WO2023033188A1 - 酵素を用いたチーズアナログの製造方法 - Google Patents

酵素を用いたチーズアナログの製造方法 Download PDF

Info

Publication number
WO2023033188A1
WO2023033188A1 PCT/JP2022/033455 JP2022033455W WO2023033188A1 WO 2023033188 A1 WO2023033188 A1 WO 2023033188A1 JP 2022033455 W JP2022033455 W JP 2022033455W WO 2023033188 A1 WO2023033188 A1 WO 2023033188A1
Authority
WO
WIPO (PCT)
Prior art keywords
protease
type
cheese
exo
endo
Prior art date
Application number
PCT/JP2022/033455
Other languages
English (en)
French (fr)
Inventor
祐子 藤村
広悌 薄衣
大典 北澤
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2023033188A1 publication Critical patent/WO2023033188A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C20/00Cheese substitutes
    • A23C20/02Cheese substitutes containing neither milk components, nor caseinate, nor lactose, as sources of fats, proteins or carbohydrates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs

Definitions

  • the present invention relates to a method for producing a cheese analogue with improved meltability and/or spreadability during heating, a method for improving meltability and/or spreadability during heating of a cheese analogue, and an enzyme preparation used in these methods.
  • the present invention also provides a method for producing a cheese analogue in which gelling of a mixture of raw ingredients and/or separation of oil during production is suppressed, gelling of a mixture of raw ingredients and/or separation of oil during production of a cheese analogue. and enzyme preparations used in those methods.
  • Cheese analogs are foods that have been processed to look and feel like cheese as substitutes for cheese (e.g., some or all of the fat and protein in cheese are made from plants).
  • cheese analogues currently on the market contain starch to give them a milky cheese-like smooth texture, shape-retaining properties, and meltability after heating.
  • Cheese analogs can be produced without going through fermentation and aging processes, so they have the advantage of being easier to produce than cheeses produced using milk-derived ingredients. , contains relatively little protein, which is undesirable for consumers who desire a nutritionally balanced food product.
  • the present inventors tried to produce a conventional cheese analogue using starch as a raw material by increasing the amount of protein blended, and the resulting cheese analogue was heated. It was found that there was a problem of poor meltability and extensibility. Therefore, it is desired to develop a cheese analogue that has good meltability and spreadability when heated even when the protein content is large.
  • raw ingredients such as starch and oil are emulsified by stirring, filled in a mold, heated without stirring (heating for gelatinization), and then cooled.
  • Another method is to stir and heat (heat for gelatinization) raw ingredients such as starch, fat, etc., fill them in a mold, and cool them.
  • the latter method is preferable from the viewpoint of being able to produce cheese analogues in a straightforward manner.
  • conventional cheese analogs using starch and fat as raw materials when the amount of protein is increased, if the raw ingredients are heated while stirring, the mixture of raw ingredients will gel, and the gel will form. It has been found that there is a problem that the cheese analogue is disintegrated by stirring, oil is separated, and moldability of the cheese analogue is deteriorated. Therefore, it is desired to develop a method for suppressing the occurrence of gelation and oil separation of the mixture of raw ingredients in the step of heating the raw ingredients while stirring, even when the amount of protein compounded is large.
  • Patent Literature 1 discloses a food containing a plant-derived protein that uses transglutaminase in the manufacturing process, and that the food may further contain a protease.
  • Patent Document 2 discloses a fermented food obtained by fermenting a vegetable protein gel product aggregated using an enzyme having soybean milk-aggregating activity produced by bacteria belonging to the genus Bacillus and fermenting it using moromi containing Aspergillus oryzae. and Alkaline Serine Proteinase is described as the enzyme.
  • Patent Documents 1 and 2 address the problem that the meltability and extensibility of the cheese analogue during heating deteriorate when the protein content is increased in the cheese analogue that uses starch and fat as raw materials, and the production of the cheese analogue. It does not describe or suggest the problems of gelation and oil separation that sometimes occur, or the means for solving these problems.
  • the purpose of the present invention is to provide a method for producing a cheese analogue with improved meltability and/or spreadability when heated.
  • Another object of the present invention is to provide a method for producing a cheese analogue in which gelling of a mixture of ingredients and/or separation of oil during production is suppressed.
  • the present inventors have made intensive studies to solve the above problems, and found that a mixture containing fats and oils, starch and protein is treated with a protease to improve meltability and / or spreadability when heated. We have found that analog production is possible. The present inventors also found that when producing a cheese analogue, a mixture containing fats and oils, starch and protein is allowed to act on a protease, and then the mixture is heated while stirring, thereby gelling the mixture and / Or it discovered that it became possible to suppress separation of oil. Based on the above findings, the present inventors have made further intensive studies and completed the present invention.
  • a method for producing a cheese analogue comprising the step of applying a protease to a mixture containing fat, starch and protein.
  • the protease is (1) endo-type/exo-type protease, (2) combination of endo-type protease and exo-type protease, (3) The production method according to [1] above, which is selected from the group consisting of exo-type protease and (4) endo-type protease.
  • a method for improving the meltability and/or spreadability of a cheese analogue during heating comprising the step of allowing a protease to act on a mixture containing fat, starch, and protein during production of the cheese analogue.
  • the protease is (1) endo-type/exo-type protease, (2) combination of endo-type protease and exo-type protease, (3) The method for improving meltability and/or spreadability according to [4] above, which is selected from the group consisting of exo-type proteases and (4) endo-type proteases.
  • the protease is (1) endo-type/exo-type protease, (2) combination of endo-type protease and exo-type protease, (3) The enzyme preparation according to [7] above, which is selected from the group consisting of exo-type protease and (4) endo-type protease. [9] The enzyme preparation according to [7] or [8] above, which contains the protease and ⁇ -glucosidase for allowing ⁇ -glucosidase to further act on the mixture containing the oil, starch and protein.
  • a method for producing a cheese analogue containing fat, starch and protein (a) a step of allowing a protease to act on a mixture containing fat, starch and protein; and (b) a step of heating the mixture obtained in step (a) while stirring, Method for the production of cheese analogues.
  • the protease is (1) endo-type/exo-type protease, (2) combination of endo-type protease and exo-type protease, (3) The production method according to [10] above, which is selected from the group consisting of exo-type protease and (4) endo-type protease.
  • the protease is (1) endo-type/exo-type protease, (2) combination of endo-type protease and exo-type protease, (3) The method for suppressing gelation and/or oil separation according to [13] above, which is selected from the group consisting of exo-type proteases and (4) endo-type proteases. [15] The method for suppressing gelation and/or oil separation according to [13] or [14] above, wherein the mixture further contains a polysaccharide thickener.
  • a cheese analogue with improved meltability and/or spreadability when heated can be produced by allowing a protease to act on a mixture containing fat, starch and protein.
  • a mixture containing fats and oils, starch and protein is allowed to act on a protease, and then the mixture is heated while stirring, thereby gelling and / Alternatively, oil separation can be suppressed.
  • a cheese analog can be produced by an efficient production method of heating the mixture of raw ingredients while stirring, even when the mixture of raw ingredients contains a large amount of protein. According to the production method of the present invention, the above effects can be obtained even when no emulsifier is used.
  • FIG. 1 is a photograph of observation of meltability during heating of the cheese analogues of Comparative Example 1, Example 1, and Example 1' in Test Example 1.
  • FIG. FIG. 2 is a photograph of observing extensibility during heating of the cheese analogues of Comparative Example 1, Example 1, and Example 1' in Test Example 1.
  • FIG. 3 is a photograph of observation of the meltability of the cheese analogues of Examples 2 and 3 during heating in Test Example 2.
  • FIG. FIG. 4 is a photograph of observing extensibility of the cheese analogues of Examples 2 and 3 during heating in Test Example 2.
  • FIG. FIG. 5 is a photograph of a mixture of raw ingredients during production of cheese analogues of Comparative Example 2, Examples 4 and 5 in Test Example 3.
  • FIG. 6 is a photograph of a mixture of raw ingredients during production of cheese analogues of Examples 6 and 7 in Test Example 4.
  • FIG. FIG. 7 is a photograph of a mixture of raw ingredients during production of cheese analogues of Comparative Example 3 and Example 8 in Test Example 5.
  • FIG. FIG. 8 is a photograph of observation of the meltability during heating of the cheese analogues of Comparative Example 4 and Examples 9 to 12 in Test Example 6.
  • FIG. 9 is a photograph of observing extensibility during heating of the cheese analogues of Comparative Example 4 and Examples 9 to 12 in Test Example 6.
  • the present invention will be described in detail below.
  • the method for producing a cheese analogue of the present invention is characterized by allowing a mixture containing fat, starch, and protein to act on a protease.
  • Embodiments of the method for producing the cheese analogue of the present invention include the following (I) and (II).
  • (I) A method for producing a cheese analogue, comprising the step of allowing a mixture containing fat, starch and protein to act with protease (preferably protease and ⁇ -glucosidase).
  • a method for producing a cheese analogue containing fats, starches and proteins comprising: (a) a step of allowing a protease to act on a mixture containing fat, starch and protein; and (b) a step of heating the mixture obtained in step (a) while stirring, Method for the production of cheese analogues. (Hereinafter, it is also described as the production method (II) of the present invention.)
  • production method of the present invention includes production methods (I) and (II) of the present invention.
  • Fat used in the present invention refers to a fat that is commonly used for food.
  • Fats and oils in the present invention include, for example, vegetable oils and fats such as coconut oil, palm oil, rapeseed oil, soybean oil, corn oil, safflower oil, cacao oil; , vegetable oils and fats are preferred, and coconut oil is more preferred. You may use fats and oils by 1 type or in combination of 2 or more types.
  • starch used in the present invention refers to plant-derived raw starch or modified starch that is commonly used for food.
  • the starch in the present invention includes, for example, rice starch, sago starch, tapioca starch, waxy corn starch (waxy corn starch), regular corn starch, potato starch, wheat starch, and dry heat treated starches derived from these plants, and starches derived from these plants.
  • Hydroxypropylated phosphate cross-linked starch acetylated adipate cross-linked starch, acetylated phosphate cross-linked starch, acetylated oxidized starch, sodium starch octenyl succinate, starch acetate, oxidized starch, hydroxypropyl starch, monophosphate
  • esterified phosphate crosslinked starch, phosphated starch, and phosphate crosslinked starch with sago starch, waxy corn starch (waxy corn starch), and tapioca starch being preferred.
  • Starch may be used singly or in combination of two or more.
  • the "protein” used in the present invention is a protein that is commonly used in food applications, and is preferably a non-animal protein (plant-derived protein, microbial-derived protein, fungal-derived protein).
  • proteins are, for example, plant-derived proteins such as almond protein, soybean protein, pea protein, chickpea protein, faba protein, oat protein, chia seed protein, rapeseed protein, and duckweed protein; Proteins and the like are included, and plant-derived proteins are preferred, and almond proteins are more preferred. Proteins may be used singly or in combination of two or more.
  • the protease used in the present invention is an enzyme that catalyzes the hydrolysis of peptide bonds in proteins. Those with properties can also be used.
  • the origin is not particularly limited, and plant-derived (e.g., papaya-derived), mammal-derived, fish-derived, or microbial-derived (e.g., Aspergillus-derived, Bacillus-derived, Rhizopus derived from bacteria of the genus) can be used, and recombinant enzymes may be used.
  • the activity unit of the endo-type protease is defined as 1 unit (1U) of the amount of enzyme that increases the Folin's test solution coloring substance equivalent to 1 ⁇ g of tyrosine per minute using casein as a substrate.
  • the activity unit of the exo-type protease is defined as 1 unit (1U), which is the activity of producing 1 ⁇ mol of p-nitroaniline per minute using L-leucyl-p-nitroanilide as a substrate.
  • proteases include endo/exo-type proteases, endo-type proteases, exo-type proteases, combinations thereof (for example, combinations of endo-type proteases and exo-type proteases).
  • the protease consists of (1) an endo-type/exo-type protease, (2) a combination of an endo-type protease and an exo-type protease, (3) an exo-type protease, and (4) an endo-type protease. preferably selected from the group; more preferably selected from the group consisting of (1) endo/exo-type proteases, (2) combinations of endo- and exo-type proteases, and (4) endo-type proteases. more preferably selected from the group consisting of (1) endo/exo-type proteases, and (2) combinations of endo- and exo-type proteases.
  • Endo-/exo-type proteases used in the present invention are enzymes that hydrolyze peptide bonds inside proteins and peptide bonds at the ends of proteins into several peptides or amino acids.
  • Endo-type/exo-type proteases used in the present invention may be commercially available products, for example, Proteax (manufactured by Amano Enzymes Co., Ltd.; derived from Aspergillus oryzae), Peptidase R (manufactured by Amano Enzymes Co., Ltd.; derived from Rhizopus oryzae).
  • Denathym AP manufactured by Nagase ChemteX Co., Ltd.; derived from Aspergillus oryzae
  • purified papain for food manufactured by Nagase ChemteX Co., Ltd.; derived from papaya latex
  • the endo-type protease used in the present invention is an enzyme that hydrolyzes peptide bonds inside proteins into several peptides.
  • the endo-type protease used in the present invention may be a commercially available product, for example, Protin SD-NY10 (manufactured by Amano Enzyme Co., Ltd.; derived from Bacillus amyloliquefaciens), Protin SD-AY10 (manufactured by Amano Enzyme Co., Ltd.; derived from Bacillus licheniformis).
  • Denapsin 2P manufactured by Nagase ChemteX Corporation; derived from Aspergillus niger
  • Bioprase SP-20FG manufactured by Nagase ChemteX Corporation; derived from Bacillus licheniformis
  • the exo-protease used in the present invention is an enzyme that hydrolyzes a peptide bond at the amino terminal or carboxyl terminal of a protein to release amino acids.
  • the exo-type protease used in the present invention may be a commercial product.
  • Exo-type proteases used in the present invention include, for example, aminopeptidases (purified products). For example, Denathym LEP 10P (manufactured by Nagase ChemteX Corporation) can be mentioned.
  • the ⁇ -glucosidase (EC 3.2.1.20) used in the present invention is an enzyme that hydrolyzes a non-reducing terminal ⁇ -1,4-glucosidic bond to produce ⁇ -glucose.
  • transglucosidase is preferred.
  • the enzymes commercially available from Amano Enzyme Co., Ltd. under the trade names of "transglucosidase 'Amano'" and " ⁇ -glucosidase 'Amano'" are examples of ⁇ -glucosidases.
  • the amount of fat used is, for example, 2.5% by weight or more, preferably 5% by weight or more, more preferably 7.5% by weight or more, and still more preferably 10% by weight, relative to the cheese analog. That's it.
  • the amount of fat used is, for example, 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less, and even more preferably 40% by weight or less, relative to the cheese analogue.
  • the amount of fat used is, for example, 2.5 to 70% by weight, preferably 5 to 60% by weight, more preferably 7.5 to 50% by weight, more preferably 7.5 to 50% by weight, based on the cheese analogue.
  • the cheese analogue tends to have a powdery texture and is not delicious, and it melts after heating. tend to lack sexuality.
  • the amount of oil used exceeds 70% by weight with respect to the cheese analogue, the cheese analogue tends to be too soft and not tasty due to insufficient shape retention. Separation tends to occur.
  • the amount of starch used is, for example, 5% by weight or more, preferably 7.5% by weight or more, more preferably 10% by weight or more, and still more preferably 12.5% by weight, relative to the cheese analog. That's it.
  • the amount of starch used is, for example, 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less, and even more preferably 40% by weight or less, relative to the cheese analogue.
  • the amount of starch used is, for example, 5 to 70% by weight, preferably 7.5 to 60% by weight, more preferably 10 to 50% by weight, still more preferably 12.5% by weight, based on the cheese analogue.
  • the production method of the present invention by setting the amount of starch used within the above range, the effect of imparting a milk cheese-like smooth texture and shape retention can be obtained.
  • the amount of starch used is less than 5% by weight relative to the cheese analogue, the cheese analogue tends to lack shape retention and become excessively soft and unpalatable.
  • the amount of starch used exceeds 70% by weight with respect to the cheese analogue, the cheese analogue tends to have a powdery texture and is not delicious, and the viscosity of the mixture during production is excessive. , making mixing difficult.
  • the amount of protein used is, for example, 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.5% by weight or more, more preferably 1 % by weight or more, more preferably 2% by weight or more, 3% by weight or more, 4% by weight or more, or 5% by weight or more.
  • the amount of protein used is, for example, 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less, and even more preferably 20% by weight or less, relative to the cheese analogue.
  • the amount of protein used is, for example, 0.1 to 50% by weight, preferably 0.2 to 40% by weight, more preferably 0.5 to 30% by weight, relative to the cheese analogue. Preferably 1 to 20 wt%, even more preferably 2 to 20 wt%, 3 to 20 wt%, 4 to 20 wt%, or 5 to 20 wt%.
  • the amount of protein used is less than 0.1% by weight relative to the cheese analogue, the cheese analogue tends to have insufficient nutritional value, and oil separation occurs during production. tends to be easier.
  • the amount of protein used exceeds 50% by weight with respect to the cheese analogue, the cheese analogue tends to have a powdery texture and is not delicious, and tends to gel easily during production.
  • the weight ratio of starch to protein is, for example, 1:6 to 6:1, preferably 1:5 to 5:1, more preferably 1:4 to 4 :1, more preferably 1:3 to 3:1.
  • the weight ratio of starch to protein is, for example, 1:0.05 to 6, preferably 1:0.1 to 5, more preferably 1:0.2-4, more preferably 1:0.3-3.
  • the weight ratio of starch to fat is, for example, 1:0.2 to 12, preferably 1:0.3 to 11, more preferably 1:0.4. to 10, more preferably 1:0.5 to 4.
  • the weight ratio of starch:protein:fat is, for example, 1:0.05-6:0.2-12, preferably 1:0.1-5. : 0.3 to 11, more preferably 1: 0.2 to 4: 0.4 to 10, more preferably 1: 0.3 to 3: 0.5 to 4.
  • the amount of endo-type protease added is preferably 0.001 to 10000000 U, more preferably 0, per 1 g of cheese analogue. 0.01 to 1,000,000 U, more preferably 0.1 to 100,000 U, particularly preferably 1 to 10,000 U.
  • the exo-protease activity is preferably 0.00001 to 1000000 U, more preferably 0, per 1 g of the cheese analogue. 0.0001 to 100000U, more preferably 0.001 to 10000U, particularly preferably 0.01 to 1000U.
  • the amount of the endo-type/exo-type protease added is such that the endo-type protease activity is preferably 0.001 to 0.001 per 1 g of the cheese analogue. 10,000,000 U, more preferably 0.01 to 1,000,000 U, still more preferably 0.1 to 100,000 U, particularly preferably 1 to 10,000 U.
  • the amount of the endo-type/exo-type protease added is such that the exo-type protease activity is preferably 0.00001 to 0.00001 to 1 g of the cheese analogue. It is 1,000,000 U, more preferably 0.0001 to 100,000 U, still more preferably 0.001 to 10,000 U, particularly preferably 0.01 to 1,000 U.
  • the amount of the endo-type/exo-type protease added is such that the endo-type protease activity is preferably 0.001 to 0.001 per 1 g of the cheese analogue.
  • 10000000 U more preferably 0.01 to 1000000 U, more preferably 0.1 to 100000 U, particularly preferably 1 to 10000 U; It is 1,000,000 U, more preferably 0.0001 to 100,000 U, still more preferably 0.001 to 10,000 U, particularly preferably 0.01 to 1,000 U.
  • the ratio of endo-type protease activity to exo-type protease activity (endo-type protease activity:exo-type protease activity) in the endo-type/exo-type protease is , for example, 1 U: 0.0000001 to 10000 U, preferably 1 U: 0.000001 to 1000 U, more preferably 1 U: 0.00001 to 100 U, still more preferably 1 U: 0.0001 to 10 U.
  • the amount of the endo-type protease added is preferably 0.001 to 10,000,000 U for the enzyme activity per 1 g of the cheese analogue. More preferably 0.01 to 1000000 U, still more preferably 0.1 to 100000 U, particularly preferably 1 to 10000 U; 0.00001 to 1000000U, more preferably 0.0001 to 100000U, still more preferably 0.001 to 10000U, and particularly preferably 0.01 to 1000U.
  • the ratio of the amounts of the endo-type protease and the exo-type protease added is, for example, 1U:0. 0.0000001 to 10000 U, preferably 1 U: 0.000001 to 1000 U, more preferably 1 U: 0.00001 to 100 U, still more preferably 1 U: 0.0001 to 10 U.
  • ⁇ -glucosidase it is preferable to allow ⁇ -glucosidase to act on a mixture containing fat, starch and protein in combination with protease.
  • the amount of ⁇ -glucosidase added is preferably 0.000001 to 10000 U, more preferably 0.00001 to 1000 U, more preferably 0.00001 to 1000 U, per 1 g of the cheese analogue. More preferably 0.0001 to 100U, particularly preferably 0.001 to 10U.
  • the ratio of the amounts of endo-type protease and ⁇ -glucosidase added is, for example, 1 U: 0.00000001 to 100 U. , preferably 1 U: 0.0000001 to 10 U, more preferably 1 U: 0.000001 to 1 U, still more preferably 1 U: 0.00001 to 0.1 U.
  • the ratio of the amounts of exo-type protease and ⁇ -glucosidase added is, for example, 1 U: 0.000001 to 10000 U. , preferably 1 U: 0.00001 to 1000 U, more preferably 1 U: 0.0001 to 100 U, still more preferably 1 U: 0.001 to 10 U.
  • the added amount as endo-type protease activity in endo-type/exo-type protease, exo-type protease activity in endo-type/exo-type protease is, for example, 1 U: 0.00000001 to 100 U: 0.000000001 to 10 U, preferably 1 U: 0 .0000001 to 10 U: 0.00000001 to 1 U, more preferably 1 U: 0.000001 to 1 U: 0.0000001 to 0.1 U, more preferably 1 U: 0.00001 to 0.1 U: 0.000001 to 0.01 U is.
  • the ratio of the amount of endo-type protease, exo-type protease and ⁇ -glucosidase added is, for example, 1 U: 0.0000001 to 1000 U: 0.00000001 to 100 U, preferably 1 U: 0.000001 to 100 U: 0.0000001 to 10 U, more preferably 1 U: 0.00001 to 10 U: 0 0.000001 to 1U, more preferably 1U: 0.0001 to 1U: 0.00001 to 0.1U.
  • the production method of the present invention preferably includes the following steps.
  • Oils and fats, starches, proteins and additives that may optionally be added e.g., seasonings, various amino acids, excipients, flavors, coloring agents, polysaccharide thickeners), and proteases (or proteases and ⁇ -Glucosidase) is heated with stirring to mix (emulsify), and a step of allowing protease (or protease and ⁇ -glucosidase) to act on fats, starches, and proteins in the mixture (enzyme reaction step), (ii) further heating the mixture obtained in step (i) at a temperature at which the starch gelatinizes, with stirring, to obtain a mixture containing gelatinized starch; (iii) pouring the mixture obtained in step (ii) into a mold and cooling to obtain a cheese analogue;
  • the production method (I) of the present invention can be produced by including the following steps.
  • (ii') The emulsified mixture obtained in step (i') is poured into a mold and then heated without stirring to add protease (or protease and ⁇ - glucosidase) (enzyme reaction step),
  • (iii') After the heating in step (ii') is completed, the mixture is further heated in the mold without stirring at a temperature at which the starch is gelatinized to obtain a mixture containing gelatinized starch.
  • (iv') After finishing the heating in step (iii'), cooling the mixture while still in the
  • Stirring in step (i) can be performed by a method known in the field of food manufacturing, such as a food processor, a cooker-type emulsifier, a kettle-type emulsifier, a vertical high-speed shearing emulsifier, a scraped heat exchanger, and the like. Mixing using the mixer used for manufacture of cheese is mentioned.
  • the stirring temperature in step (i) is, for example, 5-60°C.
  • the stirring time in step (i) is, for example, 0.015 to 24 hours.
  • the stirring in step (ii) includes mixing using the same mixer as in step (i). Steps (i) and (ii) can be performed consecutively in the same mixer.
  • the stirring temperature in step (ii) is, for example, 60-120°C.
  • the stirring time in step (ii) is, for example, 0.005 to 1 hour.
  • step (i′) can be performed by a method known in the food manufacturing field, such as a food processor, a cooker-type emulsifier, a kettle-type emulsifier, a vertical high-speed shearing emulsifier, and a scraper-type Mixing using the mixer used for manufacture of cheeses, such as a heat exchanger, is mentioned.
  • the temperature of the mixing step is, for example, 5-60°C.
  • the time for the mixing step can be appropriately selected from the time required for the mixture to be emulsified.
  • the reaction time of protease (or protease and ⁇ -glucosidase) for a mixture containing fats and oils, starch, and protein is There is no particular limitation as long as it is possible to act on the substrate substances such as fats and oils, starches and proteins, but the practical action time is preferably 0.015 to 24 hours.
  • the reaction temperature of protease (or protease and ⁇ -glucosidase) is not particularly limited as long as the enzyme maintains its activity. It is preferable to operate at a temperature of 5 to 60°C.
  • the heating temperature in step (iii') is, for example, 60-120°C.
  • the heating time in step (iii') is, for example, 0.005 to 1 hour.
  • the enzymatic reaction can be terminated, for example, by heating at 70-120°C for 10-120 minutes (enzyme deactivation step).
  • the enzyme can be deactivated by heating in the steps (ii) and (iii').
  • the pH of the mixture containing fats and oils, starch, and protein on which the protease (or protease and ⁇ -glucosidase) is to act is, for example, pH 3-6.
  • the mixture containing fats and oils, starch, and protein on which protease (or protease and ⁇ -glucosidase) acts contains water.
  • the amount of water used is, for example, 5-80% by weight, preferably 15-70% by weight, more preferably 25-60% by weight, still more preferably 35-50% by weight, based on the cheese analogue.
  • the cheese analogue may contain additives commonly used in the food field, other than the above ingredients.
  • Additives include flavors (e.g., cheddar flavor (powder, liquid), parmesan flavor (powder, liquid), camembert flavor (powder, liquid), cream cheese flavor (powder, liquid)), seasonings (e.g., salt, yeast extract), coloring agents, excipients (dextrin, lactose), various amino acids, polysaccharide thickeners (e.g.
  • gum arabic xanthan gum, tamarind seed gum, guar gum, locust bean gum, carrageenan, agar
  • protease and ⁇ -glucosidase Enzymes other than The amount of additive used is, for example, 1 to 30% by weight relative to the cheese analogue.
  • a cheese analogue with improved meltability and/or extensibility during heating can be produced.
  • heating of “meltability and/or extensibility during heating” means, for example, in order to melt and/or extend the cheese analogue during cooking or food processing using the cheese analogue as a food material. It means to heat to The heating temperature is, for example, 70 to 200° C., and the heating time is, for example, 1 to 20 minutes. "During heating” means immediately after heating (for example, within 20 minutes).
  • “meltability” refers to the property of the cheese analogue to liquefy and spread.
  • the term “extendability” refers to the property of the cheese analogue to stretch like a string.
  • the term “improved melting property during heating” means that the melting property during heating of the cheese analogue produced by adding the enzyme in the present invention is improved when heating the cheese analogue produced without the addition of the enzyme. It means that the meltability is improved compared to the meltability of
  • the term “improved extensibility during heating” means that the extensibility during heating of the cheese analogue produced by adding the enzyme in the present invention increases when the cheese analogue produced without the addition of the enzyme is heated. It means that it is improved compared to the extensibility of
  • the effect of improving "meltability and/or extensibility when heated” can be evaluated, for example, by the methods of Test Examples 1, 2, and 6 described later or by methods based thereon.
  • the present invention includes the step of allowing a protease (or protease and ⁇ -glucosidase) to act on a mixture containing fats, starches and proteins during the production of the cheese analogue, and meltability and / or when heating the cheese analogue. It relates to a method for improving extensibility.
  • a protease or protease and ⁇ -glucosidase
  • the definition, examples, amount of use of fats and oils, definition, examples, amount of use of starch, definition of protein, examples, amount of use these Ingredient ratios, enzymes (protease, ⁇ -glucosidase) definitions, examples, addition amounts, addition methods, optional components, additives, etc.
  • oils and fats are described in the production method of the present invention, the definition of oils and fats, Exemplification, amount used, definition of starch, exemplification, amount used, definition of protein, exemplification, amount used, ratio of these components, definition of enzyme (protease, ⁇ -glucosidase), exemplification, amount added, addition method, arbitrarily added It is the same as the components, additives, etc. that may be used.
  • the present invention provides a protease (preferably protease and ⁇ -glucosidase) for acting on a mixture containing oil, starch, and protein during the production of a cheese analogue (or the protease and ⁇ -glucosidase). ) for improving the meltability and/or spreadability of cheese analogues when heated.
  • a protease preferably protease and ⁇ -glucosidase
  • enzymes protease, ⁇ -glucosidase
  • the enzyme preparation of the present invention is added to a mixture containing fats and oils, starch and protein and reacted according to the addition method and amount of protease (or protease and ⁇ -glucosidase) described in the production method of the present invention. By doing so, it is possible to improve the meltability and/or spreadability during heating of the cheese analogue.
  • Enzyme preparations for improving the meltability and/or spreadability during heating of the cheese analogue of the present invention include, in addition to protease (or protease and ⁇ -glucosidase), dextrin, indigestible dextrin, reduced maltose, etc.
  • seasonings such as meat extracts, vegetable proteins, gluten, egg whites, gelatin, proteins such as casein, protein hydrolysates, protein partial hydrolysates, enzymes other than proteases and ⁇ -glucosidase, emulsifiers, citrates , chelating agents such as polymerized phosphates, reducing agents such as glutathione and cysteine, alginic acid, lye salt, oils and fats, pigments, acidulants, fragrances and other food additives.
  • the enzyme preparation of the present invention may be in any form of liquid, paste, granule or powder.
  • the production method (II) of the present invention is (a) the step of allowing protease to act on a mixture containing fat, starch and protein; and (b) the step of heating the mixture obtained in step (a) while stirring. Definitions, examples, usage amounts, etc. of each component are as described above.
  • the production method (II) of the present invention preferably includes the following steps.
  • Fats and oils, starch, protein and optional additives e.g., seasonings, various amino acids, excipients, flavors, coloring agents, polysaccharide thickeners), and protease are heated while stirring. and mixing (emulsifying), and allowing protease to act on fats, starches, and proteins in the mixture (enzyme reaction step);
  • Stirring in step (i) can be carried out by a method known in the field of food manufacturing, such as food processors, cooker emulsifiers, kettle emulsifiers, vertical high-speed shearing emulsifiers, scraped heat exchangers, etc. Mixing using the mixer used for manufacture of cheese is mentioned.
  • the stirring temperature in step (i) is, for example, 5-60°C.
  • the stirring time in step (i) is, for example, 0.015 to 24 hours.
  • the stirring in step (ii) includes mixing using the same mixer as in step (i). Steps (i) and (ii) can be performed consecutively in the same mixer.
  • the stirring temperature in step (ii) is 60° C. or higher (eg, 60-120° C.).
  • the stirring time in step (ii) is, for example, 0.005 to 1 hour.
  • the enzymatic reaction can be terminated, for example, by heating at 70-120°C for 10-120 minutes (enzyme deactivation step).
  • the enzyme can be deactivated by heating in step (ii) above.
  • the mixture containing fats and oils, starch and protein on which the protease acts contains thickening polysaccharides (e.g., gum arabic, xanthan gum, tamarind seed gum, guar gum, locust bean gum, carrageenan, agar, etc.).
  • thickening polysaccharides e.g., gum arabic, xanthan gum, tamarind seed gum, guar gum, locust bean gum, carrageenan, agar, etc.
  • Thickening polysaccharides may be used alone or in combination of two or more.
  • the amount of polysaccharide thickener added is, for example, 0.01 to 50% by weight, preferably 0.025 to 40% by weight, more preferably 0.05 to 30% by weight, still more preferably 0.05% to 30% by weight, based on the cheese analogue. 1 to 20% by weight.
  • the production method (II) of the present invention when a protease and a polysaccharide thickener are used in combination, separation of oil is further suppressed as compared with the case where the protease is used alone.
  • a mixture containing fats and oils, starch and protein is allowed to act on a protease, and then the mixture is heated while being stirred. Gelation of the mixture and/or oil separation can be suppressed.
  • the production method (II) of the present invention even when the amount of protein in the mixture of raw ingredients is large, the cheese analog is produced by an efficient production method of heating the mixture of raw ingredients while stirring. can be manufactured.
  • the effect of suppressing "gelling and/or oil separation" during the production of the cheese analog can be evaluated, for example, by the method of Test Examples 3 to 5 described later or a method based thereon.
  • the present invention provides a step of (a) reacting a mixture containing fat, starch and protein with a protease, and (b) the mixture obtained in step (a) when producing a cheese analogue containing fat, starch and protein. to a method for suppressing gelation and/or oil separation of the mixture in step (b), comprising heating while stirring.
  • a method for suppressing gelation and/or oil separation of the present invention the definition, examples, and amount of fats and oils, the definition, examples, and amount of starch, the definition, examples, and amount of protein, and the ratio of these ingredients, The definition, examples, addition amount, addition method, optional components, additives, etc.
  • protease are the same as the definition, examples, amount of use, starch content, etc. described in the production method (II) of the present invention.
  • Definitions, examples, amount used, definition of protein, examples, amount used, ratio of these components, definition of protease, examples, amount added, method of addition, components that may be added arbitrarily, additives, etc. are the same.
  • the present invention provides a method for causing a protease to act on the mixture containing the fat, starch, and protein, and gelling the mixture containing the protease. and/or enzyme formulations for inhibiting oil separation.
  • the definition, examples, amount used, the definition, examples, amount of starch, the definition, examples, amount of protein, the ratio of these components, the definition, examples, amount added, and method of addition of protease. Components that may be optionally added, additives, etc.
  • the enzyme preparation of the present invention is added to a mixture containing fats and oils, starch and protein according to the addition method and amount of protease described in the production method (II) of the present invention, and the mixture is reacted. gelation and/or oil separation can be inhibited.
  • the enzyme preparation for suppressing gelation and/or oil separation of the mixture of the present invention includes, in addition to protease, dextrin, indigestible dextrin, excipients such as reduced maltose, and seasonings such as meat extract. , vegetable protein, gluten, egg white, gelatin, casein and other proteins, protein hydrolysates, protein partial hydrolysates, enzymes other than proteases, emulsifiers, chelating agents such as citrates and polymerized phosphates, glutathione, cysteine, etc. Other food additives such as reducing agents, alginic acid, lye salt, oils and fats, pigments, acidulants, flavorings, etc. may be contained.
  • the enzyme preparation of the present invention may be in any form of liquid, paste, granule or powder.
  • the analog cheese produced by the production method of the present invention can be used as a food product as it is or in combination with other foodstuffs or general foodstuffs.
  • food is a concept that broadly encompasses things that can be taken orally (excluding pharmaceuticals), not only so-called “food” but also beverages, health supplements, foods with health claims (e.g., food for specified health uses). , Foods with Function Claims, Foods with Nutrient Claims), supplements, etc.
  • Example 1 Example 1', and Comparative Example 1 were pinched with chopsticks and stretched upward, and the maximum length at which the cheese analogue could not be cut was observed. evaluated the sex.
  • FIG. 2 shows photographs taken when the cheese analogues of Examples 1 and 1' were stretched to the maximum length that could not be cut.
  • the cheese analogue of Comparative Example 1 broke when picked up and could not be stretched at all (Fig. 2).
  • Meltability and extensibility were evaluated as -, +, ++, ++++, ++++ according to the criteria shown in Table 1-2. The results are shown in Tables 1-3.
  • the meltability evaluation results in FIG. 1 and Tables 1-3 show that the cheese analogues produced by the action of protease (Examples 1 and 1') are compared to the enzyme-free cheese analogue (Comparative Example 1). Good meltability was observed in all cases, indicating that the meltability during heating was improved by the action of protease.
  • the spreadability evaluation results in FIG. 2 and Tables 1-3 show that the cheese analogues produced by the action of protease (Examples 1 and 1') are compared to the enzyme-free cheese analogue (Comparative Example 1). Good extensibility was observed in all cases, indicating that extensibility during heating was improved by the action of protease.
  • Example 1 protease alone
  • Example 1' combination of protease and ⁇ -glucosidase
  • FIG. 4 shows photographs taken when the cheese analogues of Examples 2 and 3 were stretched to the maximum length that could not be cut.
  • Meltability and extensibility were evaluated as -, +, ++, ++++, ++++ according to the criteria shown in Table 2-2. The results are shown in Table 2-3.
  • Example 8 From the results of FIG. 7 and Table 5-3, in Comparative Example 3 in which no exo-protease was added, in the step of heating the mixture of raw material components (mixture containing fat, starch and protein) at 100° C. with stirring, the mixture was gelation (gel collapse) and oil separation occurred. Further, from the results of FIG. 7 and Table 5-3, in Example 8, after exo-type protease was allowed to act on the mixture of raw material components (mixture containing fat, starch, and protein), the mixture was stirred and heated. was shown to suppress gelation (collapse of the gel) and oil separation of the mixture. That is, in Example 8, it can be said that the manufacturability was improved as compared with Comparative Example 3.
  • the meltability evaluation results in FIG. 8 and Table 6-3 are the cheese analogue produced by the action of endo-type/exo-type protease (Example 9) and the cheese analogue produced by the action of endo-type protease (Example 10 ), a cheese analogue produced by the action of exo-protease (Example 11), and a cheese analogue produced by the action of a combination of endo-type protease and exo-type protease (Example 12) are enzyme-free cheese analogues ( As compared with Comparative Example 4), good meltability was observed, indicating that the meltability during heating was improved by the action of protease.
  • Example 9 and Table 6-3 are the cheese analogue produced by the action of endo-type/exo-type protease (Example 9) and the cheese analogue produced by the action of endo-type protease (Example 10 ), a cheese analogue produced by the action of exo-protease (Example 11), and a cheese analogue produced by the action of a combination of endo-type protease and exo-type protease (Example 12) are enzyme-free cheese analogues ( Compared to Comparative Example 4), good extensibility was observed, indicating that extensibility during heating was improved by the action of protease.
  • a cheese analogue with improved meltability and/or spreadability when heated can be produced by allowing a protease to act on a mixture containing fat, starch and protein.
  • a mixture containing fat, starch and protein is allowed to act on a protease to heat the mixture while stirring, gelling and / or oiling the mixture. separation can be suppressed.

Abstract

本発明は、加熱時の溶融性及び/又は伸展性が向上したチーズアナログの製造方法の提供、及び製造時における原料成分の混合物のゲル化及び/又は油の分離が抑制されたチーズアナログの製造方法の提供を目的とする。 油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼを作用させる工程を含む、チーズアナログの製造方法。油脂、デンプン及びタンパク質を含むチーズアナログの製造方法であって、(a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び(b)工程(a)で得られた混合物を、撹拌しながら混合する工程を含む、チーズアナログの製造方法。

Description

酵素を用いたチーズアナログの製造方法
 本発明は、加熱時の溶融性及び/又は伸展性が向上したチーズアナログの製造方法、チーズアナログの加熱時の溶融性及び/又は伸展性の向上方法、及びそれらの方法に用いる酵素製剤に関する。
 本発明はまた、製造時における原料成分の混合物のゲル化及び/又は油の分離が抑制されたチーズアナログの製造方法、チーズアナログの製造時における原料成分の混合物のゲル化及び/又は油の分離の抑制方法、及びそれらの方法に用いる酵素製剤に関する。
 チーズアナログ(アナログチーズ、イミテーションチーズ等とも称される。)は、チーズの代用品として、外観や食感をチーズのように加工した食品(例えば、チーズの脂肪やタンパク質の一部又は全部が植物由来成分に置き換えられた食品)であり、近年、動物愛護意識、健康志向の高まりから、市場が拡大している。
 現在市販されているチーズアナログは、乳チーズ様の滑らかな食感や、保形性の付与、加熱後のとろけ性の付与のために、デンプンが添加されている。チーズアナログは、発酵、熟成工程を経ることなく製造できるため、乳由来原料を用いて製造するチーズよりも、簡便に製造できるという利点があるが、一方、炭水化物であるデンプンを比較的多く配合し、タンパク質を比較的少なく配合するため、栄養バランスのよい食品を望む消費者にとっては望ましくない。
 本発明者らは、栄養バランスの改善の観点から、従来の、デンプンを原料として使用するチーズアナログにおいて、タンパク質の配合量を増やして製造を試みたところ、得られたチーズアナログは、加熱時の溶融性、伸展性が悪いという問題があることがわかった。
 従って、タンパク質の配合量が多い場合であっても、加熱時の溶融性及び伸展性が良好なチーズアナログの開発が望まれる。
 また、チーズアナログの製造方法として、一般に、デンプン、油脂等の原料成分を撹拌して乳化し、型に充填し、撹拌せずに加熱(糊化のための加熱)した後、冷却して製造する方法と、デンプン、油脂等の原料成分を撹拌しながら加熱(糊化のための加熱)し、型に充填し、冷却して製造する方法があるが、工場での生産を想定すると、効率的にチーズアナログを製造できる観点から、後者の方法が好ましい。しかし、従来の、デンプン、油脂を原料として使用するチーズアナログにおいて、タンパク質の配合量を増やした場合に、原料成分を撹拌しながら加熱しようとすると、該原料成分の混合物がゲル化し、該ゲルは撹拌により崩壊し、さらに油の分離が発生し、チーズアナログの成型性が悪くなるという問題があることがわかった。
 従って、タンパク質の配合量が多い場合であっても、原料成分を撹拌しながら加熱する工程における、該原料成分の混合物のゲル化、油の分離の発生を抑制する方法の開発が望まれる。
 特許文献1は、製造工程でトランスグルタミナーゼを用いた、植物由来のタンパク質を含む食品を開示し、該食品は、さらにプロテアーゼを含んでもよいことを開示する。
 特許文献2には、バチルス属の細菌の産生する大豆乳凝集活性を有する酵素を用いて凝集させた植物性タンパク質のゲル製品を、麹菌を含有するもろみを用いた発酵により得られる発酵食品が開示されており、該酵素としてアルカリセリンプロティナーゼが記載されている。
 特許文献1及び2は、デンプン、油脂を原料として使用するチーズアナログにおいてタンパク質の配合量を増やした場合に、チーズアナログの加熱時の溶融性、伸展性が悪くなるという問題や、チーズアナログの製造時においてゲル化、油の分離が発生するという問題や、それらの解決手段について、何ら記載も示唆もしていない。
アメリカ特許出願公開第2017/0150734号公報 特開2004-129523号公報
 本発明は、加熱時の溶融性及び/又は伸展性が向上したチーズアナログの製造方法の提供を目的とする。本発明はまた、製造時における原料成分の混合物のゲル化及び/又は油の分離が抑制されたチーズアナログの製造方法の提供を目的とする。
 本発明者らは、上記課題の解決のために鋭意検討をしたところ、油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼを作用させることで、加熱時の溶融性及び/又は伸展性が向上したチーズアナログの製造が可能となることを見出した。
 また本発明者らは、チーズアナログの製造時において、油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させた後に、該混合物を撹拌しながら加熱する工程を行うことで、該混合物のゲル化及び/又は油の分離を抑制することが可能となることを見出した。
 上記知見に基づいて、本発明者らは、さらに鋭意検討をして、本発明を完成させた。
 すなわち、本発明は、下記を提供する。
[1]油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼを作用させる工程を含む、チーズアナログの製造方法。
[2]プロテアーゼが、
(1)エンド型/エキソ型プロテアーゼ、
(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
(3)エキソ型プロテアーゼ、及び
(4)エンド型プロテアーゼ
からなる群から選択される、上記[1]記載の製造方法。
[3]前記油脂、デンプン及びタンパク質を含む混合物に、さらにα-グルコシダーゼを作用させる、上記[1]又は[2]に記載の製造方法。
[4]チーズアナログの製造時に、油脂、デンプン、及びタンパク質を含む混合物に、プロテアーゼを作用させる工程を含む、チーズアナログの加熱時の溶融性及び/又は伸展性の向上方法。
[5]プロテアーゼが、
(1)エンド型/エキソ型プロテアーゼ、
(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
(3)エキソ型プロテアーゼ、及び
(4)エンド型プロテアーゼ
からなる群から選択される、上記[4]記載の溶融性及び/又は伸展性の向上方法。
[6]前記油脂、デンプン及びタンパク質を含む混合物に、さらにα-グルコシダーゼを作用させる、上記[4]又は[5]に記載の溶融性及び/又は伸展性の向上方法。
[7]チーズアナログの製造時に、油脂、デンプン、及びタンパク質を含む混合物に、プロテアーゼを作用させるための、該プロテアーゼを含有する、チーズアナログの加熱時の溶融性及び/又は伸展性の向上用の酵素製剤。
[8]プロテアーゼが、
(1)エンド型/エキソ型プロテアーゼ、
(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
(3)エキソ型プロテアーゼ、及び
(4)エンド型プロテアーゼ
からなる群から選択される、上記[7]記載の酵素製剤。
[9]前記油脂、デンプン及びタンパク質を含む混合物に、さらにα-グルコシダーゼを作用させるための、前記プロテアーゼ及びα-グルコシダーゼを含有する、上記[7]又は[8]に記載の酵素製剤。
[10]油脂、デンプン及びタンパク質を含むチーズアナログの製造方法であって、
(a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び
(b)工程(a)で得られた混合物を、撹拌しながら加熱する工程を含む、
チーズアナログの製造方法。
[11]プロテアーゼが、
(1)エンド型/エキソ型プロテアーゼ、
(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
(3)エキソ型プロテアーゼ、及び
(4)エンド型プロテアーゼ
からなる群から選択される、上記[10]記載の製造方法。
[12]前記混合物が、増粘多糖類をさらに含む、上記[10]又は[11]に記載の製造方法。
[13]油脂、デンプン及びタンパク質を含むチーズアナログの製造時に、
(a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び
(b)工程(a)で得られた混合物を、撹拌しながら加熱する工程を含む、
工程(b)における、前記混合物のゲル化及び/又は油の分離の抑制方法。
[14]プロテアーゼが、
(1)エンド型/エキソ型プロテアーゼ、
(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
(3)エキソ型プロテアーゼ、及び
(4)エンド型プロテアーゼ
からなる群から選択される、上記[13]記載のゲル化及び/又は油の分離の抑制方法。
[15]前記混合物が、増粘多糖類をさらに含む、上記[13]又は[14]に記載のゲル化及び/又は油の分離の抑制方法。
[16]上記[13]~[15]のいずれかに記載の方法において、前記油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させるための、該プロテアーゼを含有する、該混合物のゲル化及び/又は油の分離の抑制用の酵素製剤。
 本発明によれば、油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼを作用させることにより、加熱時の溶融性及び/又は伸展性が向上したチーズアナログを製造できる。
 本発明によれば、タンパク質の配合量が多く、かつ加熱時の溶融性及び/又は伸展性が向上した、チーズアナログを提供できる。
 本発明によれば、チーズアナログの製造時において、油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させた後に、該混合物を撹拌しながら加熱する工程を行うことで、該混合物のゲル化及び/又は油の分離を抑制することができる。
 本発明によれば、原料成分の混合物のタンパク質の配合量が多い場合であっても、原料成分の混合物を撹拌しながら加熱するという効率的な製造方法によって、チーズアナログを製造することができる。
 本発明の製造方法によれば、乳化剤を使用しない場合であっても、上記効果が得られる。
図1は、試験例1における、比較例1、実施例1、実施例1’のチーズアナログの加熱時の溶融性を観察した写真である。 図2は、試験例1における、比較例1、実施例1、実施例1’のチーズアナログの加熱時の伸展性を観察した写真である。 図3は、試験例2における、実施例2、3のチーズアナログの加熱時の溶融性を観察した写真である。 図4は、試験例2における、実施例2、3のチーズアナログの加熱時の伸展性を観察した写真である。 図5は、試験例3における、比較例2、実施例4及び5のチーズアナログ製造時における、原料成分の混合物の写真である。 図6は、試験例4における、実施例6及び7のチーズアナログ製造時における、原料成分の混合物の写真である。 図7は、試験例5における、比較例3、実施例8のチーズアナログ製造時における、原料成分の混合物の写真である。 図8は、試験例6における、比較例4、実施例9~12のチーズアナログの加熱時の溶融性を観察した写真である。 図9は、試験例6における、比較例4、実施例9~12のチーズアナログの加熱時の伸展性を観察した写真である。
 以下に、本発明を詳細に説明する。
 本発明のチーズアナログの製造方法は、油脂、デンプン、及びタンパク質を含む混合物に、プロテアーゼを作用させることを特徴とする。
 本発明のチーズアナログの製造方法の態様として、下記(I)、(II)が挙げられる。
(I)油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼ(好ましくは、プロテアーゼ及びα-グルコシダーゼ)を作用させる工程を含む、チーズアナログの製造方法。(以下、本発明の製造方法(I)とも記載する。)
(II)油脂、デンプン及びタンパク質を含むチーズアナログの製造方法であって、
(a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び
(b)工程(a)で得られた混合物を、撹拌しながら加熱する工程を含む、
チーズアナログの製造方法。(以下、本発明の製造方法(II)とも記載する。)
 本明細書において、特に言及しない限り、「本発明の製造方法」には、本発明の製造方法(I)及び(II)が含まれる。
 本発明において用いられる「油脂」は、通常食品用途に用いられる油脂をいう。
 本発明における、油脂は、例えば、ココナッツオイル、パームオイル、菜種オイル、大豆オイル、コーンオイル、ベニバナオイル、カカオオイル等の植物性油脂;牛脂、豚脂、鶏脂等の動物性油脂が挙げられ、植物性油脂が好ましく、ココナッツオイルがより好ましい。油脂は、1種で又は2種以上を組み合わせて使用してもよい。
 本発明において用いられる「デンプン」は、通常食品用途に用いられる植物由来の生澱粉や加工澱粉をいう。
 本発明における、デンプンは、例えば、コメデンプン、サゴデンプン、タピオカデンプン、ワキシーコーンデンプン(ワキシーコーンスターチ)、レギュラーコーンデンプン、馬鈴薯デンプン、小麦デンプン、及びこれら植物由来デンプンの乾熱処理澱粉、及びこれら植物由来デンプンの化学処理デンプンとしてヒドロキシプロピル化リン酸架橋澱粉、アセチル化アジピン酸架橋デンプン、アセチル化リン酸架橋デンプン、アセチル化酸化デンプン、オクテニルコハク酸デンプンナトリウム、酢酸デンプン、酸化デンプン、ヒドロキシプロピルデンプン、リン酸モノエステル化リン酸架橋デンプン、リン酸化デンプン、リン酸架橋デンプンが挙げられ、サゴデンプン、ワキシーコーンデンプン(ワキシーコーンスターチ)、タピオカデンプン、が好ましい。デンプンは、1種で又は2種以上を組み合わせて使用してもよい。
 本発明において用いられる「タンパク質」は、通常食品用途に用いられるタンパク質であり、非動物性タンパク(植物由来タンパク、微生物由来タンパク、真菌類由来タンパク)が好ましい。
 本発明における、タンパク質は、例えば、アーモンドタンパク、ダイズタンパク、エンドウマメタンパク、ヒヨコマメタンパク、ソラマメタンパク、オート麦タンパク、チアシードタンパク、菜種タンパク、浮草タンパク等の植物由来タンパク;微生物由来タンパク;真菌類由来タンパク等が挙げられ、植物由来タンパクが好ましく、アーモンドタンパクがより好ましい。タンパク質は、1種で又は2種以上を組み合わせて使用してもよい。
 本発明に用いられるプロテアーゼは、タンパク質中のペプチド結合の加水分解を触媒する酵素であり、本発明は、当該活性を有し動物性タンパク質を分解し得るプロテアーゼであればいかなる基質特異性、いかなる反応特性を有するものでも使用できる。また、その起源も特に制限されず、植物由来のもの(例えば、パパイヤ由来)、哺乳動物由来のもの、魚類由来のもの、微生物由来のもの(例えば、Aspergillus属菌由来、Bacillus属菌由来、Rhizopus属菌由来)等、いかなる起源のものでも使用でき、組み換え酵素を使用してもよい。
 本発明においてエンド型プロテアーゼの活性単位は、カゼインを基質として、1分間にチロシン1μgに相当するフォリン試液呈色物質の増加をもたらす酵素量を1ユニット(1U)と定義する。
 本発明においてエキソ型プロテアーゼの活性単位は、L-ロイシル-p-ニトロアニリドを基質として、1分間に1μmolのp-ニトロアニリンを生成する活性を1ユニット(1U)と定義する。
 本発明において、プロテアーゼには、エンド型/エキソ型プロテアーゼ、エンド型プロテアーゼ、エキソ型プロテアーゼ、これらの組み合わせ(例えば、エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ)が含まれる。
 本発明の製造方法においては、プロテアーゼが、(1)エンド型/エキソ型プロテアーゼ、(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、(3)エキソ型プロテアーゼ、及び(4)エンド型プロテアーゼからなる群から選択されることが好ましく;(1)エンド型/エキソ型プロテアーゼ、(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、及び(4)エンド型プロテアーゼからなる群から選択されることがより好ましく;(1)エンド型/エキソ型プロテアーゼ、及び(2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせからなる群から選択されることがさらに好ましい。
 本発明に用いられるエンド型/エキソ型プロテアーゼは、タンパク質内部のペプチド結合およびタンパク質の末端のペプチド結合を加水分解し、いくつかのペプチドまたはアミノ酸にする酵素である。
 本発明に用いられるエンド型/エキソ型プロテアーゼは、市販品であってもよく、例えば、プロテアックス(天野エンザイム株式会社製;Aspergillus oryzae由来)、ペプチダーゼR(天野エンザイム株式会社製;Rhizopus oryzae由来)、デナチームAP(ナガセケムテックス株式会社製;Aspergillus oryzae由来)、食品用精製パパイン(ナガセケムテックス株式会社製;パパイヤラテックス由来)が挙げられる。
 本発明に用いられるエンド型プロテアーゼは、タンパク質内部のペプチド結合を加水分解し、いくつかのペプチドにする酵素である。
 本発明に用いられるエンド型プロテアーゼは、市販品であってもよく、例えば、プロチンSD-NY10(天野エンザイム株式会社製;Bacillus amyloliquefaciens由来)、プロチンSD-AY10(天野エンザイム株式会社製;Bacillus licheniformis由来)、デナプシン2P(ナガセケムテックス株式会社製;Aspergillus niger由来)、ビオプラーゼSP-20FG(ナガセケムテックス株式会社製;Bacillus licheniformis由来)が挙げられる。
 本発明に用いられるエキソ型プロテアーゼは、タンパク質のアミノ末端またはカルボキシル末端のペプチド結合を加水分解し、アミノ酸を遊離させる酵素である。
 本発明に用いられるエキソ型プロテアーゼは、市販品であってもよい。本発明に用いられるエキソ型プロテアーゼは、例えば、アミノペプチダーゼ(精製品)が挙げられる。例えば、デナチームLEP 10P(ナガセケムテックス株式会社製)が挙げられる。
 本発明に用いられるα-グルコシダーゼ(EC3.2.1.20)は、非還元末端α-1,4-グルコシド結合を加水分解し、α-グルコースを生成する酵素である。α-グルコシダーゼのうち、トランスグルコシダーゼが好ましい。尚、「トランスグルコシダーゼ「アマノ」」、「α-グルコシダーゼ「アマノ」」という商品名で天野エンザイム株式会社より市販されている酵素が、α-グルコシダーゼの一例である。
 α-グルコシダーゼの酵素活性については1mM α-メチル-D-グルコシド1mlに0.02M酢酸バッファー(pH5.0)1mlを加え、酵素溶液0.5ml添加して、40℃で60分間作用させたときに、反応液2.5ml中に1μgのブドウ糖を生成する酵素量を1U(ユニット)と定義した。
 本発明の製造方法において、油脂の使用量は、チーズアナログに対して、例えば2.5重量%以上、好ましくは5重量%以上、より好ましくは7.5重量%以上、さらに好ましくは10重量%以上である。
 本発明の製造方法において、油脂の使用量は、チーズアナログに対して、例えば70重量%以下、好ましくは60重量%以下、より好ましくは50重量%以下、さらに好ましくは40重量%以下である。
 本発明の製造方法において、油脂の使用量は、チーズアナログに対して、例えば2.5~70重量%、好ましくは5~60重量%、より好ましくは7.5~50重量%、さらに好ましくは10~40重量%である。
 本発明の製造方法において、油脂の使用量が、チーズアナログに対して、2.5重量%未満であると、粉っぽい食感の美味しくないチーズアナログとなる傾向があり、また加熱後のとろけ性が不足する傾向がある。
 本発明の製造方法において、油脂の使用量が、チーズアナログに対して、70重量%を超えると、保形性が不足し過度に柔らかくて美味しくないチーズアナログとなる傾向があり、また製造時に油分離が発生する傾向がある。
 本発明の製造方法において、デンプンの使用量は、チーズアナログに対して、例えば5重量%以上、好ましくは7.5重量%以上、より好ましくは10重量%以上、さらに好ましくは12.5重量%以上である。
 本発明の製造方法において、デンプンの使用量は、チーズアナログに対して、例えば70重量%以下、好ましくは60重量%以下、より好ましくは50重量%以下、さらに好ましくは40重量%以下である。
 本発明の製造方法において、デンプンの使用量は、チーズアナログに対して、例えば5~70重量%、好ましくは7.5~60重量%、より好ましくは10~50重量%、さらに好ましくは12.5~40重量%である。
 本発明の製造方法において、デンプンの使用量を上記範囲とすることで、乳チーズ様の滑らかな食感と保形性を付与する効果が得られる。
 本発明の製造方法において、デンプンの使用量が、チーズアナログに対して、5重量%未満であると、保形性が不足し過度に柔らかくて美味しくないチーズアナログとなる傾向がある。
 本発明の製造方法において、デンプンの使用量が、チーズアナログに対して、70重量%を超えると、粉っぽい食感の美味しくないチーズアナログとなる傾向があり、製造時の混合物の粘度が過度に上昇し混合が困難になる傾向がある。
 本発明の製造方法において、タンパク質の使用量は、チーズアナログに対して、例えば0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.5重量%以上、さらに好ましくは1重量%以上、よりさらに好ましくは2重量%以上、3重量%以上、4重量%以上、又は5重量%以上である。
 本発明の製造方法において、タンパク質の使用量は、チーズアナログに対して、例えば50重量%以下、好ましくは40重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下である。
 本発明の製造方法において、タンパク質の使用量は、チーズアナログに対して、例えば0.1~50重量%、好ましくは0.2~40重量%、より好ましくは0.5~30重量%、さらに好ましくは1~20重量%、よりさらに好ましくは2~20重量%、3~20重量%、4~20重量%、又は5~20重量%である。
 本発明の製造方法において、タンパク質の使用量が、チーズアナログに対して、0.1重量%未満であると、栄養価が不足したチーズアナログとなる傾向があり、また製造時に油分離が発生しやすくなる傾向がある。
 本発明の製造方法において、タンパク質の使用量が、チーズアナログに対して、50重量%を超えると、粉っぽい食感の美味しくないチーズアナログとなる傾向があり、また製造時にゲル化しやすくなる傾向がある。
 本発明の製造方法において、デンプンとタンパク質の重量比(デンプン:タンパク質)は、例えば、1:6~6:1、好ましくは、1:5~5:1、より好ましくは、1:4~4:1、さらに好ましくは、1:3~3:1である。
 別の態様として、本発明の製造方法において、デンプンとタンパク質の重量比(デンプン:タンパク質)は、例えば、1:0.05~6、好ましくは、1:0.1~5、より好ましくは、1:0.2~4、さらに好ましくは、1:0.3~3である。
 本発明の製造方法において、デンプンと油脂の重量比(デンプン:油脂)は、例えば、1:0.2~12、好ましくは、1:0.3~11、より好ましくは、1:0.4~10、さらに好ましくは、1:0.5~4である。
 本発明の製造方法において、デンプンとタンパク質と油脂の重量比(デンプン:タンパク質:油脂)は、例えば、1:0.05~6:0.2~12、好ましくは、1:0.1~5:0.3~11、より好ましくは、1:0.2~4:0.4~10、さらに好ましくは、1:0.3~3:0.5~4である。
 本発明の製造方法において、プロテアーゼとしてエンド型プロテアーゼを使用する場合、エンド型プロテアーゼの添加量は、チーズアナログ1gに対して、エンド型プロテアーゼ活性が、好ましくは0.001~10000000U、より好ましくは0.01~1000000U、さらに好ましくは0.1~100000U、特に好ましくは1~10000Uである。
 本発明の製造方法において、プロテアーゼとしてエキソ型プロテアーゼを使用する場合、エキソ型プロテアーゼの添加量は、チーズアナログ1gに対して、エキソ型プロテアーゼ活性が、好ましくは0.00001~1000000U、より好ましくは0.0001~100000U、さらに好ましくは0.001~10000U、特に好ましくは0.01~1000Uである。
 本発明の製造方法において、プロテアーゼとしてエンド型/エキソ型プロテアーゼを使用する場合、エンド型/エキソ型プロテアーゼの添加量は、チーズアナログ1gに対して、エンド型プロテアーゼ活性が、好ましくは0.001~10000000U、より好ましくは0.01~1000000U、さらに好ましくは0.1~100000U、特に好ましくは1~10000Uである。
 本発明の製造方法において、プロテアーゼとしてエンド型/エキソ型プロテアーゼを使用する場合、エンド型/エキソ型プロテアーゼの添加量は、チーズアナログ1gに対して、エキソ型プロテアーゼ活性が、好ましくは0.00001~1000000U、より好ましくは0.0001~100000U、さらに好ましくは0.001~10000U、特に好ましくは0.01~1000Uである。
 本発明の製造方法において、プロテアーゼとしてエンド型/エキソ型プロテアーゼを使用する場合、エンド型/エキソ型プロテアーゼの添加量は、チーズアナログ1gに対して、エンド型プロテアーゼ活性が、好ましくは0.001~10000000U、より好ましくは0.01~1000000U、さらに好ましくは0.1~100000U、特に好ましくは1~10000Uであり;及び、チーズアナログ1gに対して、エキソ型プロテアーゼ活性が、好ましくは0.00001~1000000U、より好ましくは0.0001~100000U、さらに好ましくは0.001~10000U、特に好ましくは0.01~1000Uである。
 本発明の製造方法において、プロテアーゼとしてエンド型/エキソ型プロテアーゼを使用する場合、エンド型/エキソ型プロテアーゼにおけるエンド型プロテアーゼ活性とエキソ型プロテアーゼ活性の比(エンド型プロテアーゼ活性:エキソ型プロテアーゼ活性)は、例えば1U:0.0000001~10000U、好ましくは1U:0.000001~1000U、より好ましくは1U:0.00001~100U、さらに好ましくは1U:0.0001~10Uである。
 本発明の製造方法において、プロテアーゼとしてエンド型プロテアーゼとエキソ型プロテアーゼを組み合わせて使用する場合、エンド型プロテアーゼの添加量は、チーズアナログ1gに対して、酵素活性が、好ましくは0.001~10000000U、より好ましくは0.01~1000000U、さらに好ましくは0.1~100000U、特に好ましくは1~10000Uであり;及び、エキソ型プロテアーゼの添加量は、チーズアナログ1gに対して、酵素活性が、好ましくは0.00001~1000000U、より好ましくは0.0001~100000U、さらに好ましくは0.001~10000U、特に好ましくは0.01~1000Uである。
 本発明の製造方法において、プロテアーゼとしてエンド型プロテアーゼとエキソ型プロテアーゼを組み合わせて使用する場合、エンド型プロテアーゼとエキソ型プロテアーゼの添加量の比(エンド型プロテアーゼ:エキソ型プロテアーゼ)は、例えば1U:0.0000001~10000U、好ましくは1U:0.000001~1000U、より好ましくは1U:0.00001~100U、さらに好ましくは1U:0.0001~10Uである。
 本発明の製造方法においては、プロテアーゼと組み合わせて、α-グルコシダーゼを、油脂、デンプン及びタンパク質を含む混合物に作用させることが好ましい。
 本発明の製造方法において、α-グルコシダーゼを使用する場合、α-グルコシダーゼの添加量は、チーズアナログ1gに対して酵素活性が、好ましくは0.000001~10000U、より好ましくは0.00001~1000U、さらに好ましくは0.0001~100U、特に好ましくは0.001~10Uである。
 本発明の製造方法において、エンド型プロテアーゼとα-グルコシダーゼを使用する場合、エンド型プロテアーゼとα-グルコシダーゼの添加量の比(エンド型プロテアーゼ:α-グルコシダーゼ)は、例えば1U:0.00000001~100U、好ましくは1U:0.0000001~10U、より好ましくは1U:0.000001~1U、さらに好ましくは1U:0.00001~0.1Uである。
 本発明の製造方法において、エキソ型プロテアーゼとα-グルコシダーゼを使用する場合、エキソ型プロテアーゼとα-グルコシダーゼの添加量の比(エキソ型プロテアーゼ:α-グルコシダーゼ)は、例えば1U:0.000001~10000U、好ましくは1U:0.00001~1000U、より好ましくは1U:0.0001~100U、さらに好ましくは1U:0.001~10Uである。
 本発明の製造方法において、エンド型/エキソ型プロテアーゼと、α-グルコシダーゼを使用する場合、エンド型/エキソ型プロテアーゼにおけるエンド型プロテアーゼ活性としての添加量、エンド型/エキソ型プロテアーゼにおけるエキソ型プロテアーゼ活性としての添加量、α-グルコシダーゼの添加量の比(エンド型プロテアーゼ活性:エキソ型プロテアーゼ活性:α-グルコシダーゼ)は、例えば1U:0.00000001~100U:0.000000001~10U、好ましくは1U:0.0000001~10U:0.00000001~1U、より好ましくは1U:0.000001~1U:0.0000001~0.1U、さらに好ましくは1U:0.00001~0.1U:0.000001~0.01Uである。
 本発明の製造方法において、エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせと、α-グルコシダーゼを使用する場合、エンド型プロテアーゼ、エキソ型プロテアーゼ、α-グルコシダーゼの添加量の比(エンド型プロテアーゼ:エキソ型プロテアーゼ:α-グルコシダーゼ)は、例えば1U:0.0000001~1000U:0.00000001~100U、好ましくは1U:0.000001~100U:0.0000001~10U、より好ましくは1U:0.00001~10U:0.000001~1U、さらに好ましくは1U:0.0001~1U:0.00001~0.1Uである。
 本発明の製造方法は、好適には、下記工程を含む。
(i)油脂、デンプン、タンパク質及び任意に添加してもよい添加剤(例えば、調味料、各種アミノ酸、賦形剤、香料、着色料、増粘多糖類)、及びプロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)を、撹拌しながら加熱して、混合(乳化)すると共に、該混合物中の油脂、デンプン、タンパク質に、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)を作用させる工程(酵素反応工程)、
(ii)工程(i)で得られた混合物を、さらに、デンプンが糊化する温度で、撹拌しながら加熱して、糊化したデンプンを含む混合物を得る工程、
(iii)工程(ii)で得られた混合物を型に流し込み、冷却して、チーズアナログを得る工程。
 別の態様として、本発明の製造方法(I)においては、下記工程を含んで製造することもできる。
(i')油脂、デンプン、タンパク質及び任意に添加してもよい添加剤(例えば、調味料、各種アミノ酸、賦形剤、香料、着色料、増粘多糖類)、及びプロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)を、混合することによって乳化し、乳化した混合物を得る工程、
(ii')工程(i')で得られた乳化した混合物を型に流し込み、その後撹拌せずに、加熱して、該混合物中の油脂、デンプン、タンパク質に、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)を作用させる工程(酵素反応工程)、
(iii')工程(ii')の加熱終了後、さらに、型に入れたまま混合物を撹拌せずに、デンプンが糊化する温度で加熱して、糊化したデンプンを含む混合物を得る工程、
(iv')工程(iii')の加熱終了後、型に入れたまま混合物を冷却して、チーズアナログを得る工程。
 工程(i)の撹拌は、食品製造分野において公知の方法で行うことができ、例えば、フードプロセッサー、クッカー型乳化機、ケトル型乳化機、縦型高速せん断式乳化機、かきとり式熱交換機等、チーズ類の製造に使用される混合機を使用して混合することが挙げられる。工程(i)の撹拌温度は、例えば、5~60℃である。工程(i)の撹拌時間は、例えば、0.015~24時間である。
 工程(ii)の撹拌は、工程(i)と同じ混合機を使用して混合することが挙げられる。工程(i)と工程(ii)は同じ混合機中で続けて行うことができる。工程(ii)の撹拌温度は、例えば、60~120℃である。工程(ii)の撹拌時間は、例えば、0.005~1時間である。
 工程(i’)の混合(撹拌)は、食品製造分野において公知の方法で行うことができ、例えば、フードプロセッサー、クッカー型乳化機、ケトル型乳化機、縦型高速せん断式乳化機、かきとり式熱交換機等、チーズ類の製造に使用される混合機を使用して混合することが挙げられる。混合工程の温度は、例えば、5~60℃である。混合工程の時間は、混合物が乳化される時間から適宜選択できる。
 本発明の製造方法において、油脂、デンプン、タンパク質を含む混合物に対する、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)の反応時間(上記工程(i)、(ii')の酵素反応工程)は、酵素が基質物質である、油脂、デンプン、タンパク質に作用することが可能な時間であれば特に限定されないが、現実的な作用時間としては0.015~24時間が好ましい。また、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)の反応温度(上記工程(i)、(ii')の酵素反応工程)に関しても酵素が活性を保つ範囲であれば特に限定されないが、現実的な温度としては5~60℃で作用させることが好ましい。
 工程(iii')の加熱温度は、例えば、60~120℃である。工程(iii')の加熱時間は、例えば、0.005~1時間である。
 酵素反応は、例えば、70~120℃で、10~120分間加熱(酵素失活工程)により終了させることができる。本発明の製造方法において、上記工程(ii)、(iii')における加熱によって、酵素を失活させることができる。
 本発明の製造方法においては、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)を作用させる油脂、デンプン、タンパク質を含む混合物のpHは、例えばpH3~6が挙げられる。
 本発明の製造方法において、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)を作用させる油脂、デンプン、タンパク質を含む混合物は、水を含有する。
 水の使用量は、チーズアナログに対して、例えば5~80重量%、好ましくは15~70重量%、より好ましくは25~60重量%、さらに好ましくは35~50重量%である。
 本発明の製造方法において、チーズアナログは、上記した成分以外の、食品分野で一般的に用いられる添加剤を含有してもよい。
 添加剤としては、香料(例えば、チェダー香料(粉、液体)、パルメザン香料(粉、液体)、カマンベール香料(粉、液体)、クリームチーズ香料(粉、液体))、調味料(例えば、塩、酵母エキス)、着色料、賦形剤(デキストリン、乳糖)、各種アミノ酸、増粘多糖類(例えば、アラビアガム、キサンタンガム、タマリンドシードガム、グァーガム、ローカストビーンガム、カラギーナン、寒天)プロテアーゼ及びα-グルコシダーゼ以外の酵素等が挙げられる。
 添加剤の使用量は、チーズアナログに対して、例えば、1~30重量%である。
 上記した本発明の製造方法により、加熱時の溶融性及び/又は伸展性が向上したチーズアナログを製造することができる。
 本発明において、「加熱時の溶融性及び/又は伸展性」の「加熱」とは、例えば、チーズアナログを食材として用いた調理や食品加工の際に、チーズアナログを溶融及び/又は伸展させるために加熱することをいう。該加熱の温度は、例えば70~200℃、該加熱の時間は、例えば1~20分である。「加熱時」とは、加熱が終了した直後(例えば、20分以内)をいう。
 本発明において、「溶融性」とは、チーズアナログが液状化し溶け広がる性質のことをいう。
 本発明において、「伸展性」とは、チーズアナログが糸を引くように伸びる性質のことをいう。
 本発明において、「加熱時の溶融性の向上」とは、本発明における酵素を添加して製造されたチーズアナログの加熱時の溶融性が、酵素の添加なしに製造されたチーズアナログの加熱時の溶融性に比較して、向上していることをいう。
 本発明において、「加熱時の伸展性の向上」とは、本発明における酵素を添加して製造されたチーズアナログの加熱時の伸展性が、酵素の添加なしに製造されたチーズアナログの加熱時の伸展性に比較して、向上していることをいう。
 本明細書において、「加熱時の溶融性及び/又は伸展性」の向上効果は、例えば後述の試験例1、2、6の方法又はこれに準じた方法で、評価することができる。
 また、本発明は、チーズアナログの製造時に、油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)を作用させる工程を含む、チーズアナログの加熱時の溶融性及び/又は伸展性の向上方法に関する。
 本発明のチーズアナログの加熱時の溶融性及び/又は伸展性の向上方法において、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、酵素(プロテアーゼ、α-グルコシダーゼ)の定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等は、上記本発明の製造方法において説明した、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、酵素(プロテアーゼ、α-グルコシダーゼ)の定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等と同様である。
 さらに、本発明は、チーズアナログの製造時に、油脂、デンプン、及びタンパク質を含む混合物に、プロテアーゼ(好ましくは、プロテアーゼ及びα-グルコシダーゼ)を作用させるための、該プロテアーゼ(又は該プロテアーゼ及びα-グルコシダーゼ)を含有する、チーズアナログの加熱時の溶融性及び/又は伸展性の向上用の酵素製剤に関する。
 本発明の酵素製剤において、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、酵素(プロテアーゼ、α-グルコシダーゼ)の定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等は、上記本発明の製造方法において説明した、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、酵素(プロテアーゼ、α-グルコシダーゼ)の定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等と同様である。
 本発明の酵素製剤は、上記本発明の製造方法において説明した、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)の添加方法、添加量に準じて、油脂、デンプン及びタンパク質を含む混合物に添加して反応させることで、チーズアナログの加熱時の溶融性及び/又は伸展性を向上させることができる。
 本発明のチーズアナログの加熱時の溶融性及び/又は伸展性の向上用の酵素製剤は、プロテアーゼ(又は、プロテアーゼ及びα-グルコシダーゼ)の他に、さらに、デキストリン、難消化性デキストリン、還元麦芽糖等の賦形剤、畜肉エキス等の調味料、植物蛋白、グルテン、卵白、ゼラチン、カゼイン等の蛋白質、蛋白加水分解物、蛋白部分分解物、プロテアーゼ及びα-グルコシダーゼ以外の酵素、乳化剤、クエン酸塩、重合リン酸塩等のキレート剤、グルタチオン、システイン等の還元剤、アルギン酸、かんすい、油脂、色素、酸味料、香料等その他の食品添加物等を含有してもよい。本発明の酵素製剤は液体状、ペースト状、顆粒状、粉末状のいずれの形態でも構わない。
 本発明の製造方法(II)は、
(a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び
(b)工程(a)で得られた混合物を、撹拌しながら加熱する工程を含むことを特徴とする。
 各成分の定義、例示、使用量等は前述の通りである。
 本発明の製造方法(II)は、好適には、下記工程を含む。
(i)油脂、デンプン、タンパク質及び任意に添加してもよい添加剤(例えば、調味料、各種アミノ酸、賦形剤、香料、着色料、増粘多糖類)、及びプロテアーゼを、撹拌しながら加熱して、混合(乳化)すると共に、該混合物中の油脂、デンプン、タンパク質に、プロテアーゼを作用させる工程(酵素反応工程)、
(ii)工程(i)で得られた混合物を、さらに、デンプンが糊化する温度で、撹拌しながら加熱して、糊化したデンプンを含む混合物を得る工程、
(iii)工程(ii)で得られた混合物を型に流し込み、冷却して、チーズアナログを得る工程。
 工程(i)の撹拌は、食品製造分野において公知の方法で行うことができ、例えば、フードプロセッサー、クッカー型乳化機、ケトル型乳化機、縦型高速せん断式乳化機、かきとり式熱交換機等、チーズ類の製造に使用される混合機を使用して混合することが挙げられる。工程(i)の撹拌温度は、例えば、5~60℃である。工程(i)の撹拌時間は、例えば、0.015~24時間である。
 工程(ii)の撹拌は、工程(i)と同じ混合機を使用して混合することが挙げられる。工程(i)と工程(ii)は同じ混合機中で続けて行うことができる。工程(ii)の撹拌温度は、60℃以上、(例えば、60~120℃)である。工程(ii)の撹拌時間は、例えば、0.005~1時間である。
 酵素反応は、例えば、70~120℃で、10~120分間加熱(酵素失活工程)により終了させることができる。本発明の製造方法において、上記工程(ii)における加熱によって、酵素を失活させることができる。
 本発明の製造方法(II)において、プロテアーゼを作用させる油脂、デンプン及びタンパク質を含む混合物(上記工程(i)の混合物)には、増粘多糖類(例えば、アラビアガム、キサンタンガム、タマリンドシードガム、グァーガム、ローカストビーンガム、カラギーナン、寒天等)を含むことが好ましい。増粘多糖類は、1種で又は2種以上を組み合わせて使用してもよい。
 増粘多糖類の添加量は、チーズアナログに対して、例えば0.01~50重量%、好ましくは0.025~40重量%、より好ましくは0.05~30重量%、さらに好ましくは0.1~20重量%である。
 本発明の製造方法(II)において、プロテアーゼと増粘多糖類とを併用すると、プロテアーゼを単独で使用した場合に比べて、さらに油の分離が抑制される。
 本発明の製造方法(II)によれば、チーズアナログの製造時において、油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させた後に、該混合物を撹拌しながら加熱する工程を行うことで、該混合物のゲル化及び/又は油の分離を抑制することができる。
 本発明の製造方法(II)によれば、原料成分の混合物のタンパク質の配合量が多い場合であっても、原料成分の混合物を撹拌しながら加熱するという効率的な製造方法によって、チーズアナログを製造することができる。
 本明細書において、チーズアナログの製造時の「ゲル化及び/又は油の分離」の抑制効果は、例えば後述の試験例3~5の方法又はこれに準じた方法で、評価することができる。
 また、本発明は、油脂、デンプン及びタンパク質を含むチーズアナログの製造時に、(a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び(b)工程(a)で得られた混合物を、撹拌しながら加熱する工程を含む、工程(b)における、前記混合物のゲル化及び/又は油の分離の抑制方法に関する。
 本発明の、該ゲル化及び/又は油の分離の抑制方法において、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、プロテアーゼの定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等は、上記本発明の製造方法(II)において説明した、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、プロテアーゼの定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等と同様である。
 さらに、本発明は、上記ゲル化及び/又は油の分離の抑制方法において、前記油脂、デンプン、及びタンパク質を含む混合物に、プロテアーゼを作用させるための、該プロテアーゼを含有する、該混合物のゲル化及び/又は油の分離の抑制用の酵素製剤に関する。
 本発明の酵素製剤において、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、プロテアーゼの定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等は、上記本発明の製造方法(II)において説明した、油脂の定義、例示、使用量、デンプンの定義、例示、使用量、タンパク質の定義、例示、使用量、これらの成分比率、プロテアーゼの定義、例示、添加量、添加方法、任意に添加してもよい成分、添加剤等と同様である。
 本発明の酵素製剤は、上記本発明の製造方法(II)において説明した、プロテアーゼの添加方法、添加量に準じて、油脂、デンプン及びタンパク質を含む混合物に添加して反応させることで、該混合物のゲル化及び/又は油の分離を抑制することができる。
 本発明の前記混合物のゲル化及び/又は油の分離の抑制用の酵素製剤は、プロテアーゼの他に、さらに、デキストリン、難消化性デキストリン、還元麦芽糖等の賦形剤、畜肉エキス等の調味料、植物蛋白、グルテン、卵白、ゼラチン、カゼイン等の蛋白質、蛋白加水分解物、蛋白部分分解物、プロテアーゼ以外の酵素、乳化剤、クエン酸塩、重合リン酸塩等のキレート剤、グルタチオン、システイン等の還元剤、アルギン酸、かんすい、油脂、色素、酸味料、香料等その他の食品添加物等を含有してもよい。本発明の酵素製剤は液体状、ペースト状、顆粒状、粉末状のいずれの形態でも構わない。
 本発明の製造方法によって製造されたアナログチーズは、そのまま又は他の食材や一般食品と組み合わせた食品として利用することができる。
 本明細書において、食品とは、経口摂取し得るもの(医薬品を除く)を広く包含する概念であり、いわゆる「食べ物」のみならず飲料、健康補助食品、保健機能食品(例えば、特定保健用食品、機能性表示食品、栄養機能食品)、サプリメント等を含む。
 以下、実施例、試験例に基づいて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
[試験例1](加熱時のチーズアナログの溶融性及び伸展性の評価)
(実施例1、実施例1’、及び比較例1のチーズアナログの製造)
 表1-1に示す配合割合に従って、原料を、フードプロセッサー(Bamix、CHERRY TERRACE Inc.製)を用いて1分間混合することで乳化した。得られた混合物を、型に流し込み、恒温水槽を用いて50℃で20分間撹拌せずに加熱(酵素反応工程)し、続いて95℃で30分撹拌せずに加熱(酵素失活工程)し、冷蔵庫(5℃)で48時間冷却し、実施例1、実施例1’、及び比較例1のチーズアナログを得た。
Figure JPOXMLDOC01-appb-T000001
(加熱時のチーズアナログの溶融性及び伸展性の評価)
 上記で得られた実施例1、実施例1’、比較例1のチーズアナログについて、下記に示す方法で、加熱時のチーズアナログの溶融性及び伸展性の評価を実施した。
 実施例1、実施例1’、比較例1のチーズアナログ(重量:3g、大きさ:15mm×30mm×5mm)を、オーブンを用いて180℃で10分間加熱した。
 加熱終了後、実施例1、実施例1’、比較例1のチーズアナログを目視で観察することで、溶融性を評価した。実施例1、実施例1’、比較例1のチーズアナログの加熱前及び加熱後の写真を図1(矢印の左側の写真:加熱前、矢印の右側の写真:加熱後)に示す。
 また、加熱が終了した直後に、実施例1、実施例1’、比較例1のチーズアナログをはしでつまんで上に引き伸ばし、チーズアナログが切れない最大の長さを観察することで、伸展性を評価した。実施例1、実施例1’のチーズアナログが切れない最大の長さまで引き伸ばした時点で撮影した写真を図2に示す。比較例1のチーズアナログは、つまんで持ち上げた時点で切れてしまい、全く引き伸ばすことができなかった(図2)。
 溶融性、伸展性の評価は、表1-2に示す基準に従って、-、+、++、+++、++++で評価した。結果を表1-3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図1、表1-3の溶融性評価の結果は、プロテアーゼを作用させて製造したチーズアナログ(実施例1、実施例1’)は、酵素無添加のチーズアナログ(比較例1)に比較して、いずれも良好な溶融性が観察され、プロテアーゼを作用させることにより、加熱時の溶融性が向上したことを示す。
 図2、表1-3の伸展性評価の結果は、プロテアーゼを作用させて製造したチーズアナログ(実施例1、実施例1’)は、酵素無添加のチーズアナログ(比較例1)に比較して、いずれも良好な伸展性が観察され、プロテアーゼを作用させることにより、加熱時の伸展性が向上したことを示す。
 また、図2、表1-3の伸展性評価の実施例1(プロテアーゼ単独)と実施例1’(プロテアーゼとα-グルコシダーゼとの併用)を比較すると、プロテアーゼとα-グルコシダーゼとを併用すると、プロテアーゼを単独で使用した場合に比べて、さらに加熱時の伸展性が向上したことがわかる。
[試験例2](加熱時のチーズアナログの溶融性及び/又は伸展性の評価)
(実施例2、3のチーズアナログの製造)
 表2-1に示す配合割合に従って、原料を、加熱撹拌機(Thermomix(商品名)、Vorwek製)を用いて、50℃で20分撹拌しながら加熱(酵素反応工程)して乳化した。続いて、100℃で15分撹拌しながら加熱(酵素失活工程)した。得られた混合物を、型に充填し、冷蔵庫(5℃)で48時間冷却し、実施例2、3のチーズアナログを得た。
Figure JPOXMLDOC01-appb-T000004
(加熱時のチーズアナログの溶融性及び伸展性の評価)
 上記で得られた実施例2、3のチーズアナログについて、下記に示す方法で、加熱時のチーズアナログの溶融性及び伸展性の評価を実施した。
 実施例2、3のチーズアナログ(重量:3g、大きさ:15mm×30mm×5mm)を、オーブンを用いて180℃で10分間加熱した。
 加熱終了後、実施例2、3のチーズアナログを目視で観察することで、溶融性を評価した。実施例2、3のチーズアナログの加熱前及び加熱後の写真を図3(矢印の左側の写真:加熱前、矢印の右側の写真:加熱後)に示す。
 また、加熱が終了した直後に、実施例2、3のチーズアナログをはしでつまんで上に引き伸ばし、チーズアナログが切れない最大の長さを観察することで、伸展性を評価した。実施例2、3のチーズアナログが切れない最大の長さまで引き伸ばした時点で撮影した写真を図4に示す。
 溶融性、伸展性の評価は、表2-2に示す基準に従って、-、+、++、+++、++++で評価した。結果を表2-3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 図3、表2-3の溶融性評価の結果は、プロテアーゼを作用させて製造したチーズアナログ(実施例2、3)は、良好な溶融性が観察され、プロテアーゼを作用させることにより、加熱時の溶融性が向上したことを示す。
 図4、表2-3の伸展性評価の結果は、プロテアーゼを作用させて製造したチーズアナログ(実施例2、3)は良好な伸展性が観察され、プロテアーゼを作用させることにより、加熱時の伸展性が向上したことを示す。
[試験例3]プロテアーゼ添加による製造適性改善(ゲル化、油の分離の抑制効果)の検討
(実施例4、5のチーズアナログの製造)
 表3-1に示す配合割合に従って、原料を、加熱撹拌機(Thermomix(商品名)、Vorwerk製)を用いて、50℃で20分撹拌しながら加熱(酵素反応工程)した。続いて、100℃で15分撹拌しながら加熱(酵素失活工程)した。該100℃で15分の撹拌しながらの加熱が終了した後の混合物の写真を、図5の中図(実施例4の混合物)及び右図(実施例5の混合物)に示す。
 得られた混合物を、型に充填し、冷蔵庫(5℃)で48時間冷却し、実施例4、5のチーズアナログを得た。
(比較例2のチーズアナログの製造)
 表3-1に示す配合割合に従って、原料を、加熱撹拌機(Thermomix(商品名)、Vorwerk製)を用いて、50℃で20分撹拌しながら加熱した。続いて、100℃で15分撹拌しながら加熱した。該100℃で15分の撹拌しながらの加熱が終了した後の混合物の写真を、図5の左図(比較例2の混合物)に示す。
 得られた混合物は、油の分離及びゲルの崩壊が発生したため、チーズアナログの製造はできなかった。
Figure JPOXMLDOC01-appb-T000007
 実施例4、5、比較例2のチーズアナログの製造時の油分離抑制、ゲル崩壊抑制の有無の評価は、表3-2に示す基準に従って、-、+、++、+++、++++で評価した。結果を表3-3に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 図5、表3-3の結果より、プロテアーゼを添加しない比較例2では、原料成分の混合物(油脂、デンプン及びタンパク質を含む混合物)を100℃で撹拌しながら加熱する工程で、該混合物のゲル化(ゲルの崩壊)及び油の分離が発生することが示された。
 また図5、表3-3の結果より、実施例4、5では、原料成分の混合物(油脂、デンプン及びタンパク質を含む混合物)にプロテアーゼを作用させた後に、該混合物を撹拌しながら加熱する工程を行うことにより、該混合物のゲル化(ゲルの崩壊)及び油の分離が抑制されたことが示された。
 つまり、実施例4、5では、比較例2に比較して、製造適性が改善されたと言える。
 また、図5、表3-3の実施例4と実施例5を比較すると、プロテアーゼとアラビアガム(増粘多糖類)とを併用すると、プロテアーゼを単独で使用した場合に比べて、さらに油の分離が抑制されたことがわかる。
[試験例4]プロテアーゼ添加による製造適性改善(ゲル化、油の分離の抑制効果)の検討
(実施例6、7のチーズアナログの製造)
 表4-1に示す配合割合に従って、原料を、加熱撹拌機(Thermomix(商品名)、Vorwerk製)を用いて、50℃で20分撹拌しながら加熱(酵素反応工程)した。続いて、100℃で15分撹拌しながら加熱(酵素失活工程)した。該100℃で15分の撹拌しながらの加熱が終了した後の混合物の写真を、図6の左図(実施例6の混合物)及び右図(実施例7の混合物)に示す。
 得られた混合物を、型に充填し、冷蔵庫(5℃)で48時間冷却し、実施例6、7のチーズアナログを得た。
Figure JPOXMLDOC01-appb-T000010
 実施例6、7のチーズアナログの製造時の油分離抑制、ゲル崩壊抑制の有無の評価は、表4-2に示す基準に従って、-、+、++、+++、++++で評価した。結果を表4-3に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 図6、表4-3の結果より、実施例6、7では、原料成分の混合物(油脂、デンプン及びタンパク質を含む混合物)にプロテアーゼを作用させた後に、該混合物を撹拌しながら加熱する工程を行うことにより、該混合物のゲル化(ゲルの崩壊)及び油の分離が抑制された(製造適性が改善された)ことが示された。
 また、図6、表4-3の実施例6と実施例7を比較すると、プロテアーゼとアラビアガム(増粘多糖類)とを併用すると、プロテアーゼを単独で使用した場合に比べて、さらに油の分離が抑制されたことがわかる。
[試験例5]エキソ型プロテアーゼ添加による製造適性改善(ゲル化、油の分離の抑制効果)の検討
(実施例8のチーズアナログの製造)
 表5-1に示す配合割合に従って、原料を、加熱撹拌機(Thermomix(商品名)、Vorwerk製)を用いて、50℃で20分撹拌しながら加熱(酵素反応工程)した。続いて、100℃で15分撹拌しながら加熱(酵素失活工程)した。該100℃で15分の撹拌しながらの加熱が終了した後の混合物の写真を、図7の右図(実施例8の混合物)に示す。
 得られた混合物を、型に充填し、冷蔵庫(5℃)で48時間冷却し、実施例8のチーズアナログを得た。
(比較例3のチーズアナログの製造)
 表5-1に示す配合割合に従って、原料を、加熱撹拌機(Thermomix(商品名)、Vorwerk製)を用いて、50℃で20分撹拌しながら加熱した。続いて、100℃で15分撹拌しながら加熱した。該100℃で15分の撹拌しながらの加熱が終了した後の混合物の写真を、図7の左図(比較例3の混合物)に示す。
 得られた混合物は、油の分離及びゲルの崩壊が発生したため、チーズアナログの製造はできなかった。
Figure JPOXMLDOC01-appb-T000013
 実施例8、比較例3のチーズアナログの製造時の油分離抑制、ゲル崩壊抑制の有無の評価は、表5-2に示す基準に従って、-、+、++、+++、++++で評価した。結果を表5-3に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 図7、表5-3の結果より、エキソ型プロテアーゼを添加しない比較例3では、原料成分の混合物(油脂、デンプン及びタンパク質を含む混合物)を100℃で撹拌しながら加熱する工程で、該混合物のゲル化(ゲルの崩壊)及び油の分離が発生することが示された。
 また図7、表5-3の結果より、実施例8では、原料成分の混合物(油脂、デンプン及びタンパク質を含む混合物)にエキソ型プロテアーゼを作用させた後に、該混合物を撹拌しながら加熱する工程を行うことにより、該混合物のゲル化(ゲルの崩壊)及び油の分離が抑制されたことが示された。
 つまり、実施例8では、比較例3に比較して、製造適性が改善されたと言える。
[試験例6](加熱時のチーズアナログの溶融性及び伸展性の評価)
(実施例9~12及び比較例4のチーズアナログの製造)
 表6-1に示す配合割合に従って、原料を、フードプロセッサー(Bamix、CHERRY TERRACE Inc.製)を用いて1分間混合することで乳化した。得られた混合物を、型に流し込み、恒温水槽を用いて50℃で20分間撹拌せずに加熱(酵素反応工程)し、続いて95℃で30分撹拌せずに加熱(酵素失活工程)し、冷蔵庫(5℃)で48時間冷却し、実施例9~12及び比較例4のチーズアナログを得た。
Figure JPOXMLDOC01-appb-T000016
(加熱時のチーズアナログの溶融性及び伸展性の評価)
 上記で得られた実施例9~12、比較例4のチーズアナログについて、下記に示す方法で、加熱時のチーズアナログの溶融性及び伸展性の評価を実施した。
 実施例9~12、比較例4のチーズアナログ(重量:3g、大きさ:15mm×30mm×5mm)を、オーブンを用いて180℃で10分間加熱した。
 加熱終了後、実施例9~12、比較例4のチーズアナログを目視で観察することで、溶融性を評価した。実施例9~12、比較例4のチーズアナログの加熱前及び加熱後の写真を図8(矢印の上側の写真:加熱前、矢印の下側の写真:加熱後)に示す。
 また、加熱が終了した直後に、実施例9~12、比較例4のチーズアナログをはしでつまんで上に引き伸ばし、チーズアナログが切れない最大の長さを観察することで、伸展性を評価した。実施例9~12のチーズアナログが切れない最大の長さまで引き伸ばした時点で撮影した写真を図9に示す。比較例4のチーズアナログは、つまんで持ち上げた時点で切れてしまい、全く引き伸ばすことができなかった(図9)。
 溶融性、伸展性の評価は、表6-2に示す基準に従って、-、+、++、+++、++++で評価した。結果を表6-3に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 図8、表6-3の溶融性評価の結果は、エンド型/エキソ型プロテアーゼを作用させて製造したチーズアナログ(実施例9)、エンド型プロテアーゼを作用させて製造したチーズアナログ(実施例10)、エキソ型プロテアーゼを作用させて製造したチーズアナログ(実施例11)、エンド型プロテアーゼ及びエキソ型プロテアーゼを組み合わせて作用させて製造したチーズアナログ(実施例12)は、酵素無添加のチーズアナログ(比較例4)に比較して、良好な溶融性が観察され、プロテアーゼを作用させることにより、加熱時の溶融性が向上したことを示す。
 図9、表6-3の伸展性評価の結果は、エンド型/エキソ型プロテアーゼを作用させて製造したチーズアナログ(実施例9)、エンド型プロテアーゼを作用させて製造したチーズアナログ(実施例10)、エキソ型プロテアーゼを作用させて製造したチーズアナログ(実施例11)、エンド型プロテアーゼ及びエキソ型プロテアーゼを組み合わせて作用させて製造したチーズアナログ(実施例12)は、酵素無添加のチーズアナログ(比較例4)に比較して、良好な伸展性が観察され、プロテアーゼを作用させることにより、加熱時の伸展性が向上したことを示す。
 本発明によれば、油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼを作用させることにより、加熱時の溶融性及び/又は伸展性が向上したチーズアナログを製造できる。
 本発明によれば、チーズアナログの製造時において、油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼを作用させることにより、該混合物を撹拌しながら加熱する工程における、該混合物のゲル化及び/又は油の分離を抑制することができる。
 本出願は、日本で出願された特願2021-144901を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (16)

  1.  油脂、デンプン及びタンパク質を含む混合物に、プロテアーゼを作用させる工程を含む、チーズアナログの製造方法。
  2.  プロテアーゼが、
    (1)エンド型/エキソ型プロテアーゼ、
    (2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
    (3)エキソ型プロテアーゼ、及び
    (4)エンド型プロテアーゼ
    からなる群から選択される、請求項1記載の製造方法。
  3.  前記油脂、デンプン及びタンパク質を含む混合物に、さらにα-グルコシダーゼを作用させる、請求項1又は2に記載の製造方法。
  4.  チーズアナログの製造時に、油脂、デンプン、及びタンパク質を含む混合物に、プロテアーゼを作用させる工程を含む、チーズアナログの加熱時の溶融性及び/又は伸展性の向上方法。
  5.  プロテアーゼが、
    (1)エンド型/エキソ型プロテアーゼ、
    (2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
    (3)エキソ型プロテアーゼ、及び
    (4)エンド型プロテアーゼ
    からなる群から選択される、請求項4記載の溶融性及び/又は伸展性の向上方法。
  6.  前記油脂、デンプン及びタンパク質を含む混合物に、さらにα-グルコシダーゼを作用させる、請求項4又は5に記載の溶融性及び/又は伸展性の向上方法。
  7.  チーズアナログの製造時に、油脂、デンプン、及びタンパク質を含む混合物に、プロテアーゼを作用させるための、該プロテアーゼを含有する、チーズアナログの加熱時の溶融性及び/又は伸展性の向上用の酵素製剤。
  8.  プロテアーゼが、
    (1)エンド型/エキソ型プロテアーゼ、
    (2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
    (3)エキソ型プロテアーゼ、及び
    (4)エンド型プロテアーゼ
    からなる群から選択される、請求項7記載の酵素製剤。
  9.  前記油脂、デンプン及びタンパク質を含む混合物に、さらにα-グルコシダーゼを作用させるための、前記プロテアーゼ及びα-グルコシダーゼを含有する、請求項7又は8に記載の酵素製剤。
  10.  油脂、デンプン及びタンパク質を含むチーズアナログの製造方法であって、
    (a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び
    (b)工程(a)で得られた混合物を、撹拌しながら加熱する工程を含む、
    チーズアナログの製造方法。
  11.  プロテアーゼが、
    (1)エンド型/エキソ型プロテアーゼ、
    (2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
    (3)エキソ型プロテアーゼ、及び
    (4)エンド型プロテアーゼ
    からなる群から選択される、請求項10記載の製造方法。
  12.  前記混合物が、増粘多糖類をさらに含む、請求項10又は11に記載の製造方法。
  13.  油脂、デンプン及びタンパク質を含むチーズアナログの製造時に、
    (a)油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させる工程、及び
    (b)工程(a)で得られた混合物を、撹拌しながら加熱する工程を含む、
    工程(b)における、前記混合物のゲル化及び/又は油の分離の抑制方法。
  14.  プロテアーゼが、
    (1)エンド型/エキソ型プロテアーゼ、
    (2)エンド型プロテアーゼ及びエキソ型プロテアーゼの組み合わせ、
    (3)エキソ型プロテアーゼ、及び
    (4)エンド型プロテアーゼ
    からなる群から選択される、請求項13記載のゲル化及び/又は油の分離の抑制方法。
  15.  前記混合物が、増粘多糖類をさらに含む、請求項13又は14に記載のゲル化及び/又は油の分離の抑制方法。
  16.  請求項13~15のいずれか1項に記載の方法において、前記油脂、デンプン及びタンパク質を含む混合物にプロテアーゼを作用させるための、該プロテアーゼを含有する、該混合物のゲル化及び/又は油の分離の抑制用の酵素製剤。
PCT/JP2022/033455 2021-09-06 2022-09-06 酵素を用いたチーズアナログの製造方法 WO2023033188A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144901 2021-09-06
JP2021-144901 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023033188A1 true WO2023033188A1 (ja) 2023-03-09

Family

ID=85412535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033455 WO2023033188A1 (ja) 2021-09-06 2022-09-06 酵素を用いたチーズアナログの製造方法

Country Status (1)

Country Link
WO (1) WO2023033188A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228954A1 (ja) * 2022-05-24 2023-11-30 アマノ エンザイム ユーエスエー カンパニー,リミテッド 植物性チーズの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502868A (ja) * 2013-01-11 2016-02-01 インポッシブル フーズ インコーポレイテッド コアセルベートを含む、乳成分非含有チーズ代替品
JP2018516078A (ja) * 2015-05-29 2018-06-21 カーギル・インコーポレイテッド 修飾デンプンを用いたチーズ製品
WO2018151197A1 (ja) * 2017-02-16 2018-08-23 味の素株式会社 チーズ改質用製剤
JP2021144901A (ja) 2020-03-13 2021-09-24 三菱重工業株式会社 プラズマアクチュエータ
WO2022076349A1 (en) * 2020-10-06 2022-04-14 Corn Products Development, Inc. Analog cheese having high protein content and methods of manufacture
WO2022173027A1 (ja) * 2021-02-15 2022-08-18 味の素株式会社 酵素を用いたチーズ及びチーズアナログの製造方法
WO2022181809A1 (ja) * 2021-02-26 2022-09-01 アマノ エンザイム ユーエスエー カンパニー,リミテッド ストレッチ性チーズ代替物の製造方法
WO2022181810A1 (ja) * 2021-02-26 2022-09-01 アマノ エンザイム ユーエスエー カンパニー,リミテッド ストレッチ性チーズ代替物の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502868A (ja) * 2013-01-11 2016-02-01 インポッシブル フーズ インコーポレイテッド コアセルベートを含む、乳成分非含有チーズ代替品
JP2018516078A (ja) * 2015-05-29 2018-06-21 カーギル・インコーポレイテッド 修飾デンプンを用いたチーズ製品
WO2018151197A1 (ja) * 2017-02-16 2018-08-23 味の素株式会社 チーズ改質用製剤
JP2021144901A (ja) 2020-03-13 2021-09-24 三菱重工業株式会社 プラズマアクチュエータ
WO2022076349A1 (en) * 2020-10-06 2022-04-14 Corn Products Development, Inc. Analog cheese having high protein content and methods of manufacture
WO2022173027A1 (ja) * 2021-02-15 2022-08-18 味の素株式会社 酵素を用いたチーズ及びチーズアナログの製造方法
WO2022181809A1 (ja) * 2021-02-26 2022-09-01 アマノ エンザイム ユーエスエー カンパニー,リミテッド ストレッチ性チーズ代替物の製造方法
WO2022181810A1 (ja) * 2021-02-26 2022-09-01 アマノ エンザイム ユーエスエー カンパニー,リミテッド ストレッチ性チーズ代替物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228954A1 (ja) * 2022-05-24 2023-11-30 アマノ エンザイム ユーエスエー カンパニー,リミテッド 植物性チーズの製造方法

Similar Documents

Publication Publication Date Title
JP7047227B2 (ja) 粘度増強オート麦ベースおよび発酵オート麦ベース製品
JP4569630B2 (ja) クリームチーズ様食品及びその製造法
JPWO2009084529A1 (ja) 新規大豆たん白素材及びその製造方法
WO2023033188A1 (ja) 酵素を用いたチーズアナログの製造方法
JP6066016B2 (ja) 麺類の製造方法及び麺用ほぐれ改良剤
US20230380436A1 (en) Methods respectively for producing cheese and cheese analogue using enzyme
Chavan et al. Cheese substitutes: An alternative to natural cheese-A review
WO2022181809A1 (ja) ストレッチ性チーズ代替物の製造方法
JPWO2015080233A1 (ja) 酸性水中油型乳化調味料
JPWO2018151197A1 (ja) チーズ改質用製剤
JP7259424B2 (ja) プロテアーゼを用いた豆腐の製造方法
CN101616593B (zh) 坯料改良剂
US20220046964A1 (en) Method for Modification of Mung Bean Protein and Preparation of Simulated Egg Pulp based on the Modified Protein
JP3912929B2 (ja) 酸性水中油型乳化物
WO2022181810A1 (ja) ストレッチ性チーズ代替物の製造方法
WO2022202558A1 (ja) 植物性チーズ様食品の製造方法
WO2023033187A1 (ja) 酵素を用いたチーズアナログの製造方法及び食感向上方法
JP2003158998A (ja) 水中油型乳化油脂組成物
JP4688335B2 (ja) ベーカリー製品用生地
JP2021029119A (ja) パン類用品質向上剤、パン類の製造方法およびパン類の品質向上方法
JP2009178117A (ja) ゲル化食品およびその製造方法
JP5149749B2 (ja) 高蛋白質ゲル状食品
JP2007275026A (ja) チーズ様呈味食品
JP3948842B2 (ja) ベーカリー製品及びその製造方法
JP4688317B2 (ja) ベーカリー生地

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545723

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022864770

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022864770

Country of ref document: EP

Effective date: 20240408