WO2023026511A1 - 半導体装置及び電子機器 - Google Patents

半導体装置及び電子機器 Download PDF

Info

Publication number
WO2023026511A1
WO2023026511A1 PCT/JP2022/001343 JP2022001343W WO2023026511A1 WO 2023026511 A1 WO2023026511 A1 WO 2023026511A1 JP 2022001343 W JP2022001343 W JP 2022001343W WO 2023026511 A1 WO2023026511 A1 WO 2023026511A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
semiconductor device
external heat
controller
sealing body
Prior art date
Application number
PCT/JP2022/001343
Other languages
English (en)
French (fr)
Inventor
健 村松
真也 清水
Original Assignee
キオクシア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キオクシア株式会社 filed Critical キオクシア株式会社
Publication of WO2023026511A1 publication Critical patent/WO2023026511A1/ja
Priority to US18/435,091 priority Critical patent/US20240178212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B80/00Assemblies of multiple devices comprising at least one memory device covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48105Connecting bonding areas at different heights
    • H01L2224/48106Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • H01L2224/49176Wire connectors having the same loop shape and height

Definitions

  • the embodiments of the present invention relate to semiconductor devices and electronic equipment.
  • the problem to be solved by the embodiments is to provide a semiconductor device that improves heat dissipation.
  • a semiconductor device includes a substrate, a controller arranged on the substrate, a nonvolatile memory arranged on the substrate apart from the controller, and a first heat sink arranged in contact with the upper surface of the controller. , a second heat sink arranged in contact with the upper surface of the nonvolatile memory; and a first resin sealing body that seals the controller, the nonvolatile memory, the first heat sink, and the second heat sink.
  • the first heat sink and the second heat sink are exposed on at least one of the top surface and the side surface of the first resin sealing body.
  • FIG. 1 is a block diagram showing an example of a configuration of a semiconductor device according to a first embodiment;
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment;
  • FIG. 1 is a top view of a semiconductor device according to a first embodiment;
  • FIG. 4 is a top view of a semiconductor device according to a second embodiment; Sectional drawing of the semiconductor device which concerns on the modification of 2nd Embodiment.
  • FIG. 5 is a top view of a semiconductor device according to a modification of the second embodiment; Sectional drawing of the semiconductor device which concerns on 3rd Embodiment.
  • FIG. 1 is a block diagram showing an example of a configuration of a semiconductor device according to a first embodiment;
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment;
  • FIG. 1 is a top view of a semiconductor device according to a first embodiment
  • FIG. 10 is a top view of a semiconductor device according to a third embodiment; Sectional drawing of the semiconductor device which concerns on the modification of 3rd Embodiment. The top view of the semiconductor device which concerns on the modification of 3rd Embodiment. Sectional drawing of the semiconductor device which concerns on 4th Embodiment.
  • FIG. 11 is a top view of a semiconductor device according to a fourth embodiment; Sectional drawing of the semiconductor device which concerns on the modification of 4th Embodiment. The top view of the semiconductor device which concerns on the modification of 4th Embodiment. Sectional drawing of the semiconductor device which concerns on 5th Embodiment. The top view of the semiconductor device which concerns on 5th Embodiment. Sectional drawing of the semiconductor device which concerns on the modification of 5th Embodiment.
  • FIG. 11 is a top view of a semiconductor device according to a sixth embodiment
  • 1A and 1B are diagrams illustrating an example of an electronic device in which a semiconductor device according to an embodiment is mounted
  • FIG. A block diagram of a circuit board of an electronic device are diagrams illustrating an example of an electronic device in which a semiconductor device according to an embodiment is mounted
  • FIG. 1A and 1B are diagrams illustrating an example of an electronic device in which a semiconductor device according to an embodiment is mounted
  • FIG. 1A and 1B are diagrams illustrating an example of an electronic device in which a semiconductor device according to an embodiment is mounted
  • FIG. 1A and 1B are diagrams illustrating an example of an electronic device in which a semiconductor device according to an embodiment is mounted
  • FIG. 1A and 1B are diagrams illustrating an example of an electronic device in which a semiconductor device according to an embodiment is mounted
  • FIG. 1 is a block diagram of a semiconductor device 1 according to the first embodiment.
  • the semiconductor device 1 includes a memory controller 11, which is an example of a controller, and a NAND flash memory 12, which is an example of a nonvolatile memory.
  • Memory controller 11 is connected to NAND flash memory 12 by NAND interface 13 .
  • the nonvolatile memory is not limited to a nonvolatile semiconductor memory such as the NAND flash memory 12, and may be a memory capable of storing data such as ReRAM (Resistive Random Access Memory) and FeRAM (Ferroelectric Random Access Memory).
  • ReRAM Resistive Random Access Memory
  • FeRAM Feroelectric Random Access Memory
  • the memory controller 11 includes a processor 111, an internal memory 112, an ECC circuit 113, a NAND interface circuit 114, a buffer memory 115, and a host interface circuit .
  • the processor 111 is an integrated circuit that receives commands from the host controller 5 via multiple signal lines 9 and controls the NAND flash memory 12 based on the received commands.
  • the built-in memory 112 is, for example, a semiconductor memory such as a dynamic random access memory (DRAM), and is used as a work area for the processor 111.
  • the built-in memory 112 may hold firmware for managing the NAND flash memory 12, various management tables, and the like.
  • the ECC circuit 113 performs error detection and error correction processing. Specifically, when writing data, an ECC code is generated for each set of a certain number of data based on the data received from the host controller 5 . Also, when reading data, ECC decoding is performed based on the ECC code to detect the presence or absence of an error. When an error is detected, the bit position is specified and the error is corrected.
  • the NAND interface circuit 114 is connected to the NAND flash memory 12 via the NAND interface 13 and controls communication with the NAND flash memory 12 .
  • the NAND interface circuit 114 transmits, for example, the command CMD, address ADD, and write data to the NAND flash memory 12 according to instructions from the processor 111 .
  • the NAND interface circuit 114 also receives read data from the NAND flash memory 12 .
  • the buffer memory 115 temporarily holds data and the like received by the memory controller 11 from the NAND flash memory 12 and the host controller 5 .
  • the buffer memory 115 is also used as a storage area that temporarily holds, for example, read data from the NAND flash memory 12 and calculation results for the read data.
  • the host interface circuit 116 is connected to the host controller 5 via a plurality of signal lines 9 and controls communication with the host controller 5 .
  • Host interface circuit 116 for example, transfers instructions and data received from host controller 5 to processor 111 and buffer memory 115, respectively.
  • FIG. 2A is a cross-sectional view of the semiconductor device 1A according to the first embodiment.
  • FIG. 2B is a top view of the semiconductor device 1A according to the first embodiment.
  • the X direction indicates the longitudinal direction of the semiconductor device 1A
  • the Y direction indicates the lateral direction of the semiconductor device 1A orthogonal to the X direction
  • the Z direction indicates the direction perpendicular to the XY plane.
  • the semiconductor device 1A includes a memory controller 11, NAND flash memories 12 (12A, 12B, 12C, 12D), a substrate 14, a first resin sealing body 15, bonding wires (18A, 18B, 19A). , 19B), solder balls 16, a first heat sink 20A and a second heat sink 20B.
  • the substrate 14 includes a multilayer wiring board.
  • the substrate 14 has wiring 17 .
  • the solder balls 16 and the bonding wires (18A, 18B, 19A, 19B) are electrically connected via the wirings 17 on the substrate 14 .
  • the bonding wires include a first bonding wire 18A, a second bonding wire 18B, a third bonding wire 19A and a fourth bonding wire 19B.
  • the memory controller 11 is arranged on the board 14 .
  • the memory controller 11 is electrically connected to the wiring 17 via first and second bonding wires (18A, 18B).
  • the memory controller 11 has a first end 50 and a first other end 51 facing the first end 50, as shown in FIGS. 2A and 2B.
  • the first bonding wire 18A is electrically connected to the first one end 50 on the memory controller 11 .
  • a second bonding wire 18B is electrically connected to the first other end 51 .
  • the memory controller 11 is also electrically connected to the wiring 17 via first and second bonding wires (18A, 18B).
  • the NAND flash memories 12 (12A, 12B, 12C, 12D) are arranged on the substrate .
  • the NAND flash memories 12 (12A, 12B, 12C, 12D) are arranged separately from the memory controller 11 on the substrate .
  • the NAND flash memory 12 (12A, 12B, 12C, 12D) is electrically connected to the wiring 17 via third to fourth bonding wires (19A, 19B).
  • the NAND flash memory 12 (12A, 12B, 12C, 12D) has a second one end 52 and a second other end 53 facing the second one end 52, as shown in FIGS. 2A and 2B.
  • a third bonding wire 19A is electrically connected to the second one end 52 on the NAND flash memory 12 (12A, 12B, 12C, 12D).
  • a fourth bonding wire 19B is electrically connected to the second other end 53 .
  • the first resin sealing body 15 includes a memory controller 11, NAND flash memories 12 (12A, 12B, 12C, 12D), first to fourth bonding wires (18A, 18B, 19A, 19B), and a first heat sink. 20A and the second heat sink 20B are sealed.
  • the first resin sealing body 15 may be, for example, a mixture of epoxy resin and silica.
  • the first heat sink 20A and the second heat sink 20B are made of metal with good thermal conductivity, for example. Specifically, copper (Cu), aluminum (Al), silver (Ag), gold (Au), and the like are applicable.
  • the first heat sink 20A is arranged in contact with the upper surface of the memory controller 11. That is, the heat generated from the memory controller 11 is mainly dissipated from the first heat sink 20A.
  • the upper surface 40 of the first heat sink 20A is exposed flush with the upper surface of the first resin sealing body 15, as shown in FIG. 2B.
  • the first heat sink 20A is arranged on the memory controller 11 between the first bonding wires 18A and the second bonding wires 18B in plan view. That is, the first and second bonding wires (18A, 18B) are arranged outside the first heat sink 20A in plan view.
  • the thickness of the first heat sink 20A may be thicker than the thickness of the second heat sink 20B in the Z direction.
  • the second heat sink 20B is arranged in contact with the upper surface of the NAND flash memory 12. Therefore, the second heat sink 20B has good thermal conductivity with the NAND flash memory 12 . Specifically, the second heat sink 20B is arranged in contact with the upper surface of the uppermost NAND flash memory 12D in which the NAND flash memories 12 (12A, 12B, 12C, 12D) are stacked. Therefore, the second heat sink 20B has good thermal conductivity with the NAND flash memory 12D. That is, the heat generated from the NAND flash memories 12 (12A, 12B, 12C, 12D) is mainly dissipated from the second heat sink 20B.
  • the upper surface 41 of the second heat sink 20B is exposed flush with the upper surface of the first resin sealing body 15, as shown in FIG. 2B.
  • the exposed area of the second heat sink 20B may be larger than the exposed area of the first heat sink 20A.
  • the main surface on the plus side in the Z direction is called the upper surface.
  • the second heat sink 20B is electrically connected to the third bonding wire 19A on the NAND flash memory 12 on the second other end 53 side in plan view. It is arranged between the fourth bonding wire 19B and the fourth bonding wire 19B. That is, the third and fourth bonding wires (19A, 19B) are arranged outside the second heat sink 20B in plan view.
  • the number of NAND flash memories 12 is not limited to four, and may be three or less, or may be five or more.
  • the solder balls 16 are used as input/output pins of the semiconductor device 1A. Specifically, the semiconductor device 1A can supply a power supply voltage and input/output signals through the solder balls 16 .
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, respectively, and heat dissipation can be improved.
  • FIG. 3A is a cross-sectional view of a semiconductor device 1B according to the second embodiment.
  • FIG. 3B is a top view of a semiconductor device 1B according to the second embodiment.
  • a semiconductor device 1B according to the second embodiment further includes a first semiconductor device 1B covering an upper surface 15a of a first resin sealing body 15 in addition to the semiconductor device 1A according to the first embodiment.
  • An external heat sink 20C is provided.
  • the heat sink outside the first resin sealing body 15 is referred to as an external heat sink (eg, first external heat sink 20C). Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the first external heat sink 20C is made of metal with good thermal conductivity, for example. Specifically, copper (Cu), aluminum (Al), silver (Ag), gold (Au), and the like are applicable.
  • the first external heat sink 20C is arranged in contact with the upper surface 15a of the first resin sealing body 15, as shown in FIG. 3A.
  • the first external heat sink 20C is arranged in contact with the upper surface 40 of the first heat sink 20A and the upper surface 41 of the second heat sink 20B that are exposed on the upper surface 15a of the first resin sealing body 15 . That is, the heat generated from the memory controller 11 is mainly dissipated from the first heat sink 20A.
  • heat generated from the NAND flash memories 12 (12A, 12B, 12C, 12D) is mainly dissipated from the second heat sink 20B.
  • the heat of the first heat sink 20A and the second heat sink 20B is mainly dissipated from the first external heat sink 20C.
  • the first external heat sink 20C is arranged to cover the top surfaces (40, 41) of the first heat sink 20A and the second heat sink 20B, as shown in FIG. 3B.
  • the area of the first external heat sink 20C is arranged to be smaller than the area of the first resin sealing body 15 in plan view.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, respectively, and heat dissipation can be improved.
  • the heat of the first heat sink and the second heat sink can be appropriately dissipated to the first external heat sink, thereby improving the heat dissipation.
  • FIG. 4A is a cross-sectional view of a semiconductor device 1C according to a modification of the second embodiment.
  • FIG. 4B is a top view of a semiconductor device 1C according to a modification of the second embodiment.
  • the semiconductor device 1C according to the modification of the second embodiment has a first resin sealing body 15 for the first external heat sink 20C of the semiconductor device 1B according to the second embodiment. a second external heat sink 20C1 and a third external heat sink 20C2 covering the upper surface 15a of the . Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the second external heat sink 20C1 and the third external heat sink 20C2 are made of metal with good thermal conductivity, for example.
  • applicable metals include copper (Cu), aluminum (Al), silver (Ag), and gold (Au).
  • the second external heat sink 20C1 is arranged in contact with the upper surface 15a of the first resin sealing body 15, as shown in FIG. 4A.
  • the second external heat sink 20C1 is arranged in contact with the top surface 40 of the first heat sink 20A exposed on the top surface 15a of the first resin sealing body 15.
  • the heat generated from the memory controller 11 is mainly dissipated from the first heat sink 20A.
  • the heat of the first heat sink 20A is mainly dissipated from the second external heat sink 20C1.
  • the second external heat sink 20C1 is arranged to cover the upper surface 40 where the first heat sink 20A is exposed, as shown in FIG. 4B.
  • the third external heat sink 20C2 is arranged in contact with the upper surface 15a of the first resin sealing body 15, as shown in FIG. 4A.
  • the third external heat sink 20C2 is arranged in contact with the second heat sink 20B exposed on the upper surface 15a of the first resin sealing body 15. As shown in FIG. 4A
  • the third external heat sink 20C2 is arranged to cover the upper surface 41 where the second heat sink 20B is exposed, as shown in FIG. 4B. That is, the third external heat sink 20C2 is arranged apart from the second external heat sink 20C1. That is, the heat generated from the memory controller 11 is mainly dissipated from the first heat sink 20A. Also, heat generated from the NAND flash memories 12 (12A, 12B, 12C, 12D) is mainly dissipated from the second heat sink 20B. That is, the heat generated from the memory controller and the NAND flash memory is separated and dissipated to the second external heat sink 20C1 and the third external heat sink 20C2.
  • the area of the third external heat sink 20C2 may be larger than that of the second external heat sink 20C1 in plan view.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, respectively, thereby improving heat dissipation. can.
  • the semiconductor device by having the second external heat sink and the third external heat sink, the heat generated from the memory controller and the NAND flash memory is separated and dissipated. , can improve heat dissipation.
  • FIG. 5A is a cross-sectional view of a semiconductor device 1D according to the third embodiment.
  • FIG. 5B is a top view of a semiconductor device 1D according to the third embodiment.
  • the semiconductor device 1D according to the third embodiment has a third heat sink, which is an example of the first heat sink, in contrast to the first heat sink 20A of the semiconductor device 1A according to the first embodiment. 20A1.
  • the semiconductor device 1D further includes a fourth external heat sink 20D that covers the top surface 15a and side surfaces 15b of the first resin sealing body 15. As shown in FIG. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the third heat sink 20A1 and the fourth external heat sink 20D are made of metal with good thermal conductivity, for example.
  • applicable metals include copper (Cu), aluminum (Al), silver (Ag), and gold (Au).
  • the third heat sink 20A1 is arranged in contact with the upper surface of the memory controller 11. That is, heat generated from the memory controller 11 is mainly dissipated from the third heat sink 20A1. Also, the third heat sink 20A1 is formed of a portion extending in the Z direction and a portion extending in the X direction. Note that the portion extending in the X direction may extend in the Y direction.
  • the side surface 42 of the third heat sink 20A1 is exposed in the X direction of the first resin sealing body 15, as shown in FIGS. 5A and 5B. . Note that the side surface 42 of the third heat sink 20A1 may be exposed in the Y direction.
  • the portion of the third heat sink 20A1 extending in the Z direction is formed on the memory controller 11 by the first bonding wire 18A and the second bonding wire 18B in plan view. is placed between. That is, the first and second bonding wires (18A, 18B) are arranged outside the third heat sink 20A1 in plan view.
  • the thickness of the third heat sink 20A1 may be thicker than the thickness of the second heat sink 20B in the Z direction, as shown in FIG. 5A.
  • the fourth external heat sink 20D is arranged in contact with the top surface 15a and the side surface 15b of the first resin sealing body 15, as shown in FIG. 5A.
  • the fourth external heat sink 20D is arranged in contact with the side surface 42 of the third heat sink 20A1 and the top surface 41 of the second heat sink 20B. That is, the heat of the third heat sink 20A1 and the second heat sink 20B is mainly dissipated from the fourth external heat sink 20D.
  • the fourth external heat sink 20D is arranged to cover the side surface 42 of the third heat sink 20A1 and the top surface 41 of the second heat sink 20B, as shown in FIG. 5B.
  • the area of the third heat sink 20A1 on the side surface may be arranged to be smaller than the area of the second heat sink 20B in plan view.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately diffused to the third heat sink and the second heat sink, respectively, thereby improving heat dissipation.
  • the heat of the third heat sink and the second heat sink can be appropriately dissipated mainly to the fourth external heat sink, thereby improving the heat dissipation.
  • FIG. 6A is a cross-sectional view of a semiconductor device 1E according to a modification of the third embodiment.
  • FIG. 6B is a top view of a semiconductor device 1E according to a modification of the third embodiment.
  • the semiconductor device 1E according to the modification of the third embodiment has a first resin sealing body 15 for the fourth external heat sink 20D of the semiconductor device 1D according to the third embodiment.
  • a fifth external heat sink 20D1 and a sixth external heat sink 20D2 covering the top surface 15a and the side surface 15b of the . Since other configurations are the same as those of the third embodiment, description thereof will be omitted.
  • the fifth external heat sink 20D1 and the sixth external heat sink 20D2 are made of metal with good thermal conductivity, for example.
  • applicable metals include copper (Cu), aluminum (Al), silver (Ag), and gold (Au).
  • the fifth external heat sink 20D1 is arranged in contact with the upper surface 15a and the side surface 15b of the first resin sealing body 15, as shown in FIG. 6A.
  • the fifth external heat sink 20D1 is arranged in contact with the side surface 42 of the third heat sink 20A1. That is, the heat of the third heat sink 20A1 is mainly dissipated from the fifth external heat sink 20D1.
  • the sixth external heat sink 20D2 is arranged in contact with the upper surface 15a and the side surface 15b of the first resin sealing body 15, as shown in FIG. 6A.
  • the sixth external heat sink 20D2 is arranged in contact with the upper surface 41 of the second heat sink 20B.
  • the fifth external heat sink 20D1 is arranged to cover the exposed side surface 42 of the third heat sink 20A1, as shown in FIGS. 6A and 6B.
  • the sixth external heat sink 20D2 is arranged to cover the upper surface 41 where the second heat sink 20B is exposed, as shown in FIG. 6B. That is, the sixth external heat sink 20D2 is arranged apart from the fifth external heat sink 20D1. That is, the heat of the second heat sink 20B is mainly dissipated from the sixth external heat sink 20D2. Note that the area of the sixth external heat sink 20D2 may be larger than that of the fifth external heat sink 20D1 in plan view.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the third heat sink and the second heat sink, respectively, thereby improving heat dissipation. can.
  • the semiconductor device by having the fifth external heat sink and the sixth external heat sink, the heat generated from the memory controller and the NAND flash memory is separated and dissipated. , can improve heat dissipation.
  • FIG. 7A is a cross-sectional view of a semiconductor device 1F according to the fourth embodiment.
  • FIG. 7B is a top view of the semiconductor device 1F according to the fourth embodiment.
  • the semiconductor device 1F according to the fourth embodiment further covers the upper surface 15a and the side surface 15b of the first resin sealing body 15, unlike the semiconductor device 1A according to the first embodiment.
  • a fourth external heat sink 20D and a first internal heat sink 20E inside the first resin sealing body 15 are provided. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the first internal heat sink 20E is made of metal with good thermal conductivity, for example.
  • applicable metals include copper (Cu), aluminum (Al), silver (Ag), and gold (Au).
  • the fourth external heat sink 20D is arranged in contact with the upper surface 15a and the side surface 15b of the first resin sealing body 15, as shown in FIG. 7A.
  • the first internal heat sink 20E is arranged in contact with the top surface 40 of the first heat sink 20A and the top surface 41 of the second heat sink 20B, as shown in FIGS. 7A and 7B. That is, the heat of the first heat sink 20A and the second heat sink 20B is mainly dissipated from the first internal heat sink 20E.
  • the area of the first internal heat sink 20E is smaller than the area of the first resin sealing body 15 in plan view, as shown in FIG. 7B.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, respectively, and the heat dissipation can be improved.
  • the heat of the first heat sink and the second heat sink can be appropriately dissipated to the first internal heat sink, thereby improving the heat dissipation.
  • FIG. 8A is a cross-sectional view of a semiconductor device 1G according to a modification of the fourth embodiment.
  • FIG. 8B is a top view of a semiconductor device 1G according to a modification of the fourth embodiment.
  • the semiconductor device 1G according to the modification of the fourth embodiment has a first resin sealing body 15 instead of the first internal heat sink 20E of the semiconductor device 1F according to the fourth embodiment.
  • the second internal heat sink 20E1 and the third internal heat sink 20E2 are made of metal with good thermal conductivity, for example.
  • applicable metals include copper (Cu), aluminum (Al), silver (Ag), and gold (Au).
  • the second internal heat sink 20E1 is arranged in contact with the upper surface 40 of the first heat sink 20A, as shown in FIGS. 8A and 8B. That is, the heat of the first heat sink 20A is mainly dissipated from the second internal heat sink 20E1.
  • the third internal heat sink 20E2 is arranged in contact with the upper surface 41 of the second heat sink 20B.
  • the third internal heat sink 20E2 is arranged apart from the second internal heat sink 20E1, as shown in FIG. 8B. That is, the heat of the second heat sink 20B is mainly dissipated from the third internal heat sink 20E2.
  • the area of the third internal heat sink 20E2 may be larger than that of the second internal heat sink 20E1 in plan view.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, respectively, thereby improving heat dissipation. can.
  • the semiconductor device by having the second internal heat sink and the third internal heat sink, heat generated from the memory controller 11 and the NAND flash memory 12 is separated. It can dissipate and improve heat dissipation.
  • FIG. 9A is a cross-sectional view of a semiconductor device 1H according to the fifth embodiment.
  • FIG. 9B is a top view of a semiconductor device 1H according to the fifth embodiment.
  • the semiconductor device 1H according to the fifth embodiment further includes a mounting board 22, a heat conductor 21, and a metal casing 23 in addition to the semiconductor device 1B according to the second embodiment.
  • a mounting board 22 a heat conductor 21, and a metal casing 23 in addition to the semiconductor device 1B according to the second embodiment.
  • the mounting board 22 includes a multilayer wiring board. Note that the mounting substrate 22 may include wiring, although not shown.
  • the mounting board 22 is electrically connected to the wiring of the mounting board 22 with the solder balls 16 .
  • the thermal conductor 21 can be made from a thermally conductive paste having particles of metal or metal oxide with high thermal conductivity.
  • Metals with high thermal conductivity such as silver (Ag), copper (Cu), and aluminum (Al) can be applied to the thermally conductive paste.
  • metal oxides such as aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), and aluminum nitride (AlN) are applicable.
  • the heat conductor 21 may be a heat conductive sheet or heat conductive grease.
  • the thermal conductor 21 is provided on the first external heat sink 20C, as shown in FIG. 9A.
  • the heat conductor 21 is arranged in contact with the upper surface 43 of the first external heat sink 20C and the lower surface 44 of the metal housing 23 .
  • the principal surface in contact with the metal housing 23 and the heat conductor 21 is referred to as the bottom surface 44 of the metal housing 23 .
  • the metal housing 23 is made of metal that shields electromagnetic waves.
  • an alloy of copper (Cu) and beryllium (Be), an alloy of iron (Fe) and nickel (Ni), and the like are applicable.
  • copper (Cu), aluminum (Al), silver (Ag), gold (Au), or the like may be applicable.
  • the metal housing 23 is arranged on the mounting substrate 22 so as to cover the first resin sealing body 15, the first external heat sink 20C, and the heat conductor 21, as shown in FIG. 9B. That is, the heat of the first heat sink 20A and the second heat sink 20B is mainly dissipated from the metal housing 23 via the first external heat sink 20C and the heat conductor 21 .
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, respectively, and heat dissipation can be improved. Furthermore, the heat of the first heat sink and the second heat sink can be appropriately dissipated to the metal housing through the first external heat sink and the heat conductor, thereby improving heat dissipation.
  • FIG. 10A is a cross-sectional view of a semiconductor device 1K according to a modification of the fifth embodiment.
  • FIG. 10B is a top view of a semiconductor device 1K according to a modification of the fifth embodiment.
  • the semiconductor device 1K according to the modification of the fifth embodiment has a second external heat sink 20C1 and and a third external heat sink 20C2.
  • the semiconductor device 1K includes thermal conductors 21A and 21B in contrast to the thermal conductors 21 of the semiconductor device 1H according to the fifth embodiment. Since other configurations are the same as those of the fifth embodiment, description thereof is omitted.
  • the second external heat sink 20C1 and the third external heat sink 20C2 are made of metal with good thermal conductivity, for example. Specifically, copper (Cu), aluminum (Al), silver (Ag), gold (Au), and the like are applicable.
  • the thermal conductor 21A and the thermal conductor 21B can be manufactured from a thermally conductive paste containing metal or metal oxide particles with high thermal conductivity, similar to the thermal conductor 21. Note that the heat conductor 21A and the heat conductor 21B may be a heat conductive sheet or heat conductive grease.
  • the second external heat sink 20C1 is arranged in contact with the upper surface 40 of the first heat sink 20A, as shown in FIG. 10A. That is, the heat of the first heat sink 20A is mainly dissipated from the second external heat sink 20C1.
  • the third external heat sink 20C2 is arranged in contact with the upper surface 41 of the second heat sink 20B. That is, the third external heat sink 20C2 is spaced apart from the second external heat sink 20C1, as shown in FIG. 10B. Also, the heat of the second heat sink 20B is mainly dissipated from the third external heat sink 20C2.
  • the thermal conductor 21A is provided on the second external heat sink 20C1 as shown in FIG. 10A.
  • the heat conductor 21A is arranged in contact with the upper surface 45 of the second external heat sink 20C1 and the lower surface 46 of the metal housing 23. As shown in FIG. That is, the heat of the second external heat sink 20C1 is mainly dissipated from the metal housing 23 via the heat conductor 21A.
  • the heat conductor 21B is provided on the third external heat sink 20C2, as shown in FIG. 10A.
  • the heat conductor 21B is arranged in contact with the upper surface 47 of the third external heat sink 20C2 and the lower surface 48 of the metal housing 23. As shown in FIG. That is, the heat conductor 21B is arranged apart from the heat conductor 21A as shown in FIG. 10B. That is, the heat of the third external heat sink 20C2 is mainly dissipated from the metal housing 23 via the heat conductor 21B.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, respectively, thereby improving heat dissipation. can.
  • the semiconductor device by having the second external heat sink and the third external heat sink, the heat generated from the memory controller and the NAND flash memory is separated and dissipated. , can improve heat dissipation. Furthermore, the heat mainly from the second external heat sink and the third external heat sink can be appropriately dissipated to the metal housing via the heat conductor, thereby improving heat dissipation.
  • FIG. 11A is a cross-sectional view of a semiconductor device 1L according to the sixth embodiment.
  • FIG. 11B is a top view of a semiconductor device 1L according to the sixth embodiment.
  • the semiconductor device 1L according to the sixth embodiment further includes a second resin sealing body 30 in addition to the semiconductor device 1A according to the first embodiment. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the second resin sealing body 30 is sealed so as to cover the upper surface 15a of the first resin sealing body 15, the first heat sink 20A and the second heat sink 20B, as shown in FIG. 11B. That is, the heat generated from the memory controller 11 is mainly dissipated from the first heat sink 20A. Further, heat generated from the memory controller 11 is mainly dissipated from the first heat sink 20A. Between the first resin sealing body 15 and the second resin sealing body 30, a second An external heat sink, a heat conductor, and a metal housing may be provided on the upper part of one resin sealing body 15 . Also, an internal heat sink may be provided inside the first resin sealing body 15 .
  • the second resin sealing body 30 may be, for example, a mixture of a thermosetting resin such as an epoxy resin and silica. Also, the second resin sealing body 30 may be made of epoxy resin or the like containing carbon black.
  • product information such as company name, product number, production date, and production factory is marked (marking) by laser irradiation, for example. ing.
  • the stamped positions are stamped outside the positions of the first heat sink 20A and the second heat sink 20B in plan view.
  • the heat generated from the memory controller and the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, thereby improving heat dissipation.
  • the memory controller in plan view, by marking the positions other than the positions of the first heat sink and the second heat sink, while suppressing the damage of the laser irradiation, the memory controller , the heat generated from the NAND flash memory can be appropriately dissipated to the first heat sink and the second heat sink, and the heat dissipation can be improved.
  • FIG. 12 is a configuration diagram of an electronic device 2 on which the semiconductor device 1 according to the embodiment is mounted.
  • FIG. 13 is a block diagram of the circuit board 4 of the electronic device 2. As shown in FIG.
  • the electronic device 2 includes a housing 3, as shown in FIG.
  • the housing 3 accommodates the circuit board 4 .
  • the circuit board 4 includes a semiconductor device 1 , a host controller 5 , a DRAM 6 that is an example of volatile memory, and a power supply circuit 7 .
  • the electronic device 2 may be, for example, a smart phone, a tablet, and a mobile terminal. Actually, it is not limited to these examples.
  • the electronic device 2 will be described as a smart phone.
  • the semiconductor device 1 described in the first to sixth embodiments can be applied to the electronic device 2.
  • the circuit board 4 is provided with a power supply circuit 7 as shown in FIG.
  • the power supply circuit 7 is connected to the semiconductor device 1, the host controller 5, and the DRAM 6 via power supply lines 8 (8a, 8b, 8c).
  • the power supply circuit 7 supplies power supply voltage to the host controller 5 through the power supply line 8a.
  • the power supply circuit 7 supplies a power supply voltage to the semiconductor device 1 through the power supply line 8b.
  • the power supply circuit 7 supplies power supply voltage to the DRAM 6 through the power supply line 8c.
  • a plurality of signal lines 9 are provided between the semiconductor device 1 and the host controller 5 .
  • the semiconductor device 1 functions as a storage device for the electronic device 2 .
  • the semiconductor device 1 exchanges signals with the host controller 5 via a plurality of signal lines 9 .
  • the semiconductor device 1 may be, for example, a multi-chip package composed of a plurality of memory chips.
  • a signal line 10 is provided between the DRAM 6 and the host controller 5 .
  • the DRAM 6 temporarily stores data used during program execution processing in the host controller 5 and functions as a temporary memory used as a work area. DRAM 6 exchanges signals with host controller 5 via signal line 10 .
  • the host controller 5 is an integrated circuit that controls the overall operation of the electronic equipment 2 including the semiconductor device 1 .
  • the host controller 5 may include, for example, a south bridge.
  • FIG. 14 is a configuration diagram of an electronic device 2B on which the semiconductor device 1 according to the embodiment is mounted.
  • the electronic device 2B has a housing 3B.
  • the housing 3B accommodates the circuit board 4.
  • the circuit board 4 includes the semiconductor device 1 and a host controller 5B.
  • the electronic device 2B may be, for example, a desktop or laptop personal computer.
  • the semiconductor device 1 described in the first to sixth embodiments can be applied to the electronic device 2B.
  • FIG. 15 is a configuration diagram of an electronic device 2C on which the semiconductor device 1 according to the embodiment is mounted.
  • the electronic device 2C includes a circuit board 4, as shown in FIG.
  • the circuit board 4 includes the semiconductor device 1 and a host controller 5C.
  • the electronic device 2C is, for example, an M.364, which is an example of a storage device (storage). 2 May be an SSD (Solid State Drive).
  • the semiconductor device 1 described in the first to sixth embodiments can be applied to the electronic device 2C.
  • FIG. 16 is a configuration diagram of an electronic device 2D on which the semiconductor device 1 according to the embodiment is mounted.
  • the electronic device 2D has a housing 3D.
  • the housing 3D accommodates the circuit board 4.
  • Circuit board 4 includes semiconductor device 1 , host controller 5 D, DRAM 6 , and power supply circuit 7 .
  • the electronic device 2D may be an SSD, for example.
  • the semiconductor device 1 described in the first to sixth embodiments can be applied to the electronic device 2D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

実施形態に係る半導体装置は、基板と、基板上に配置されたコントローラと、基板上にコントローラと離隔して配置された不揮発性メモリと、コントローラの上面に接して配置される第1のヒートシンクと、不揮発性メモリの上面に接して配置される第2のヒートシンクと、コントローラ、不揮発性メモリ、第1のヒートシンク、及び第2のヒートシンクを封止する第1の樹脂封止体とを備える。第1のヒートシンク及び第2のヒートシンクは、第1の樹脂封止体の上面または側面の少なくとも一方の面に露出している。放熱性を改善する半導体装置を提供する。

Description

半導体装置及び電子機器
 本発明の実施形態は、半導体装置及び電子機器に関する。
 近年の一般的な半導体装置は、樹脂でモールドされたパッケージの状態で使用されている。この樹脂でモールドされたパッケージは、一般的にエポキシ樹脂とシリカの混合物が用いられるが熱伝導率が低いため、放熱の妨げになる可能性がある。
米国特許第9,960,099号明細書
 実施形態が解決しようとする課題は、放熱性を改善する半導体装置を提供することにある。
 実施形態に係る半導体装置は、基板と、基板上に配置されたコントローラと、基板上にコントローラと離隔して配置された不揮発性メモリと、コントローラの上面に接して配置される第1のヒートシンクと、不揮発性メモリの上面に接して配置される第2のヒートシンクと、コントローラ、不揮発性メモリ、第1のヒートシンク、及び第2のヒートシンクを封止する第1の樹脂封止体とを備える。第1のヒートシンク及び第2のヒートシンクは、第1の樹脂封止体の上面または側面の少なくとも一方の面に露出している。
第1の実施形態に係る半導体装置の構成の一例を示すブロック図。 第1の実施形態に係る半導体装置の断面図。 第1の実施形態に係る半導体装置の上面図。 第2の実施形態に係る半導体装置の断面図。 第2の実施形態に係る半導体装置の上面図。 第2の実施形態の変形例に係る半導体装置の断面図。 第2の実施形態の変形例に係る半導体装置の上面図。 第3の実施形態に係る半導体装置の断面図。 第3の実施形態に係る半導体装置の上面図。 第3の実施形態の変形例に係る半導体装置の断面図。 第3の実施形態の変形例に係る半導体装置の上面図。 第4の実施形態に係る半導体装置の断面図。 第4の実施形態に係る半導体装置の上面図。 第4の実施形態の変形例に係る半導体装置の断面図。 第4の実施形態の変形例に係る半導体装置の上面図。 第5の実施形態に係る半導体装置の断面図。 第5の実施形態に係る半導体装置の上面図。 第5の実施形態の変形例に係る半導体装置の断面図。 第5の実施形態の変形例に係る半導体装置の上面図。 第6の実施形態に係る半導体装置の断面図。 第6の実施形態に係る半導体装置の上面図。 実施形態に係る半導体装置が搭載される電子機器の一例を示す図。 電子機器の回路基板のブロック図。 実施形態に係る半導体装置が搭載される電子機器の一例を示す図。 実施形態に係る半導体装置が搭載される電子機器の一例を示す図。 実施形態に係る半導体装置が搭載される電子機器の一例を示す図。
 次に、図面を参照して、実施形態について説明する。以下に説明する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。図面は模式的なものである。
 また、以下に示す実施形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の材質、形状、構造、配置等を特定するものではない。この実施形態は、請求の範囲において、種々の変更を加えることができる。
 [第1の実施形態]
 (半導体装置の構成)
 第1の実施形態に係る半導体装置1について説明する。図1は、第1の実施形態に係る半導体装置1のブロック図である。半導体装置1は、図1に示すように、コントローラの一例であるメモリコントローラ11と、不揮発性メモリの一例であるNANDフラッシュメモリ12とを備える。メモリコントローラ11は、NANDインタフェース13によってNANDフラッシュメモリ12に接続している。なお、不揮発性メモリとしては、NANDフラッシュメモリ12のような不揮発性半導体メモリに限定されず、ReRAM(Resistive Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)などのデータ格納可能なメモリであればよい。なお、以下の説明において、不揮発性メモリの一例であるNANDフラッシュメモリ12について説明する。
 メモリコントローラ11は、プロセッサ111、内蔵メモリ112、ECC回路113、NANDインタフェース回路114、バッファメモリ115、及びホストインタフェース回路116を備える。
 プロセッサ111は、複数の信号ライン9を介して、ホストコントローラ5の命令を受け取り、受け取られた命令に基づいて、NANDフラッシュメモリ12を制御する集積回路である。
 内蔵メモリ112は、例えば、ダイナミックランダムアクセスメモリ(DRAM:Dynamic Random Access Memory)等の半導体メモリであり、プロセッサ111の作業領域として使用される。なお、内蔵メモリ112は、NANDフラッシュメモリ12を管理するためのファームウェア、及び各種の管理テーブル等を保持してもよい。
 ECC回路113は、エラー検出及びエラー訂正処理を行う。具体的には、データの書き込み時には、ホストコントローラ5から受信したデータに基づいて、或る数のデータの組毎にECC符号を生成する。また、データの読み出し時には、ECC符号に基づいてECC復号し、エラーの有無を検出する。そして、エラー検出された際には、そのビット位置を特定し、エラーを訂正する。
 NANDインタフェース回路114は、NANDインタフェース13を介して、NANDフラッシュメモリ12と接続され、NANDフラッシュメモリ12との通信を司る。NANDインタフェース回路114は、プロセッサ111の指示により、例えば、コマンドCMD、アドレスADD、及び書き込みデータをNANDフラッシュメモリ12に送信する。また、NANDインタフェース回路114は、NANDフラッシュメモリ12から読み出しデータを受信する。
 バッファメモリ115は、メモリコントローラ11がNANDフラッシュメモリ12及びホストコントローラ5から受信したデータ等を一時的に保持する。バッファメモリ115は、例えば、NANDフラッシュメモリ12からの読み込みデータ、及び読み出しデータに対する演算結果等を一時的に保持する記憶領域としても使用される。
 ホストインタフェース回路116は、複数の信号ライン9を介して、ホストコントローラ5と接続され、ホストコントローラ5との通信を司る。ホストインタフェース回路116は、例えば、ホストコントローラ5から受信した命令及びデータをそれぞれプロセッサ111及びバッファメモリ115に転送する。
 (半導体装置のパッケージ構造の構成)
 次に、第1の実施形態に係る半導体装置1Aのパッケージ構造について説明する。図2Aは、第1の実施形態に係る半導体装置1Aの断面図である。図2Bは、第1の実施形態に係る半導体装置1Aの上面図である。以下の説明において、X方向は、半導体装置1Aの長手方向、Y方向は、X方向と直交する半導体装置1Aの短手方向、Z方向はX-Y平面に垂直な方向を示している。
 半導体装置1Aは、図2Aに示すように、メモリコントローラ11、NANDフラッシュメモリ12(12A、12B、12C、12D)、基板14、第1の樹脂封止体15、ボンディングワイヤ(18A、18B、19A、19B)、はんだボール16、第1のヒートシンク20A、及び第2のヒートシンク20Bを備える。
 基板14は、多層の配線基板を備える。基板14は、配線17を備える。基板14において、配線17を介して、はんだボール16とボンディングワイヤ(18A、18B、19A、19B)は、電気的に接続されている。
 ボンディングワイヤは、第1のボンディングワイヤ18A、第2のボンディングワイヤ18B、第3のボンディングワイヤ19A、及び第4のボンディングワイヤ19Bを有する。
 メモリコントローラ11は、基板14上に配置されている。メモリコントローラ11は、第1~第2のボンディングワイヤ(18A、18B)を介して、配線17と電気的に接続されている。
 メモリコントローラ11は、図2A及び図2Bに示すように、第1の一端50と第1の一端50と対向する第1の他端51を有する。
 具体的には、図2Bに示すように、メモリコントローラ11上において、第1の一端50に第1のボンディングワイヤ18Aが電気的に接続されている。また、第1の他端51に第2のボンディングワイヤ18Bが電気的に接続されている。また、メモリコントローラ11は、第1~第2のボンディングワイヤ(18A、18B)を介して、配線17と電気的に接続されている。
 NANDフラッシュメモリ12(12A、12B、12C、12D)は、基板14上に配置されている。NANDフラッシュメモリ12(12A、12B、12C、12D)は、基板14上にメモリコントローラ11と離隔して配置されている。NANDフラッシュメモリ12(12A、12B、12C、12D)は、第3~第4のボンディングワイヤ(19A、19B)を介して、配線17と電気的に接続されている。
 NANDフラッシュメモリ12(12A、12B、12C、12D)は、図2A及び図2Bに示すように、第2の一端52と第2の一端52と対向する第2の他端53を有する。
 具体的には、図2Bに示すように、NANDフラッシュメモリ12(12A、12B、12C、12D)上において、第2の一端52に第3のボンディングワイヤ19Aが電気的に接続されている。また、第2の他端53に第4のボンディングワイヤ19Bが電気的に接続されている。
 第1の樹脂封止体15は、メモリコントローラ11、NANDフラッシュメモリ12(12A、12B、12C、12D)、第1~第4のボンディングワイヤ(18A、18B、19A、19B)、第1のヒートシンク20A、及び第2のヒートシンク20Bを封止する。なお、第1の樹脂封止体15は、例えば、エポキシ樹脂とシリカの混合物であってもよい。
 第1のヒートシンク20A及び第2のヒートシンク20Bは、例えば、熱伝導率のよい金属で形成されている。具体的には、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 第1のヒートシンク20Aは、メモリコントローラ11の上面に接して配置されている。すなわち、メモリコントローラ11から発生する熱を主として、第1のヒートシンク20Aから放散する。
 第1のヒートシンク20Aの上面40は、図2Bに示すように、第1の樹脂封止体15の上面と面一に露出している。
 第1のヒートシンク20Aは、図2A及び図2Bに示すように、メモリコントローラ11上において、平面視において、第1のボンディングワイヤ18Aと、第2のボンディングワイヤ18Bとの間に配置されている。すなわち、第1~第2のボンディングワイヤ(18A、18B)は、平面視において、第1のヒートシンク20Aの外側に配置されている。なお、図2Aに示すように、第1のヒートシンク20Aの厚さは、第2のヒートシンク20BのZ方向の厚さよりも厚くてもよい。
 第2のヒートシンク20Bは、NANDフラッシュメモリ12の上面に接して配置されている。このため、第2のヒートシンク20Bは、NANDフラッシュメモリ12と熱伝導性が良好である。具体的には、第2のヒートシンク20Bは、NANDフラッシュメモリ12(12A、12B、12C、12D)が積層された最上部のNANDフラッシュメモリ12Dの上面に接して配置されている。このため、第2のヒートシンク20Bは、NANDフラッシュメモリ12Dと熱伝導性が良好である。すなわち、NANDフラッシュメモリ12(12A、12B、12C、12D)から発生する熱を主として、第2のヒートシンク20Bから放散する。
 第2のヒートシンク20Bの上面41が、図2Bに示すように、第1の樹脂封止体15の上面と面一に露出している。なお、第2のヒートシンク20Bの露出する面積は、第1のヒートシンク20Aの露出する面積よりも大きくてもよい。以下に説明において、Z方向のプラス側の主面を上面と称する。
 第2のヒートシンク20Bは、図2A及び図2Bに示すように、NANDフラッシュメモリ12上において、平面視において、第3のボンディングワイヤ19Aと、第2の他端53側で電気的に接続している第4のボンディングワイヤ19Bとの間に配置されている。すなわち、第3~第4のボンディングワイヤ(19A、19B)は、平面視において、第2のヒートシンク20Bの外側に配置されている。なお、NANDフラッシュメモリ12の個数は、4に限定されず、3以下であってもよいし、5以上であってもよい。
 はんだボール16は、半導体装置1Aの入出力ピンとして用いられる。具体的には、半導体装置1Aは、はんだボール16を介して、電源電圧を供給し、また、信号を入出力可能である。
 (第1の実施形態の効果)
 第1の実施形態に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。
 [第2の実施形態]
 (半導体装置のパッケージ構造の構成)
 図3Aは、第2の実施形態に係る半導体装置1Bの断面図である。図3Bは、第2の実施形態に係る半導体装置1Bの上面図である。
 第2の実施形態に係る半導体装置1Bは、図3Aに示すように、第1の実施形態に係る半導体装置1Aに対し、さらに、第1の樹脂封止体15の上面15aを覆う第1の外部ヒートシンク20Cを備える。以下の説明において、第1の樹脂封止体15の外部のヒートシンクを外部ヒートシンク(例えば、第1の外部ヒートシンク20C)と称する。なお、他の構成は、第1の実施形態と同じであるため、説明を省略する。
 第1の外部ヒートシンク20Cは、例えば、熱伝導率のよい金属で形成されている。具体的には、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 第1の外部ヒートシンク20Cは、図3Aに示すように、第1の樹脂封止体15の上面15aに接して配置されている。第1の外部ヒートシンク20Cは、第1の樹脂封止体15の上面15aに露出している第1のヒートシンク20Aの上面40及び第2のヒートシンク20Bの上面41に接して配置されている。すなわち、メモリコントローラ11から発生する熱を主として、第1のヒートシンク20Aから放散する。また、NANDフラッシュメモリ12(12A、12B、12C、12D)から発生する熱を主として、第2のヒートシンク20Bから放散する。さらに、第1のヒートシンク20A及び第2のヒートシンク20Bの熱を主として、第1の外部ヒートシンク20Cから放散する。
 第1の外部ヒートシンク20Cは、図3Bに示すように、第1のヒートシンク20A及び第2のヒートシンク20Bの上面(40、41)を覆うように配置されている。第1の外部ヒートシンク20Cの面積は、平面視において、第1の樹脂封止体15の面積よりも小さく配置されている。
 (第2の実施形態の効果)
 第2の実施形態に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。また、第1のヒートシンク、第2のヒートシンクの熱を第1の外部ヒートシンクに適切に放散し、放熱性を改善することができる。
 [第2の実施形態の変形例]
 (半導体装置のパッケージ構造の構成)
 図4Aは、第2の実施形態の変形例に係る半導体装置1Cの断面図である。図4Bは、第2の実施形態の変形例に係る半導体装置1Cの上面図である。
 第2の実施形態の変形例に係る半導体装置1Cは、図4Aに示すように、第2の実施形態に係る半導体装置1Bの第1の外部ヒートシンク20Cに対し、第1の樹脂封止体15の上面15aを覆う第2の外部ヒートシンク20C1及び第3の外部ヒートシンク20C2を備える。なお、他の構成は、第1の実施形態と同じであるため、説明を省略する。
 第2の外部ヒートシンク20C1及び第3の外部ヒートシンク20C2は、例えば、熱伝導率のよい金属で形成されている。具体的には、金属は、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 第2の外部ヒートシンク20C1は、図4Aに示すように、第1の樹脂封止体15の上面15aに接して配置されている。第2の外部ヒートシンク20C1は、第1の樹脂封止体15の上面15aに露出している第1のヒートシンク20Aの上面40に接して配置されている。すなわち、メモリコントローラ11から発生する熱を主として、第1のヒートシンク20Aから放散する。また、具体的には、第1のヒートシンク20Aの熱を主として、第2の外部ヒートシンク20C1から放散する。
 第2の外部ヒートシンク20C1は、図4Bに示すように、第1のヒートシンク20Aが露出している上面40を覆うように配置されている。
 第3の外部ヒートシンク20C2は、図4Aに示すように、第1の樹脂封止体15の上面15aに接して配置されている。第3の外部ヒートシンク20C2は、第1の樹脂封止体15の上面15aに露出している第2のヒートシンク20Bに接して配置されている。
 第3の外部ヒートシンク20C2は、図4Bに示すように、第2のヒートシンク20Bが露出している上面41を覆うように配置されている。すなわち、第3の外部ヒートシンク20C2は、第2の外部ヒートシンク20C1と離隔して配置されている。すなわち、メモリコントローラ11から発生する熱を主として、第1のヒートシンク20Aから放散する。また、NANDフラッシュメモリ12(12A、12B、12C、12D)から発生する熱を主として、第2のヒートシンク20Bから放散する。つまり、メモリコントローラ及びNANDフラッシュメモリから発生する熱を第2の外部ヒートシンク20C1、第3の外部ヒートシンク20C2に分離して放散する。なお、第3の外部ヒートシンク20C2の面積は、平面視において、第2の外部ヒートシンク20C1よりも大きく配置してもよい。
 (第2の実施形態の変形例の効果)
 第2の実施形態の変形例に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。
 また、第2の実施形態の変形例に係る半導体装置によれば、第2の外部ヒートシンク、第3の外部ヒートシンクを有することにより、メモリコントローラ、NANDフラッシュメモリから発生する熱を分離して放散し、放熱性を改善することができる。
 [第3の実施形態]
 (半導体装置のパッケージ構造の構成)
 図5Aは、第3の実施形態に係る半導体装置1Dの断面図である。図5Bは、第3の実施形態に係る半導体装置1Dの上面図である。
 第3の実施形態に係る半導体装置1Dは、図5Aに示すように、第1の実施形態に係る半導体装置1Aの第1のヒートシンク20Aに対し、第1のヒートシンクの一例である第3のヒートシンク20A1を備える。半導体装置1Dは、さらに、第1の樹脂封止体15の上面15a及び側面15bを覆う第4の外部ヒートシンク20Dを備える。なお、他の構成は、第1の実施形態と同じであるため、説明を省略する。
 第3のヒートシンク20A1及び第4の外部ヒートシンク20Dは、例えば、熱伝導率のよい金属で形成されている。具体的には、金属は、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 第3のヒートシンク20A1は、メモリコントローラ11の上面に接して配置されている。すなわち、メモリコントローラ11から発生する熱を主として、第3のヒートシンク20A1から放散する。また、第3のヒートシンク20A1は、Z方向に延在する部分と、X方向に延在する部分とから形成されている。なお、X方向に延在する部分は、Y方向に延在していてもよい。
 第3のヒートシンク20A1のX方向に延在する部分は、図5A及び図5Bに示すように、第3のヒートシンク20A1の側面42が第1の樹脂封止体15のX方向に露出している。なお、第3のヒートシンク20A1の側面42は、Y方向に露出してもよい。
 第3のヒートシンク20A1のZ方向に延在する部分は、図5A及び図5Bに示すように、メモリコントローラ11上において、平面視において、第1のボンディングワイヤ18Aと、第2のボンディングワイヤ18Bとの間に配置されている。すなわち、第1~第2のボンディングワイヤ(18A、18B)は、平面視において、第3のヒートシンク20A1の外側に配置されている。なお、第3のヒートシンク20A1の厚さは、図5Aに示すように、第2のヒートシンク20BのZ方向の厚さよりも厚くてもよい。
 第4の外部ヒートシンク20Dは、図5Aに示すように、第1の樹脂封止体15の上面15a及び側面15bに接して配置されている。また、第4の外部ヒートシンク20Dは、第3のヒートシンク20A1の側面42及び第2のヒートシンク20Bの上面41に接して配置されている。すなわち、第3のヒートシンク20A1、第2のヒートシンク20Bの熱を主として、第4の外部ヒートシンク20Dから放散する。
 第4の外部ヒートシンク20Dは、図5Bに示すように、第3のヒートシンク20A1の側面42及び第2のヒートシンク20Bの上面41を覆うように配置されている。なお、側面の第3のヒートシンク20A1の面積は、平面視において、第2のヒートシンク20Bの面積より小さく配置してもよい。
 (第3の実施形態の効果)
 第3の実施形態に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第3のヒートシンク、第2のヒートシンクに適切に拡散し、放熱性を改善することができる。また、第3のヒートシンク、第2のヒートシンクの熱を主として、第4の外部ヒートシンクに適切に放散し、放熱性を改善することができる。
 [第3の実施形態の変形例]
 (半導体装置のパッケージ構造の構成)
 図6Aは、第3の実施形態の変形例に係る半導体装置1Eの断面図である。図6Bは、第3の実施形態の変形例に係る半導体装置1Eの上面図である。
 第3の実施形態の変形例に係る半導体装置1Eは、図6Aに示すように、第3の実施形態に係る半導体装置1Dの第4の外部ヒートシンク20Dに対し、第1の樹脂封止体15の上面15a及び側面15bを覆う第5の外部ヒートシンク20D1及び第6の外部ヒートシンク20D2を備える。なお、他の構成は、第3の実施形態と同じであるため、説明を省略する。
 第5の外部ヒートシンク20D1及び第6の外部ヒートシンク20D2は、例えば、熱伝導率のよい金属で形成されている。具体的には、金属は、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 第5の外部ヒートシンク20D1は、図6Aに示すように、第1の樹脂封止体15上面15a及び側面15bに接して配置されている。第5の外部ヒートシンク20D1は、第3のヒートシンク20A1の側面42に接して配置されている。すなわち、第3のヒートシンク20A1の熱を主として、第5の外部ヒートシンク20D1から放散する。
 第6の外部ヒートシンク20D2は、図6Aに示すように、第1の樹脂封止体15上面15a及び側面15bに接して配置されている。第6の外部ヒートシンク20D2は、第2のヒートシンク20Bの上面41に接して配置されている。
 第5の外部ヒートシンク20D1は、図6A及び図6Bに示すように、第3のヒートシンク20A1の露出している側面42を覆うように配置されている。
 第6の外部ヒートシンク20D2は、図6Bに示すように、第2のヒートシンク20Bが露出している上面41を覆うように配置されている。すなわち、第6の外部ヒートシンク20D2は、第5の外部ヒートシンク20D1と離隔して配置されている。すなわち、第2のヒートシンク20Bの熱を主として、第6の外部ヒートシンク20D2から放散する。なお、第6の外部ヒートシンク20D2の面積は、平面視において、第5の外部ヒートシンク20D1よりも大きく配置してもよい。
 (第3の実施形態の変形例の効果)
 第3の実施形態の変形例に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第3のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。
 また、第3の実施形態の変形例に係る半導体装置によれば、第5の外部ヒートシンク及び第6の外部ヒートシンクを有することにより、メモリコントローラ、NANDフラッシュメモリから発生する熱を分離して放散し、放熱性を改善することができる。
 [第4の実施形態]
 (半導体装置のパッケージ構造の構成)
 図7Aは、第4の実施形態に係る半導体装置1Fの断面図である。図7Bは、第4の実施形態に係る半導体装置1Fの上面図である。
 第4の実施形態に係る半導体装置1Fは、図7Aに示すように、第1の実施形態に係る半導体装置1Aに対し、さらに、第1の樹脂封止体15の上面15a及び側面15bを覆う第4の外部ヒートシンク20Dと、第1の樹脂封止体15の内部に第1の内部ヒートシンク20Eとを備える。なお、他の構成は、第1の実施形態と同じであるため、説明を省略する。
 第1の内部ヒートシンク20Eは、例えば、熱伝導率のよい金属で形成されている。具体的には、金属は、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 第4の外部ヒートシンク20Dは、図7Aに示すように、第1の樹脂封止体15の上面15a及び側面15bに接して配置されている。
 第1の内部ヒートシンク20Eは、図7A及び図7Bに示すように、第1のヒートシンク20Aの上面40及び第2のヒートシンク20Bの上面41に接して配置されている。すなわち、第1のヒートシンク20A、第2のヒートシンク20Bの熱を主として、第1の内部ヒートシンク20Eから放散する。
 第1の内部ヒートシンク20Eの面積は、平面視において、図7Bに示すように、第1の樹脂封止体15の面積よりも小さく配置されている。
 (第4の実施形態の効果)
 第4の実施形態に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。また、第1のヒートシンク、第2のヒートシンクの熱を第1の内部ヒートシンクに適切に放散し、放熱性を改善することができる。
 [第4の実施形態の変形例]
 (半導体装置のパッケージ構造の構成)
 図8Aは、第4の実施形態の変形例に係る半導体装置1Gの断面図である。図8Bは、第4の実施形態の変形例に係る半導体装置1Gの上面図である。
 第4の実施形態の変形例に係る半導体装置1Gは、図8Aに示すように、第4の実施形態に係る半導体装置1Fの第1の内部ヒートシンク20Eに対し、第1の樹脂封止体15の内部に第2の内部ヒートシンク20E1と、第3の内部ヒートシンク20E2とを備える。なお、他の構成は、第3の実施形態と同じであるため、説明を省略する。
 第2の内部ヒートシンク20E1及び第3の内部ヒートシンク20E2は、例えば、熱伝導率のよい金属で形成されている。具体的には、金属は、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 第2の内部ヒートシンク20E1は、図8A及び図8Bに示すように、第1のヒートシンク20Aの上面40に接して配置されている。すなわち、第1のヒートシンク20Aの熱を主として、第2の内部ヒートシンク20E1から放散する。
 第3の内部ヒートシンク20E2は、第2のヒートシンク20Bの上面41に接して配置されている。
 第3の内部ヒートシンク20E2は、図8Bに示すように、第2の内部ヒートシンク20E1と離隔して配置されている。すなわち、第2のヒートシンク20Bの熱を主として、第3の内部ヒートシンク20E2から放散する。なお、第3の内部ヒートシンク20E2の面積は、平面視において、第2の内部ヒートシンク20E1よりも大きく配置してもよい。
 (第4の実施形態の変形例の効果)
 第4の実施形態の変形例に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。
 また、第4の実施形態の変形例に係る半導体装置によれば、第2の内部ヒートシンク、第3の内部ヒートシンクを有することにより、メモリコントローラ11、NANDフラッシュメモリ12から発生する熱を分離して放散し、放熱性を改善することができる。
 [第5の実施形態]
 (半導体装置のパッケージ構造の構成)
 図9Aは、第5の実施形態に係る半導体装置1Hの断面図である。図9Bは、第5の実施形態に係る半導体装置1Hの上面図である。
 第5の実施形態に係る半導体装置1Hは、図9Aに示すように、第2の実施形態に係る半導体装置1Bに対し、さらに、実装基板22と、熱伝導体21と、金属筐体23とを備える。なお、他の構成は、第3の実施形態と同じであるため、説明を省略する。
 実装基板22は、多層の配線基板を備える。なお、実装基板22は、図示はしていないが配線を備えてもよい。実装基板22は、はんだボール16と実装基板22が有する配線とで電気的に接続されている。
 熱伝導体21は、熱伝導率の高い金属または金属酸化物の粒子を有する熱伝導ペーストにより製造可能である。熱伝導ペーストには、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)などの熱伝導率の高い金属を適用可能である。また、例えば、酸化アルミニウム(Al23)、酸化マグネシウム(MgO)、窒化アルミニウム(AlN)などの金属酸化物を適用可能である。なお、熱伝導体21は、熱伝導シートまたは、熱伝導グリスであってもよい。
 熱伝導体21は、図9Aに示すように、第1の外部ヒートシンク20C上に設けられる。熱伝導体21は、第1の外部ヒートシンク20Cの上面43及び金属筐体23の下面44に接して配置されている。以下の説明において、金属筐体23と熱伝導体21と接する主面を金属筐体23の下面44と称する。
 金属筐体23は、電磁波をシールドする金属で形成されている。例えば、銅(Cu)とベリリウム(Be)の合金、鉄(Fe)とニッケル(Ni)の合金などを適用可能である。なお、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能してもよい。具体的には、例えば、金属で形成されているノイズシールドなどがある。
 金属筐体23は、図9Bに示すように、実装基板22上に第1の樹脂封止体15、第1の外部ヒートシンク20C、及び熱伝導体21を覆うように配置されている。すなわち、第1のヒートシンク20A、第2のヒートシンク20Bの熱を主として、第1の外部ヒートシンク20C、熱伝導体21を介し、金属筐体23から放散する。
 (第5の実施形態の効果)
 第5の実施形態に係る半導体装置よれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。さらに、第1のヒートシンク、第2のヒートシンクの熱を第1の外部ヒートシンク、熱伝導体を介し、金属筐体に適切に放散し、放熱性を改善することができる。
 [第5の実施形態の変形例]
 (半導体装置のパッケージ構造の構成)
 図10Aは、第5の実施形態の変形例に係る半導体装置1Kの断面図である。図10Bは、第5の実施形態の変形例に係る半導体装置1Kの上面図である。
 第5の実施形態の変形例に係る半導体装置1Kは、図10Aに示すように、第5の実施形態に係る半導体装置1Hの第1の外部ヒートシンク20Cに対し、第2の外部ヒートシンク20C1と、第3の外部ヒートシンク20C2とを備える。また、半導体装置1Kは、第5の実施形態に係る半導体装置1Hの熱伝導体21に対し、熱伝導体21A、熱伝導体21Bを備える。なお、他の構成は、第5の実施形態と同じであるため、説明を省略する。
 第2の外部ヒートシンク20C1及び第3の外部ヒートシンク20C2は、例えば、熱伝導率のよい金属で形成されている。具体的には、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などを適用可能である。
 熱伝導体21A及び熱伝導体21Bは、熱伝導体21と同様に、熱伝導率の高い金属または金属酸化物の粒子を有する熱伝導ペーストにより製造可能である。なお、熱伝導体21A及び熱伝導体21Bは、熱伝導シートまたは、熱伝導グリスであってもよい。
 第2の外部ヒートシンク20C1は、図10Aに示すように、第1のヒートシンク20Aの上面40に接して配置されている。すなわち、第1のヒートシンク20Aの熱を主として、第2の外部ヒートシンク20C1から放散する。
 第3の外部ヒートシンク20C2は、第2のヒートシンク20Bの上面41に接して配置されている。すなわち、第3の外部ヒートシンク20C2は、図10Bに示すように、第2の外部ヒートシンク20C1と離隔して配置されている。また、第2のヒートシンク20Bの熱を主として、第3の外部ヒートシンク20C2から放散する。
 熱伝導体21Aは、図10Aに示すように、第2の外部ヒートシンク20C1上に設けられる。熱伝導体21Aは、第2の外部ヒートシンク20C1の上面45及び金属筐体23の下面46に接して配置されている。すなわち、第2の外部ヒートシンク20C1の熱を主として、熱伝導体21Aを介して、金属筐体23から放散する。
 熱伝導体21Bは、図10Aに示すように、第3の外部ヒートシンク20C2上に設けられる。熱伝導体21Bは、第3の外部ヒートシンク20C2の上面47及び金属筐体23の下面48に接して配置されている。すなわち、熱伝導体21Bは、図10Bに示すように、熱伝導体21Aと離隔して配置されている。すなわち、第3の外部ヒートシンク20C2の熱を主として、熱伝導体21Bを介して、金属筐体23から放散する。
 (第5の実施形態の変形例の効果)
 第5の実施形態の変形例に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱をそれぞれ第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。
 また、第5の実施形態の変形例に係る半導体装置によれば、第2の外部ヒートシンク、第3の外部ヒートシンクを有することにより、メモリコントローラ、NANDフラッシュメモリから発生する熱を分離して放散し、放熱性を改善することができる。さらに、第2の外部ヒートシンク、第3の外部ヒートシンクの熱を主として、熱伝導体を介して、金属筐体に適切に放散し、放熱性を改善することができる。
 [第6の実施形態]
 (半導体装置のパッケージ構造の構成)
 図11Aは、第6の実施形態に係る半導体装置1Lの断面図である。図11Bは、第6の実施形態に係る半導体装置1Lの上面図である。
 第6の実施形態に係る半導体装置1Lは、図11Aに示すように、第1の実施形態に係る半導体装置1Aに対し、さらに、第2の樹脂封止体30を備える。なお、他の構成は、第1の実施形態と同じであるため、説明を省略する。
 第2の樹脂封止体30は、図11Bに示すように、第1の樹脂封止体15の上面15aと、第1のヒートシンク20A及び第2のヒートシンク20Bとを覆うように封止する。すなわち、メモリコントローラ11から発生する熱を主として、第1のヒートシンク20Aから放散する。また、メモリコントローラ11から発生する熱を主として、第1のヒートシンク20Aから放散する。なお、第1の樹脂封止体15と第2の樹脂封止体30との間には、上記の第2の実施形態~第5の実施形態の変形例の一例であげたように、第1の樹脂封止体15の上部に外部ヒートシンク、熱伝導体、及び金属筐体を備えていても良い。また、第1の樹脂封止体15の内部に内部ヒートシンクを備えていても良い。
 第2の樹脂封止体30は、例えば、エポキシ樹脂である熱硬化性樹脂とシリカの混合物であってもよい。また、第2の樹脂封止体30は、カーボンブラックを含有するエポキシ樹脂等であってもよい。
 第2の樹脂封止体30の上面30aには、図11Bに示すように、例えば、レーザ照射により、社名、製品番号、製造月日、製造工場等の製品情報が刻印(マーキング:MARKING)されている。
 刻印の位置は、図11Bに示すように、平面視において、第1のヒートシンク20A及び第2のヒートシンク20Bの位置以外に刻印している。
 (第6の実施形態の効果)
 第6の実施形態に係る半導体装置によれば、メモリコントローラ、NANDフラッシュメモリから発生する熱を第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。
 また、第6の実施形態に係る半導体装置によれば、平面視において、第1のヒートシンク、第2のヒートシンクの位置以外に刻印していることにより、レーザ照射のダメージを抑制しつつ、メモリコントローラ、NANDフラッシュメモリから発生する熱を第1のヒートシンク、第2のヒートシンクに適切に放散し、放熱性を改善することができる。
 [電子機器]
 実施形態に係る半導体装置1が搭載される電子機器2の構成について説明する。
 図12は、実施形態に係る半導体装置1が搭載される電子機器2の構成図である。図13は、電子機器2の回路基板4のブロック図である。
 電子機器2は、図12に示すように、筐体3を備える。筐体3は、回路基板4を収容している。回路基板4は、半導体装置1、ホストコントローラ5、揮発性メモリの一例であるDRAM6、及び電源回路7を備える。具体的には、電子機器2は、例えば、スマートフォン、タブレット、及び携帯端末であってもよい。実際には、これらの例に限定されない。ここでは、電子機器2をスマートフォンとして説明する。
 すなわち、電子機器2には、第1~第6の実施形態に記載の半導体装置1を適用可能である。
 回路基板4は、図13に示すように、電源回路7が設けられる。電源回路7は、電源ライン8(8a、8b、8c)を介して、半導体装置1、ホストコントローラ5、及びDRAM6に接続する。電源回路7は、電源ライン8aを介して電源電圧をホストコントローラ5に供給する。また、電源回路7は、電源ライン8bを介して電源電圧を半導体装置1に供給する。同様に、電源回路7は、電源ライン8cを介して電源電圧をDRAM6に供給する。
 半導体装置1とホストコントローラ5との間には、例えば、複数の信号ライン9が設けられる。半導体装置1は、電子機器2の記憶装置として機能する。半導体装置1は、複数の信号ライン9を介して、ホストコントローラ5との間で信号をやりとりする。半導体装置1は、例えば、複数のメモリチップによって構成されるマルチチップパッケージであってもよい。
 DRAM6とホストコントローラ5との間には、例えば、信号ライン10が設けられる。DRAM6は、ホストコントローラ5におけるプログラム実行処理中に利用されるデータ等を一時的に格納し、作業領域として利用される一時的なメモリ等として機能する。DRAM6は、信号ライン10を介して、ホストコントローラ5との間で信号をやりとりする。
 ホストコントローラ5は、半導体装置1を含む電子機器2の全体の動作を制御する集積回路である。なお、ホストコントローラ5は、例えば、サウスブリッジを含んでもよい。
 図14は、実施形態に係る半導体装置1が搭載される電子機器2Bの構成図である。
 電子機器2Bは、図14に示すように、筐体3Bを備える。筐体3Bは、回路基板4を収容している。回路基板4は、半導体装置1と、ホストコントローラ5Bとを備える。具体的には、電子機器2Bは、例えば、デスクトップ型あるいはラップトップ型のパーソナルコンピュータであってもよい。
 すなわち、電子機器2Bには、第1~第6の実施形態に記載の半導体装置1を適用可能である。
 図15は、実施形態に係る半導体装置1が搭載される電子機器2Cの構成図である。
 電子機器2Cは、図15に示すように、回路基板4を備える。回路基板4は、半導体装置1と、ホストコントローラ5Cとを備える。具体的には、電子機器2Cは、例えば、記憶装置(ストレージ:Storage)の一例であるM.2 SSD(Solid State Drive)であってもよい。
 すなわち、電子機器2Cには、第1~第6の実施形態に記載の半導体装置1を適用可能である。
 図16は、実施形態に係る半導体装置1が搭載される電子機器2Dの構成図である。
 電子機器2Dは、図16に示すように、筐体3Dを備える。筐体3Dは、回路基板4を収容している。回路基板4は、半導体装置1と、ホストコントローラ5Dと、DRAM6と、電源回路7とを備える。具体的には、電子機器2Dは、例えば、SSDであってもよい。
 すなわち、電子機器2Dには、第1~第6の実施形態に記載の半導体装置1を適用可能である。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (17)

  1.  基板と、
     前記基板上に配置されたコントローラと、
     前記基板上に前記コントローラと離隔して配置された不揮発性メモリと、
     前記コントローラの上面に接して配置される第1のヒートシンクと、
     前記不揮発性メモリの上面に接して配置される第2のヒートシンクと、
     前記コントローラ、前記不揮発性メモリ、前記第1のヒートシンク、及び前記第2のヒートシンクを封止する第1の樹脂封止体とを備え、
     前記第1のヒートシンク及び前記第2のヒートシンクは、前記第1の樹脂封止体の上面または側面の少なくとも一方の面に露出している、半導体装置。
  2.  前記第1のヒートシンクの厚さは、前記第2のヒートシンクの厚さよりも厚い、
    請求項1に記載の半導体装置。
  3.  前記基板は、配線を有し、
     前記基板上に、前記配線と前記コントローラ及び前記不揮発性メモリとを電気的に接続するボンディングワイヤと、
     前記配線と電気的に接続するはんだボールをさらに備え、
     前記コントローラは、
     第1の一端と前記第1の一端と対向する第1の他端とを有し、
     前記不揮発性メモリは、
     第2の一端と前記第2の一端と対向する第2の他端とを有し、
     前記ボンディングワイヤは、
     前記コントローラ上において、前記第1の一端に電気的に接続される第1のボンディングワイヤ及び前記第1の他端に電気的に接続されている第2のボンディングワイヤと、
     前記不揮発性メモリ上において、前記第2の一端に電気的に接続される第3のボンディングワイヤ及び前記第2の他端に電気的に接続される第4のボンディングワイヤとを備え、
     前記第1のヒートシンクは、前記コントローラ上において、平面視において、前記第1のボンディングワイヤと、前記第2のボンディングワイヤとの間に配置され、
     前記第2のヒートシンクは、前記不揮発性メモリ上において、平面視において、前記第3のボンディングワイヤと、前記第4のボンディングワイヤとの間に配置される、
    請求項1または請求項2に記載の半導体装置。
  4.  前記第1の樹脂封止体の上面に露出する前記第2のヒートシンクの面積が前記第1の樹脂封止体の上面に露出する前記第1のヒートシンクの面積よりも大きい、請求項1または請求項2に記載の半導体装置。
  5.  前記第1の樹脂封止体上の上面に、前記第1のヒートシンク及び前記第2のヒートシンクと、前記第1のヒートシンク及び前記第2のヒートシンクを覆うように配置される第1の外部ヒートシンクをさらに備える、請求項3に記載の半導体装置。
  6.  前記第1の外部ヒートシンクの上面の面積は、前記第1の樹脂封止体の上面の面積より小さい、請求項5に記載の半導体装置。
  7.  前記第1の樹脂封止体上に、前記第1のヒートシンクに接して、前記第1のヒートシンクを覆うように配置される第2の外部ヒートシンクと、
     前記第1の樹脂封止体上に、前記第2のヒートシンクに接して、前記第2のヒートシンクを覆うように配置される第3の外部ヒートシンクとをさらに備える、請求項3に記載の半導体装置。
  8.  前記第3の外部ヒートシンクの上面の面積は、前記第2の外部ヒートシンクの上面の面積よりも大きい、請求項7に記載の半導体装置。
  9.  前記第1の樹脂封止体の上面に露出する前記第2のヒートシンクの面積が前記第1の樹脂封止体の側面に露出する前記第1のヒートシンクの面積よりも大きい、請求項1または請求項2に記載の半導体装置。
  10.  前記第1の樹脂封止体上の上面及び側面に、前記第1のヒートシンク及び前記第2のヒートシンクに接して、前記第1のヒートシンク及び前記第2のヒートシンクを覆うように配置される第4の外部ヒートシンクをさらに備える、請求項9に記載の半導体装置。
  11.  前記第1の樹脂封止体上に、前記第1のヒートシンクに接して、前記第1のヒートシンクを覆うように配置される第5の外部ヒートシンクと、
     前記第1の樹脂封止体上に、前記第2のヒートシンクに接して、前記第2のヒートシンクを覆うように配置される第6の外部ヒートシンクとをさらに備える、請求項9に記載の半導体装置。
  12.  前記はんだボールと電気的に接続する実装基板と、
     前記実装基板上に配置される金属筐体と、
     前記第1の外部ヒートシンク上に配置され、前記第1の外部ヒートシンク及び前記金属筐体に接する熱伝導体と、
    をさらに備える、請求項5または請求項6に記載の半導体装置。
  13.  前記はんだボールと電気的に接続する実装基板と、
     前記実装基板上に配置される金属筐体と、
     前記第2の外部ヒートシンク及び前記第3の外部ヒートシンク上に配置され、前記第2の外部ヒートシンク、前記第3の外部ヒートシンク、及び前記金属筐体に接する熱伝導体と、
    をさらに備える、請求項7または請求項8に記載の半導体装置。
  14.  前記第1の樹脂封止体上に、前記第1の樹脂封止体、前記第1のヒートシンク、及び前記第2のヒートシンクを覆うように積層して配置される第2の樹脂封止体をさらに備える、請求項1または請求項2に記載の半導体装置。
  15.  前記第2の樹脂封止体の上面には、前記第1のヒートシンク及び前記第2のヒートシンクの位置以外に刻印がされる、請求項14に記載の半導体装置。
  16.  回路基板と、
     前記回路基板に実装された請求項1~15のいずれか1項に記載の半導体装置と、
     前記回路基板に実装され、前記半導体装置を制御するホストコントローラと、
    を備える、電子機器。
  17.  前記回路基板に実装され、前記ホストコントローラの一時的なメモリを記憶する揮発性メモリと、
     前記回路基板に実装され、前記ホストコントローラ、前記半導体装置、及び前記揮発性メモリに電源を供給する電源回路と、
     前記回路基板を収容する筐体をさらに備える、請求項16に記載の電子機器。
PCT/JP2022/001343 2021-08-25 2022-01-17 半導体装置及び電子機器 WO2023026511A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/435,091 US20240178212A1 (en) 2021-08-25 2024-02-07 Semiconductor device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021137286A JP2023031660A (ja) 2021-08-25 2021-08-25 半導体装置及び電子機器
JP2021-137286 2021-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/435,091 Continuation US20240178212A1 (en) 2021-08-25 2024-02-07 Semiconductor device and electronic device

Publications (1)

Publication Number Publication Date
WO2023026511A1 true WO2023026511A1 (ja) 2023-03-02

Family

ID=85322591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001343 WO2023026511A1 (ja) 2021-08-25 2022-01-17 半導体装置及び電子機器

Country Status (4)

Country Link
US (1) US20240178212A1 (ja)
JP (1) JP2023031660A (ja)
TW (2) TWI817303B (ja)
WO (1) WO2023026511A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309195A (ja) * 2003-05-26 2003-10-31 Oki Electric Ind Co Ltd 半導体装置
JP2008218669A (ja) * 2007-03-02 2008-09-18 Nec Electronics Corp 半導体装置
JP2011035352A (ja) * 2009-08-06 2011-02-17 Fujitsu Semiconductor Ltd 半導体装置
JP2014179611A (ja) * 2013-03-14 2014-09-25 General Electric Co <Ge> パワーオーバーレイ構造およびその製造方法
JP2016032074A (ja) * 2014-07-30 2016-03-07 株式会社ソシオネクスト 半導体装置及び半導体装置の製造方法
JP2016063127A (ja) * 2014-09-19 2016-04-25 ルネサスエレクトロニクス株式会社 半導体装置
JP2019087609A (ja) * 2017-11-06 2019-06-06 日立オートモティブシステムズ株式会社 電子制御装置
US20190198489A1 (en) * 2017-12-22 2019-06-27 Samsung Electronics Co., Ltd. Electronic device and method of manufacturing the electronic device
JP2020047651A (ja) * 2018-09-14 2020-03-26 キオクシア株式会社 半導体装置
JP2021005674A (ja) * 2019-06-27 2021-01-14 株式会社村田製作所 電子部品モジュール、電子部品ユニット、および、電子部品モジュールの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049383A1 (en) * 2014-08-12 2016-02-18 Invensas Corporation Device and method for an integrated ultra-high-density device
TWI553799B (zh) * 2015-08-26 2016-10-11 力成科技股份有限公司 半導體封裝結構
US10461014B2 (en) * 2017-08-31 2019-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Heat spreading device and method
JP7414822B2 (ja) * 2019-01-22 2024-01-16 長江存儲科技有限責任公司 集積回路パッケージング構造及びその製造方法
JP2021077698A (ja) * 2019-11-06 2021-05-20 キオクシア株式会社 半導体パッケージ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309195A (ja) * 2003-05-26 2003-10-31 Oki Electric Ind Co Ltd 半導体装置
JP2008218669A (ja) * 2007-03-02 2008-09-18 Nec Electronics Corp 半導体装置
JP2011035352A (ja) * 2009-08-06 2011-02-17 Fujitsu Semiconductor Ltd 半導体装置
JP2014179611A (ja) * 2013-03-14 2014-09-25 General Electric Co <Ge> パワーオーバーレイ構造およびその製造方法
JP2016032074A (ja) * 2014-07-30 2016-03-07 株式会社ソシオネクスト 半導体装置及び半導体装置の製造方法
JP2016063127A (ja) * 2014-09-19 2016-04-25 ルネサスエレクトロニクス株式会社 半導体装置
JP2019087609A (ja) * 2017-11-06 2019-06-06 日立オートモティブシステムズ株式会社 電子制御装置
US20190198489A1 (en) * 2017-12-22 2019-06-27 Samsung Electronics Co., Ltd. Electronic device and method of manufacturing the electronic device
JP2020047651A (ja) * 2018-09-14 2020-03-26 キオクシア株式会社 半導体装置
JP2021005674A (ja) * 2019-06-27 2021-01-14 株式会社村田製作所 電子部品モジュール、電子部品ユニット、および、電子部品モジュールの製造方法

Also Published As

Publication number Publication date
TW202406077A (zh) 2024-02-01
TW202310291A (zh) 2023-03-01
TWI817303B (zh) 2023-10-01
US20240178212A1 (en) 2024-05-30
JP2023031660A (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6122290B2 (ja) 再配線層を有する半導体パッケージ
US10593617B2 (en) Semiconductor device
US7880312B2 (en) Semiconductor memory device
US10008488B2 (en) Semiconductor module adapted to be inserted into connector of external device
KR102307490B1 (ko) 반도체 패키지
JP2007066922A (ja) 半導体集積回路装置
JP2016207785A (ja) 半導体装置
JP2016012693A (ja) 半導体装置
US10797021B2 (en) Semiconductor packages having improved thermal discharge and electromagnetic shielding characteristics
KR20100105147A (ko) 멀티 칩 패키지 및 관련된 장치
US9536861B2 (en) Semiconductor package including a plurality of stacked chips
KR20160025945A (ko) 전자부품이 내장된 반도체 패키지
US8169066B2 (en) Semiconductor package
US20210134693A1 (en) Semiconductor package
WO2023026511A1 (ja) 半導体装置及び電子機器
US20210327830A1 (en) Semiconductor package including decoupling capacitor
US20230317683A1 (en) Semiconductor package including heat dissipation layer
US10998294B2 (en) Semiconductor packages having stacked chip structure
US9478515B1 (en) Semiconductor packages including interconnection members
JP2016167523A (ja) 半導体装置および電子機器
KR101672967B1 (ko) 에지에 사이드 패드를 포함하는 반도체 스택 패키지, 및 이를 포함하는 고밀도 메모리 모듈, 전자 회로 기기
US20140327156A1 (en) Semiconductor package and method of manufacturing the same
KR102276477B1 (ko) 오버행부를 갖는 반도체 패키의 제조방법
US9281267B1 (en) Semiconductor package having overhang portion
US8872340B2 (en) Substrate for semiconductor package which can prevent the snapping of a circuit trace despite physical deformation of a semiconductor package and semiconductor package having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE