uses highly toxic substances such as organotin, which is not conducive to industrial production.
  • the key intermediate 3 replaces the methylenesulfonyl group with a chlorine atom at the 2-position of the pyrimidine ring, which increases the activity of the 2-position of the pyrimidine ring.
  • LiHMDS was used as the base when compound 4 was obtained in the alkylation reaction, and the reaction yield was increased to 92%.
  • the literature uses cheap and easy-to-obtain 2,4-dichloro-5-bromopyrimidine to obtain compound 3 through a three-step reaction, which greatly reduces the cost of raw materials and the ability to be industrialized.
  • route 2 adopts [two (diphenylphosphinoferrocene)] palladium dichloride (Pd (dppf) 2 Cl 2 ), its consumption is about 3% of compound 4, along with the day by day rise of palladium price, cause The cost of palbociclib continues to rise. According to the cost calculation of the literature process, the price of palladium has become the main cost of the process, far exceeding the cost of raw materials.
  • Erdman et al. used palladium acetate as catalyst in patent WO2014128588A1, bis(2-diphenylphosphine phenyl) ether (DPEphos) was ligand, compound 4 and n-butyl vinyl ether Herk coupling reaction, the amount of palladium acetate It is 1.6% of the mass of compound 4, and the price of palladium catalyst is still a key factor restricting the popularization and use of palbociclib.
  • DPEphos bis(2-diphenylphosphine phenyl) ether
  • palbociclib As a blockbuster new drug, palbociclib is used in a large amount. With the increasing awareness of environmental protection of the Chinese government and pharmaceutical and chemical companies year by year, the development of a low-cost, high-yield, environmentally friendly industrial synthesis method of palbociclib is a problem that needs to be solved at present.
  • the present invention overcomes the shortcomings of the above-mentioned prior art, and provides a low-cost preparation method of palbociclib.
  • the method takes 4-(6-aminopyridin-3-yl)piperazine-1-carboxylate tert-butyl as starting raw material, takes bulky hindered base as acid-binding agent, and 6-bromo-2-chloro-8 -Cyclopentyl-5-methylpyrido[2,3-D]pyrimidin-7(8H)-one undergoes a nucleophilic substitution reaction, and the post-treatment obtains a large particle formula 4 compound through quenching and dealkalization, and the formula 4 compound Using n-butanol and water as solvent, diisopropylethylamine as acid-binding agent and protective agent, under the action of composite catalyst palladium chloride and cuprous iodide, Herk alkylation occurs with n-butyl vinyl ether Reaction, under the protection of an organic base, the high
  • the technical solution of the present invention is: a low-cost preparation method of palbociclib, comprising:
  • the organic base in the step S1 is a bulky metal organic base.
  • the step S2 is: using palladium chloride and cuprous iodide as catalysts, bis(2-diphenylphosphine phenyl) ether and triphenylphosphine as complexes, n-butanol and water as solvents, diisopropyl Ethylamine was used as base for Herk alkylation reaction with n-butyl vinyl ether.
  • step S3 is: in the three-phase system of n-butanol, anisole and water, the compound of formula 5 is hydrolyzed with acid.
  • the synthetic route is as follows:
  • LiHMDS lithium hexamethyldisilazide
  • DPEphos bis(2-diphenylphosphophenyl) ether
  • DIEA diisopropylethylamine
  • the present invention specifically comprises the following steps:
  • the compound of formula 4 uses palladium chloride and cuprous iodide as catalyst, bis(2-diphenylphosphorylphenyl) ether and triphenylphosphine as complex, n-butanol and water as solvent, di Isopropylethylamine is used as base, and carries out Herk alkylation reaction with n-butyl vinyl ether, obtains the crude product of compound of formula 5, then makes solvent by ethyl acetate or isopropyl acetate, and organic base is stabilizing agent, by refining ( heating to reflux, cooling and crystallization) to obtain high-purity formula 5 compounds;
  • the large sterically hindered metal organic base in step S1 is: lithium diisopropylamide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, potassium hexamethyldisilamide, sodium tert-butoxide , Potassium tert-butoxide, preferably sodium hexamethyldisilazide.
  • the main impurity of this step is the pyridine ring impurity (formula 8) of 4-(6-aminopyridin-3-yl) piperazine-1-carboxylate tert-butyl ester (formula 2), and the reaction scheme is as follows:
  • the impurity shown in formula 8 is the main factor that causes route 1 yield to be only 38%, therefore, adopts large hindered base, first removes 4-(6-aminopyridin-3-yl) piperazine-1-carboxylic acid
  • the 6-position hydrogen of the pyridine ring of tert-butyl ester enhances the affinity of the 6-position amino group, and then combines with 6-bromo-2-chloro-8-cyclopentyl-5-methylpyrido[2,3-D]pyrimidine-
  • the reaction of 7(8H)-ketone (Formula 3) not only reduces its reaction activation energy, but also reduces the generation of impurity 8, and improves the yield and purity of the compound of Formula 4.
  • the inactivation method in step S1 is: adding a mixed solvent with a volume ratio of acetone to water of 1.8-2.2:1 to obtain a crude compound of formula 4 with large particles.
  • the dealkalization treatment in step S1 is: adding the obtained solid into the two-phase system of dichloromethane and water, and using acetic acid to adjust the pH value to remove the residual organic base in the material that affects the Herk reaction.
  • the organic base is mainly residual hexamethyldisilazane, which has a certain reducibility, and the residual amount can deactivate palladium chloride, resulting in an increase in the consumption of palladium in the next step of the Herk reaction.
  • the mass ratio of the catalyst palladium chloride, cuprous iodide and the compound of formula 4 in step S2 is 0.0001-0.0005:0.005-0.02:1, preferably 0.0002:0.01:1.
  • cuprous iodide By adding cuprous iodide, the amount of palladium chloride is reduced to 1.5% of the amount described in the patent WO2014128588A1 example (the amount of palladium acetate used in the literature is 1.6% of intermediate I), which greatly reduces the amount of precious metal palladium. This is our understanding of the process.
  • the mass ratio of the complex bis(2-diphenylphosphinophenyl)ether, triphenylphosphine and compound 4 in step S2 is 0.0005 ⁇ 0.002:0.01 ⁇ 0.05:1, preferably 0.001:0.02:1 .
  • the molar ratio of n-butyl vinyl ether, diisopropylethylamine and compound 4 is 1.2-4:1.2-2.0:1, preferably 1.5:1.5:1.
  • the volume ratio of n-butanol and water is 5-15:1, preferably 10:1.
  • the stabilizer organic base is one of organic bases such as triethylamine, diisopropylethylamine, pyridine, N-methylmorpholine, 4-dimethylaminopyridine, and its addition is 0.5-10% of the mass of the crude product of compound 5, preferably 2%.
  • the original research company described in the patent CN105008357A that the yield of this step is only 79%. After research, the main reason for the low yield is the generation of butoxyethylene-based degradation impurities that are easily soluble in organic solvents (formula 9) in the post-treatment process. ):
  • the mass ratio of n-butanol, anisole, water and the compound of formula 5 in step S3 is 8-12:12-18:8-12:1, preferably 10:15:10:1.
  • the acid in step S3 is hydrochloric acid or hydrobromic acid, and the amount used is 1.2-3 equivalents, preferably 1.5 equivalents, of the compound of formula 5.
  • the neutralizing agent in step S3 is one of sodium hydroxide solution, potassium hydroxide solution or ammonia water, preferably sodium hydroxide solution.
  • the water elution salt in step S3 is 70-90°C.
  • the reaction temperature in step S1 is 20-30°C; the reaction temperature in step S2 is 90-100°C; the reaction temperature in step S3 is 75-85°C.
  • the present invention utilizes 4-(6-aminopyridin-3-yl) piperazine-1-carboxylate tert-butyl as starting raw material, is solvent with toluene, is acid-binding agent with large hindered base, and 6- Bromo-2-chloro-8-cyclopentyl-5-methylpyrido[2,3-D]pyrimidin-7(8H)-one (see Chinese patent CN112898299A and Chinese patent CN112661753A for the preparation method) undergoes nucleophilic substitution reaction , the reaction conditions are mild, and the compound of formula 4 with large particles that are easy to filter is obtained by quenching with acetone/water, the post-treatment is simple, the product yield is high, the quality is good, and it is suitable for industrial production.
  • the present invention adopts n-butanol and water as solvent, diisopropylethylamine as base and protective agent, compound of formula 4 and n-butyl vinyl ether in composite catalyst palladium chloride and cuprous iodide, composite ligand three
  • phenylphosphine and (2-diphenylphosphophenyl) ether carry out Herk reaction, through ethyl acetate or isopropyl acetate, under the condition of organic base as stabilizer, obtain high-purity Formula 5 compound.
  • the biggest feature of this step is that by adding cuprous iodide and solvent water, the amount of precious metal palladium is reduced to 1.5% of the amount used in literature, which greatly reduces the cost of raw materials and the pollution of precious metal palladium to the environment.
  • the compound of formula 5 obtained through refining has high purity, and can be directly hydrolyzed, neutralized, and desalted in step 3, and high-purity palbociclib finished product can be obtained without further refining, which simplifies the reaction steps and reduces the cost of raw materials .
  • the present invention uses a three-phase system for the hydrolysis step only to simplify the process, and can directly obtain qualified palbociclib through the steps of reaction, post-treatment, and desalination, thereby simplifying the industrial production operation steps and improving work efficiency.
  • the present invention provides a high-quality, low-cost, environmentally friendly and suitable preparation method for the synthesis of palbociclib bulk drug, especially for greatly reducing the amount of palladium catalyst used.
  • the low-cost preparation method of the present invention is conducive to the use and popularization of palbociclib preparations, and at the same time, it is beneficial to reduce the capital expenditure of patients, so that more breast cancer patients can use the palbociclib target drug with high safety. medicine.
  • UV detector detection wavelength 220nm
  • Mobile phase A Weigh 2.875g ammonium dihydrogen phosphate into 1L water, adjust the pH to 3.7 with phosphoric acid; mobile phase B: acetonitrile; flow rate: 1ml/min;
  • Example 1 4-(6-((6-bromo-8-cyclopentyl-7,8-dihydro-5-methyl-7-oxopyrido[2,3-D]pyrimidine-2- Base) amino)-3-pyridyl)-1-piperazinecarboxylate tert-butyl ester (compound of formula 4) laboratory preparation
  • Example 2 4-(6-((6-bromo-8-cyclopentyl-7,8-dihydro-5-methyl-7-oxopyrido[2,3-D]pyrimidine-2- Base) amino)-3-pyridyl)-1-piperazinecarboxylate tert-butyl ester (compound of formula 4) laboratory preparation
  • Example 3 4-(6-((6-bromo-8-cyclopentyl-7,8-dihydro-5-methyl-7-oxopyrido[2,3-D]pyrimidine-2- Base) amino)-3-pyridyl)-1-piperazinecarboxylic acid tert-butyl ester (formula 4 compound) industrial preparation
  • Example 4 2-methyl-2-propyl-4-(6- ⁇ [8-cyclopentyl-5-methyl-7-oxo-6-(1-butoxyethenyl)-7, Laboratory preparation of 8-dihydropyrido[2,3-D]pyrimidin-2-yl]amino ⁇ -3-pyridyl)-1-piperazinecarboxylic acid (compound of formula 5)
  • Example 5 2-methyl-2-propyl-4-(6- ⁇ [8-cyclopentyl-5-methyl-7-oxo-6-(1-butoxyethenyl)-7, Laboratory preparation of 8-dihydropyrido[2,3-D]pyrimidin-2-yl]amino ⁇ -3-pyridyl)-1-piperazinecarboxylic acid (compound of formula 5)
  • Example 6 2-methyl-2-propyl-4-(6- ⁇ [8-cyclopentyl-5-methyl-7-oxo-6-(1-butoxyethenyl)-7, Industrial preparation of 8-dihydropyrido[2,3-D]pyrimidin-2-yl]amino ⁇ -3-pyridyl)-1-piperazinecarboxylic acid (compound of formula 5)
  • Embodiment 8 Industrialized preparation of palbociclib

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种帕布昔利布的低成本制备方法。该方法以4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯为起始原料,以大位阻碱为缚酸剂,与式3化合物发生亲核取代反应,后处理通过淬灭、脱碱得大颗粒式4化合物,再以正丁醇和水为溶剂,二异丙基乙胺为缚酸剂和保护剂,在复合催化剂氯化钯和碘化亚铜的作用下,与正丁基乙烯基醚发生Herk烷基化反应,在有机碱的保护下,通过酯类溶剂精制高收率的得到高纯度的式5化合物,式5化合物通过正丁醇、苯甲醚和水混合溶剂,酸性条件下水解,得到帕布昔利布成品。该方法大大降低了钯催化剂的使用量,且操作简便、对环境污染少、收率高、产品质量高,更适合于工业化生产。

Description

一种帕布昔利布的低成本制备方法 技术领域
本发明属于化学合成技术领域,具体涉及一种帕布昔利布的低成本制备方法。
背景技术
帕布昔利布(palbociclib)是由美国辉瑞研发的治疗乳腺癌新药,商品名称为IBRANCE,是一种口服细胞周期素依赖性激酶(CDKs)4和6抑制剂,为美国FDA批准首个细胞周期蛋白依赖性激酶4/6(CDK4/6)抑制剂。CDKs4和6是细胞周期的关键调节因素,其能够触发细胞周期进展。IBRANCE在美国的适应症为联合来曲唑用于治疗雌激素受体阳性,人类表皮生长因子受体2阴性(ER+/HER2-)绝经后晚期乳腺癌患者,作为初始的内分泌治疗为基础的方案治疗转移性疾病。
帕布昔利布,中文名:6-乙酰基-8-环戊基-5-甲基-2-[[5-(哌嗪-1-基)吡啶-2-基]氨基]-8H-吡啶并[2,3-d]嘧啶-7-酮,结构式如下所示。
Figure PCTCN2022094111-appb-000001
文献报道的帕布昔利布的合成方法主要有以下几种:
方法一:Mark Barvian等人在美国专利US6936612B2中以6-溴-8-环戊基-2-甲基亚磺酰基-5-甲基-8H-吡啶并[2,3-d]嘧啶-7-酮(式6)为原料,在甲苯中与4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯(式2)通过N-烷基化反应,得到化合物4,化合物4经(三苯基膦)钯催化与三丁基(1-乙氧基乙烯)锡进行Stille偶联反应合成化合物7,再在二氯甲烷体系中进行水解和脱保护得到目标产物帕布昔利布,具体的合成路线如下。文献还报道了以4-氯-2-甲硫基嘧啶-5-甲酸乙酯为起始原料经5步反应制备化合物6的方法。
Figure PCTCN2022094111-appb-000002
此路线制备化合物4的收率偏低,仅为38%,制备化合物7的Stille偶联反应,用到有机锡等剧毒物质,不利于工业化生产。
方法二:Brian等人在专利WO2008032157A2中报道了以4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯(式2)和6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮(式3)为起始原料,以六甲基二硅基氨基锂(LiHMDS)为碱进行N-烷基化得到化合物4,化合物4与正丁基乙烯基醚在[双(二苯基膦基二茂铁)]二氯化钯(Pd(dppf) 2Cl 2)的催化下进行Herk偶联反应得到化合物5,最后经羟基乙磺酸催化进行重排和水解反应得到目标产物帕布昔利布,反应路线如下:
Figure PCTCN2022094111-appb-000003
与路线1相比,其关键中间体3在嘧啶环的2位以氯原子取代了亚甲磺酰基,增加了嘧啶环2位的活性,其次,关键中间体3与中间体2经N-烷基化反应获得化合物4时用LiHMDS为碱,提高反应收率至92%。另外,文献采用廉价易得的2,4-二氯-5-溴嘧啶,经3步反应得到化合物3,大大降低了原材料成本和可工业化能力。
但路线2采用[双(二苯基膦基二茂铁)]二氯化钯(Pd(dppf) 2Cl 2),其用量约为化合物4的3%,随着钯价格的日益上涨,造成帕布昔利布成本的不断上涨,按照文献工艺核算成本,钯的价格已经成为该工艺的主要成本,远超原材料成本。
申请人在中国专利CN112898299A和中国专利CN112661753A中,对化合物3的合成进行了优化和改进,以实现工业化、低成本生产。
Erdman等人在专利WO2014128588A1中采用醋酸钯做催化剂,双(2-二苯基磷苯基)醚(DPEphos)为配体,化合物4与正丁基乙烯基醚Herk偶联反应,醋酸钯的用量为化合物4质量的1.6%,钯催化剂的价格仍然是制约帕布昔利布推广使用的关键因素。
作为重磅炸弹级新药,帕布昔利布的用量很大。随着中国政府和医药化工企 业对环境保护意识的逐年增强,开发一种低成本、高收率、环境友好的帕布昔利布工业化合成方法为当前需要解决的问题。
技术解决方案
本发明克服了上述现有技术的不足,提供一种帕布昔利布的低成本制备方法。该方法以4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯为起始原料,以大位阻碱为缚酸剂,与6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮发生亲核取代反应,后处理通过淬灭、脱碱得大颗粒式4化合物,式4化合物以正丁醇、水为溶剂,二异丙基乙胺为缚酸剂和保护剂,在复合催化剂氯化钯和碘化亚铜的作用下,与正丁基乙烯基醚发生Herk烷基化反应,在有机碱的保护下,通过酯类溶剂精制高收率的得到高纯度的式5化合物,式5化合物通过正丁醇、苯甲醚、水混合溶剂,酸性条件下水解,直接高收率的得到高纯度的帕布昔利布成品。该方法大大降低了钯催化剂的使用量,且操作简便、对环境污染少、收率高、成本低、产品质量高,更适合于工业化生产。
本发明的技术方案是:一种帕布昔利布的低成本制备方法,包括:
S1:4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯(式2)在甲苯中,通过有机碱作为缚酸剂,与6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮(式3)发生氨基化反应,经后处理得到式4化合物;
S2:以正丁醇为溶剂,化合物4与正丁基乙烯基醚在钯催化剂催化下进行Herk烷基化反应得到化合物5;
S3:化合物5水解反应得到目标产物帕布昔利布;
其特征是,
所述步骤S1的有机碱为大位阻金属有机碱。
所述步骤S2为:以氯化钯和碘化亚铜作为催化剂,双(2-二苯基磷苯基)醚和三苯基膦作为配合物,正丁醇和水为溶剂,二异丙基乙胺作碱,与正丁基乙烯基醚进行Herk烷基化反应。
进一步的,所述步骤S3为:在正丁醇、苯甲醚、水的三相体系中,式5化合物用酸水解。
Figure PCTCN2022094111-appb-000004
合成路线如下所示:
其中,LiHMDS:六甲基二硅基氨基锂,DPEphos:双(2-二苯基磷苯基)醚,DIEA:二异丙基乙胺。
Figure PCTCN2022094111-appb-000005
更优选的,本发明具体包括以下以下步骤:
S1:4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯(式2)在甲苯中,通过大位阻金属有机碱作为缚酸剂,与6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮(式3)发生氨基化反应,经灭活,脱碱处理,得到式4化合物;
S2:氮气保护下,式4化合物以氯化钯和碘化亚铜作为催化剂,双(2-二苯基磷苯基)醚和三苯基膦作为配合物,正丁醇和水为溶剂,二异丙基乙胺作碱,与正丁基乙烯基醚进行Herk烷基化反应,得到式5化合物粗品,再通过乙酸乙酯或醋酸异丙酯作溶剂,有机碱为稳定剂,通过精制(加热回流,降温析晶)得到高纯度的式5化合物;
S3:在正丁醇、苯甲醚、水的三相体系中,式5化合物用酸水解,再通过中 和、水洗脱盐、降温结晶得到高纯度(纯度99.9以上,单杂0.05%)的帕布昔利布(式1)。
其中,
步骤S1中的大位阻金属有机碱为:二异丙基氨基锂、六甲基二硅基氨基锂、六甲基二硅基氨基钠、六甲基二硅基氨基钾、叔丁醇钠、叔丁醇钾中的一种,优选六甲基二硅基氨基钠。该步骤主要杂质为4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯(式2)的吡啶环杂质(式8),反应路线如下:
Figure PCTCN2022094111-appb-000006
式8所示的杂质是造成路线1收率仅为38%的主要因素,因此,采用大位阻碱,首先脱除4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯的吡啶环6位氢,增强6位氨基的亲和性,再与6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮(式3)反应,不仅降低其反应活化能,更减少了杂质8的产生,提高了式4化合物的收率和纯度。
步骤S1中的灭活方式为:加入丙酮与水体积比1.8~2.2:1的混合溶剂,得到大颗粒的式4化合物粗品。
步骤S1中脱碱处理为:将所得固体加入到二氯甲烷与水的两相体系中,采用醋酸调pH值脱除物料中影响Herk反应残留的有机碱。有机碱主要为残留的六甲基二硅氮烷,具有一定的还原性,残留量可使氯化钯失活,造成下一步Herk反应消耗钯量增加。
步骤S2中的催化剂氯化钯、碘化亚铜与式4化合物的质量比为0.0001~0.0005:0.005~0.02:1,优选质量比为0.0002:0.01:1。通过加入碘化亚铜,将氯化钯用量减为专利WO2014128588A1实例描述用量(文献用醋酸钯量为中间体I的1.6%)的1.5%,大大减少了贵金属钯的用量,这是我们对工艺的最大改进,贵金属钯的成本,从占帕布昔利布主要成本到微不足道,极大降低了帕布 昔利布的生产成本。
步骤S2中的配合物双(2-二苯基膦基苯基)醚、三苯基膦与化合物4的质量比为0.0005~0.002:0.01~0.05:1,优选质量比为0.001:0.02:1。正丁基乙烯醚、二异丙基乙胺与化合物4的摩尔比为1.2~4:1.2~2.0:1,优选1.5:1.5:1。正丁醇和水的体积比为5~15:1,优选10:1。
步骤S2中的精制过程,稳定剂有机碱为三乙胺、二异丙基乙胺、吡啶、N-甲基吗啉、4-二甲氨基吡啶等有机碱中的一种,其加入量为化合物5粗品质量的0.5~10%,优选2%。原研公司在专利CN105008357A中描述该步骤收率仅为79%,经研究,造成收率低的主要原因,是其后处理过程中产生了易溶于有机溶剂的丁氧乙烯基降解杂质(式9):
Figure PCTCN2022094111-appb-000007
丁氧乙烯基在弱酸性中即可快速降解,但在碱存在下,降解速率缓慢,通过添加有机碱的方式,通过乙酸乙酯或醋酸异丙酯精制,可得到高纯度的(≥99%)的式5化合物,降解杂质(式9)仅为0.1~0.3%。
步骤S3中的正丁醇、苯甲醚、水和式5化合物的质量比8~12:12~18:8~12:1,优选10:15:10:1。
步骤S3中的酸为盐酸或氢溴酸,用量为式5化合物的1.2~3当量,优选1.5当量。
步骤S3中的中和剂为氢氧化钠溶液、氢氧化钾溶液或氨水中的一种,优选氢氧化钠溶液。
步骤S3中的水洗脱盐为70~90℃。
步骤S1中的反应温度为20~30℃;步骤S2中的反应温度为90~100℃;步骤S3中的反应温度为75~85℃。
有益效果
1、本发明利用4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯为起始原料,以甲苯为溶剂,以大位阻碱为缚酸剂,与6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮(制备方法见中国专利CN112898299A和中国专利CN112661753A)发生亲核取代反应,反应条件温和,经丙酮/水淬灭得到易于过滤的大颗粒式4化合物,后处理简单,产品收率高,质量好,适合工业化生产。
2、本发明采用正丁醇和水为溶剂,二异丙基乙胺为碱和保护剂,式4化合物与正丁基乙烯基醚在复合催化剂氯化钯和碘化亚铜,复合配体三苯基膦和(2-二苯基磷苯基)醚存在下,进行Herk反应,经乙酸乙酯或醋酸异丙酯,在有机碱做稳定剂的条件下,高收率的得到高纯度的式5化合物。该步骤的最大特点是通过添加碘化亚铜和溶剂水,将贵金属钯用量减少为文献用量的1.5%,极大降低了原材料成本和贵金属钯对环境的污染。而通过精制得到的式5化合物,纯度高,通过步骤3直接水解、中和、脱盐处理,不用再通过精制即可得到高纯度的帕布昔利布成品,简化了反应步骤,降低了原材料成本。
3、本发明采用三相体系进行水解步骤,仅仅是为了简化工艺,可以通过反应、后处理、脱盐步骤直接得到合格的帕布昔利布,从而简化工业生产操作步骤,提高工作效率。
综上,本发明为帕布昔利布原料药的合成,提供了一条高质量、低成本、对环境友好、适合工业化生产的制备方法,尤其是大大降低了钯催化剂的使用量。本发明的低成本制备方法有利于帕布昔利布制剂的使用和推广,同时,有利于减少患者的资金支出,使更多的乳腺癌患者能够用上安全性高的帕布昔利布靶向药。
附图说明(略)
本发明的实施方式
下面结合具体实施例对本发明作更进一步的说明,以便本领域的技术人员更了解本发明,但并不因此限制本发明。
帕布昔利布检测的色谱条件:
色谱柱:Hypersil BDS C18(4.6×250mm,5μm);
UV检测器(检测波长220nm);
流动相A:称取2.875g磷酸二氢铵到1L水中,用磷酸调pH至3.7;流动相 B:乙腈;流速:1ml/min;
进样量:10μl;
运行时间:55min;
稀释液:乙腈;
柱温:30℃
梯度洗脱条件如下表1。
表1梯度洗脱程序
时间(min) 流动相A 流动相B
0 80 20
30 20 80
40 20 80
41 80 20
55 80 20
实施例1:4-(6-((6-溴-8-环戊基-7,8-二氢-5-甲基-7-氧代吡啶并[2,3-D]嘧啶-2-基)氨基)-3-吡啶基)-1-哌嗪羧酸叔丁酯(式4化合物)的实验室制备
5L反应瓶中,加入167g(0.6mol)4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯,1600ml甲苯,通氮气保护,于20~30℃滴加750ml 1mol/L的六甲基二硅基氨基钠四氢呋喃溶液,保持20~30℃搅拌反应30分钟。将171g(0.5mol)6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮分散在600ml甲苯中,缓慢倒入反应液,加毕,保持30℃反应4h,TLC检测6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮消失为反应终点(展开剂:乙酸乙酯/正己烷=1/4)。反应毕,缓慢加入340ml丙酮与170ml水的混合液,混合物搅拌过夜,逐渐析出黄色颗粒状固体,过滤,水洗涤,将固体加入5L反应瓶,再加入1700ml二氯甲烷和1700ml水,缓慢搅拌下加入醋酸调pH 6,过滤,固体水洗、丙酮洗,烘干得亮黄色固体266g(收率91.4%),HPLC纯度98.8%。
实施例2:4-(6-((6-溴-8-环戊基-7,8-二氢-5-甲基-7-氧代吡啶并[2,3-D]嘧啶-2-基)氨基)-3-吡啶基)-1-哌嗪羧酸叔丁酯(式4化合物)的实验室制备
5L反应瓶中,加入167g(0.6mol)4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯,1600ml甲苯,通氮气保护,于20~30℃滴加750ml1mol/L的六甲基二硅基氨基锂的四氢呋喃溶液,保持20~30℃搅拌反应30分钟。将171g(0.5mol)6-溴-2-氯 -8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮分散在600ml甲苯中,缓慢倒入反应液,加毕,保持30℃反应4h,TLC检测6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮消失为反应终点(展开剂:乙酸乙酯/正己烷=1/4)。反应毕,缓慢加入340ml丙酮与170ml水的混合液,混合物搅拌过夜,逐渐析出黄色颗粒状固体,过滤,水洗涤,将固体加入5L反应瓶,再加入1700ml二氯甲烷和1700ml水,缓慢搅拌下加入醋酸调pH 6,过滤,固体水洗、丙酮洗,烘干的亮黄色固体263g(收率90.4%),HPLC纯度98.9%。
实施例3:4-(6-((6-溴-8-环戊基-7,8-二氢-5-甲基-7-氧代吡啶并[2,3-D]嘧啶-2-基)氨基)-3-吡啶基)-1-哌嗪羧酸叔丁酯(式4化合物)的工业化制备
2000L反应釜中,加入725kg甲苯,84kg 4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯,通氮气保护,于20~30℃滴加375L 1mol/L的六甲基二硅基氨基钠的四氢呋喃溶液,保持20~30℃搅拌反应30分钟。将86kg 6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮分散在270kg甲苯中,缓慢倒入反应液,加毕,保持30℃反应4h,TLC检测6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮消失为反应终点(展开剂:乙酸乙酯/正己烷=1/4)。反应毕,缓慢加入130kg丙酮与85kg水的混合液,混合物搅拌过夜,逐渐析出黄色颗粒状固体,过滤,水洗涤,将固体加入2000L反应釜,再加入1120kg二氯甲烷和850kg水,缓慢搅拌下加入醋酸调pH 6,离心,固体水洗、丙酮洗,烘干的亮黄色固体133kg(收率90.6%),HPLC纯度98.7%。
实施例4:2-甲基-2-丙基-4-(6-{[8-环戊基-5-甲基-7-氧代-6-(1-丁氧乙烯基)-7,8-二氢吡啶并[2,3-D]嘧啶-2-基]氨基}-3-吡啶基)-1-哌嗪甲酸(式5化合物)的实验室制备
5L反应瓶中,加入200g(0.34mol)式4化合物,1600ml正丁醇,160ml水,51g(0.51mol)正丁基乙烯基醚及66g(0.51mol)二异丙基乙胺,通氮气保护,升温至95℃。加入0.2g双(2-二苯基膦基苯基)醚及4g三苯基膦,搅拌10分钟,再加入0.04g氯化钯及2g碘化亚铜,氮气环境下,保持95℃反应20h,HPLC检测原料消失为反应终点。反应毕,热过滤除去不溶物,降温至60℃,加入500ml水,搅拌分层,弃去水相,有机相减压浓缩至干,加入2000ml乙酸乙酯及4g三乙胺,加热回流至固体溶解,降温至0~10℃析晶4h,过滤,烘干得亮 黄色固体196g,收率95.3%,HPLC纯度99.3%。
实施例5:2-甲基-2-丙基-4-(6-{[8-环戊基-5-甲基-7-氧代-6-(1-丁氧乙烯基)-7,8-二氢吡啶并[2,3-D]嘧啶-2-基]氨基}-3-吡啶基)-1-哌嗪甲酸(式5化合物)的实验室制备
5L反应瓶中,加入200g(0.34mol)式4化合物,1600ml正丁醇,160ml水,51g(0.51mol)正丁基乙烯基醚及66g(0.51mol)二异丙基乙胺,通氮气保护,升温至95℃。加入0.2g双(2-二苯基膦基苯基)醚及4g三苯基膦,搅拌10分钟,再加入0.04g氯化钯及2g碘化亚铜,氮气环境下,保持95℃反应20h,HPLC检测原料消失为反应终点。反应毕,热过滤除去不溶物,降温至60℃,加入500ml水,搅拌分层,弃去水相,有机相减压浓缩至干,加入2000ml醋酸异丙酯及4g N-甲基吗啉,加热回流至固体溶解,降温至0~10℃析晶4h,过滤,烘干得亮黄色固体194g,收率93.9%,HPLC纯度99.2%。
实施例6:2-甲基-2-丙基-4-(6-{[8-环戊基-5-甲基-7-氧代-6-(1-丁氧乙烯基)-7,8-二氢吡啶并[2,3-D]嘧啶-2-基]氨基}-3-吡啶基)-1-哌嗪甲酸(式5化合物)的工业化制备
3000L反应釜中,加入200kg式4化合物,1450kg正丁醇,160kg水,51kg正丁基乙烯基醚及66kg二异丙基乙胺,通氮气保护,升温至95℃。加入0.2kg双(2-二苯基膦基苯基)醚及4kg三苯基膦,搅拌10分钟,再加入40g氯化钯及2kg碘化亚铜,氮气环境下,保持95℃反应20h,HPLC检测原料消失为反应终点。反应毕,趁热压滤,降温至60℃,加入500kg水,搅拌分层,弃去水相,有机相减压浓缩至干,加入1800kg醋酸异丙酯及4kg二异丙基乙胺,加热回流至固体溶解,降温至0~10℃析晶4h,离心,烘干得亮黄色固体198kg,收率95.9%,HPLC纯度99.5%。
实施例7:帕布昔利布的实验室制备
5000ml反应瓶中,加入100g(0.166mol)式5化合物,1000ml正丁醇,1500ml苯甲醚及1000ml水,升温至80℃,滴加50g(0.25mol,40%)氢溴酸溶液,滴毕,保温反应20h,HPLC检测控制反应终点。反应毕,降温至60℃,用30%氢氧化钠溶液调pH值至10,分液,弃去水层,再用1000ml*2水洗涤2次,将上层液体升温至80℃,过滤除去不溶物,滤液减压蒸馏出约600ml溶剂,剩余物 料缓慢降温至0~5℃,析晶3h,过滤,烘干得69.4g高纯度亮黄色帕布昔利布,收率93.8%,HPLC纯度99.92%。
实施例8:帕布昔利布的工业化制备
5000L搪玻璃反应釜中,加入100kg式5化合物,900kg正丁醇,1500kg苯甲醚及1000kg水,升温至80℃,滴加25kg(0.25mol,37.3%)盐酸溶液,滴毕,保温反应20h,HPLC检测控制反应终点。反应毕,降温至60℃,用30%氢氧化钠溶液调pH10,分液,弃去水层,再用1000kg*2水洗涤两次,将上层液体升温至80℃,通过0.45um滤膜(PP材质)压滤至D级区,滤液减压蒸馏出约550kg溶剂,剩余物料缓慢降温至0~5℃,析晶3h,过滤,烘干得70.1kg高纯度亮黄色帕布昔利布,收率94.7%,HPLC纯度99.95%。

Claims (9)

  1. 一种帕布昔利布的低成本制备方法,包括:
    S1:4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯在甲苯中,通过有机碱作为缚酸剂,与6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮发生氨基化反应,经后处理得到式4化合物;
    S2:以正丁醇为溶剂,化合物4与正丁基乙烯基醚在钯催化剂催化下进行Herk烷基化反应得到化合物5;
    S3:化合物5水解反应得到目标产物帕布昔利布;
    其特征是,
    所述步骤S1的有机碱为大位阻金属有机碱;
    所述步骤S2为:以氯化钯和碘化亚铜作为催化剂,双(2-二苯基磷苯基)醚和三苯基膦作为配合物,正丁醇和水为溶剂,二异丙基乙胺作碱,与正丁基乙烯基醚进行Herk烷基化反应;
    所述化合物4和化合物5为:
    Figure PCTCN2022094111-appb-100001
    Figure PCTCN2022094111-appb-100002
  2. 如权利要求1所述的一种帕布昔利布的低成本制备方法,其特征是,所述步骤S3为:在正丁醇、苯甲醚、水的三相体系中,式5化合物用酸水解。
  3. 如权利要求2所述的一种帕布昔利布的低成本制备方法,其特征是,包括以下步骤:
    S1:4-(6-氨基吡啶-3-基)哌嗪-1-羧酸叔丁酯在甲苯中,通过大位阻金属有机碱作为缚酸剂,与6-溴-2-氯-8-环戊基-5-甲基吡啶并[2,3-D]嘧啶-7(8H)-酮发生氨基化反应,经灭活,脱碱处理,得到式4化合物;
    S2:氮气保护下,式4化合物以氯化钯和碘化亚铜作为催化剂,双(2-二苯基磷苯基)醚和三苯基膦作为配合物,正丁醇和水为溶剂,二异丙基乙胺作碱,与正丁基乙烯基醚进行Herk烷基化反应,得到式5化合物粗品,再通过乙酸乙酯或醋酸异丙酯作溶剂,有机碱为稳定剂,加热回流,降温析晶得到高纯度的式5化合物;
    S3:在正丁醇、苯甲醚、水的三相体系中,式5化合物用酸水解,再通过中和、水洗脱盐、降温结晶得到帕布昔利布。
  4. 如权利要求1-3中任一项所述的一种帕布昔利布的低成本制 备方法,其特征是,所述步骤S1中的大位阻金属有机碱为:二异丙基氨基锂、六甲基二硅基氨基锂、六甲基二硅基氨基钠、六甲基二硅基氨基钾、叔丁醇钠、叔丁醇钾中的一种。
  5. 如权利要求3所述的一种帕布昔利布的低成本制备方法,其特征是,步骤S1中的灭活为:加入丙酮与水体积比1.8~2.2:1的混合溶剂,得到大颗粒的式4化合物粗品。
  6. 如权利要求3所述的一种帕布昔利布的低成本制备方法,其特征是,步骤S1中脱碱处理为:将所得固体加入到二氯甲烷与水的两相体系中,采用醋酸调pH值脱除物料中影响Herk反应残留的有机碱。
  7. 如权利要求3所述的一种帕布昔利布的低成本制备方法,其特征是,步骤S2有机碱为三乙胺、二异丙基乙胺、吡啶、N-甲基吗啉和4-二甲氨基吡啶中的任一种。
  8. 如权利要求3所述的一种帕布昔利布的低成本制备方法,其特征是,步骤S3中中和采用的中和剂为氢氧化钠溶液、氢氧化钾溶液或氨水中的一种。
  9. 如权利要求3所述的一种帕布昔利布的低成本制备方法,其特征是,步骤S3中的水洗脱盐温度为70~90℃。
PCT/CN2022/094111 2021-09-07 2022-05-20 一种帕布昔利布的低成本制备方法 WO2023035667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111042732.3A CN113683612B (zh) 2021-09-07 2021-09-07 一种帕布昔利布的制备方法
CN202111042732.3 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023035667A1 true WO2023035667A1 (zh) 2023-03-16

Family

ID=78585536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094111 WO2023035667A1 (zh) 2021-09-07 2022-05-20 一种帕布昔利布的低成本制备方法

Country Status (2)

Country Link
CN (1) CN113683612B (zh)
WO (1) WO2023035667A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149001A1 (en) * 2002-01-22 2003-08-07 Mark Barvian 2-(Pyridin-2-ylamino)-pyrido[2,3-d]pyrimidin-7-ones
WO2008032157A2 (en) * 2006-09-08 2008-03-20 Pfizer Products Inc. Synthesis of 2-(pyridin-2-ylamino)-pyrido[2,3-d]pyrimidin-7-ones
CN103702990A (zh) * 2011-07-27 2014-04-02 阿斯利康(瑞典)有限公司 2-(2,4,5-取代苯胺)嘧啶衍生物作为egfr调谐子用于治疗癌症
CN104447739A (zh) * 2014-11-07 2015-03-25 郑州泰基鸿诺药物科技有限公司 一种氘代Palbociclib衍生物、制备方法及应用
CN104610254A (zh) * 2015-01-26 2015-05-13 新发药业有限公司 一种帕博赛布的低成本制备方法
CN104892604A (zh) * 2015-06-19 2015-09-09 北京康立生医药技术开发有限公司 一种新型的cdk4抑制剂的合成方法
CN104910149A (zh) * 2015-04-28 2015-09-16 上海百奇医药科技有限公司 一种Palbociclib制备方法
WO2016030439A1 (en) * 2014-08-28 2016-03-03 Ratiopharm Gmbh Method of producing palbociclib and pharmaceutical compositions comprising the same
CN105541832A (zh) * 2015-12-15 2016-05-04 南京艾德凯腾生物医药有限责任公司 一种羟乙基磺酸盐帕布昔利布的制备方法
CN105924439A (zh) * 2016-06-24 2016-09-07 石家庄海瑞药物科技有限公司 一种帕布昔利布的制备方法
CN106220627A (zh) * 2016-07-31 2016-12-14 合肥远志医药科技开发有限公司 一种高纯度帕布昔利布的工业化制备方法
CN106565707A (zh) * 2016-11-03 2017-04-19 杭州科巢生物科技有限公司 帕博西尼新合成方法
CN106831759A (zh) * 2015-12-03 2017-06-13 上海星泰医药科技有限公司 帕布昔利布及其中间体的制备方法
CN108283940A (zh) * 2018-01-22 2018-07-17 重庆华邦制药有限公司 帕布昔利布中间体的制备方法
CN109336886A (zh) * 2018-12-07 2019-02-15 重庆三圣实业股份有限公司 一种帕博西尼的制备方法及其产品
CN109867673A (zh) * 2019-04-16 2019-06-11 淮海工学院 一种合成帕布昔利布的方法
CN112661753A (zh) * 2020-12-29 2021-04-16 山东铂源药业有限公司 一种帕布昔利布中间体的制备方法
CN112898299A (zh) * 2021-01-26 2021-06-04 山东铂源药业有限公司 一种帕布昔利布中间体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710999B2 (en) * 2016-10-07 2020-07-14 Mylan Laboratories Limited Polymorph of an intermediate for palbociclib synthesis

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149001A1 (en) * 2002-01-22 2003-08-07 Mark Barvian 2-(Pyridin-2-ylamino)-pyrido[2,3-d]pyrimidin-7-ones
WO2008032157A2 (en) * 2006-09-08 2008-03-20 Pfizer Products Inc. Synthesis of 2-(pyridin-2-ylamino)-pyrido[2,3-d]pyrimidin-7-ones
CN103702990A (zh) * 2011-07-27 2014-04-02 阿斯利康(瑞典)有限公司 2-(2,4,5-取代苯胺)嘧啶衍生物作为egfr调谐子用于治疗癌症
WO2016030439A1 (en) * 2014-08-28 2016-03-03 Ratiopharm Gmbh Method of producing palbociclib and pharmaceutical compositions comprising the same
CN104447739A (zh) * 2014-11-07 2015-03-25 郑州泰基鸿诺药物科技有限公司 一种氘代Palbociclib衍生物、制备方法及应用
CN104610254A (zh) * 2015-01-26 2015-05-13 新发药业有限公司 一种帕博赛布的低成本制备方法
CN104910149A (zh) * 2015-04-28 2015-09-16 上海百奇医药科技有限公司 一种Palbociclib制备方法
CN104892604A (zh) * 2015-06-19 2015-09-09 北京康立生医药技术开发有限公司 一种新型的cdk4抑制剂的合成方法
CN106831759A (zh) * 2015-12-03 2017-06-13 上海星泰医药科技有限公司 帕布昔利布及其中间体的制备方法
CN105541832A (zh) * 2015-12-15 2016-05-04 南京艾德凯腾生物医药有限责任公司 一种羟乙基磺酸盐帕布昔利布的制备方法
CN105924439A (zh) * 2016-06-24 2016-09-07 石家庄海瑞药物科技有限公司 一种帕布昔利布的制备方法
CN106220627A (zh) * 2016-07-31 2016-12-14 合肥远志医药科技开发有限公司 一种高纯度帕布昔利布的工业化制备方法
CN106565707A (zh) * 2016-11-03 2017-04-19 杭州科巢生物科技有限公司 帕博西尼新合成方法
CN108283940A (zh) * 2018-01-22 2018-07-17 重庆华邦制药有限公司 帕布昔利布中间体的制备方法
CN109336886A (zh) * 2018-12-07 2019-02-15 重庆三圣实业股份有限公司 一种帕博西尼的制备方法及其产品
CN109867673A (zh) * 2019-04-16 2019-06-11 淮海工学院 一种合成帕布昔利布的方法
CN112661753A (zh) * 2020-12-29 2021-04-16 山东铂源药业有限公司 一种帕布昔利布中间体的制备方法
CN112898299A (zh) * 2021-01-26 2021-06-04 山东铂源药业有限公司 一种帕布昔利布中间体的制备方法

Also Published As

Publication number Publication date
CN113683612A (zh) 2021-11-23
CN113683612B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
AU2016203534B2 (en) Salt(s) of 7-Cyclopentyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide and processes of making thereof
CN108349982A (zh) 作为tlr7激动剂的7-(噻唑-5-基)吡咯并嘧啶化合物
CN105418603A (zh) 一种高纯度帕布昔利布及其反应中间体的制备方法
CN103254179B (zh) 阿伐那非的制备方法
TW201920205A (zh) 新穎方法
CN103992323B (zh) 一种替格瑞洛的制备方法
CN113527303A (zh) 一种瑞德西韦母核中间体的制备工艺
CN107325082A (zh) 一种高纯度阿法替尼的制备方法
WO2023035667A1 (zh) 一种帕布昔利布的低成本制备方法
CN105924431B (zh) 化合物克唑替尼的合成工艺
CN108283940B (zh) 帕布昔利布中间体的制备方法
EP3993804A1 (en) Pi3k inhibitor for use in the therapy of b cell lymphoma
CN114230504B (zh) 一种吡咯烷酮中间体的合成方法
CN110183446B (zh) 一种莫西沙星新杂质及其合成方法和用途
AU2021350982A9 (en) Salt of arylaminoquinazoline-containing compound, and preparation method therefor and use thereof
CN108586486B (zh) 一种芳基取代噻吩并嘧啶类化合物的制备方法
CN113637003A (zh) 一种制备2-氨基-6-(哌啶-4-酰基)吡啶衍生物的方法
CN111892590A (zh) 一种哌柏西利新中间体及其晶型和制备方法
CN106336443B (zh) 一类核苷类化合物的合成方法
CN107129496A (zh) 一种8‑碘‑6‑硝基‑咪唑并[1,2‑a]吡啶的制备工艺
CA2847092A1 (en) Methods for the preparation of 5-[2-[7-(trifluoromethyl)-5-[4-(trifluoromethyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]ethynyl]-2-pyridinamine
CN113929675A (zh) 哌柏西利的合成方法
CN114751909B (zh) 一种瑞博西尼中间体的制备方法
CN115947775B (zh) 一种制备化合物(i)的方法和化合物(i)及其用途
CN115322120B (zh) 一类小分子化合物及在制备治疗dhodh介导疾病药物中的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE