WO2023032867A1 - 蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置 - Google Patents

蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置 Download PDF

Info

Publication number
WO2023032867A1
WO2023032867A1 PCT/JP2022/032296 JP2022032296W WO2023032867A1 WO 2023032867 A1 WO2023032867 A1 WO 2023032867A1 JP 2022032296 W JP2022032296 W JP 2022032296W WO 2023032867 A1 WO2023032867 A1 WO 2023032867A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
storage material
material particles
particles
granulated
Prior art date
Application number
PCT/JP2022/032296
Other languages
English (en)
French (fr)
Inventor
崇博 河本
成那 田口
大地 碓井
亮介 平松
弘康 近藤
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN202280058372.2A priority Critical patent/CN117881761A/zh
Priority to CA3230506A priority patent/CA3230506A1/en
Priority to IL310978A priority patent/IL310978A/en
Priority to JP2023545537A priority patent/JPWO2023032867A1/ja
Publication of WO2023032867A1 publication Critical patent/WO2023032867A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • Embodiments of the present invention include granulated particles for regenerator material particles, regenerator material particles, regenerator, refrigerator, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application type single crystal pulling apparatus, and to a helium recondenser.
  • Cryogenic refrigerators are required to be lightweight, compact, and have high thermal efficiency. Cryogenic refrigerators are being put to practical use in various fields of application.
  • the cryogenic refrigerator is equipped with a cold storage device filled with multiple cold storage materials.
  • cold is generated by exchanging heat between a regenerator material and helium gas passing through a regenerator.
  • refrigerators with refrigerating cycles such as the Gifford-McMahon (GM) system, the Stirling system, or the pulse tube system are used.
  • GM Gifford-McMahon
  • Magnetic levitation trains also require a high-performance refrigerator to generate magnetic force using superconducting magnets.
  • high-performance refrigerators are also used in superconducting energy storage systems (SMES), magnetic field application type single crystal pulling apparatuses for producing high-quality silicon wafers, and the like.
  • SMES superconducting energy storage systems
  • pulse tube refrigerators which are expected to have high reliability, are being actively pursued.
  • helium recondensing equipment that recondenses evaporated helium has been put into practical use, and demand is increasing.
  • This helium recondensing device also uses a GM refrigerator or a pulse tube refrigerator that cools the temperature to the 4K level in order to liquefy helium.
  • a working medium such as compressed helium (He) gas flows in one direction in a regenerator filled with a regenerator, supplying the heat energy to the regenerator. Then, the expanded working medium in the regenerator flows in the opposite direction and receives thermal energy from the regenerator material.
  • He compressed helium
  • the thermal efficiency in the working medium cycle increases and lower temperatures can be achieved.
  • it is desirable that the heat conductivity of the cold storage material is high.
  • Magnetic regenerative material exhibits high volumetric specific heat in a specific temperature range, depending on its composition. Therefore, by combining magnetic cold storage materials with different compositions exhibiting different volumetric specific heats, the cold storage capacity is increased, and the refrigerating capacity of the refrigerator is improved.
  • the high-temperature side of the regenerator is filled with metal regenerator material particles such as lead (Pb), bismuth (Bi), or tin (Sn), and the low-temperature side of the regenerator of 20 K or less is filled with Er3Ni .
  • Refrigeration at 4K has been achieved by filling metal-based magnetic regenerator particles such as , ErNi, and HoCu 2 .
  • Gd 2 O 2 S, Tb 2 O 2 S, Dy 2 O 2 S, Ho 2 O 2 S, and GdAlO 3 which have high specific heat in the temperature range of 2K to 10K, have been used as part of the metal-based magnetic regenerator particles. Attempts have also been made to improve the refrigerating capacity of refrigerators by replacing them with ceramic magnetic regenerative material particles such as.
  • the above ceramic magnetic regenerative material particles are obtained through a multi-stage manufacturing process such as mixing of raw materials and binder, granulation, degreasing at several hundred degrees, sulfurization at several hundred degrees, and sintering at several hundred degrees. Therefore, if degreasing and sulfurization can be carried out at a lower temperature than before, the production cost and environmental load can be reduced.
  • the problem to be solved by the present invention is to provide granulated particles for cold storage material particles that can reduce the manufacturing cost of cold storage material particles.
  • the granulated particles for cold storage material particles of the embodiment are at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • a rare earth oxysulfide containing one rare earth element, or a rare earth oxide containing at least one rare earth element, and carbon having a concentration of 0.001% by weight or more and 50% by weight or less, and a relative density of 10% or more 50% or less.
  • FIG. 2 is a schematic cross-sectional view of granulated particles for cold storage material particles of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of main parts of the cold storage material particles of the second embodiment and the refrigerator of the fourth embodiment.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a cryopump according to a fifth embodiment;
  • the perspective view which shows schematic structure of the superconducting magnet of 6th Embodiment.
  • Sectional drawing which shows schematic structure of the nuclear magnetic resonance imaging apparatus of 7th Embodiment.
  • Sectional drawing which shows schematic structure of the nuclear magnetic resonance apparatus of 8th Embodiment.
  • the perspective view which shows schematic structure of the magnetic field application type single-crystal pulling apparatus of 9th Embodiment.
  • the schematic diagram which shows schematic structure of the helium recondensing apparatus of 10th Embodiment.
  • cryogenic temperature means, for example, a temperature range in which the superconducting phenomenon can be industrially and effectively utilized.
  • the temperature range is 20K or less.
  • Granulated particles for cold storage material particles of the first embodiment include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), at least one rare earth selected from the group consisting of gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu)
  • a rare earth oxysulfide containing an element, or a rare earth oxide containing at least one rare earth element, and carbon having a concentration of 0.001% by weight or more and 50% by weight or less, and a relative density of 10% or more and 50% It is below.
  • FIG. 1 is a schematic cross-sectional view of granulated particles for cold storage material particles of the first embodiment.
  • the granulated particles 101 for cold storage material particles of the first embodiment are granulated particles for manufacturing cold storage material particles.
  • heat treatment for degreasing and heat treatment for sintering are performed on the granulated particles 101 for cold storage material particles of the first embodiment to produce cold storage material particles.
  • the granulated particles 101 for cold storage material particles may be subjected to heat treatment for sulfurization.
  • the granulated particles 101 for cold storage material particles of the first embodiment include, for example, a raw material powder 101a, a binder 101b, and voids 101c.
  • the granulated particles 101 for cold storage material particles may contain, for example, a dispersion medium instead of the binder 101b.
  • the granulated particles 101 for cold storage material particles may contain, for example, a gelling agent instead of the binder 101b.
  • the raw material powder 101a may contain, for example, a sintering aid for promoting sintering when manufacturing the cold storage material particles.
  • the granulated particles 101 for cold storage material particles are formed by granulating raw material powder 101a.
  • the granulated particles 101 for cold storage material particles are formed, for example, by binding a plurality of raw material powders 101a with a binder 101b.
  • the granulated particles 101 for cold storage material particles are, for example, gel.
  • Granulated particles 101 for cold storage material particles are formed, for example, by gelling a plurality of raw material powders 101a using a gelling agent (gelating solution).
  • the raw material powder 101a for example, loses its independent motility and is in a state of being aggregated and solidified.
  • the granulated particles 101 for cold storage material particles When the granulated particles 101 for cold storage material particles are gel, the granulated particles 101 for cold storage material particles contain, for example, raw material powder 101a and a dispersion medium.
  • the dispersion medium includes, for example, a gelling agent.
  • the granulated particles 101 for cold storage material particles When the granulated particles 101 for cold storage material particles are gel, the granulated particles 101 for cold storage material particles contain, for example, raw material powder 101a and a gelling agent.
  • a gelling agent that gels after gelling of the granulated particles 101 for cold storage material particles is also referred to as a gelling agent.
  • the raw material powder 101a contains rare earth oxysulfides or rare earth oxides.
  • the rare earth oxysulfides contained in the raw material powder 101a include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and at least one rare earth element selected from the group consisting of lutetium (Lu) .
  • the rare earth oxides contained in the raw material powder 101a include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and at least one rare earth element selected from the group consisting of lutetium (Lu) include.
  • the rare earth oxysulfide contained in the raw material powder 101a is, for example, gadolinium oxysulfide or holmium oxysulfide.
  • the rare earth oxysulfide contained in the raw material powder 101a is Gd2O2S , Tb2O2S , Dy2O2S , or Ho2O2S , for example.
  • the rare earth oxide contained in the raw material powder 101a is gadolinium oxide or holmium oxide, for example.
  • the rare earth oxide contained in the raw material powder 101a is , for example, Gd2O3 , Tb2O3 , Dy2O3 , or Ho2O3 .
  • the raw material powder 101a contains, for example, carbonates, oxides, nitrides, or carbides containing Group 1 elements.
  • the raw material powder 101a contains, for example, carbonates, oxides, nitrides, or carbides containing Group 2 elements.
  • the raw material powder 101a contains, for example, carbonates, oxides, nitrides, or carbides containing additive elements.
  • the additive elements are manganese (Mn), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), cobalt (Co), zirconium (Zr), yttrium (Y), and boron (B). is at least one element selected from the group consisting of
  • the sintering aid is, for example, an oxide.
  • Sintering aids are, for example, aluminum oxide (alumina), magnesium oxide, yttrium oxide, zirconium oxide, or boron oxide.
  • the binder 101b is an organic substance.
  • the binder 101b is, for example, resin.
  • the binder 101b is, for example, polyvinyl alcohol, polyvinyl butyral, carboxymethylcellulose, acrylic resin, or polyethylene glycol.
  • the dispersion medium is an organic substance.
  • the dispersion medium is, for example, alginate.
  • the dispersion medium is, for example, sodium alginate, ammonium alginate, or potassium alginate.
  • the relative density of the granulated particles 101 for cold storage material particles is 10% or more and 50% or less.
  • the volume ratio of the raw material powder 101a in the granulated particles 101 for cold storage material particles is relatively small.
  • the volume ratio of the binder 101b, the dispersion medium, or the voids 101c in the granulated particles 101 for cold storage material particles is relatively high.
  • the volume ratio of the raw material powder 101a in the granulated particles 101 for cold storage material particles is relatively high.
  • the volume ratio of the binder 101b, the dispersion medium, or the voids 101c in the granulated particles 101 for cold storage material particles is relatively low.
  • the relative density of the granulated particles 101 for cold storage material particles can be calculated, for example, by dividing the average compaction density obtained from 50 granulated particles by the true density of the constituent substances.
  • the average compacting density of 50 grains is determined by dividing the weight of 50 granulated particles by the volume.
  • the volume can be calculated by accumulating the volume of each particle obtained by assuming that the equivalent circle diameter of each particle is the diameter of the particle.
  • the crystal phase of the raw material powder 101a constituting the granulated particles is identified by X-ray diffraction measurement.
  • the composition ratio of the raw material powder 101a constituting the granulated particles is obtained from the Rietveld analysis of the X-ray diffraction pattern or the inductively coupled plasma emission spectroscopic analysis.
  • the true density of the granulated particles 101 for cold storage material particles can be calculated from the crystal phase of the raw material powder 101a and the composition ratio of the raw material powder 101a.
  • the particle size of the granulated particles 101 for cold storage material particles is, for example, 50 ⁇ m or more and 7 mm or less. Further, the aspect ratio of the granulated particles 101 for cold storage material particles is, for example, 1 or more and 5 or less. The aspect ratio of the granulated particles 101 for cold storage material particles is the ratio of the major axis to the minor axis of the granulated particles 101 for cold storage material particles. The shape of the granulated particles 101 for cold storage material particles is, for example, spherical.
  • the particle size of the granulated particles 101 for cold storage material particles is equivalent circle diameter.
  • the equivalent circle diameter is the diameter of a perfect circle corresponding to the area of a figure observed in an image such as an optical microscope image or a scanning electron microscope image (SEM image).
  • the particle size of the granulated particles 101 for cold storage material particles can be obtained, for example, by image analysis of an optical microscope image or an SEM image.
  • the granulated particles 101 for cold storage material particles contain carbon.
  • the concentration of carbon contained in the granulated particles 101 for cold storage material particles is 0.001% by weight or more and 50% by weight or less.
  • Carbon is contained in, for example, the binder 101b or the dispersion medium.
  • the concentration of carbon is relatively high.
  • the concentration of carbon is relatively low.
  • the granulated particles 101 for cold storage material particles contain, for example, Group 1 elements.
  • the Group 1 element is, for example, at least one element selected from the group consisting of lithium (Li), sodium (Na), and potassium (K).
  • the Group 1 element is contained in, for example, the raw material powder 101a, the binder 101b, or the dispersion medium.
  • the Group 1 element is derived from, for example, the gelling solution used when manufacturing the granulated particles 101 for cold storage material particles.
  • the concentration of the first group element contained in the granulated particles 101 for cold storage material particles is, for example, 0.001 atomic % or more and 60 atomic % or less.
  • the granulated particles 101 for cold storage material particles contain, for example, Group 2 elements.
  • the Group 2 element is, for example, at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba).
  • the Group 2 element is contained in, for example, the raw material powder 101a, the binder 101b, or the dispersion medium.
  • the Group 2 element is derived from, for example, the gelling solution used when manufacturing the granulated particles 101 for cold storage material particles.
  • the concentration of the second group element contained in the granulated particles 101 for cold storage material particles is, for example, 0.001 atomic % or more and 60 atomic % or less.
  • Granulated particles 101 for cold storage material particles include, for example, manganese (Mn), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), cobalt (Co), zirconium (Zr), yttrium (Y ), and at least one additional element selected from the group consisting of boron (B).
  • the additive element is contained, for example, in the raw material powder 101a, the binder 101b, or the dispersion medium.
  • the additive element is derived from, for example, the gelling solution used when manufacturing the granulated particles 101 for cold storage material particles.
  • the concentration of the additive element contained in the granulated particles 101 for cold storage material particles is, for example, 0.001 atomic % or more and 60 atomic % or less.
  • the detection of the elements contained in the granulated particles 101 for cold storage material particles and the measurement of the atomic concentration of the elements are performed, for example, by dissolving the granulated particles in a liquid and performing Inductively Coupled Plasma Atomic Emission Spectroscopy: ICP-AES) can also be used.
  • ICP-AES Inductively Coupled Plasma Atomic Emission Spectroscopy
  • EDX energy dispersive X-ray spectroscopy
  • WDX wavelength dispersive X-ray analysis
  • the method for producing the granulated particles for cold storage material particles of the first embodiment is not particularly limited, but for example, a raw material powder and a binder are mixed using a ball mill or the like to prepare a raw material mixture, and the mixture is obtained. It can be produced by molding (granulating) the raw material mixture into granules by a rolling granulation method, a stirring granulation method, an extrusion method, a spray method, or a press molding method.
  • the strength of the granulated particles is improved by adding a binder to adhere the raw material powders to each other.
  • a binder for example, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acrylic resin, polyethylene glycol, and the like can be used as the binder.
  • the amount of binder added is, for example, 0.01% by weight or more and 40% by weight or less. For example, by increasing the amount of binder, the breaking strength can be improved even if the relative density is low.
  • Oxides or oxysulfides can be used as raw material powders.
  • the type and proportion of the oxide or oxysulfide are adjusted according to the target composition of the cold storage material particles.
  • Carbonates, oxides, nitrides, or carbides containing Group 1 elements, Group 2 elements, or additive elements can be used as raw material powders.
  • the additive elements are manganese (Mn), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), cobalt (Co), zirconium (Zr), yttrium (Y), and boron (B). is at least one element selected from the group consisting of
  • Granulated particles for cold storage material particles to be contained can be produced.
  • the raw material mixture may contain a sintering aid as raw material powder.
  • Sintering aids are, for example, aluminum oxide (alumina), magnesium oxide, yttrium oxide, zirconium oxide, or boron oxide.
  • the relative density of the granulated particles for cold storage material particles can be changed.
  • the rotation speed is slow or the diameter of the granulator is small, the energy during rolling is reduced, thereby reducing the relative density of the granulated particles for the cold storage material particles.
  • a slurry prepared by adding the raw material powder to the alginic acid aqueous solution and mixing is added dropwise to the gelling solution to gel the slurry, thereby forming granules. It may be granulated.
  • This method is a method of granulating particles by promoting gelation through a cross-linking reaction by polyvalent metal ions contained in a gelling solution.
  • the relative density of the granulated particles for the cold storage material particles can be changed.
  • the weight ratio of the raw material powder to the alginic acid aqueous solution is, for example, 0.1 times or more and 20 times or less.
  • the granulated particles for cold storage material particles solidify into granules due to the gelation of alginate. Therefore, the strength of the granulated particles, that is, the gelling strength varies depending on the amount of alginate contained in the particles or the viscosity of the aqueous alginate solution. For example, by adjusting the viscosity of the alginate aqueous solution, the alginate secures the raw material powder in the gel, maintains the strength of the granulated particles for the cold storage material particles, and has the desired shape. can be obtained.
  • a dropper, burette, pipette, syringe, dispenser, inkjet, or the like for example, a dropper, burette, pipette, syringe, dispenser, inkjet, or the like can be used.
  • the method of granulating particles by the same method will be referred to as the alginic acid gel method.
  • the particle size of the granulated particles for cold storage material particles, and Aspect ratios can be varied.
  • the diameter of the ejection port is, for example, 50 ⁇ m or more and 3000 ⁇ m or less.
  • the distance between the tip of the ejection port and the liquid surface of the gelling solution is, for example, 0.1 mm or more and 1000 mm or less.
  • any of an air pulse dispenser, a plunger dispenser, and a piezo dispenser may be used as the device.
  • Inkjets are broadly divided into continuous type and on-demand type as ejection methods, but either type of ejection method can be used. Further, the on-demand type is classified into three types of piezo type, thermal type, and valve type, and any type may be used.
  • Slurry dropped into the gelling solution by a dropper, burette, pipette, syringe, dispenser, inkjet, etc. is gelled by being held in the gelling solution.
  • the holding time of the slurry in the gelling solution is, for example, 10 minutes or more and 48 hours or less. If the gelation time is short, the gelation does not proceed sufficiently, resulting in a decrease in the strength of the granulated particles.
  • the alginic acid aqueous solution used in the alginate gel method is, for example, a sodium alginate aqueous solution, an ammonium alginate aqueous solution, or a potassium alginate aqueous solution.
  • Sodium (Na) or potassium (K) can be contained in the granulated particles 101 for cold storage material particles by using an aqueous sodium alginate solution or an aqueous potassium alginate solution containing a Group 1 element.
  • the granulated particles 101 for cold storage material particles can contain sodium (Na) and potassium (K) at the same time.
  • the alginate concentration is, for example, 0.1% by weight or more and 5% by weight or less as an alginate aqueous solution. If the concentration of the alginate aqueous solution is lower than 0.1% by weight, a sufficiently strong gel cannot be formed, and granulated particles for cold storage material particles cannot be obtained.
  • an aqueous calcium lactate solution for example, an aqueous calcium chloride solution, an aqueous manganese(II) chloride solution, an aqueous magnesium sulfate solution, an aqueous beryllium sulfate solution, an aqueous strontium nitrate solution, an aqueous barium chloride solution, an aqueous barium hydroxide solution, an aqueous aluminum chloride solution, and an aqueous aluminum nitrate solution.
  • aqueous calcium lactate solution for example, an aqueous calcium lactate solution, an aqueous calcium chloride solution, an aqueous manganese(II) chloride solution, an aqueous magnesium sulfate solution, an aqueous beryllium sulfate solution, an aqueous strontium nitrate solution, an aqueous barium chloride solution, an aqueous barium hydroxide solution, an aqueous aluminum chloride solution, and an
  • an aqueous solution of aluminum lactate, an aqueous solution of iron(II) chloride, an aqueous solution of iron(III) chloride, an aqueous solution of copper(II) chloride, an aqueous solution of nickel(II) chloride, or an aqueous solution of cobalt(II) chloride can be used.
  • an aqueous aluminum chloride solution, an aqueous aluminum nitrate solution, an aqueous aluminum lactate solution, an aqueous iron (II) chloride solution, an aqueous iron (III) chloride solution, an aqueous copper (II) chloride solution, an aqueous nickel (II) chloride solution, and an aqueous cobalt (II) chloride solution are used as gels.
  • Aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), or cobalt (Co) can be contained in the granulated particles 101 for cold storage material particles by using the granulated particles 101 as the hardening solution.
  • an aqueous solution containing Group 1 elements is used as the slurry, and an element that forms polyvalent metal ions in the aqueous solution is added to the gelling solution.
  • an aqueous solution containing The amount of elements that form ions can be adjusted.
  • Elements that form multivalent ions in an aqueous solution include, for example, calcium (Ca), manganese (Mn), magnesium (Mg), beryllium (Be), strontium (Sr), barium (Ba), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), or cobalt (Co).
  • Calcium lactate aqueous solution calcium chloride aqueous solution, manganese (II) chloride aqueous solution, magnesium sulfate aqueous solution, beryllium sulfate aqueous solution, strontium nitrate aqueous solution, barium chloride aqueous solution, barium hydroxide aqueous solution, aluminum chloride aqueous solution, aluminum nitrate aqueous solution, aluminum lactate aqueous solution, iron chloride (II) At least two aqueous solutions containing different metal elements selected from the group consisting of an aqueous solution of iron (III) chloride, an aqueous solution of copper (II) chloride, an aqueous nickel (II) chloride solution, and an aqueous solution of cobalt (II) chloride. are mixed and used as a gelling solution, two or more elements that form polyvalent ions in an aqueous solution can be contained in the granulated particles 101 for cold storage material particles
  • the cold storage material particles are manufactured by subjecting the granulated particles for the cold storage material particles to heat treatment for degreasing and heat treatment for sintering.
  • the granulated particles for the cold storage material particles contain an oxide raw material powder
  • the granulated particles for the cold storage material particles are subjected to sulfurization. heat treatment may be performed.
  • a certain amount of organic components contained in the binder and dispersion medium can be removed.
  • the raw material powder is an oxide
  • the degreasing is insufficient, the sulfidation of the oxide will not proceed sufficiently, and the necessary amount of oxysulfide will not be produced.
  • the sintering reaction is also inhibited. If the sintering reaction is inhibited, the density of the regenerator particles after sintering will be low. When the density of the cold storage material particles becomes low, the strength of the cold storage material particles becomes weak, and there is a risk of breaking during use in the refrigerator. In addition, if the sintering reaction is inhibited, the specific heat of the regenerator particles after sintering will be low. When the specific heat of the cold storage material particles becomes low, the performance of the refrigerator is degraded.
  • the granulated particles 101 for cold storage material particles of the first embodiment have a relative density of 10% or more and 50% or less.
  • the manufacturing cost of the cold storage material particles can be reduced by reducing the heat treatment temperature or heat treatment time.
  • the relative density of the granulated particles 101 for cold storage material particles is preferably 45% or less, more preferably 40% or less.
  • the relative density of the granulated particles for cold storage material particles is less than 10%, for example, the proportion of voids in the cold storage material particles increases, and the strength of the granulated particles for cold storage material particles decreases. When the strength of the granulated particles for cold storage material particles is lowered, handling of the granulated particles for cold storage material particles becomes difficult.
  • the organic component may be excessively removed during heat treatment for degreasing. If the organic component is removed excessively, the strength and specific heat of the cold storage material particles to be produced are lowered.
  • the relative density of the granulated particles for the cold storage material particles is less than 10%, for example, the relative density of the cold storage material particles to be manufactured is lowered, and the specific heat of the cold storage material particles is lowered. It is considered that this is because the contact points between the raw material powders are reduced and the sinterability of the cold storage material particles is lowered.
  • the granulated particles 101 for cold storage material particles of the first embodiment have a relative density of 10% or more, so that the strength of the granulated particles 101 for cold storage material particles is maintained, and handling of the granulated particles for cold storage material particles is facilitated. becomes easier.
  • the relative density of the granulated particles 101 for cold storage material particles is 10% or more, the sinterability of the cold storage material particles to be manufactured is improved, and the specific heat of the cold storage material particles is improved.
  • the relative density of the granulated particles 101 for cold storage material particles is preferably 15% or more, more preferably 20% or more.
  • the relative density of the granulated particles 101 for cold storage material particles is preferably 15% or more, and is 20% or more. is more preferable.
  • the relative density of the granulated particles 101 for cold storage material particles is preferably 15% or more, more preferably 20% or more.
  • the granulated particles 101 for cold storage material particles of the first embodiment contain carbon at a concentration of 0.001% by weight or more and 50% by weight or less.
  • the strength of the granulated particles for cold storage material particles is improved. For example, if the carbon concentration of the granulated particles for the cold storage material particles is less than 0.001% by weight, the strength of the granulated particles for the cold storage material particles is reduced, making handling difficult.
  • the granulated particles 101 for cold storage material particles of the first embodiment have a carbon concentration of 0.001% by weight or more, so that the strength of the granulated particles for cold storage material particles is improved.
  • the carbon concentration of the granulated particles 101 for cold storage material particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. more preferred.
  • the granulated particles 101 for cold storage material particles of the first embodiment have a carbon concentration of 50% by weight or less, the heat conductivity of the cold storage material particles to be manufactured is improved.
  • the carbon concentration of the granulated particles 101 for cold storage material particles is preferably 10% by weight or less, more preferably 5% by weight or less.
  • the granulated particles 101 for cold storage material particles of the first embodiment preferably contain a Group 1 element with a concentration of 0.001 atomic % or more and 60 atomic % or less.
  • the granulated particles 101 for cold storage material particles can improve the sinterability of the cold storage material particles to be manufactured by containing the first group element in the concentration range described above. Therefore, for example, the strength and specific heat of the cold storage material particles produced are improved.
  • the concentration of the Group 1 element contained in the granulated particles 101 for cold storage material particles is preferably 0.01 atomic % or more and 30 atomic % or less. It is preferably 0.1 atomic % or more and 10 atomic % or less.
  • the granulated particles 101 for cold storage material particles of the first embodiment preferably contain a Group 2 element with a concentration of 0.001 atomic % or more and 60 atomic % or less.
  • the granulated particles 101 for cold storage material particles can improve the sinterability of the cold storage material particles to be produced by containing the second group element in the concentration range described above. Therefore, for example, the strength and specific heat of the cold storage material particles produced are improved.
  • the concentration of the group 2 element contained in the granulated particles 101 for cold storage material particles is preferably 0.01 atomic % or more and 30 atomic % or less. It is preferably 0.1 atomic % or more and 10 atomic % or less.
  • the granulated particles 101 for cold storage material particles of the first embodiment contain manganese (Mn), aluminum (Al), iron (Fe), copper (Cu), It is preferable to include an additive element which is at least one element selected from the group consisting of nickel (Ni), cobalt (Co), zirconium (Zr), yttrium (Y), and boron (B).
  • the granulated particles 101 for cold storage material particles can improve the sinterability of the cold storage material particles to be manufactured by containing the additive element in the concentration range described above. Therefore, for example, the strength and specific heat of the cold storage material particles produced are improved.
  • the concentration of the additive element contained in the granulated particles 101 for cold storage material particles is more preferably 0.01 atomic % or more and 30 atomic % or less. More preferably, it is 0.1 atomic % or more and 10 atomic % or less.
  • Granulated particles 101 for cold storage material particles of the first embodiment preferably contain aluminum oxide (alumina), magnesium oxide, yttrium oxide, zirconium oxide, or boron oxide.
  • the above oxide functions as a sintering aid.
  • the granulated particles 101 for cold storage material particles can improve the sinterability of the cold storage material particles to be produced by containing the oxide.
  • the cold storage material particles of the second embodiment are obtained by sintering the granulated particles for cold storage material particles of the first embodiment.
  • the particle size of the cold storage material particles of the second embodiment is, for example, 50 ⁇ m or more and 5 mm or less.
  • the aspect ratio of the cold storage material particles is, for example, 1 or more and 5 or less.
  • the aspect ratio of the cold storage material particles is the ratio of the long diameter to the short diameter of the cold storage material particles.
  • the shape of the cold storage material particles is, for example, spherical.
  • the cold storage material particles of the second embodiment have, for example, a relative density of 90% or more.
  • the relative density of the cold storage material particles of the second embodiment is preferably 93% or more. More preferably, it is 95% or more.
  • the cold storage material particles of the second embodiment are cold storage material particles obtained from the granulated particles for cold storage material particles of the first embodiment.
  • the regenerative material particles of the second embodiment contain rare earth oxysulfides or rare earth oxides.
  • Rare earth oxysulfides contained in the cold storage material particles include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd ), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and at least one rare earth element selected from the group consisting of lutetium (Lu) .
  • the rare earth oxides contained in the cold storage material particles include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and at least one rare earth element selected from the group consisting of lutetium (Lu) include.
  • the maximum value of the volumetric specific heat of the cold storage material particles of the second embodiment in the temperature range of 2K or more and 10K or less is, for example, 0.5 J/(cm 3 ⁇ K) or more.
  • the cold storage material particles of the second embodiment have, for example, the general formula R 2 ⁇ 0.1 O 2 S 1 ⁇ 0.1 (wherein R is Y, La, Ce, Pr, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb, and Lu)).
  • the maximum volumetric specific heat and the temperature at which the maximum volumetric specific heat is obtained differ depending on the selected rare earth element. Therefore, by appropriately adjusting the ratio of the rare earth element, the specific heat characteristics of the rare earth oxysulfide can be adjusted.
  • a rare earth element is, for example, at least one element selected from the group consisting of Gd, Tb, Dy, Ho, and Er.
  • the rare earth elements may include, for example, two or more rare earth elements.
  • the cold storage material particles of the second embodiment have, for example, the general formula R 1 ⁇ 0.1 M 1 ⁇ 0.1 O 3 ⁇ 0.1 (wherein R is Y, La, Ce, Pr, Nd, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and M is at least one element selected from the group consisting of Al, Cr, Mn, and Fe. (shown) contains rare earth oxides.
  • the maximum volumetric specific heat and the temperature at which the maximum volumetric specific heat is obtained differ depending on the selected rare earth element. Therefore, by appropriately adjusting the proportion of the rare earth element, the specific heat characteristics of the rare earth oxide can be adjusted.
  • a rare earth element is, for example, at least one element selected from the group consisting of Gd, Tb, Dy, Ho, and Er.
  • the rare earth elements may include, for example, two or more rare earth elements.
  • the cold storage material particles of the second embodiment are, for example, aluminum (Al), magnesium (Mg), iron (Fe), copper (Cu), nickel (Ni), cobalt (Co), zirconium (Zr), yttrium It contains at least one element selected from the group consisting of (Y).
  • the above element is, for example, an element derived from the sintering aid contained in the granulated particles 101 for cold storage material particles of the first embodiment.
  • the cold storage material particles of the second embodiment contain, for example, boron (B).
  • Boron (B) is derived from, for example, the sintering aid contained in the granulated particles 101 for cold storage material particles of the first embodiment.
  • the cold storage material particles of the second embodiment contain, as an oxide, a substance derived from the sintering aid of the granulated particles 101 for cold storage material particles of the first embodiment.
  • the oxide is, for example, aluminum oxide (alumina), magnesium oxide, yttrium oxide, zirconium oxide, or boron oxide.
  • the regenerative material particles of the second embodiment include, for example, aluminum (Al), magnesium (Mg), iron (Fe), copper (Cu), nickel (Ni), cobalt (Co), zirconium (Zr), yttrium ( Y) and at least one element selected from the group consisting of boron (B) at 0.01 atomic % or more and 20 atomic % or less.
  • the above elements that make up the sintering aid do not exhibit specific heat characteristics. Therefore, when the amount of the element added exceeds 20 atomic % in the cold storage material particles, the volumetric specific heat of the cold storage material particles is lowered, the cold storage performance of the cold storage device is lowered, and the refrigerating capacity of the refrigerator is lowered.
  • the cold storage material particles of the second embodiment have, for example, a volumetric specific heat of 0.5 J/(cm 3 ⁇ K) or more in a temperature range of 2.5 K or more and 10 K or less. Further, the cold storage material particles of the second embodiment have a volumetric specific heat of 0.55 J/(cm 3 ⁇ K) or more in a temperature range of 2K or more and 8K or less, for example. Further, the cold storage material particles of the second embodiment have a volumetric specific heat of 0.6 J/(cm 3 ⁇ K) or more in a temperature range of 4K or more and 7K or less, for example.
  • the maximum value of the volumetric specific heat is 0.5 J/(cm 3 ⁇ K) or more in the temperature range of 2K or more and 10K or less. Therefore, the cold storage material particles of the second embodiment have a high volumetric specific heat. Since the cold storage material particles of the second embodiment have a high volumetric specific heat, the cold storage device equipped with the cold storage material particles of the second embodiment has high cold storage performance, and the refrigerator exhibits high refrigerating capacity. .
  • the particle size of the cold storage material particles of the second embodiment is, for example, 50 ⁇ m or more and 5 mm or less.
  • the particle size of the cold storage material particles is preferably 1 mm or less, more preferably 500 ⁇ m or less.
  • the particle size of the cold storage material particles exceeds the above lower limit, the packing density of the cold storage material particles in the cold storage device is lowered, the pressure loss of the working medium such as helium is reduced, and the refrigerating performance of the refrigerator is improved.
  • the particle size of the cold storage material particles is less than the above upper limit, the distance from the surface of the cold storage material particles to the center of the particles is shortened, and the heat transfer between the working medium and the cold storage material particles is conducted to the center of the cold storage material. It becomes easier and the refrigerating performance of the refrigerator is improved.
  • the particle size of the granulated particles for cold storage material particles is the equivalent circle diameter.
  • the equivalent circle diameter is the diameter of a perfect circle corresponding to the area of a figure observed in an image such as an optical microscope image or a scanning electron microscope image (SEM image).
  • the particle size of the granulated particles for the cold storage material particles can be obtained, for example, by image analysis of an optical microscope image or an SEM image.
  • the cold storage material particles of the second embodiment have, for example, a relative density of 90% or more.
  • the relative density of the cold storage material particles of the second embodiment is preferably 93% or more. More preferably, it is 95% or more.
  • the relative density of the cold storage material particles of the second embodiment can be calculated by dividing the average sintered density obtained from 50 cold storage material particles by the true density of the constituent material.
  • the average sintered density of 50 grains is obtained by dividing the weight of 50 cold storage material grains by the volume.
  • the volume can be calculated by accumulating the volume of each particle obtained by assuming that the equivalent circle diameter of each particle is the diameter of the particle.
  • the crystal structure of the rare earth oxysulfide contained in the cold storage material particles of the second embodiment is, for example, Ce 2 O 2 S type, and its space group is P-3m.
  • the crystal structure can be confirmed by powder X-ray diffraction measurement, observation of an electron beam backscatter diffraction image using a scanning electron microscope, or observation with a transmission electron microscope.
  • the crystal structure of the rare earth oxide contained in the cold storage material particles of the second embodiment is, for example, a perovskite type, and its space group is, for example, Pnma. Also, the space group is, for example, Pm-3m.
  • the crystal structure and space group can be confirmed by powder X-ray diffraction measurement, observation of an electron beam backscatter diffraction image using a scanning electron microscope, or observation with a transmission electron microscope.
  • the cold storage material particles of the second embodiment are manufactured by subjecting the granulated particles 101 for cold storage material particles of the first embodiment to heat treatment for degreasing and heat treatment for sintering.
  • the granulated particles for the cold storage material particles contain an oxide raw material powder
  • the granulated particles for the cold storage material particles are subjected to sulfurization. heat treatment may be performed.
  • the degreasing heat treatment is performed, for example, in an air atmosphere.
  • the temperature of the degreasing heat treatment is, for example, 400° C. or higher and 700° C. or lower.
  • the heat treatment time for degreasing is, for example, 30 minutes or more and 6 hours or less.
  • the granulated particles 101 for cold storage material particles are sulfurized.
  • the heat treatment is performed in a sulfurizing atmosphere.
  • the sulfidation atmosphere includes, for example, gases containing sulfur atoms with negative oxidation numbers, such as hydrogen sulfide (H 2 S), carbon sulfide (CS 2 ), or methanethiol (CH 3 SH).
  • the temperature of the heat treatment for sulfurization is, for example, 400° C. or higher and 600° C. or lower.
  • the time for the heat treatment for sulfurization is, for example, 1 hour or more and 5 hours or less.
  • the heat treatment for sintering the granulated particles after degreasing or the obtained oxysulfide is performed, for example, in an inert gas atmosphere.
  • the heat treatment temperature is, for example, 1100° C. or higher and 2000° C. or lower.
  • the heat treatment temperature is, for example, 1200° C. or higher and 1800° C. or lower.
  • the heat treatment time is, for example, 1 hour or more and 48 hours or less.
  • the sintering acceleration effect can lower the sintering temperature and shorten the sintering time.
  • the additive elements are manganese (Mn), aluminum (Al), iron (Fe), copper (Cu), nickel (Ni), cobalt (Co), zirconium (Zr), yttrium (Y), and boron (B). is at least one element selected from the group consisting of
  • the heat treatment for sintering the granulated particles 101 for cold storage material particles containing the first group element, the second group element, or the additive element is performed, for example, in an inert gas atmosphere.
  • the temperature of the heat treatment for sintering is, for example, 1000° C. or higher and 2000° C. or lower.
  • the temperature of the heat treatment for sintering is, for example, 1100° C. or higher and 1700° C. or lower.
  • the heat treatment time for sintering is, for example, 1 hour or more and 48 hours or less.
  • the cold storage material particles of the second embodiment are manufactured by sintering the granulated particles 101 for cold storage material particles of the first embodiment. Therefore, for example, it is possible to reduce the temperature of the heat treatment for degreasing or shorten the time for the heat treatment for degreasing. In addition, for example, the temperature of heat treatment for sulfurization can be reduced, or the time for heat treatment for sulfurization can be shortened. Also, for example, the temperature of heat treatment for sintering can be reduced, or the time for heat treatment for sintering can be shortened. Therefore, the manufacturing cost of the cold storage material particles of the second embodiment is reduced.
  • the cold storage material particles of the second embodiment are manufactured by sintering the granulated particles 101 for cold storage material particles of the first embodiment. Therefore, for example, the organic component is sufficiently removed, the amount of residual carbon contained in the cold storage material particles is reduced, and the thermal conductivity of the cold storage material particles is improved. Therefore, the performance of the refrigerator using the cold storage material particles of the second embodiment is improved.
  • the aspect ratio of the cold storage material particles of the second embodiment is preferably 1 or more and 5 or less, for example. More preferably, the aspect ratio of the cold storage material particles is, for example, 1 or more and 2 or less.
  • the aspect ratio of the cool storage material particles is lower than the above upper limit, the gaps are uniform when the cool storage material particles are filled in the cool storage device, and the refrigerating performance of the refrigerator is improved.
  • the regenerator of the third embodiment is a regenerator filled with a plurality of the regenerator material particles of the second embodiment.
  • the peripheral length of the projected image of the filled regenerator material particles of the second embodiment is L
  • the actual area of the projected image is A
  • 4 ⁇ A The ratio of the cold storage material particles having a circularity R of 0.5 or less represented by /L 2 is 5% or less.
  • the circularity R can be obtained by image-processing the shapes of multiple cold storage material particles with an optical microscope. Cool storage material particles having a circularity R of 0.5 or less exhibit a shape such as unevenness on the surface. When a plurality of cold storage material particles containing more than 5% of such cold storage material particles are filled in a cold storage device, the porosity formed by the cold storage material particles in the cold storage device becomes uneven, and the filling property becomes uneven. Therefore, when the working medium flows in, the cold storage performance deteriorates, and the cold storage material particles move due to the stress applied to the cold storage material particles when the cold storage material particles are filled or when the refrigerator operates.
  • Cool storage material particles having a circularity R of 0.5 or less are preferably 2% or less, more preferably 0%.
  • a refrigerator according to the fourth embodiment is equipped with the regenerator according to the third embodiment filled with a plurality of regenerator material particles according to the second embodiment.
  • regenerator material particles according to the second embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main configuration of the cold storage material particles of the second embodiment and the refrigerator of the fourth embodiment.
  • FIG. 2 is a main part of a GM refrigerator, which is an example of a refrigerator according to a fourth embodiment, which includes a regenerator according to the third embodiment filled with a plurality of regenerator material particles according to the second embodiment. It is a schematic cross section showing a configuration.
  • the refrigerator of the fourth embodiment is a two-stage regenerative cryogenic refrigerator 100 used for cooling superconducting equipment and the like.
  • the regenerator filled with a plurality of regenerator material particles of the second embodiment may be a Stirling-type refrigerator, a pulse-tube-type refrigerator, or the like, in addition to the GM refrigerator described above.
  • a regenerative cryogenic refrigerator 100 includes a first cylinder 111, a second cylinder 112, a vacuum vessel 113, a first regenerator 114, a second regenerator 115 (regenerator), a first seal ring 116, a second It has two seal rings 117, a first cold storage material 118, a second cold storage material 119 (cold storage material particles), a first expansion chamber 120, a second expansion chamber 121, a first cooling stage 122, a second cooling stage 123, and a compressor 124. .
  • the regenerative cryogenic refrigerator 100 has a vacuum vessel 113 in which a large-diameter first cylinder 111 and a small-diameter second cylinder 112 coaxially connected to the first cylinder 111 are installed.
  • a first regenerator 114 is arranged in the first cylinder 111 so as to be able to reciprocate.
  • a second regenerator 115 which is an example of the regenerator of the third embodiment, is arranged in the second cylinder 112 so as to be reciprocatable.
  • a first seal ring 116 is arranged between the first cylinder 111 and the first regenerator 114 .
  • a second seal ring 117 is arranged between the second cylinder 112 and the second regenerator 115 .
  • the first regenerator 114 is filled with a first regenerator material 118 such as a Cu mesh.
  • the second cold storage device 115 is filled with a plurality of cold storage material particles of the second embodiment as the second cold storage material 119 .
  • the second cold accumulator 115 may be divided by a metal mesh material and provided with a plurality of cold accumulator filled layers.
  • the second regenerator 115 is divided into a plurality of packed layers, at least one packed layer is filled with a group of cold storage material particles composed of a plurality of cold storage material particles of the second embodiment.
  • At least one cold storage material selected from bismuth cold storage material particles, tin cold storage material particles, holmium copper cold storage material particles, erbium nickel cold storage material particles, erbium cobalt cold storage material particles, and gadolinium aluminum oxide cold storage material particles Combined with the material group.
  • the combination of the cold storage materials is such that the one with the higher peak temperature of specific heat is the first cold storage material particle group, and the one with the lower peak specific heat temperature is the second cold storage material particle group, and the peak temperature of the specific heat decreases sequentially. It shall be combined.
  • a combination of using the holmium-copper cold storage material particle group for the first cold storage material particle group and the cold storage material particle group according to the second embodiment for the second cold storage material particle group may be used.
  • at least one cold storage material particle group selected from a lead cold storage material particle group, a bismuth cold storage material particle group, and a tin cold storage material particle group is used as the first cold storage material particle group.
  • a combination of using the holmium-copper cold storage material particle group as the second cold storage material particle group and using the cold storage material particle group according to the second embodiment as the third cold storage material particle group can be mentioned.
  • the holmium copper regenerator particles are preferably HoCu 2 or HoCu, for example.
  • the erbium-nickel regenerator particles are preferably ErNi or Er 3 Ni, for example.
  • the first cold storage device 114 and the second cold storage device 115 each have working medium passages provided in the gaps between the first cold storage material 118 and the second cold storage material 119 .
  • the working medium is helium gas.
  • a first expansion chamber 120 is provided between the first regenerator 114 and the second regenerator 115 .
  • a second expansion chamber 121 is provided between the second regenerator 115 and the tip wall of the second cylinder 112 .
  • a first cooling stage 122 is provided at the bottom of the first expansion chamber 120 .
  • a second cooling stage 123 having a lower temperature than the first cooling stage 122 is formed at the bottom of the second expansion chamber 121 .
  • a high-pressure working medium is supplied from the compressor 124 to the two-stage regenerative cryogenic refrigerator 100 described above.
  • the supplied working medium passes through the first regenerator material 118 filled in the first regenerator 114 and reaches the first expansion chamber 120 .
  • it passes through the second cold storage material 119 filled in the second cold storage device 115 and reaches the second expansion chamber 121 .
  • the working medium is cooled by supplying thermal energy to the first cold storage material 118 and the second cold storage material 119 .
  • the working medium passing between the first cold storage material 118 and the second cold storage material 119 expands in the first expansion chamber 120 and the second expansion chamber 121 to generate cold.
  • the first cooling stage 122 and the second cooling stage 123 are cooled.
  • the expanded working medium flows in opposite directions between the first cold storage material 118 and the second cold storage material 119 .
  • the working medium is discharged after receiving thermal energy from the first cold storage material 118 and the second cold storage material 119 .
  • the regenerative cryogenic refrigerator 100 is configured so that the thermal efficiency of the working medium cycle improves as the heat recuperation effect improves in this process, and a lower temperature is realized.
  • the second regenerator 115 is filled with a plurality of regenerator material particles of the second embodiment as the second regenerator material 119 . At least part of the second cold storage material 119 is the cold storage material particles of the second embodiment.
  • a plurality of cold storage material particles of the second embodiment are circular, represented by 4 ⁇ A/ L2 , where L is the peripheral length of the projected image of each of the cold storage material particles, and A is the actual area of the projected image. It is preferable that the ratio R is 0.5 or less and 5% or less.
  • a refrigerator according to the fourth embodiment includes a cold storage material or cold storage material particles that maintains volumetric specific heat and improves thermal conductivity and heat transfer rate.
  • the refrigerator of the fourth embodiment in a magnetically levitated train, the long-term reliability of the magnetically levitated train can be improved.
  • a refrigerator with excellent characteristics can be realized by using cool storage material particles with excellent characteristics.
  • the cryopump of the fifth embodiment includes the refrigerator of the fourth embodiment. In the following, a part of the description of the content overlapping with that of the fourth embodiment will be omitted.
  • FIG. 3 is a cross-sectional view showing the schematic configuration of the cryopump of the fifth embodiment.
  • the cryopump of the fifth embodiment is a cryopump 500 that includes the regenerative cryogenic refrigerator 100 of the fourth embodiment.
  • the cryopump 500 includes a cryopanel 501 that condenses or adsorbs gas molecules, a regenerative cryogenic refrigerator 100 that cools the cryopanel 501 to a predetermined cryogenic temperature, and is provided between the cryopanel 501 and the regenerative cryogenic refrigerator 100. It has a shield 503 attached to the inlet, a baffle 504 provided at the inlet, and a ring 505 for varying the exhaust rate of argon, nitrogen, hydrogen, or the like.
  • a cryopump with excellent characteristics can be realized by using a refrigerator with excellent characteristics. Moreover, by using the cryopump of the fifth embodiment in a semiconductor manufacturing apparatus or the like, the long-term reliability of the semiconductor manufacturing apparatus can be improved, and the frequency of maintenance of the semiconductor manufacturing apparatus can be reduced. As a result, it contributes to improving the quality of manufactured semiconductors and reducing manufacturing costs.
  • the superconducting magnet of the sixth embodiment includes the refrigerator of the fourth embodiment. In the following, a part of the description of the content overlapping with that of the fourth embodiment will be omitted.
  • FIG. 4 is a perspective view showing a schematic configuration of the superconducting magnet of the sixth embodiment.
  • the superconducting magnet of the sixth embodiment is, for example, a superconducting magnet 600 for magnetically levitated trains, which includes the regenerative cryogenic refrigerator 100 of the fourth embodiment.
  • a superconducting magnet 600 for a magnetic levitation train includes a superconducting coil 601, a liquid helium tank 602 for cooling the superconducting coil 601, a liquid nitrogen tank 603 for preventing volatilization of the liquid helium, a laminated heat insulating material 605, a power lead 606, and a persistent current switch. 607 and a regenerative cryogenic refrigerator 100 .
  • a superconducting magnet with excellent characteristics can be realized by using a refrigerator with excellent characteristics.
  • a nuclear magnetic resonance imaging apparatus of the seventh embodiment includes the refrigerator of the fourth embodiment. In the following, a part of the description of the content overlapping with that of the fourth embodiment will be omitted.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a nuclear magnetic resonance imaging apparatus according to the seventh embodiment.
  • a nuclear magnetic resonance imaging (MRI) apparatus of the seventh embodiment is a nuclear magnetic resonance imaging apparatus 700 including the regenerative cryogenic refrigerator 100 of the fourth embodiment.
  • a nuclear magnetic resonance imaging apparatus 700 includes a superconducting static magnetic field coil 701 that applies a spatially uniform and temporally stable static magnetic field to the human body, a correction coil (not shown) that corrects the non-uniformity of the generated magnetic field, a measurement It has a gradient magnetic field coil 702 that gives a magnetic field gradient to the region, a radio wave transmitting/receiving probe 703 , a cryostat 705 and a radiation heat shield 706 .
  • a regenerative cryogenic refrigerator 100 is used for cooling the superconducting static magnetic field coil 701 .
  • a nuclear magnetic resonance imaging apparatus with excellent characteristics can be realized by using a refrigerator with excellent characteristics.
  • a nuclear magnetic resonance apparatus of the eighth embodiment includes the refrigerator of the fourth embodiment. In the following, a part of the description of the content overlapping with that of the fourth embodiment will be omitted.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a nuclear magnetic resonance apparatus according to the seventh embodiment.
  • a nuclear magnetic resonance (NMR) apparatus of the seventh embodiment is a nuclear magnetic resonance apparatus 800 including the regenerative cryogenic refrigerator 100 of the third embodiment.
  • a nuclear magnetic resonance apparatus 800 includes a superconducting static magnetic field coil 802 that applies a magnetic field to a sample such as an organic substance placed in a sample tube 801 , a high frequency oscillator 803 that applies radio waves to the sample tube 801 in the magnetic field, is provided with an amplifier 804 that amplifies an induced current generated in a coil (not shown). It also includes a regenerative cryogenic refrigerator 100 that cools the superconducting static magnetic field coil 802 .
  • a nuclear magnetic resonance apparatus with excellent characteristics can be realized by using a refrigerator with excellent characteristics.
  • the magnetic field application type single crystal pulling apparatus of the ninth embodiment includes the refrigerator of the fourth embodiment. In the following, a part of the description of the content overlapping with that of the fourth embodiment will be omitted.
  • FIG. 7 is a perspective view showing the schematic configuration of the magnetic field application type single crystal pulling apparatus of the ninth embodiment.
  • the magnetic field application type single crystal pulling apparatus of the ninth embodiment is a magnetic field application type single crystal pulling apparatus 900 including the regenerative cryogenic refrigerator 100 of the fourth embodiment.
  • a magnetic field application type single crystal pulling apparatus 900 includes a single crystal pulling section 901 having a raw material melting crucible, a heater, a single crystal pulling mechanism, etc., a superconducting coil 902 for applying a static magnetic field to the raw material melt, and a single crystal pulling section 901. lifting mechanism 903 , current lead 905 , heat shield plate 906 and helium vessel 907 .
  • a cold storage type cryogenic refrigerator 100 is used for cooling the superconducting coil 902 .
  • a magnetic field application type single crystal pulling apparatus with excellent characteristics can be realized by using a refrigerator with excellent characteristics.
  • the helium recondensing device of the tenth embodiment comprises the refrigerator of the fourth embodiment.
  • the helium recondensing device of the tenth embodiment comprises the refrigerator of the fourth embodiment.
  • FIG. 8 is a schematic diagram showing the schematic configuration of the helium recondensing device of the tenth embodiment.
  • the helium recondensing device of the tenth embodiment is a helium recondensing device 1000 that includes the regenerative cryogenic refrigerator 100 of the fourth embodiment.
  • the helium recondensing device 1000 includes a regenerative cryogenic refrigerator 100, an evaporation pipe 1001, and a liquefaction pipe 1002.
  • the helium recondensing device 1000 is a device that uses liquid helium, such as a superconducting magnet, a nuclear magnetic resonance (NMR) device, a nuclear magnetic resonance imaging (MRI) device, a physical property measurement system (PPMS), or a magnetic property measurement system.
  • liquid helium such as a superconducting magnet, a nuclear magnetic resonance (NMR) device, a nuclear magnetic resonance imaging (MRI) device, a physical property measurement system (PPMS), or a magnetic property measurement system.
  • the helium gas evaporated from the liquid helium device provided in the device using the superconducting magnet can be recondensed into liquid helium.
  • Helium gas is introduced into the helium recondensing device 1000 from a liquid helium device (not shown) through the evaporation pipe 1001 .
  • the helium gas is cooled to 4 K, which is below the liquefying temperature of helium, by the regenerative cryogenic refrigerator 100 .
  • Condensed liquid helium returns to the liquid helium system through liquefaction line 1002 .
  • a helium recondensing device with excellent characteristics can be realized by using a refrigerator with excellent characteristics.
  • Example 1 Gd 2 O 3 powder was mixed and pulverized in a ball mill for 24 hours to prepare a raw material mixture. Next, the obtained raw material mixture was dried and then granulated using a tumbling granulator to prepare granulated particles for cold storage material particles having a particle diameter of 0.4 mm to 0.6 mm. At this time, polyvinyl alcohol was used as the binder, and was added so as to be 1.2% by weight with respect to the raw material powder. The carbon concentration of the granulated particles for cold storage material particles was 0.99% by weight. The relative density of the granulated particles for cold storage material particles was 34%.
  • the granulated particles were filled in a cylindrical container having a diameter of 15 mm and a height of 5 mm. At this time, a sufficient amount of the granulated particles for the cold storage material particles was filled so that the granulated particles for the cold storage material particles were fixed in the cylindrical container and did not move freely. A simple vibration with an amplitude of 2 mm and a maximum acceleration of 200 m/s 2 was applied 1 ⁇ 10 3 times to the container. As a result, the proportion of broken granulated particles for cold storage material particles was less than 0.1% by weight.
  • the granulated particles for cold storage material particles were degreased at 600° C. for 2 hours in an air atmosphere.
  • the granulated particles for cold storage material particles after degreasing had a carbon concentration of 0.51% by weight and a relative density of 40%.
  • the granulated particles for cold storage material particles were heat-treated at 600° C. for 2 hours in an atmosphere containing hydrogen sulfide (H 2 S) to sulfurize the granulated particles. After that, heat treatment was performed at 1300° C. for 12 hours in an inert gas atmosphere to sinter the granulated particles for the cold storage material particles, thereby manufacturing the cold storage material particles.
  • H 2 S hydrogen sulfide
  • the main component of the cold storage material particles of Example 1 is gadolinium oxysulfide.
  • the mixing time of the raw material powder, the conditions for the heat treatment for degreasing, the conditions for the heat treatment for sulfurization, the conditions for the heat treatment for sintering, etc. are adjusted to be appropriate conditions.
  • Example 2 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 1 except that a mixture of Gd 2 O 3 powder and Na 2 CO 3 powder was used as the raw material powder.
  • Example 3 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2 except that K 2 CO 3 powder was used instead of Na 2 CO 3 powder.
  • Example 4 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2, except that CaCO3 powder was used instead of Na2CO3 powder.
  • Example 5 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2, except that MgCO3 powder was used instead of Na2CO3 powder.
  • Example 6 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2, except that SrCO3 powder was used instead of Na2CO3 powder.
  • Example 7 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2 except that CaCO3 powder was used in addition to Na2CO3 powder.
  • Example 8 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 7, except that MgCO3 powder was used instead of CaCO3 powder.
  • Example 9 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 7, except that SrCO3 powder was used instead of CaCO3 powder.
  • Example 10 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 1, except that Ho 2 O 3 powder was used instead of Gd 2 O 3 powder.
  • Example 11 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2 except that K 2 CO 3 powder was used in addition to Na 2 CO 3 powder.
  • Example 12 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2 except that K 2 CO 3 powder and CaCO 3 powder were used in addition to Na 2 CO 3 powder.
  • Example 13-15 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2, except that the weight of the Na 2 CO 3 powder was changed.
  • Examples 16-18 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 7, except that the weight of the CaCO 3 powder was changed.
  • Example 19 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 2, except that part of the Gd 2 O 3 powder was changed to Ho 2 O 3 .
  • Example 20 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 1, except that Gd 2 O 2 S powder was used instead of Gd 2 O 3 powder and sulfurization was not performed.
  • Example 21 A slurry was prepared by adding the Gd 2 O 3 powder to the sodium alginate aqueous solution and mixing for 24 hours. Also, the ratio of the weight of the raw material powder to the alginic acid aqueous solution was set to 0.5 times. The prepared slurry was added dropwise to an aqueous calcium lactate solution, which is a gelling solution. A syringe was used to drip the slurry.
  • the diameter of the syringe was 510 ⁇ m, and the distance from the tip of the syringe to the liquid surface of the calcium lactate aqueous solution was 100 mm.
  • the syringe-dropped slurry was kept in the gelling solution for 5 hours.
  • the gelled granulated particles for cold storage material particles were washed with pure water. After washing the granulated particles for cold storage material particles, they were dried.
  • the granulated particles for cold storage material particles had a sodium concentration of 0.83 atomic % and a carbon concentration of 0.5 weight %.
  • the relative density of the granulated particles for cold storage material particles was 27%. After drying the granulated particles for cold storage material particles, degreasing, sulfurization and sintering were performed.
  • the granulated particles for cold storage material particles were degreased at 500° C. for 2 hours in an air atmosphere. After degreasing, the granulated particles for cold storage material particles had a sodium concentration of 1.0 atom %, a carbon concentration of 0.25 weight %, and a relative density of 30%. After degreasing, heat treatment was performed at 600° C. for 2 hours in an atmosphere containing hydrogen sulfide (H 2 S) to sulfurize the granulated particles for cold storage material particles. Heat treatment was performed at 1300° C. for 12 hours in an inert gas atmosphere to sinter the granulated particles for the cold storage material particles to produce the cold storage material particles.
  • H 2 S hydrogen sulfide
  • the main component of the cold storage material particles of Example 21 is gadolinium oxysulfide.
  • the sodium concentration in the cold storage material particles of Example 21 was 1.1 atomic %.
  • Example 21 except that the relative density of the granulated particles for cold storage material particles was changed by changing the ratio of the raw material powder and the sodium alginate aqueous solution, and that sodium and calcium were removed by changing the washing time and number of washings. Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in the above.
  • Example 25-26 Granulated particles for cold storage material particles were prepared in the same manner as in Example 21 except that the washing time was adjusted by changing the concentration of carbon contained in the granulated particles for cold storage material particles by changing the concentration of the sodium alginate aqueous solution. And cold storage material particles were produced.
  • Example 27 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 21, except that an aqueous magnesium chloride solution was used instead of the aqueous calcium lactate solution.
  • Example 28 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 21, except that an aqueous solution of strontium chloride was used instead of the aqueous solution of calcium lactate.
  • Example 29 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 21, except that an air pulse dispenser was used instead of a syringe as the method for dropping the slurry.
  • the diameter of the nozzle was 510 ⁇ m, and the distance from the tip of the nozzle to the liquid surface of the aqueous calcium lactate solution was 100 mm.
  • Example 30 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 21, except that a piezo dispenser was used instead of a syringe as the slurry dropping method.
  • the diameter of the nozzle was 510 ⁇ m, and the distance from the tip of the nozzle to the liquid surface of the aqueous calcium lactate solution was 100 mm.
  • Example 31 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 21, except that a continuous inkjet method was used instead of a syringe as the method for dropping the slurry.
  • Examples 32-37 The granulated particles for cold storage material particles and the cold storage material particles of Examples 32 to 37 differ from the granulated particles for cold storage material particles and the cold storage material particles of Example 21 in particle size or aspect ratio.
  • the diameter of the syringe and the tip of the syringe to the surface of the gelling solution changed the distance of
  • Example 38 In the same manner as in Example 21, except that the relative density was set to 11% by changing the ratio of the raw material powder and the sodium alginate aqueous solution, and that only calcium was removed by changing the immersion time, washing time and number of times. , granulated particles for cold storage material particles and cold storage material particles were produced.
  • Example 39 In the same manner as in Example 21, except that the relative density was set to 11% by changing the ratio of the raw material powder and the sodium alginate aqueous solution, and that only sodium was removed by changing the immersion time, washing time and number of times. , granulated particles for cold storage material particles and cold storage material particles were produced.
  • Example 40 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 22, except that Al 2 O 3 powder was also used as the raw material powder. The Al 2 O 3 powder was added so that the Al contained in the cold storage material particles was 15 atomic %.
  • Example 41 Granulated particles for cold storage material particles and cold storage material particles were produced in the same manner as in Example 38, except that Al 2 O 3 powder was also used as the raw material powder. The Al 2 O 3 powder was added so that the Al contained in the cold storage material particles was 15 atomic %.
  • Example 42 For cold storage material particles, in the same manner as in Example 21, except that the relative density was set to 11% by changing the ratio of the raw material powder and the sodium alginate aqueous solution, and the Al 2 O 3 powder was also used as the raw material powder. Granulated particles and cold storage material particles were produced. The Al 2 O 3 powder was added so that the Al contained in the cold storage material particles was 15 atomic %.
  • Example 43 A cold storage material was prepared in the same manner as in Example 21, except that the relative density was set to 11% by changing the ratio of the raw material powder and the sodium alginate aqueous solution, and that the aluminum chloride aqueous solution was used instead of the calcium lactate aqueous solution. Granulated particles for particles and cold storage material particles were produced. Al was added so that the amount of Al contained in the cold storage material particles was 0.01 atomic %.
  • Example 44 For cold storage material particles, in the same manner as in Example 21, except that the relative density was set to 11% by changing the ratio of the raw material powder and the sodium alginate aqueous solution, and that the aluminum chloride aqueous solution was used in addition to the calcium lactate aqueous solution. Granulated particles and cold storage material particles were produced. Al was added so that the amount of Al contained in the cold storage material particles was 0.01 atomic %.
  • Example 45 Particles for cold storage materials were prepared in the same manner as in Example 21, except that the relative density was set to 11% by changing the ratio of the raw material powder and the sodium alginate aqueous solution, and that the aluminum chloride aqueous solution was used in addition to the calcium lactate aqueous solution. Granulated particles for cooling and cold storage material particles were produced. Al was added so that the amount of Al contained in the cold storage material particles was 20 atomic %.
  • Example 46 Cold storage material particles were prepared in the same manner as in Example 1, except that Gd 2 O 3 powder and Al 2 O 3 powder were used as raw material powders, and heat treatment was not performed in an atmosphere containing hydrogen sulfide (H 2 S). granulated particles and cold storage material particles were produced. The main component of the cold storage material particles is GdAlO3 .
  • Example 47 Cold storage material particles were prepared in the same manner as in Example 2, except that Gd 2 O 3 powder and Al 2 O 3 powder were used as raw material powders, and heat treatment was not performed in an atmosphere containing hydrogen sulfide (H 2 S). granulated particles and cold storage material particles were produced.
  • the main constituent is GdAlO3 .
  • Example 48 Cool storage material particles were prepared in the same manner as in Example 21, except that Gd 2 O 3 powder and Al 2 O 3 powder were used as raw material powders, and heat treatment was not performed in an atmosphere containing hydrogen sulfide (H 2 S). granulated particles and cold storage material particles were produced.
  • the main constituent is GdAlO3 .
  • Comparative example 1 The granulated particles for cold storage material particles of Comparative Example 1 differ from the granulated particles for cold storage material particles of Example 21 in that the relative density is as low as 9%.
  • the amount of the raw material powder was reduced compared to the case of producing the granulated particles for cold storage material particles of Example 21.
  • Comparative example 2 The granulated particles for cold storage material particles of Comparative Example 2 differ from the granulated particles for cold storage material particles of Example 21 in that the relative density is as high as 51%.
  • the weight of the raw material powder was increased compared to the case of producing the granulated particles for cold storage material particles of Example 21.
  • Comparative Example 3 The granulated particles for cold storage material particles of Comparative Example 3 differ from the granulated particles for cold storage material particles of Example 21 in that the carbon concentration is as low as 0.0004% by weight.
  • the concentration of the sodium alginate aqueous solution was reduced compared to the case of producing the granulated particles for cold storage material particles of Example 21.
  • Comparative Example 4 The granulated particles for cold storage material particles of Comparative Example 4 differ from the granulated particles for cold storage material particles of Example 21 in that the carbon concentration is as high as 51% by weight.
  • the concentration of the sodium alginate aqueous solution was increased compared to the case of producing the granulated particles for cold storage material particles of Example 21.
  • Comparative Example 5 The granulated particles for cold storage material particles and the cold storage material particles of Comparative Example 5 are different from those of Example 41 in that the amount of Al contained in the cold storage material particles is as large as 65 atomic %.
  • the weight of the Al 2 O 3 powder was changed to Increased.
  • the strength of the granulated particles for cold storage material particles and the relative density and specific heat of the cold storage material particles were measured. The results are shown in Tables 1, 2 and 3.
  • the granulated particles for cold storage material particles are described as “granulated particles”
  • the cold storage material particles manufactured from the granulated particles for cold storage material particles are described as "cold storage material particles”.
  • the cold storage material when the relative density is 15% or more and 50% or less is better than when the relative density is 10% or more and 15% or less. It can be seen that the relative density of the particles is improved and the specific heat is also improved. It is considered that this is because if the relative density is too low, the number of contact points between the raw material powders decreases, and the sinterability of the regenerative material particles decreases.
  • Example 38 and Example 39 when the first group element or the second group element is included, the relative density of the cold storage material particles is improved even if the relative density is 10% or more and 15% or less, and the specific heat is also improved. I understand. This is considered to be due to the sintering promoting effect of the first group elements and second group elements.
  • the inclusion of the sintering aid improves the relative density of the sintered particles. This is considered to be due to the sintering promotion effect of the sintering aid. If the relative density is less than 10%, the relative density of the cold storage material particles becomes low even if the sintering aid is contained, and the specific heat also becomes small.
  • the relative density of the granulated particles for cold storage material particles was 10% or more and 50% even though the main component of the cold storage material particles was GdAlO3 . % or less, the same effects as when the main component is gadolinium oxysulfide can be seen.
  • An example of an air pulse dispenser or a piezo dispenser has been described as a dispenser, but a plunger dispenser may also be used.
  • Cold storage type cryogenic refrigerator (freezer) 101 Granulated particles for cold storage material particles 115 Second cold storage device (cool storage device) 119 Second cold storage material (cool storage material particles) 500 cryopump 600 superconducting magnet 700 nuclear magnetic resonance imaging device 800 nuclear magnetic resonance device 900 magnetic field application type single crystal pulling device 1000 helium recondensing device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

実施形態の蓄冷材粒子用造粒粒子は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも一つの希土類元素を含む希土類酸硫化物、又は、上記少なくとも一つの希土類元素を含む希土類酸化物と、濃度が0.001重量%以上50重量%以下の炭素と、を含み、相対密度が10%以上50%以下である。

Description

蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
 本発明の実施形態は、蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置に関する。
 近年、超電導技術の発展は著しく、超電導技術の応用分野が拡大するに伴って小型で高性能の極低温冷凍機の開発が不可欠になってきている。極低温冷凍機は、軽量かつ小型で熱効率の高いことが要求される。極低温冷凍機は、種々の応用分野において実用化が進められている。
 極低温冷凍機は、複数の蓄冷材を充填した蓄冷器を備える。例えば、蓄冷材と、蓄冷器の中を通るヘリウムガスとの間で熱交換を行うことにより、寒冷を発生させる。例えば、超電導MRI装置や、半導体製造装置等に使用されるクライオポンプなどにおいては、ギフォード・マクマホン(GM)方式、スターリング方式、又はパルスチューブ方式などの冷凍サイクルによる冷凍機が用いられている。
 また、磁気浮上列車にも超電導磁石を用いて磁力を発生させるために高性能な冷凍機が必須とされている。さらに、最近では、超電導電力貯蔵装置(SMES)、及び高品質のシリコンウェハーなどを製造する磁界印加式単結晶引上げ装置などにおいても高性能な冷凍機が用いられている。また、高い信頼性を有することが期待されているパルスチューブ冷凍機の開発及び実用化も積極的に進められている。
 上記したような超電導磁石やMRI装置などにおいては、使用する液体ヘリウムが蒸発するため、液体ヘリウムの補給が問題となる。近年、ヘリウムの枯渇問題が深刻化し、入手困難な状態が発生し、産業界に影響を及ぼしている。
 この液体ヘリウムの消費量を低減し、補給などのメンテナンスの負荷を軽減するため、蒸発したヘリウムを再凝縮するヘリウム再凝縮装置が実用化され、需要が高まっている。このヘリウム再凝縮装置にも、ヘリウムを液化するために、温度を4Kレベルに冷却するGM冷凍機やパルスチューブ冷凍機が使用されている。
 冷凍機においては、蓄冷材が充填された蓄冷器内を、圧縮されたヘリウム(He)ガスなどの作動媒質が一方向に流れて、その熱エネルギーを蓄冷材に供給する。そして、蓄冷器内を膨張した作動媒質が反対方向に流れ、蓄冷材から熱エネルギーを受け取る。こうした過程での復熱効果が良好になるに伴い、作動媒質サイクルでの熱効率が向上し、より低い温度を実現することが可能となる。ヘリウムガスと蓄冷材との熱エネルギー交換が円滑に行われるためには、蓄冷材の熱伝導率は高いことが望ましい。
 ここで蓄冷器に搭載する蓄冷材の単位体積当たりの比熱が高いほど、蓄冷材の蓄えることが可能な熱エネルギーが増加するため、冷凍機の冷凍能力が向上する。このため、蓄冷器の低温側には低温で高い比熱を有する蓄冷材を、高温側には高温で高い比熱を有する蓄冷材を充填することが望ましい。
 磁性蓄冷材はその組成に依存して、特定の温度域で高い体積比熱を示す。このため、異なる体積比熱を示す異なる組成の磁性蓄冷材を組み合わせることで、蓄冷能力が高まり、冷凍機の冷凍能力が向上する。
 また、蓄冷器に充填する蓄冷材は、その熱伝導率及び熱伝達率が高いほど熱エネルギーの受け渡しの効率が向上し、冷凍機の効率が向上する。
 これまでの冷凍機では、蓄冷器の高温側に鉛(Pb)、ビスマス(Bi)、又はスズ(Sn)などの金属蓄冷材粒子を充填し、蓄冷器の20K以下の低温側にErNi、ErNi、HoCuなどの金属系磁性蓄冷材粒子を充填することで4Kでの冷凍が実現されてきた。
 近年では、金属系磁性蓄冷材粒子の一部を2Kから10Kの温度域で高い比熱を有するGdS、TbS、DyS、HoS、GdAlOなどのセラミックス磁性蓄冷材粒子に置換することにより、冷凍機の冷凍能力を向上させる試みもなされている。
 上記のセラミックス磁性蓄冷材粒子は、原料とバインダの混合、造粒、数百度での脱脂、数百度での硫化及び千数百度での焼結等の多段の製造プロセスを経て得られる。このため、脱脂及び硫化を従来に比べ低温で実施できれば、製造コスト及び環境負荷を低減できる。
特開2003-73661号公報 特開2003-213252号公報 国際公開第2018/025581号
 本発明が解決しようとする課題は、蓄冷材粒子の製造コストを低減できる蓄冷材粒子用造粒粒子を提供することにある。
 実施形態の蓄冷材粒子用造粒粒子は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも一つの希土類元素を含む希土類酸硫化物、又は、前記少なくとも一つの希土類元素を含む希土類酸化物と、濃度が0.001重量%以上50重量%以下の炭素と、を含み、相対密度が10%以上50%以下である。
第1の実施形態の蓄冷材粒子用造粒粒子の模式断面図。 第2の実施形態の蓄冷材粒子及び第4の実施形態の冷凍機の要部構成を示す模式断面図。 第5の実施形態のクライオポンプの概略構成を示す断面図。 第6の実施形態の超電導磁石の概略構成を示す斜視図。 第7の実施形態の核磁気共鳴イメージング装置の概略構成を示す断面図。 第8の実施形態の核磁気共鳴装置の概略構成を示す断面図。 第9の実施形態の磁界印加式単結晶引上げ装置の概略構成を示す斜視図。 第10の実施形態のヘリウム再凝縮装置の概略構成を示す模式図。
 以下、図面を参照しつつ本発明の実施形態を説明する。なお、以下の説明では、同一又は類似の部材などには同一の符号を付し、一度説明した部材などについては適宜その説明を省略する場合がある。
 本明細書中、極低温とは、例えば、超電導現象を工業的に有用に利用できる温度域を意味する。例えば、20K以下の温度域である。
(第1の実施形態)
 第1の実施形態の蓄冷材粒子用造粒粒子は、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)からなる群から選ばれる少なくとも一つの希土類元素を含む希土類酸硫化物、又は、上記少なくとも一つの希土類元素を含む希土類酸化物と、濃度が0.001重量%以上50重量%以下の炭素と、を含み、相対密度が10%以上50%以下である。
 図1は、第1の実施形態の蓄冷材粒子用造粒粒子の模式断面図である。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、蓄冷材粒子を製造するための造粒粒子である。例えば、第1の実施形態の蓄冷材粒子用造粒粒子101に脱脂のための熱処理、焼結のための熱処理を行うことで、蓄冷材粒子が製造される。脱脂のための熱処理の後、焼結のための熱処理の前に、蓄冷材粒子用造粒粒子101に対して硫化のための熱処理を行っても構わない。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、図1に示すように、例えば、原料粉末101a、バインダ101b、及び空隙101cを含む。蓄冷材粒子用造粒粒子101は、バインダ101bにかえて、例えば、分散媒を含んでいても構わない。蓄冷材粒子用造粒粒子101は、バインダ101bにかえて、例えば、ゲル化剤を含んでいても構わない。原料粉末101aには、例えば、蓄冷材粒子を製造する際の焼結を促進させるための焼結助剤が含まれていても構わない。
 蓄冷材粒子用造粒粒子101は、原料粉末101aを造粒することにより形成されている。蓄冷材粒子用造粒粒子101は、例えば、複数の原料粉末101aがバインダ101bによって結合することにより形成されている。
 蓄冷材粒子用造粒粒子101は、例えば、ゲルである。蓄冷材粒子用造粒粒子101は、例えば、複数の原料粉末101aをゲル化剤(ゲル化溶液)を用いて、ゲル化することにより形成されている。原料粉末101aは、例えば、独立した運動性を失い、集合して固化した状態にある。
 蓄冷材粒子用造粒粒子101がゲルである場合、蓄冷材粒子用造粒粒子101は、例えば、原料粉末101aと分散媒を含む。分散媒には、例えば、ゲル化剤が含まれる。蓄冷材粒子用造粒粒子101がゲルである場合、蓄冷材粒子用造粒粒子101は、例えば、原料粉末101aとゲル化剤を含む。なお、蓄冷材粒子用造粒粒子101のゲル化後に、ゲル化したゲル化剤もゲル化剤と称する。
 原料粉末101aは、希土類酸硫化物又は希土類酸化物を含む。原料粉末101aに含まれる希土類酸硫化物は、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)からなる群から選ばれる少なくとも一つの希土類元素を含む。また、原料粉末101aに含まれる希土類酸化物は、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)からなる群から選ばれる少なくとも一つの希土類元素を含む。
 原料粉末101aに含まれる希土類酸硫化物は、例えば、酸硫化ガドリニウム又は酸硫化ホルミウムである。原料粉末101aに含まれる希土類酸硫化物は、例えば、GdS、TbS、DyS、又はHoSである。
 原料粉末101aに含まれる希土類酸化物は、例えば、酸化ガドリニウム又は酸化ホルミウムである。原料粉末101aに含まれる希土類酸化物は、例えば、Gd、Tb、Dy、又はHoである。
 原料粉末101aは、例えば、第一族元素を含む炭酸塩、酸化物、窒化物、又は炭化物を含む。原料粉末101aは、例えば、第二族元素を含む炭酸塩、酸化物、窒化物、又は炭化物を含む。
 原料粉末101aは、例えば、添加元素を含む炭酸塩、酸化物、窒化物、又は炭化物を含む。上記添加元素は、マンガン(Mn)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、イットリウム(Y)、及びボロン(B)からなる群から選ばれる少なくとも一つの元素である。
 原料粉末101aとして焼結助剤が含まれる場合、焼結助剤は、例えば酸化物である。焼結助剤は、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化ジルコニウム、又は酸化ホウ素である。
 バインダ101bは、有機物である。バインダ101bは、例えば、樹脂である。バインダ101bは、例えば、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アクリル樹脂、又はポリエチレングリコールである。
 蓄冷材粒子用造粒粒子101に分散媒が含まれる場合、分散媒は有機物である。分散媒は、例えば、アルギン酸塩である。分散媒は、例えば、アルギン酸ナトリウム、アルギン酸アンモニウム、又はアルギン酸カリウムである。
 蓄冷材粒子用造粒粒子101の相対密度は、10%以上50%以下である。
 例えば、蓄冷材粒子用造粒粒子101の相対密度が低い場合、蓄冷材粒子用造粒粒子101に占める原料粉末101aの体積割合が相対的に小さい。蓄冷材粒子用造粒粒子101の相対密度が低い場合、蓄冷材粒子用造粒粒子101に占めるバインダ101b、分散媒、又は空隙101cの体積割合が相対的に高い。
 一方、蓄冷材粒子用造粒粒子101の相対密度が高い場合、蓄冷材粒子用造粒粒子101に占める原料粉末101aの体積割合が相対的に高い。蓄冷材粒子用造粒粒子101の相対密度が高い場合、蓄冷材粒子用造粒粒子101に占めるバインダ101b、分散媒、又は空隙101cの体積割合が相対的に低い。
 蓄冷材粒子用造粒粒子101の相対密度は、例えば、造粒粒子50粒から求めた平均成形密度を構成物質の真密度で除算することで算出することができる。50粒の平均成形密度は、造粒粒子50粒の重量を、体積で除算することで求める。体積は、各粒子の円相当径を粒子の直径と仮定して求めた各粒子の体積を積算することで算出できる。
 蓄冷材粒子用造粒粒子101の真密度の算出においては、まず、X線回折測定により造粒粒子を構成する原料粉末101aの結晶相を同定する。そして、X線回折パターンのリートベルト解析又は誘導結合プラズマ発光分光分析から、造粒粒子を構成する原料粉末101aの構成比率を求める。原料粉末101aの結晶相と、原料粉末101aの構成比率から蓄冷材粒子用造粒粒子101の真密度が算出できる。
 蓄冷材粒子用造粒粒子101の粒径は、例えば、50μm以上7mm以下である。また、蓄冷材粒子用造粒粒子101のアスペクト比は、例えば、1以上5以下である。蓄冷材粒子用造粒粒子101のアスペクト比とは、蓄冷材粒子用造粒粒子101の短径に対する長径の比である。蓄冷材粒子用造粒粒子101の形状は、例えば、球状である。
 本明細書中、蓄冷材粒子用造粒粒子101の粒径とは、円相当径である。円相当径は、光学顕微鏡画像又は走査電子顕微鏡画像(SEM画像)などの画像で観察される図形の面積に相当する真円の直径である。蓄冷材粒子用造粒粒子101の粒径は、例えば、光学顕微鏡画像又はSEM画像の画像解析により求めることが可能である。
 蓄冷材粒子用造粒粒子101は、炭素を含む。蓄冷材粒子用造粒粒子101に含まれる炭素の濃度は、0.001重量%以上50重量%以下である。
 炭素は、例えば、バインダ101b又は分散媒に含まれる。例えば、蓄冷材粒子用造粒粒子101の相対密度が低い場合、炭素の濃度は相対的に高くなる。例えば、蓄冷材粒子用造粒粒子101の相対密度が高い場合、炭素の濃度は相対的に低くなる。
 蓄冷材粒子用造粒粒子101は、例えば、第一族元素を含む。第一族元素は、例えば、リチウム(Li)、ナトリウム(Na)、及びカリウム(K)からなる群から選ばれる少なくとも一つの元素である。
 第一族元素は、例えば、原料粉末101a、バインダ101b、又は分散媒に含まれる。第一族元素は、例えば、蓄冷材粒子用造粒粒子101を製造する際に用いられたゲル化溶液に由来する。
 蓄冷材粒子用造粒粒子101に含まれる第一族元素の濃度は、例えば、0.001原子%以上60原子%以下である。
 蓄冷材粒子用造粒粒子101は、例えば、第二族元素を含む。第二族元素は、例えば、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、及びバリウム(Ba)からなる群から選ばれる少なくとも一つの元素である。
 第二族元素は、例えば、原料粉末101a、バインダ101b、又は分散媒に含まれる。第二族元素は、例えば、蓄冷材粒子用造粒粒子101を製造する際に用いられたゲル化溶液に由来する。
 蓄冷材粒子用造粒粒子101に含まれる第二族元素の濃度は、例えば、0.001原子%以上60原子%以下である。
 蓄冷材粒子用造粒粒子101は、例えば、マンガン(Mn)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、イットリウム(Y)、及びボロン(B)からなる群から選ばれる少なくとも一つの元素である添加元素を含む。
 添加元素は、例えば、原料粉末101a、バインダ101b、又は分散媒に含まれる。添加元素は、例えば、蓄冷材粒子用造粒粒子101を製造する際に用いられたゲル化溶液に由来する。
 蓄冷材粒子用造粒粒子101に含まれる上記添加元素の濃度は、例えば、0.001原子%以上60原子%以下である。
 蓄冷材粒子用造粒粒子101に含まれる元素の検出、及び、元素の原子濃度の測定は、例えば、造粒粒子を液体に溶解させ、誘導結合プラズマ発光分光分析(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP-AES)を用いて行うことも可能である。また、エネルギー分散型X線分光法(EDX)又は波長分散型X線分析法(WDX)を用いて行うことも可能である。
 第1の実施形態の蓄冷材粒子用造粒粒子の製造方法は、特に限定されるものではないが、例えば原料粉末とバインダをボールミルなどを用いて混合して原料混合体を調製し、得られた原料混合体を転動造粒法,攪拌造粒法,押し出し法,噴霧法(スプレー法)又はプレス成形法などにより粒状に成形(造粒)することにより製造できる。
 上記造粒法では、バインダを添加し原料粉末同士を付着させることで、造粒粒子の強度を向上させている。バインダは、例えば、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アクリル樹脂、ポリエチレングリコール等を用いることができる。バインダの添加量は、例えば、0.01重量%以上40重量%以下である。例えば、バインダ量を増やすことで、相対密度が低くても破壊強度を向上させることができる。
 原料粉末には、酸化物、あるいは酸硫化物を使用することができる。蓄冷材粒子の目標組成に合わせて、酸化物、あるいは酸硫化物の種類及び割合を調整する。
 原料粉末に第一族元素、第二族元素、又は添加元素を含む、炭酸塩、酸化物、窒化物、あるいは炭化物を使用することができる。上記添加元素は、マンガン(Mn)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、イットリウム(Y)、及びボロン(B)からなる群から選ばれる少なくとも一つの元素である。原料粉末に第一族元素、第二族元素、又は添加元素を含む、炭酸塩、酸化物、窒化物、あるいは炭化物を使用することで、第一族元素、第二族元素、又は添加元素を含有する蓄冷材粒子用造粒粒子を製造することができる。
 原料混合体には、原料粉末として焼結助剤を含んでもよい。焼結助剤は、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化ジルコニウム、又は酸化ホウ素である。
 転動造粒においては、例えば、造粒時の造粒機の回転数及び造粒機の直径を制御することで、蓄冷材粒子用造粒粒子の相対密度を変化することができる。回転数が遅い、あるいは造粒機の直径が小さいと、転動時のエネルギーが減少することで、蓄冷材粒子用造粒粒子の相対密度が低減する。
 また、第1の実施形態の蓄冷材粒子用造粒粒子の製造において、原料粉末をアルギン酸水溶液に加えて混合して作製したスラリーをゲル化溶液に滴下し、スラリーをゲル化させることで粒状に造粒してもよい。この方法は、ゲル化溶液が含有する多価金属イオンによる架橋反応によりゲル化を進行させることで粒子を造粒する方法である。
 原料粉末とアルギン酸水溶液の割合を変化させることで、蓄冷材粒子用造粒粒子の相対密度を変化させることができる。原料粉末のアルギン酸水溶液に対する重量の割合は、例えば、0.1倍以上20倍以下である。
 蓄冷材粒子用造粒粒子はアルギン酸塩のゲル化により粒状に固まる。このため、造粒粒子の強度、すなわち、ゲル化強度は粒子に含まれるアルギン酸塩の量、あるいは、アルギン酸塩水溶液の粘度によりゲル化強度は変化する。アルギン酸塩は、例えば、アルギン酸塩水溶液の粘度を調整することによって、ゲル中に原料粉末を担保し、蓄冷材粒子用造粒粒子の強度を保ち、目的とする形状の蓄冷材粒子用造粒粒子を得ることができる。
 スラリーのゲル化溶液への滴下は、例えば、スポイト、ビューレット、ピペット、シリンジ、ディスペンサー、インクジェット等を用いることができる。以下、同手法による粒子の造粒法をアルギン酸ゲル法と呼称する。
 アルギン酸ゲル法ではスラリーの粘度、滴下の際の吐出口の口径、又は吐出口の先端とゲル化溶液の液面までの距離を調整することで、蓄冷材粒子用造粒粒子の粒径、及びアスペクト比を変化させることができる。吐出口の口径は、例えば、50μm以上3000μm以下である。また、吐出口の先端とゲル化溶液の液面までの距離は、例えば、0.1mm以上1000mm以下である。
 ディスペンサーを吐出に用いる場合、装置としてエアパルス式ディスペンサー、プランジャー式ディスペンサー、及びピエゾ式ディスペンサーのいずれを使用してもよい。
 インクジェットは吐出方式として大きくコンティニュアス型とオンデマンド型に分かれるが、いずれの型の吐出方式を使用してもよい。また、オンデマンド型はピエゾ方式、サーマル方式、バルブ方式の3つに区分されるが、いずれの方式を使用してもよい。
 スポイト、ビューレット、ピペット、シリンジ、ディスペンサー、インクジェット等によりゲル化溶液に滴下されたスラリーは、ゲル化溶液中に保持することでゲル化する。スラリーをゲル化させることで、蓄冷材の原料粉末を含む造粒粒子が形成される。スラリーのゲル化溶液中での保持時間は、例えば、10分以上48時間以下である。ゲル化時間が短いとゲル化が十分に進行しないため、造粒粒子の強度が低くなる。
 アルギン酸ゲル法で用いるアルギン酸水溶液は、例えば、アルギン酸ナトリウム水溶液、アルギン酸アンモニウム水溶液、又はアルギン酸カリウム水溶液である。第一族元素を含むアルギン酸ナトリウム水溶液、又はアルギン酸カリウム水溶液を使用することで、蓄冷材粒子用造粒粒子101にナトリウム(Na)、又はカリウム(K)を含有させることができる。アルギン酸ナトリウム水溶液、及びアルギン酸カリウム水溶液の混合水溶液をスラリーに使用することで、蓄冷材粒子用造粒粒子101にナトリウム(Na)、及びカリウム(K)を同時に含有させることができる。
 アルギン酸塩の濃度はアルギン酸塩水溶液として、例えば、0.1重量%以上5重量%以下である。アルギン酸塩水溶液の濃度が0.1重量%より低いと、十分な強度のゲルが生成できず、蓄冷材粒子用造粒粒子を得ることができない。
 ゲル化溶液として、例えば、乳酸カルシウム水溶液、塩化カルシウム水溶液、塩化マンガン(II)水溶液、硫酸マグネシウム水溶液、硫酸ベリリウム水溶液、硝酸ストロンチウム水溶液、塩化バリウム水溶液、水酸化バリウム水溶液、塩化アルミニウム水溶液、硝酸アルミニウム水溶液、乳酸アルミニウム水溶液、塩化鉄(II)水溶液、塩化鉄(III)水溶液、塩化銅(II)水溶液、塩化ニッケル(II)水溶液、又は塩化コバルト(II)水溶液を使用することができる。
 乳酸カルシウム水溶液、塩化カルシウム水溶液、塩化マンガン(II)水溶液、硫酸マグネシウム水溶液、硫酸ベリリウム水溶液、硝酸ストロンチウム水溶液、塩化バリウム水溶液、水酸化バリウム水溶液、塩化アルミニウム水溶液、硝酸アルミニウム水溶液、乳酸アルミニウム水溶液、塩化鉄(II)水溶液、塩化鉄(III)水溶液、塩化銅(II)水溶液、塩化ニッケル(II)水溶液、塩化コバルト(II)水溶液をゲル化溶液に使用することで、カルシウム(K)、マンガン(Mn)、マグネシウム(Mg)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、又はコバルト(Co)を蓄冷材粒子用造粒粒子101に含有させることができる。
 また、塩化アルミニウム水溶液、硝酸アルミニウム水溶液、乳酸アルミニウム水溶液、塩化鉄(II)水溶液、塩化鉄(III)水溶液、塩化銅(II)水溶液、塩化ニッケル(II)水溶液、塩化コバルト(II)水溶液をゲル化溶液として使用することで、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、又はコバルト(Co)を蓄冷材粒子用造粒粒子101に含有させることができる。
 ゲル化は、ゲル化溶液が含有する多価金属イオンによる架橋反応により進行するため、スラリーに第一族元素を含む水溶液を使用し、ゲル化溶液に水溶液中で多価金属イオンを形成する元素を含む水溶液を使用した場合、ゲル化溶液に滴下して造粒した粒子のゲル化溶液中の浸漬時間を調整することで、粒子中に含まれる第一族元素、及び水溶液中で多価金属イオンを形成する元素の量を調整することができる。
 水溶液中で多価イオンを形成する元素は、例えば、カルシウム(Ca)、マンガン(Mn)、マグネシウム(Mg)、ベリリウム(Be)、ストロンチウム(Sr)、バリウム(Ba)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、又はコバルト(Co)である。
 乳酸カルシウム水溶液、塩化カルシウム水溶液、塩化マンガン(II)水溶液、硫酸マグネシウム水溶液、硫酸ベリリウム水溶液、硝酸ストロンチウム水溶液、塩化バリウム水溶液、水酸化バリウム水溶液、塩化アルミニウム水溶液、硝酸アルミニウム水溶液、乳酸アルミニウム水溶液、塩化鉄(II)水溶液、塩化鉄(III)水溶液、塩化銅(II)水溶液、塩化ニッケル(II)水溶液、及び塩化コバルト(II)水溶液からなる群から選ばれる、異なる金属元素を含む少なくとも二種類の水溶液を混合し、ゲル化溶液として使用することで、水溶液中で多価イオンを形成する元素を蓄冷材粒子用造粒粒子101に二種類以上含有させることができる。
 次に、第1の実施形態の蓄冷材粒子用造粒粒子の作用及び効果について説明する。
 蓄冷材粒子用造粒粒子に脱脂のための熱処理、焼結のための熱処理を行うことで、蓄冷材粒子が製造される。例えば、蓄冷材粒子用造粒粒子が酸化物の原料粉末を含む場合、脱脂のための熱処理の後、焼結のための熱処理の前に、蓄冷材粒子用造粒粒子に対して硫化のための熱処理を行う場合もある。
 蓄冷材粒子用造粒粒子は脱脂することで、バインダや分散媒に含まれる有機成分を一定量除去することができる。例えば、原料粉末が酸化物である場合、脱脂が不十分であると、酸化物の硫化が十分に進行せず、酸硫化物を必要な量生成できない。
 さらに、蓄冷材粒子用造粒粒子の脱脂が不十分で有機成分の残留量が多いと、焼結反応も阻害される。焼結反応が阻害されると焼結後の蓄冷材粒子の密度が低くなる。蓄冷材粒子の密度が低くなると、蓄冷材粒子の強度が弱くなり、冷凍機での使用中に破壊するおそれがある。また、焼結反応が阻害されると焼結後の蓄冷材粒子の比熱が低くなる。蓄冷材粒子の比熱が低くなると、冷凍機の性能が低下する。
 一方、蓄冷材粒子用造粒粒子の脱脂が進みすぎると、強度を担保するために必要な有機成分が消失する。このため、脱脂後の造粒粒子の強度が低下し、造粒粒子に割れ、あるいは欠けが生じるおそれがある。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、相対密度が10%以上50%以下である。
 蓄冷材粒子用造粒粒子101の相対密度を50%以下とすることで、脱脂の熱処理の際にバインダや分散媒に含まれる有機成分の除去が容易である。したがって、例えば、脱脂の熱処理の温度の低減、又は、脱脂の熱処理の時間を短縮することができる。また、例えば、硫化の熱処理の温度の低減、又は、硫化の熱処理の時間を短縮することができる。また、例えば、焼結の熱処理の温度の低減、又は、焼結の熱処理の時間を短縮することができる。よって、第1の実施形態の蓄冷材粒子用造粒粒子101によれば、熱処理の温度の低減又は熱処理時間の低減により、蓄冷材粒子の製造コストを低減することができる。
 脱脂、硫化、又は焼結のための熱処理の温度を低減する観点、又は、脱脂、硫化、又は焼結のための熱処理の時間を低減する観点から、蓄冷材粒子用造粒粒子101の相対密度は、45%以下であることが好ましく、40%以下であることがより好ましい。
 蓄冷材粒子用造粒粒子の相対密度が10%未満となると、例えば、蓄冷材粒子の空隙の割合が大きくなり、蓄冷材粒子用造粒粒子の強度が低下する。蓄冷材粒子用造粒粒子の強度が低下すると蓄冷材粒子用造粒粒子のハンドリングが困難になる。
 また、蓄冷材粒子用造粒粒子の相対密度が10%未満となると、脱脂の熱処理の際に有機成分が過剰に除去されるおそれがある。有機成分が過剰に除去されると、製造される蓄冷材粒子の強度の低下や比熱の低下が生じる。
 また、蓄冷材粒子用造粒粒子の相対密度が10%未満となると、例えば、製造される蓄冷材粒子の相対密度が低下し、蓄冷材粒子の比熱が低下する。これは、原料粉末同士の接点が減少し、蓄冷材粒子の焼結性が低下するためだと考えられる。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、相対密度を10%以上とすることで、蓄冷材粒子用造粒粒子101の強度が保たれ、蓄冷材粒子用造粒粒子のハンドリングが容易となる。
 また、蓄冷材粒子用造粒粒子101の相対密度を10%以上とすることで、脱脂の熱処理の際に有機成分が過剰に除去されることが抑制される。したがって、製造される蓄冷材粒子の強度の低下や比熱の低下が抑制される。
 また、蓄冷材粒子用造粒粒子101の相対密度を10%以上とすることで、製造される蓄冷材粒子の焼結性が向上し、蓄冷材粒子の比熱が向上する。
 蓄冷材粒子用造粒粒子101の強度を保つ観点から、蓄冷材粒子用造粒粒子101の相対密度は、15%以上であることが好ましく、20%以上であることがより好ましい。また、脱脂の熱処理の際に有機成分が過剰に除去されることを抑制する観点から、蓄冷材粒子用造粒粒子101の相対密度は、15%以上であることが好ましく、20%以上であることがより好ましい。また製造される蓄冷材粒子の焼結性を向上させる観点から、蓄冷材粒子用造粒粒子101の相対密度は、15%以上であることが好ましく、20%以上であることがより好ましい。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、濃度が0.001重量%以上50重量%以下の炭素を含む。
 蓄冷材粒子用造粒粒子の炭素濃度が高いと蓄冷材粒子用造粒粒子の強度が向上する。例えば、蓄冷材粒子用造粒粒子の炭素濃度が0.001重量%未満の場合、蓄冷材粒子用造粒粒子の強度が低下しハンドリングが困難になる。
 一方、蓄冷材粒子用造粒粒子の炭素濃度が高いと、蓄冷材粒子用造粒粒子から製造される蓄冷材粒子の熱伝導率が低下する。これは、製造される蓄冷材粒子の結晶粒界に過剰に炭素が残存するためである。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、炭素濃度が0.001重量%以上であることで、蓄冷材粒子用造粒粒子の強度が向上する。蓄冷材粒子用造粒粒子の強度を向上させる観点から、蓄冷材粒子用造粒粒子101の炭素濃度は、0.01重量%以上であることが好ましく、0.1重量%以上であることがより好ましい。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、炭素濃度が50重量%以下であることで、製造される蓄冷材粒子の熱伝導率が向上する。製造される蓄冷材粒子の熱伝導率を向上させる観点から、蓄冷材粒子用造粒粒子101の炭素濃度は、10重量%以下であることが好ましく、5重量%以下であることがより好ましい。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、濃度が0.001原子%以上60原子%以下の第一族元素を含むことが好ましい。蓄冷材粒子用造粒粒子101は、上記濃度範囲の第一族元素を含むことで、製造される蓄冷材粒子の焼結性を向上させることができる。したがって、例えば、製造される蓄冷材粒子の強度及び比熱が向上する。
 製造される蓄冷材粒子の焼結性を向上させる観点から、蓄冷材粒子用造粒粒子101に含まれる第一族元素の濃度は、0.01原子%以上30原子%以下であることがより好ましく、0.1原子%以上10原子%以下であることが更に好ましい。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、濃度が0.001原子%以上60原子%以下の第二族元素を含むことが好ましい。蓄冷材粒子用造粒粒子101は、上記濃度範囲の第二族元素を含むことで、製造される蓄冷材粒子の焼結性を向上させることができる。したがって、例えば、製造される蓄冷材粒子の強度及び比熱が向上する。
 製造される蓄冷材粒子の焼結性を向上させる観点から、蓄冷材粒子用造粒粒子101に含まれる第二族元素の濃度は、0.01原子%以上30原子%以下であることがより好ましく、0.1原子%以上10原子%以下であることが更に好ましい。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、濃度が0.001原子%以上60原子%以下の、マンガン(Mn)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、イットリウム(Y)、及びボロン(B)からなる群から選ばれる少なくとも一つの元素である添加元素を含むことが好ましい。蓄冷材粒子用造粒粒子101は、上記濃度範囲の添加元素を含むことで、製造される蓄冷材粒子の焼結性を向上させることができる。したがって、例えば、製造される蓄冷材粒子の強度及び比熱が向上する。
 製造される蓄冷材粒子の焼結性を向上させる観点から、蓄冷材粒子用造粒粒子101に含まれる添加元素の濃度は、0.01原子%以上30原子%以下であることがより好ましく、0.1原子%以上10原子%以下であることが更に好ましい。
 第1の実施形態の蓄冷材粒子用造粒粒子101は、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化ジルコニウム、又は酸化ホウ素を含むことが好ましい。上記酸化物は、焼結助剤として機能する。蓄冷材粒子用造粒粒子101は、上記酸化物を含むことで、製造される蓄冷材粒子の焼結性を向上させることができる。
 以上、第1の実施形態によれば、蓄冷材粒子の製造コストを低減できる蓄冷材粒子用造粒粒子を提供できる。
(第2の実施形態)
 第2の実施形態の蓄冷材粒子は、第1の実施形態の蓄冷材粒子用造粒粒子を焼結して得られる。
 第2の実施形態の蓄冷材粒子は、粒径が、例えば、50μm以上5mm以下である。蓄冷材粒子のアスペクト比は、例えば、1以上5以下である。蓄冷材粒子のアスペクト比とは、蓄冷材粒子の短径に対する長径の比である。蓄冷材粒子の形状は、例えば、球状である。第2の実施形態の蓄冷材粒子は、例えば、相対密度が90%以上である。第2の実施形態の蓄冷材粒子の相対密度は93%以上であることが好ましく。95%以上であることがより好ましい。
 第2の実施形態の蓄冷材粒子は、第1の実施形態の蓄冷材粒子用造粒粒子から得られる蓄冷材粒子である。第2の実施形態の蓄冷材粒子は、希土類酸硫化物又は希土類酸化物を含む。蓄冷材粒子に含まれる希土類酸硫化物は、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)からなる群から選ばれる少なくとも一つの希土類元素を含む。また、蓄冷材粒子に含まれる希土類酸化物は、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、及びルテチウム(Lu)からなる群から選ばれる少なくとも一つの希土類元素を含む。
 第2の実施形態の蓄冷材粒子の2K以上10K以下の温度範囲における体積比熱の最大値は、例えば、0.5J/(cm・K)以上である。
 第2の実施形態の蓄冷材粒子は、例えば、一般式R2±0.11±0.1(式中、RはY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも一つの希土類元素を示す)で示される希土類酸硫化物を含む。
 上記一般式で示される希土類酸硫化物において、選択された希土類元素によって体積比熱の最大値と、体積比熱の最大値を示す温度が異なる。このため、希土類元素の割合を適宜調整することで、希土類酸硫化物の比熱特性を調整することができる。希土類元素は、例えば、Gd、Tb、Dy、Ho、及びErからなる群から選ばれる少なくとも一つの元素である。希土類元素は、例えば、二種類以上の希土類元素を含んでもよい。
 第2の実施形態の蓄冷材粒子は、例えば、一般式R1±0.11±0.13±0.1(式中、RはY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも一つの元素、MはAl、Cr、Mn及びFeからなる群から選ばれる少なくとも一つの元素を示す)で示される希土類酸化物を含む。
 上記一般式で示される希土類酸化物において、選択された希土類元素によって体積比熱の最大値と、体積比熱の最大値を示す温度が異なる。このため、希土類元素の割合を適宜調整することで、希土類酸化物の比熱特性を調整することができる。希土類元素は、例えば、Gd、Tb、Dy、Ho、及びErからなる群から選ばれる少なくとも一つの元素である。希土類元素は、例えば、二種類以上の希土類元素を含んでもよい。
 第2の実施形態の蓄冷材粒子は、例えば、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、又はジルコニウム(Zr)、イットリウム(Y)からなる群から選ばれる少なくとも一つの元素を含む。上記元素は、例えば、第1の実施形態の蓄冷材粒子用造粒粒子101に含まれる焼結助剤に由来する元素である。
 第2の実施形態の蓄冷材粒子は、例えば、ホウ素(B)を含む。ホウ素(B)は、例えば、第1の実施形態の蓄冷材粒子用造粒粒子101に含まれる焼結助剤に由来する。
 第2の実施形態の蓄冷材粒子は、第1の実施形態の蓄冷材粒子用造粒粒子101の焼結助剤に由来する物質を、酸化物として含む。酸化物は、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化イットリウム、酸化ジルコニウム、又は酸化ホウ素である。
 第2の実施形態の蓄冷材粒子は、例えば、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、イットリウム(Y)、及びホウ素(B)からなる群から選ばれる少なくとも一つの元素を、0.01原子%以上20原子%以下含む。
 焼結助剤を構成していた上記元素は、比熱特性を発揮しない。そのため、上記元素の添加量が、蓄冷材粒子中で20原子%を超えると、蓄冷材粒子としての体積比熱が低下し、蓄冷器の蓄冷性能が低下し、冷凍機の冷凍能力が低下する。
 第2の実施形態の蓄冷材粒子は、例えば、2.5K以上10K以下の温度範囲における体積比熱が0.5J/(cm・K)以上である。また、第2の実施形態の蓄冷材粒子は、例えば、2K以上8K以下の温度範囲における体積比熱が0.55J/(cm・K)以上である。また、第2の実施形態の蓄冷材粒子は、例えば、4K以上7K以下の温度範囲における体積比熱が0.6J/(cm・K)以上である。
 第2の実施形態の蓄冷材粒子は、2K以上10K以下の温度範囲における体積比熱の最大値が0.5J/(cm・K)以上である。したがって、第2の実施形態の蓄冷材粒子は高い体積比熱を有する。第2の実施形態の蓄冷材粒子は、高い体積比熱を有するため、第2の実施形態の蓄冷材粒子を搭載した蓄冷器は、高い蓄冷性能を具備し、冷凍機は高い冷凍能力を発揮する。
 第2の実施形態の蓄冷材粒子の粒径は、例えば、50μm以上5mm以下である。蓄冷材粒子の粒径は、1mm以下であることが好ましく、500μm以下であることがより好ましい。蓄冷材粒子の粒径が上記下限値を上回ることで、蓄冷器中の蓄冷材粒子の充填密度が低くなり、ヘリウム等の作動媒質の圧力損失が低減し、冷凍機の冷凍性能が向上する。一方、蓄冷材粒子の粒径が上記上限値を下回ることで、蓄冷材粒子表面から粒子中心部までの距離が短くなり、作動媒質と蓄冷材粒子間での伝熱が蓄冷材中心部まで伝わりやすくなり、冷凍機の冷凍性能が向上する。
 蓄冷材粒子用造粒粒子の粒径は、円相当径である。円相当径は、光学顕微鏡画像又は走査電子顕微鏡画像(SEM画像)などの画像で観察される図形の面積に相当する真円の直径である。蓄冷材粒子用造粒粒子の粒径は、例えば、光学顕微鏡画像又はSEM画像の画像解析により求めることが可能である。
 第2の実施形態の蓄冷材粒子は、例えば、相対密度が90%以上である。第2の実施形態の蓄冷材粒子の相対密度は93%以上であることが好ましく。95%以上であることがより好ましい。
 第2の実施形態の蓄冷材粒子の相対密度は蓄冷材粒子50粒から求めた平均の焼結密度を構成物質の真密度で除算することで算出することができる。50粒の平均焼結密度は、蓄冷材粒子50粒の重量を、体積で除算することで求める。体積は、各粒子の円相当径を粒子の直径と仮定して求めた各粒子の体積を積算することで算出できる。
 第2の実施形態の蓄冷材粒子に含まれる希土類酸硫化物の結晶構造は、例えば、CeS型であり、その空間群はP-3mである。結晶構造は粉末X線回折測定や走査型電子顕微鏡を用いた電子線後方散乱回折像の観察、又は透過型電子顕微鏡観察などにより確認できる。
 第2の実施形態の蓄冷材粒子に含まれる希土類酸化物の結晶構造は、例えば、ペロブスカイト型であり、その空間群は、例えば、Pnmaである。また、空間群は、例えば、Pm-3mである。結晶構造及び空間群は粉末X線回折測定や走査型電子顕微鏡を用いた電子線後方散乱回折像の観察、又は透過型電子顕微鏡観察などにより確認できる。
 第2の実施形態の蓄冷材粒子は、第1の実施形態の蓄冷材粒子用造粒粒子101に脱脂のための熱処理、焼結のための熱処理を行うことで、蓄冷材粒子が製造される。例えば、蓄冷材粒子用造粒粒子が酸化物の原料粉末を含む場合、脱脂のための熱処理の後、焼結のための熱処理の前に、蓄冷材粒子用造粒粒子に対して硫化のための熱処理を行う場合もある。
 脱脂の熱処理は、例えば、大気雰囲気中で行われる。脱脂の熱処理の温度は、例えば、400℃以上700℃以下である。また、脱脂の熱処理の時間は、例えば、30分以上6時間以下である。
 蓄冷材粒子用造粒粒子101の原料粉末101aに酸化物を使用し、酸硫化物を含む蓄冷材粒子を製造する場合、蓄冷材粒子用造粒粒子101の硫化を行う。この場合、硫化雰囲気で熱処理を行う。硫化雰囲気は、例えば、硫化水素(HS)、硫化炭素(CS)、又はメタンチオール(CHSH)等の酸化数が負の硫黄原子を含むガスを含む。硫化の熱処理の温度は、例えば、400℃以上600℃以下である。また、硫化の熱処理の時間は、例えば、1時間以上5時間以下である。
 脱脂後の造粒粒子、あるいは、得られた酸硫化物を焼結する熱処理は、例えば、不活性ガスの雰囲気で行う。熱処理温度は、例えば、1100℃以上2000℃以下である。熱処理温度は、例えば、1200℃以上1800℃以下である。熱処理時間は、例えば、1時間以上48時間以下である。
 蓄冷材粒子用造粒粒子101が、第一族元素、第二族元素、又は添加元素を含むと、焼結促進効果により焼結温度を低くし、焼結時間を短くすることができる。上記添加元素は、マンガン(Mn)、アルミニウム(Al)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、イットリウム(Y)、及びボロン(B)からなる群から選ばれる少なくとも一つの元素である。
 第一族元素、第二族元素、又は添加元素を含む蓄冷材粒子用造粒粒子101を焼結する熱処理は、例えば、不活性ガスの雰囲気で行う。焼結の熱処理の温度は、例えば、1000℃以上2000℃以下である。焼結の熱処理の温度は、例えば、1100℃以上1700℃以下である。焼結の熱処理の時間は、例えば、1時間以上48時間以下である。
 第2の実施形態の蓄冷材粒子は、第1の実施形態の蓄冷材粒子用造粒粒子101を焼結して製造される。このため、例えば、脱脂の熱処理の温度の低減、又は、脱脂の熱処理の時間を短縮することができる。また、例えば、硫化の熱処理の温度の低減、又は、硫化の熱処理の時間を短縮することができる。また、例えば、焼結の熱処理の温度の低減、又は、焼結の熱処理の時間を短縮することができる。よって、第2の実施形態の蓄冷材粒子の製造コストが低減する。
 また、第2の実施形態の蓄冷材粒子は、第1の実施形態の蓄冷材粒子用造粒粒子101を焼結して製造される。このため、例えば、有機成分が十分除去され、蓄冷材粒子に含まれる残留炭素量が低減され、蓄冷材粒子の熱伝導率が向上する。よって、第2の実施形態の蓄冷材粒子を用いた冷凍機の性能が向上する。
 第2の実施形態の蓄冷材粒子のアスペクト比は、例えば、1以上5以下であることが好ましい。蓄冷材粒子のアスペクト比は、例えば、1以上2以下であることがより好ましい。蓄冷材粒子のアスペクト比が上記上限値を下回ることで、蓄冷材粒子を蓄冷器に充填した際の空隙が均一になり、冷凍機の冷凍性能が向上する。
 以上、第2の実施形態によれば、製造コストを低減できる蓄冷材粒子が提供できる。
(第3の実施形態)
 第3の実施形態の蓄冷器は、第2の実施形態の蓄冷材粒子が複数個、充填された蓄冷器である。第3の実施形態の蓄冷器は、例えば、充填された複数の第2の実施形態の蓄冷材粒子の、投影像の周囲長さをLとし、投影像の実面積をAとしたとき、4πA/Lで表される円形度Rが0.5以下の蓄冷材粒子の比率が5%以下である。
 円形度Rは、光学顕微鏡で複数の蓄冷材粒子の形状を画像処理することで、求めることができる。円形度Rが0.5以下の蓄冷材粒子は、表面に凹凸が存在する等の形状を表す。このような蓄冷材粒子を、5%を超えて含む複数の蓄冷材粒子が蓄冷器に充填されると、蓄冷器の中で、蓄冷材粒子が形成する空隙率が不均一となり、また充填性が不安定な状態となるため、作動媒質が流入した際、蓄冷性能が低下したり、蓄冷材粒子の充填時や、冷凍機の作動時に蓄冷材粒子にかかる応力によって、蓄冷材粒子が移動したり、破壊して微粒子を発生し、空隙を詰まらせる原因となり、冷凍機の冷凍性能や、長期信頼性を低下させる。円形度Rが0.5以下の蓄冷材粒子は、2%以下であることが好ましく、さらには、0%であることが好ましい。
(第4の実施形態)
 第4の実施形態の冷凍機は、第2の実施形態の蓄冷材粒子が複数個、充填された第3の実施形態の蓄冷器を備える冷凍機である。以下、第2の実施形態、及び第3の実施形態と重複する内容については、一部記述を省略する。
 図2は、第2の実施形態の蓄冷材粒子及び第4の実施形態の冷凍機の要部構成を示す模式断面図である。図2は、第2の実施形態の蓄冷材粒子が複数個、充填された、第3の実施形態の蓄冷器を備える、第4の実施形態の冷凍機の一例であるGM冷凍機の要部構成を示す模式断面図である。第4の実施形態の冷凍機は、超電導機器などの冷却に用いられる2段式の蓄冷型極低温冷凍機100である。第2の実施形態の蓄冷材粒子が複数個、充填された蓄冷器は、前述のGM冷凍機の他、スターリング方式の冷凍機、またはパルスチューブ方式などの冷凍機であっても良い。
 蓄冷型極低温冷凍機100(冷凍機)は、第1シリンダ111、第2シリンダ112、真空容器113、第1蓄冷器114、第2蓄冷器115(蓄冷器)、第1シールリング116、第2シールリング117、第1蓄冷材118、第2蓄冷材119(蓄冷材粒子)、第1膨張室120、第2膨張室121、第1冷却ステージ122、第2冷却ステージ123、コンプレッサ124を備える。
 蓄冷型極低温冷凍機100は、大径の第1シリンダ111と、第1シリンダ111と同軸的に接続された小径の第2シリンダ112とが設置された真空容器113を有している。第1シリンダ111には第1蓄冷器114が往復運動自在に配置されている。第2シリンダ112には、第3の実施形態の蓄冷器の一例である第2蓄冷器115が往復運動自在に配置されている。
 第1シリンダ111と第1蓄冷器114との間には、第1シールリング116が配置されている。第2シリンダ112と第2蓄冷器115との間には、第2シールリング117が配置されている。
 第1蓄冷器114には、Cuメッシュなどの第1蓄冷材118が充填されている。第2蓄冷器115には、第2の実施形態の蓄冷材粒子が、複数個、第2蓄冷材119として充填されている。
 第2蓄冷器115は、金属メッシュ材で区分けされ、複数の蓄冷材充填層を具備しても良い。第2蓄冷器115を複数の充填層に分ける場合、少なくとも一つの充填層に複数個の第2の実施形態の蓄冷材粒子からなる蓄冷材粒子群を充填し、例えば、鉛蓄冷材粒子群、ビスマス蓄冷材粒子群、スズ蓄冷材粒子群、ホルミウム銅蓄冷材粒子群、エルビウムニッケル蓄冷材粒子群、エルビウムコバルト蓄冷材粒子群、及びガドリニウムアルミニウム酸化物蓄冷材粒子群から選ばれる少なくとも1種の蓄冷材粒子群と組み合わせる。
 蓄冷材の組合せは、比熱のピーク温度が高い方を第一の蓄冷材粒子群とし、比熱のピーク温度が低い方を第二の蓄冷材粒子群とし、比熱のピーク温度が順次低くなるように組み合わせていくものとする。
 2層タイプの場合、第一の蓄冷材粒子群にホルミウム銅蓄冷材粒子群、第二の蓄冷材粒子群に第2の実施形態に係る蓄冷材粒子群を使用する組合せなどが挙げられる。また、3層タイプの場合、第一の蓄冷材粒子群として鉛蓄冷材粒子群、ビスマス蓄冷材粒子群、及びスズ蓄冷材粒子群から選ばれる少なくとも1種の蓄冷材粒子群を使用し、第二の蓄冷材粒子群としてホルミウム銅蓄冷材粒子群を使用し、第三の蓄冷材粒子群として第2の実施形態に係る蓄冷材粒子群を使用する組合せなどが挙げられる。
 ホルミウム銅蓄冷材粒子は、例えばHoCuまたはHoCuであることが好ましい。エルビウムニッケル蓄冷材粒子は、例えばErNiまたはErNiであることが好ましい。
 第1蓄冷器114及び第2蓄冷器115は、第1蓄冷材118や第2蓄冷材119の間隙などに設けられた作動媒質の通路をそれぞれ有している。作動媒質は、ヘリウムガスである。
 第1蓄冷器114と第2蓄冷器115との間には、第1膨張室120が設けられている。また、第2蓄冷器115と第2シリンダ112の先端壁との間には、第2膨張室121が設けられている。そして、第1膨張室120の底部に第1冷却ステージ122が設けられている。また、第2膨張室121の底部に第1冷却ステージ122より低温の第2冷却ステージ123が形成されている。
 上述した2段式の蓄冷型極低温冷凍機100には、コンプレッサ124から高圧の作動媒質が供給される。供給された作動媒質は、第1蓄冷器114に充填された第1蓄冷材118間を通過して第1膨張室120に到達する。そして、第2蓄冷器115に充填された第2蓄冷材119間を通過して第2膨張室121に到達する。
 この際に、作動媒質は第1蓄冷材118及び第2蓄冷材119に熱エネルギーを供給して冷却される。第1蓄冷材118及び第2蓄冷材119の間を通過した作動媒質は、第1膨張室120及び第2膨張室121で膨張して寒冷を発生させる。そして、第1冷却ステージ122及び第2冷却ステージ123が冷却される。
 膨張した作動媒質は、第1蓄冷材118及び第2蓄冷材119の間を反対方向に流れる。作動媒質は第1蓄冷材118及び第2蓄冷材119から熱エネルギーを受け取った後に排出される。こうした過程で復熱効果が良好になるに従って作動媒質サイクルの熱効率が向上し、より一層低い温度が実現されるように蓄冷型極低温冷凍機100は構成されている。
 第4の実施形態の冷凍機が備える蓄冷器は、第2蓄冷器115に第2蓄冷材119として、第2の実施形態の蓄冷材粒子を、複数個、充填する。第2蓄冷材119の少なくとも一部が、第2の実施形態の蓄冷材粒子である。
 第2の実施形態の複数個の蓄冷材粒子は、蓄冷材粒子のそれぞれの投影像の周囲長をLとし、上記投影像の実面積をAとしたとき、4πA/Lで表される円形度Rが0.5以下のものが5%以下であることが好ましい。
 冷凍機の冷凍能力向上には、蓄冷材の単位体積当たりの比熱を向上させることと、熱伝導率及び熱伝達率を向上させることが望ましい。第4の実施形態の冷凍機は、体積比熱を維持し、熱伝導率及び熱伝達率を向上した蓄冷材、または蓄冷材粒子を具備する。
 第4の実施形態の冷凍機を、磁気浮上列車に利用することにより、磁気浮上列車の長期信頼性を向上させることができる。
 以上、第4の実施形態によれば、優れた特性を備えた蓄冷材粒子を用いることにより、優れた特性の冷凍機が実現できる。
(第5の実施形態)
 第5の実施形態のクライオポンプは、第4の実施形態の冷凍機を備える。以下、第4の実施形態と重複する内容については、一部記述を省略する。
 図3は、第5の実施形態のクライオポンプの概略構成を示す断面図である。第5の実施形態のクライオポンプは、第4の実施形態の蓄冷型極低温冷凍機100を備えるクライオポンプ500である。
 クライオポンプ500は、気体分子を凝縮又は吸着するクライオパネル501、クライオパネル501を所定の極低温に冷却する蓄冷型極低温冷凍機100、クライオパネル501と蓄冷型極低温冷凍機100の間に設けられたシールド503、吸気口に設けられたバッフル504、及び、アルゴン、窒素、水素等の排気速度を変化させるリング505を備える。
 第5の実施形態によれば、優れた特性の冷凍機を用いることで優れた特性のクライオポンプが実現できる。また、第5の実施形態のクライオポンプを半導体製造装置などに利用することにより、半導体製造装置の長期信頼性を向上させることができ、半導体製造装置のメンテナンス回数を削減することができる。その結果、製造する半導体の品質向上と、製造コストの低減に貢献する。
(第6の実施形態)
 第6の実施形態の超電導磁石は、第4の実施形態の冷凍機を備える。以下、第4の実施形態と重複する内容については、一部記述を省略する。
 図4は、第6の実施形態の超電導磁石の概略構成を示す斜視図である。第6の実施形態の超電導磁石は、第4の実施形態の蓄冷型極低温冷凍機100を備える、例えば磁気浮上列車用超電導磁石600である。
 磁気浮上列車用超電導磁石600は、超電導コイル601、この超電導コイル601を冷却するための液体ヘリウムタンク602、液体ヘリウムの揮散を防ぐ液体窒素タンク603、積層断熱材605、パワーリード606、永久電流スイッチ607、及び、蓄冷型極低温冷凍機100を備える。
 第5の実施形態によれば、優れた特性の冷凍機を用いることで優れた特性の超電導磁石が実現できる。
(第7の実施形態)
 第7の実施形態の核磁気共鳴イメージング装置は、第4の実施形態の冷凍機を備える。以下、第4の実施形態と重複する内容については、一部記述を省略する。
 図5は、第7の実施形態の核磁気共鳴イメージング装置の概略構成を示す断面図である。第7の実施形態の核磁気共鳴イメージング(MRI)装置は、第4の実施形態の蓄冷型極低温冷凍機100を備える核磁気共鳴イメージング装置700である。
 核磁気共鳴イメージング装置700は、人体に対して空間的に均一で時間的に安定な静磁界を印加する超電導静磁界コイル701、発生磁界の不均一性を補正する図示を省略した補正コイル、測定領域に磁界勾配を与える傾斜磁界コイル702、ラジオ波送受信用プローブ703、クライオスタット705、及び、放射断熱シールド706を備える。そして、超電導静磁界コイル701の冷却用として、蓄冷型極低温冷凍機100が用いられている。
 第7の実施形態によれば、優れた特性の冷凍機を用いることで優れた特性の核磁気共鳴イメージング装置が実現できる。
(第8の実施形態)
 第8の実施形態の核磁気共鳴装置は、第4の実施形態の冷凍機を備える。以下、第4の実施形態と重複する内容については、一部記述を省略する。
 図6は、第7の実施形態の核磁気共鳴装置の概略構成を示す断面図である。第7の実施形態の核磁気共鳴(NMR)装置は、第3の実施形態の蓄冷型極低温冷凍機100を備える核磁気共鳴装置800である。
 核磁気共鳴装置800は、サンプル管801に入れられた有機物等のサンプルに磁界を印加する超電導静磁界コイル802、磁場中のサンプル管801にラジオ波を印加する高周波発振器803、サンプル管801の周りの図示しないコイルに発生する誘導電流を増幅する増幅器804を備える。また、超電導静磁界コイル802を冷却する蓄冷型極低温冷凍機100を備える。
 第8の実施形態によれば、優れた特性の冷凍機を用いることで優れた特性の核磁気共鳴装置が実現できる。
(第9の実施形態)
 第9の実施形態の磁界印加式単結晶引上げ装置は、第4の実施形態の冷凍機を備える。以下、第4の実施形態と重複する内容については、一部記述を省略する。
 図7は、第9の実施形態の磁界印加式単結晶引上げ装置の概略構成を示す斜視図である。第9の実施形態の磁界印加式単結晶引上げ装置は、第4の実施形態の蓄冷型極低温冷凍機100を備える磁界印加式単結晶引上げ装置900である。
 磁界印加式単結晶引上げ装置900は、原料溶融用るつぼ、ヒータ、単結晶引上げ機構等を有する単結晶引上げ部901、原料融液に対して静磁界を印加する超電導コイル902、単結晶引上げ部901の昇降機構903、電流リード905、熱シールド板906、及び、ヘリウム容器907を備える。そして、超電導コイル902の冷却用として、蓄冷型極低温冷凍機100が用いられている。
 第9の実施形態によれば、優れた特性の冷凍機を用いることで優れた特性の磁界印加式単結晶引上げ装置が実現できる。
(第10の実施形態)
 第10の実施形態のヘリウム再凝縮装置は、第4の実施形態の冷凍機を備える。以下、第4の実施形態と重複する内容については、一部記述を省略する。
 図8は、第10の実施形態のヘリウム再凝縮装置の概略構成を示す模式図である。第10の実施形態のヘリウム再凝縮装置は、第4の実施形態の蓄冷型極低温冷凍機100を備えるヘリウム再凝縮装置1000である。
 ヘリウム再凝縮装置1000は、蓄冷型極低温冷凍機100、蒸発配管1001、及び液化配管1002を備える。
 ヘリウム再凝縮装置1000は、液体ヘリウムを使用する装置、例えば、超電導磁石、核磁気共鳴(NMR)装置、核磁気共鳴イメージング(MRI)装置、物理特性測定システム(PPMS)、あるいは磁気特性測定システム等の超電導磁石を使用する装置が具備する液体ヘリウム装置から蒸発するヘリウムガスを再凝縮して、液体ヘリウムとすることができる。
 図示しない液体ヘリウム装置から、蒸発配管1001を通ってヘリウムガスがヘリウム再凝縮装置1000に導入される。ヘリウムガスは、蓄冷型極低温冷凍機100により、ヘリウムの液化温度以下の4Kへ冷却される。凝縮液化した液体ヘリウムが、液化配管1002を通って、液体ヘリウム装置に戻る。
 第10の実施形態によれば、優れた特性の冷凍機を用いることで優れた特性のヘリウム再凝縮装置が実現できる。
 以下、第1の実施形態の蓄冷材粒子用造粒粒子、及び第2の実施形態の蓄冷材粒子にかかる実施例、比較例、及び、それらの評価結果について説明する。
(実施例1)
 Gd粉末をボールミルで24時間、混合粉砕して原料混合体を調製した。次に得られた原料混合体を乾燥した後に、転動造粒機を用いて造粒することにより、粒径が0.4mm~0.6mmの蓄冷材粒子用造粒粒子を調製した。このとき、バインダにはポリビニルアルコールを使用し、原料粉末に対して1.2重量%となるように加えた。蓄冷材粒子用造粒粒子の炭素濃度は0.99重量%だった。蓄冷材粒子用造粒粒子の相対密度は34%だった。
 蓄冷材粒子用造粒粒子の強度を評価するため、造粒粒子をφ15mm、高さ5mmの円筒容器に充填した。このとき、蓄冷材粒子用造粒粒子が円筒容器の中で固定され、自由に動かないように十分な量の蓄冷材粒子用造粒粒子を充填した。容器に対して振幅2mm、最大加速度200m/sの単振動を1×10回加えた。その結果、破壊した蓄冷材粒子用造粒粒子の割合は0.1重量%未満だった。
 蓄冷材粒子用造粒粒子に対し、大気雰囲気下で600℃、2時間の脱脂を行った。脱脂後の蓄冷材粒子用造粒粒子は、炭素濃度が0.51重量%であり、相対密度は40%だった。蓄冷材粒子用造粒粒子に対し、硫化水素(HS)を含む雰囲気中で、600℃、2時間の熱処理を行い、造粒粒子を硫化した。その後、不活性ガスの雰囲気中で、1300℃、12時間の熱処理を行い、蓄冷材粒子用造粒粒子を焼結し、蓄冷材粒子を製造した。
 実施例1の蓄冷材粒子の主たる構成要素は酸硫化ガドリニウムである。
 なお、以下の実施例及び比較例において、原料粉末の混合時間、脱脂の熱処理の条件、硫化の熱処理の条件、焼結の熱処理の条件等は適切な条件となるように調整している。
(実施例2)
 原料粉末として、Gd粉末とNaCO粉末の混合物を使用したこと以外は実施例1と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例3)
 NaCO粉末の代わりにKCO粉末を用いたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例4)
 NaCO粉末の代わりにCaCO粉末を用いたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例5)
 NaCO粉末の代わりにMgCO粉末を用いたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例6)
 NaCO粉末の代わりにSrCO粉末を用いたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例7)
 NaCO粉末に加えて、CaCO粉末を用いたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例8)
 CaCO粉末の代わりに、MgCO粉末を用いたこと以外は、実施例7と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例9)
 CaCO粉末の代わりに、SrCO粉末を用いたこと以外は、実施例7と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例10)
 Gd粉末の代わりにHo粉末を用いたこと以外は、実施例1と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例11)
 NaCO粉末に加え、KCO粉末を用いたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例12)
 NaCO粉末に加え、KCO粉末及びCaCO粉末を用いたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例13~15)
 NaCO粉末の重量を変えたこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例16~18)
 CaCO粉末の重量を変えたこと以外は、実施例7と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例19)
 Gd粉末の一部をHoに変更したこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例20)
 Gd粉末の代わりにGdS粉末を用い、硫化を施さなかったこと以外は、実施例1と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例21)
 Gd粉末をアルギン酸ナトリウム水溶液に加え、24時間混合することでスラリーを作成した。また、原料粉末のアルギン酸水溶液に対する重量の割合は、0.5倍とした。作成したスラリーを、ゲル化溶液である乳酸カルシウム水溶液に滴下した。スラリーの滴下にはシリンジを用いた。
 シリンジの口径は510μm、シリンジの先端から乳酸カルシウム水溶液の液面までの距離は100mmとした。シリンジで滴下したスラリーをゲル化溶液中に5時間保持した。
 その後、ゲル化した蓄冷材粒子用造粒粒子を純水で洗浄した。蓄冷材粒子用造粒粒子を洗浄した後、乾燥させた。蓄冷材粒子用造粒粒子のナトリウム濃度は0.83原子% であり、炭素濃度は0.5重量%であった。蓄冷材粒子用造粒粒子の相対密度は27%だった。蓄冷材粒子用造粒粒子の乾燥後、脱脂、硫化と焼結を行った。
 蓄冷材粒子用造粒粒子に対し、大気雰囲気下で500℃、2時間の脱脂を行った。脱脂後の蓄冷材粒子用造粒粒子のナトリウム濃度は1.0原子%であり、炭素濃度は0.25重量%であり、相対密度は30%だった。脱脂後、硫化水素(HS)を含む雰囲気中で、600℃、2時間の熱処理を行い、蓄冷材粒子用造粒粒子を硫化した。不活性ガスの雰囲気中で、1300℃、12時間の熱処理を行い、蓄冷材粒子用造粒粒子を焼結し蓄冷材粒子を製造した。
 実施例21の蓄冷材粒子の主たる構成要素は酸硫化ガドリニウムである。実施例21の蓄冷材粒子の中のナトリウム濃度は1.1原子%であった。
(実施例22~24)
 原料粉末とアルギン酸ナトリウム水溶液の割合を変えることで、蓄冷材粒子用造粒粒子の相対密度を変えたこと、及び、洗浄時間及び回数を変えることでナトリウム及びカルシウムを除去したこと以外は実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例25~26)
 アルギン酸ナトリウム水溶液の濃度を変えることで、蓄冷材粒子用造粒粒子に含まれる炭素の濃度を変えて、洗浄時間を調整したこと以外は実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例27)
 乳酸カルシウム水溶液の代わりに塩化マグネシウム水溶液を用いたこと以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例28)
 乳酸カルシウム水溶液の代わりに塩化ストロンチウム水溶液を用いたこと以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例29)
 スラリーの滴下方法としてシリンジではなくエアパルス式ディスペンサーを用いたこと以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。ノズルの口径を510μm、ノズルの先端から乳酸カルシウム水溶液の液面までの距離は100mmとした。
(実施例30)
 スラリーの滴下方法としてシリンジではなくピエゾ式ディスペンサーを用いたこと以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。ノズルの口径は510μm、ノズルの先端から乳酸カルシウム水溶液の液面までの距離は100mmとした。
(実施例31)
 スラリーの滴下方法としてシリンジではなくコンティニュアス型インクジェットを用いたこと以外は、実施例21と同様にして蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例32~37)
 実施例32~37の蓄冷材粒子用造粒粒子及び蓄冷材粒子は、粒径又はアスペクト比が、実施例21の蓄冷材粒子用造粒粒子及び蓄冷材粒子と異なる。実施例32~37の蓄冷材粒子用造粒粒子を製造する際、実施例21の蓄冷材粒子用造粒粒子を製造する場合に対し、シリンジの口径及びシリンジの先端からゲル化溶液の表面までの距離を変化させた。
(実施例38)
 原料粉末とアルギン酸ナトリウム水溶液の割合を変えることで、相対密度を11%にしたこと、及び、浸漬時間、洗浄時間及び回数を変えることでカルシウムのみを除去したこと以外は実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例39)
 原料粉末とアルギン酸ナトリウム水溶液の割合を変えることで、相対密度を11%にしたこと、及び、浸漬時間、洗浄時間及び回数を変えることでナトリウムのみを除去したこと以外は実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。
(実施例40)
 原料粉末にAl粉末も用いた以外は、実施例22と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。Al粉末は蓄冷材粒子に含まれるAlが15原子%となるように加えた。
(実施例41)
 原料粉末にAl粉末も用いた以外は、実施例38と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。Al粉末は蓄冷材粒子に含まれるAlが15原子%となるように加えた。
(実施例42)
 原料粉末とアルギン酸ナトリウム水溶液の割合を変えることで、相対密度を11%にしたこと、及び、原料粉末にAl粉末も用いた以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。Al粉末は蓄冷材粒子に含まれるAlが15原子%となるように加えた。
(実施例43)
 原料粉末とアルギン酸ナトリウム水溶液の割合を変えることで、相対密度を11%にしたこと、及び、乳酸カルシウム水溶液の代わりに塩化アルミニウム水溶液を用いたこと以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。蓄冷材粒子中に含まれるAlの量が0.01原子%となるように加えた。
(実施例44)
 原料粉末とアルギン酸ナトリウム水溶液の割合を変えることで、相対密度を11%にしたこと、及び乳酸カルシウム水溶液に加え塩化アルミニウム水溶液を用いたこと以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。蓄冷材粒子中に含まれるAlの量が0.01原子%となるように加えた。
(実施例45)
 原料粉末とアルギン酸ナトリウム水溶液の割合を変えることで、相対密度を11%にしたこと、及び乳酸カルシウム水溶液に加え塩化アルミニウム水溶液を用いたこと以外は、実施例21と同様にして、蓄冷材用粒子用造粒粒子、及び蓄冷材粒子を製造した。蓄冷材粒子中に含まれるAlの量が20原子%となるように加えた。
(実施例46)
 原料粉末にGd粉末とAl粉末を使用し、硫化水素(HS)を含む雰囲気中での熱処理を行わないこと以外は、実施例1と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。蓄冷材粒子の主たる構成要素はGdAlOである。
(実施例47)
 原料粉末にGd粉末とAl粉末を使用し、硫化水素(HS)を含む雰囲気中での熱処理を行わないこと以外は、実施例2と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。主たる構成要素はGdAlOである。
(実施例48)
 原料粉末にGd粉末とAl粉末を使用し、硫化水素(HS)を含む雰囲気中での熱処理を行わないこと以外は、実施例21と同様にして、蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造した。主たる構成要素はGdAlOである。
(比較例1)
 比較例1の蓄冷材粒子用造粒粒子は、相対密度が9%と少ない点で、実施例21の蓄冷材粒子用造粒粒子と異なる。比較例1の蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造する際、実施例21の蓄冷材粒子用造粒粒子を製造する場合に対し、原料粉末の量を減らした。
(比較例2)
 比較例2の蓄冷材粒子用造粒粒子は、相対密度が51%と多い点で、実施例21の蓄冷材粒子用造粒粒子と異なる。比較例2の蓄冷材粒子用造粒粒子を製造する際、実施例21の蓄冷材粒子用造粒粒子を製造する場合に対し、原料粉末の重量を増やした。
(比較例3)
 比較例3の蓄冷材粒子用造粒粒子は、炭素濃度が0.0004重量%と少ない点で、実施例21の蓄冷材粒子用造粒粒子と異なる。比較例3の蓄冷材粒子用造粒粒子を製造する際、実施例21の蓄冷材粒子用造粒粒子を製造する場合に対し、アルギン酸ナトリウム水溶液の濃度を減らした。
(比較例4)
 比較例4の蓄冷材粒子用造粒粒子は、炭素濃度が51重量%と多い点で、実施例21の蓄冷材粒子用造粒粒子と異なる。比較例4の蓄冷材粒子用造粒粒子を製造する際、実施例21の蓄冷材粒子用造粒粒子を製造する場合に対し、アルギン酸ナトリウム水溶液の濃度を増やした。
(比較例5)
 比較例5の蓄冷材粒子用造粒粒子及び蓄冷材粒子は、蓄冷材粒子中に含まれるAlが65原子%と多い点で実施例41と異なる。比較例5の蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造する際、実施例41の蓄冷材粒子用造粒粒子及び蓄冷材粒子を製造する場合に対し、Al粉末の重量を増やした。
 各実施例及び比較例に係る蓄冷材粒子用造粒粒子、及び、蓄冷材粒子について、蓄冷材粒子用造粒粒子の強度及び蓄冷材粒子の相対密度及び比熱を測定した。結果を表1、表2、及び表3に示す。なお、表1においては、蓄冷材粒子用造粒粒子を「造粒粒子」、蓄冷材粒子用造粒粒子から製造された蓄冷材粒子を「蓄冷材粒子」と表記している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1のように、蓄冷材粒子用造粒粒子の相対密度が10%未満になると造粒粒子を球状として回収することができない。これは、相対密度が10%未満では蓄冷材粒子用造粒粒子に含まれる空隙の割合が多いために、蓄冷材粒子用造粒粒子の強度が著しく低下したためと考えられる。
 比較例2のように、蓄冷材粒子用造粒粒子の相対密度が50%を超える場合、製造される蓄冷材粒子の相対密度が著しく低下し、比熱も著しく低下した。これは、蓄冷材粒子用造粒粒子の相対密度が50%を超える場合、蓄冷材粒子用造粒粒子に含まれる有機成分が十分に除去できず、蓄冷材粒子の焼結性が損なわれたためだと考えられる。
 比較例3の結果より、蓄冷材粒子用造粒粒子の炭素濃度が0.001重量%未満となると、蓄冷材粒子用造粒粒子の強度が低下する。このため、蓄冷材粒子用造粒粒子は取り扱い時に容易に破壊され、収率が顕著に低下する。
 比較例4の結果より、蓄冷材粒子用造粒粒子の炭素濃度が50重量%を超える場合、焼結後の蓄冷材粒子の相対密度が著しく低下し、比熱も著しく低下する。これは、造粒粒子に含まれる有機成分が十分に除去できず、炭素が多く残留したため、蓄冷材粒子の焼結性が損なわれたためだと考えられる。
 実施例22~24から、第一族元素又は第二族元素を含まない場合、相対密度が15%以上50%以下の場合の方が、相対密度10%以上15%以下の時に比べ、蓄冷材粒子の相対密度が向上し、比熱も向上することが分かる。これは、相対密度が低すぎると、原料粉末同士の接触点の数が低下し、蓄冷材粒子の焼結性が低下するためだと考えられる。
 実施例38及び実施例39から、第一族元素又は第二族元素を含むと、相対密度が10%以上15%以下であっても、蓄冷材粒子の相対密度が向上し、比熱も向上することが分かる。これは、第一族元素及び第二族元素の焼結促進効果によるものだと考えられる。
 実施例40~45の通り、相対密度が10%以上15%以下であっても、焼結助剤を含むと焼結粒子の相対密度が向上することが分かる。これは、焼結助剤の焼結促進効果によるものだと考えられる。相対密度が10%未満となると、焼結助剤を含んでいても蓄冷材粒子の相対密度が低くなり、比熱も小さくなる。
 比較例5の結果より、焼結助剤に由来する添加元素の原子濃度が、60原子%を超えて大きいと、蓄冷材粒子の比熱が低下することが分かる。
 実施例46~48の通り、硫化水素雰囲気中での熱処理をしないことで、蓄冷材粒子の主たる構成要素がGdAlOであっても、蓄冷材粒子用造粒粒子の相対密度が10%以上50%以下であれば、主たる構成要素が酸硫化ガドリニウムの時と同様の効果を示すことが分かる。
 以上の実施例により、第1の実施形態の蓄冷材粒子用造粒粒子及び第2の実施形態の蓄冷材粒子の奏する効果が確認された。
 ディスペンサーとしてエアパルス式ディスペンサー、あるいは、ピエゾ式ディスペンサーの場合を例に説明したが、ブランジャー式ディスペンサーを用いても構わない。
 インクジェットとしてコンティニュアス型インクジェットの場合を例に説明したが、オンデマンド型インクジェットを用いても構わない。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。例えば、一実施形態の構成要素を他の実施形態の構成要素と置き換え又は変更してもよい。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100  蓄冷型極低温冷凍機(冷凍機)
101  蓄冷材粒子用造粒粒子
115  第2蓄冷器(蓄冷器)
119  第2蓄冷材(蓄冷材粒子)
500  クライオポンプ
600  超電導磁石
700  核磁気共鳴イメージング装置
800  核磁気共鳴装置
900  磁界印加式単結晶引上げ装置
1000 ヘリウム再凝縮装置

Claims (21)

  1.  Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる少なくとも一つの希土類元素を含む希土類酸硫化物、又は、前記少なくとも一つの希土類元素を含む希土類酸化物と、
     濃度が0.001重量%以上50重量%以下の炭素と、を含み、
     相対密度が10%以上50%以下である、蓄冷材粒子用造粒粒子。
  2.  粒径が50μm以上7mm以下である請求項1記載の蓄冷材粒子用造粒粒子。
  3.  アスペクト比が1以上5以下である請求項1又は請求項2記載の蓄冷材粒子用造粒粒子。
  4.  濃度が0.001原子%以上60原子%以下の第一族元素を、更に含む請求項1ないし請求項3いずれか一項記載の蓄冷材粒子用造粒粒子。
  5.  前記第一族元素はLi、Na、及びKからなる群から選ばれる少なくとも一つの元素である請求項4記載の蓄冷材粒子用造粒粒子。
  6.  濃度が0.001原子%以上60原子%以下の第二族元素を、更に含む請求項1ないし請求項5いずれか一項記載の蓄冷材粒子用造粒粒子。
  7.  前記第二族元素はMg、Ca、Sr、及びBaからなる群から選ばれる少なくとも一つの元素である請求項6記載の蓄冷材粒子用造粒粒子。
  8.  濃度が0.001原子%以上60原子%以下の添加元素であって、Mn、Al、Fe、Cu、Ni、Co、Zr、Y、及びBからなる群から選ばれる少なくとも一つの元素である添加元素を、更に含む請求項1ないし請求項7いずれか一項記載の蓄冷材粒子用造粒粒子。
  9.  ゲルである請求項1ないし請求項8いずれか一項記載の蓄冷材粒子用造粒粒子。
  10.  請求項1ないし請求項9いずれか一項記載の蓄冷材粒子用造粒粒子を焼結して得られる蓄冷材粒子。
  11.  2K以上10K以下の温度範囲における体積比熱の最大値が0.5J/(cm・K)以上である請求項10記載の蓄冷材粒子。
  12.  粒径が50μm以上5mm以下である請求項10又は請求項11記載の蓄冷材粒子。
  13.  アスペクト比が1以上5以下である請求項10ないし請求項12いずれか一項記載の蓄冷材粒子。
  14.  請求項10ないし請求項13いずれか一項記載の蓄冷材粒子が複数個、充填された蓄冷器。
  15.  請求項14記載の蓄冷器を備えた、冷凍機。
  16.  請求項15記載の冷凍機を備えた、クライオポンプ。
  17.  請求項15記載の冷凍機を備えた、超電導磁石。
  18.  請求項15記載の冷凍機を備えた、核磁気共鳴イメージング装置。
  19.  請求項15記載の冷凍機を備えた、核磁気共鳴装置。
  20.  請求項15記載の冷凍機を備えた、磁界印加式単結晶引上げ装置。
  21.  請求項15記載の冷凍機を備えた、ヘリウム再凝縮装置。
PCT/JP2022/032296 2021-08-30 2022-08-26 蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置 WO2023032867A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280058372.2A CN117881761A (zh) 2021-08-30 2022-08-26 造粒粒子、蓄冷材料粒子、蓄冷器、冷冻机、低温泵、超导磁铁、核磁共振成像装置、核磁共振装置、单晶提拉装置及氦再冷凝装置
CA3230506A CA3230506A1 (en) 2021-08-30 2022-08-26 Granulated particle for cold storage material particle, cold storage material particle, cold storage device, refrigerator, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application type single crystal pulling apparatus, and helium re-condensing device
IL310978A IL310978A (en) 2021-08-30 2022-08-26 Cold Storage Nuclear Particle Storage Materials, Cold Storage Material Particles, Cold Storage Device, Refrigeration Machine, CRYOPUMP, Superconducting Magnet, Nuclear Magnetic Resonance Imaging Device, Nuclear Imaging Device, Magnetic-Nuclear Single Crystal Attraction Device, and Helium Recondensation Device
JP2023545537A JPWO2023032867A1 (ja) 2021-08-30 2022-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021139669 2021-08-30
JP2021-139669 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032867A1 true WO2023032867A1 (ja) 2023-03-09

Family

ID=85412743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032296 WO2023032867A1 (ja) 2021-08-30 2022-08-26 蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置

Country Status (5)

Country Link
JP (1) JPWO2023032867A1 (ja)
CN (1) CN117881761A (ja)
CA (1) CA3230506A1 (ja)
IL (1) IL310978A (ja)
WO (1) WO2023032867A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073661A (ja) 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd 希土類オキシ硫化物蓄冷材及び蓄冷器
JP2003213252A (ja) 2002-01-18 2003-07-30 Konoshima Chemical Co Ltd 希土類オキシ硫化物蓄冷材及び蓄冷器
WO2014057657A1 (ja) * 2012-10-09 2014-04-17 株式会社 東芝 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いたコールドヘッド、超電導磁石、検査装置、クライオポンプ
WO2016047419A1 (ja) * 2014-09-25 2016-03-31 株式会社東芝 希土類蓄冷材粒子、それを用いた冷凍機、超電導磁石、検査装置およびクライオポンプ
WO2018025581A1 (ja) 2016-08-05 2018-02-08 神島化学工業株式会社 希土類オキシ硫化物蓄冷材
WO2018117258A1 (ja) * 2016-12-22 2018-06-28 株式会社三徳 蓄冷材及びその製造方法、蓄冷器並びに冷凍機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073661A (ja) 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd 希土類オキシ硫化物蓄冷材及び蓄冷器
JP2003213252A (ja) 2002-01-18 2003-07-30 Konoshima Chemical Co Ltd 希土類オキシ硫化物蓄冷材及び蓄冷器
WO2014057657A1 (ja) * 2012-10-09 2014-04-17 株式会社 東芝 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いたコールドヘッド、超電導磁石、検査装置、クライオポンプ
WO2016047419A1 (ja) * 2014-09-25 2016-03-31 株式会社東芝 希土類蓄冷材粒子、それを用いた冷凍機、超電導磁石、検査装置およびクライオポンプ
WO2018025581A1 (ja) 2016-08-05 2018-02-08 神島化学工業株式会社 希土類オキシ硫化物蓄冷材
WO2018117258A1 (ja) * 2016-12-22 2018-06-28 株式会社三徳 蓄冷材及びその製造方法、蓄冷器並びに冷凍機

Also Published As

Publication number Publication date
CN117881761A (zh) 2024-04-12
JPWO2023032867A1 (ja) 2023-03-09
CA3230506A1 (en) 2023-03-09
IL310978A (en) 2024-04-01

Similar Documents

Publication Publication Date Title
JP5656842B2 (ja) 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
KR100859347B1 (ko) 희토류 산황화물 축냉재 및 축냉기
US20220135419A1 (en) Rare earth oxysulfide cold storage medium
US20020026799A1 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
JP2023169141A (ja) 2段式の蓄冷型極低温冷凍機及びその製造方法
JP3642486B2 (ja) 希土類オキシ硫化物蓄冷材及び蓄冷器
WO2023032867A1 (ja) 蓄冷材粒子用造粒粒子、蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
CN110168043B (zh) 稀土蓄冷材料以及具有其的蓄冷器和制冷机
JP7432769B2 (ja) 蓄冷材、蓄冷材粒子、造粒粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
WO2023145730A1 (ja) 蓄冷材、蓄冷材粒子、造粒粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、ヘリウム再凝縮装置、及び、希釈冷凍機
RU2818411C1 (ru) Материал для сохранения холода, частица материала для сохранения холода, гранулированная частица, устройство для сохранения холода, холодильник, крионасос, сверхпроводящий магнит, аппарат для визуализации ядерного магнитного резонанса, аппарат ядерного магнитного резонанса, аппарат для вытягивания монокристалла с приложением магнитного поля и устройство для повторной конденсации гелия
JP4170703B2 (ja) 希土類オキシ硫化物セラミックス蓄冷材とその製造方法、及びこの蓄冷材を用いた極低温蓄冷器
JP4256664B2 (ja) 希土類バナジウム酸化物セラミックスの製造方法
CN116710715A (zh) 蓄冷材料、蓄冷材料粒子、造粒粒子、蓄冷器、冷冻机、低温泵、超导磁铁、核磁共振成像装置、核磁共振装置、磁场施加式单晶提拉装置及氦再冷凝装置
JP2002249763A (ja) 蓄冷材,その製造方法およびその蓄冷材を用いた冷凍機
WO2022224783A1 (ja) 磁性蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
JP3990894B2 (ja) 酸化物セラミックス蓄冷材とその製造方法
WO2022039150A1 (ja) 蓄冷材粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、蓄冷材粒子の製造方法
RU2815751C1 (ru) Частица материала для сохранения холода, устройство для сохранения холода, холодильник, криогенный насос, сверхпроводящий магнит, ядерно-магнитно-резонансное устройство формирования изображения, устройство ядерного магнитного резонанса, устройство для выращивания монокристалла способом вытягивания с приложением магнитного поля, и способ изготовления частиц материала для сохранения холода
JP2005330325A (ja) 蓄冷材とそれを用いた冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545537

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 310978

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 202280058372.2

Country of ref document: CN

Ref document number: 3230506

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2024104951

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2022864451

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864451

Country of ref document: EP

Effective date: 20240402