WO2023025069A1 - 一种直接制备h型cha结构分子筛的合成方法及应用 - Google Patents

一种直接制备h型cha结构分子筛的合成方法及应用 Download PDF

Info

Publication number
WO2023025069A1
WO2023025069A1 PCT/CN2022/113796 CN2022113796W WO2023025069A1 WO 2023025069 A1 WO2023025069 A1 WO 2023025069A1 CN 2022113796 W CN2022113796 W CN 2022113796W WO 2023025069 A1 WO2023025069 A1 WO 2023025069A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
cha
sol
directing agent
cha structure
Prior art date
Application number
PCT/CN2022/113796
Other languages
English (en)
French (fr)
Inventor
李凯祥
李振国
任晓宁
吕丛杰
王建海
贾凌峰
邵元凯
吕诚
Original Assignee
中汽研汽车检验中心(天津)有限公司
中国汽车技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中汽研汽车检验中心(天津)有限公司, 中国汽车技术研究中心有限公司 filed Critical 中汽研汽车检验中心(天津)有限公司
Publication of WO2023025069A1 publication Critical patent/WO2023025069A1/zh
Priority to US18/337,461 priority Critical patent/US20230339767A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7065CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/783CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Definitions

  • the invention belongs to the technical field of molecular sieve synthesis, and in particular relates to a synthesis method and application for directly preparing molecular sieves with H-type CHA structure.
  • SCR selective catalytic reduction
  • molecular sieve SCR catalysts are regarded as the future development trend.
  • This type of catalyst is composed of molecular sieves as a carrier to support active metals, and has the advantages of low toxicity, high activity, wide window, and high selectivity.
  • This type of catalyst is composed of molecular sieves as carriers to support active metals.
  • Common molecular sieve carriers include LTA, CHA, BEA, AFX structures, etc., and common active components include Cu, Fe, Ce, Mn, etc.
  • Molecular sieve-based SCR catalysts represented by CHA structure molecular sieves have good low-temperature activity in NH 3 -SCR reactions due to their unique micropore structure and suitable surface acidity. Nitrogen selective, low toxicity catalytic material. Among them, Cu/CHA molecular sieve catalyst is the most widely used typical commercial SCR catalyst in the Euro VI/China VI phase.
  • CHA structure molecular sieves have problems such as long synthesis cycle, high difficulty, high cost, and difficult disposal of waste liquid, which lead to high cost of SCR post-treatment devices in China VI and limit their large-scale market application.
  • Publication No. CN110407231A discloses the use of novel templating agent 5,6,7,8-tetrahydronaphthalene-2-yl-trimethylammonium hydroxide and/or p-vinylphenyl-N,N,N-trimethylammonium Ammonium hydroxide is used to synthesize molecular sieves of CHA structure, which saves the alkali metal ion exchange process in the prior art, has simple synthesis steps, low production cost, no COD waste water discharge, and no pollution to the environment.
  • patent with the publication number CN110523432A discloses a Cu-CHA molecular sieve catalyst with high acid density and low copper, which has a wide catalytic activity temperature window, taking into account both low temperature and high temperature activity, and still exhibits good catalytic activity after hydrothermal aging treatment.
  • patents CN109867294A, CN104128200A, CN110665538B, CN108083292A, and CN103818927B all disclose copper-based CHA molecular sieve catalysts and their preparation methods.
  • the intellectual property rights of catalysts for this system have been monopolized by foreign companies, which greatly limits the large-scale application in China.
  • the present invention aims to propose a synthesis method and application for directly preparing H-type CHA structure molecular sieves, so as to realize the preparation of CHA-based molecular sieve SCR catalysts with samarium element as the active component directly as a carrier without going through an ammonium exchange process.
  • a structure-directing agent for synthesizing a molecular sieve with a CHA structure comprising at least one of compound A and compound B,
  • a kind of synthetic method that directly prepares H-type CHA structure molecular sieve, has applied structure-directing agent as above, comprises the following steps:
  • Step 1 Mix and stir the structure directing agent and deionized water at room temperature until clear, add aluminum sol, and stir vigorously for 0.5-2h to form a sol-gel, for example, 0.5h, 0.7h, 0.8h, 1.0h, 1.2h , 1.5h, 1.6h, 1.8h, 2h;
  • Step 2 adding a silicon source and a seed crystal into the sol-gel, and performing a hydrothermal synthesis reaction in a hydrothermal synthesis kettle to obtain a reaction solution;
  • Step 3 filter the reaction liquid, wash the filter cake, and heat to obtain the H-type molecular sieve with CHA structure.
  • the above synthesis method uses the acid-base balance of the raw materials to design a neutral synthesis system (pH), avoiding the introduction of caustic alkali, and can directly prepare molecular sieves with a CHA structure through hydrothermal synthesis.
  • a neutral synthesis system pH
  • step 2 is as follows:
  • reaction solution for example, it can be reacted at 155°C for 48h , Reaction at 160°C for 40h, reaction at 165°C for 32h, reaction at 170°C for 24h, reaction at 175°C for 16h, reaction at 180°C for 7h.
  • the active ingredient of aluminum sol includes Al 2 O 3
  • the active ingredient of silicon source includes SiO 2
  • the molar ratio of Al 2 O 3 , SiO 2 , structure directing agent, and deionized water is 1:0.1-50:0.1- 20:10-200, such as 1:0.1:0.1:10, 1:1:5:60, 1:5:2:70, 1:10:3:80, 1:15:4:90, 1 :20:5:100, 1:30:10:120, 1:40:15:160, 1:50:20:200; preferably 1:1-20:0.1-5:60-100.
  • the solid content of the aluminum sol is 5%-50%
  • the silicon source includes at least one of silica sol, fumed silica, white carbon black, and tetraethyl orthosilicate
  • the seed crystal includes A molecular sieve with a CHA structure with a silicon-aluminum ratio of less than 25, the purpose of which is to provide a crystal nucleus to promote the synthesis of a molecular sieve with a hydrogen type CHA structure, and its grain size does not exceed 5 ⁇ m, preferably no more than 500 nm; preferably, the seed crystal includes SSZ with a CHA structure - At least one of 13 molecular sieves and SAPO-34 molecular sieves.
  • Step 3 is as follows:
  • a samarium-based CHA molecular sieve catalyst comprising a carrier, an active component and a metal additive
  • the carrier is a molecular sieve with a CHA structure
  • the metal element of the active component is an Sm element
  • the metal element of the metal additive includes Mn, At least one of Ce, W, Mo, Sn, Y, La, Pr, Nd, Zr, Nb, Pt, Pd, Ag;
  • the active component elements are distributed in CHA structure molecular sieve D6R, CHA cage and/or or the surface; further preferably, the metal element of the metal additive includes at least one of Mn, Mo, Nd, Pt, and Pd.
  • the samarium-based CHA molecular sieve catalyst in the present invention is a rare earth and transition metal element modified Sm-based CHA molecular sieve catalyst, the main purpose of which is to improve the low-temperature activity of the above-mentioned catalyst, widen the temperature window, improve nitrogen selectivity, and suppress high-temperature hydrothermal degradation.
  • the carrier includes at least one of SSZ-13, SAPO-34, SAPO-44, ZK-4, preferably SSZ-13, SAPO-34; and/or two or more types containing CHA structure (chabazite)
  • the molecular sieve with a crystal phase structure specifically includes at least one of eight-membered ring, ten-membered ring, and twelve-membered ring molecular sieves, preferably an eight-membered ring molecular sieve.
  • mass ratio Sm: CHA structure molecular sieve 0.5-15wt%
  • mass ratio Sm: metal additives 1:0.01-10
  • mass ratio Sm: CHA structure molecular sieve 2.5-7.5wt%
  • molar ratio Sm: metal additive 1:0.5-5
  • the samarium-based CHA molecular sieve catalyst is obtained by ion exchange method, impregnation method, sol-gel method, in-situ synthesis method, molten salt synthesis method, It is synthesized by at least one of one-pot method and mixed grinding method
  • the samarium-based CHA molecular sieve catalyst is synthesized by at least one of ion exchange method, impregnation method and in-situ synthesis method.
  • the structure-directing agent of the present invention has a molecular topological structure, which helps to quickly and efficiently build a CHA molecular sieve skeleton structure, and the prepared product has a regular appearance and a high relative crystallinity;
  • the synthesis method of the present invention can directly synthesize H-type molecular sieves with CHA structure, and the relative crystallinity is >95%.
  • Molecular sieve products can be obtained by direct drying and roasting without the need for ammonium exchange, which is simple and easy to implement and suitable for large-scale production;
  • Example 1 is a schematic diagram of the crystal phase structure of the molecular sieve product prepared in Example 1 of the present invention.
  • Example 2 is a schematic diagram of the crystal phase structure of the molecular sieve product prepared in Example 2 of the present invention.
  • Example 3 is a schematic diagram of the crystal phase structure of the molecular sieve product prepared in Example 3 of the present invention.
  • Figure 4 is a schematic diagram of the NO x conversion rate curve of a samarium-based CHA molecular sieve catalyst
  • Figure 5 is a schematic diagram of the microscopic morphology of the molecular sieve product prepared in Example 1 of the present invention.
  • Example 6 is a schematic diagram of the microscopic morphology of the molecular sieve product prepared in Example 2 of the present invention.
  • Example 7 is a schematic diagram of the microscopic morphology of the molecular sieve product prepared in Example 3 of the present invention.
  • FIG. 8 is a schematic diagram of the 1 H NMR spectrum of the structure directing agent OSDA1 described in the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the 13 C NMR spectrum of the structure directing agent OSDA1 described in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the 1 H NMR spectrum of the structure directing agent OSDA2 described in the embodiment of the present invention.
  • Fig. 11 is a schematic diagram of the 13 C NMR spectrum of the structure directing agent OSDA2 described in the embodiment of the present invention.
  • Fig. 12 is a schematic diagram of the three-dimensional molecular structure of the structure directing agent described in the embodiment of the present invention.
  • test reagents used in the following examples are conventional biochemical reagents; the experimental methods, unless otherwise specified, are conventional methods.
  • the simulated flue gas composition used in the NH 3 -SCR performance test 500ppm NO, 500ppm NH 3 , 10% O 2 , N 2 is the balance gas, the total flow rate is 1000ml/min, and the reaction space velocity is 30000h -1 .
  • the low-temperature performance index is T 50 , which represents the corresponding temperature when the NOx conversion rate reaches 50%; the temperature window index T 90 , represents the corresponding temperature range when the NOx conversion rate exceeds 90%. .
  • the structural formula of OSDA1 in the embodiment of the present invention is The chemical formula is (C 4 H 8 NO) 3 PO, and the structural formula of OSDA2 is The chemical formula is (C 4 H 8 NO) 2 PO(C 4 H 10 N).
  • the characterization results of the crystal phase structure of the product are shown in Figure 1.
  • the XRD characterization results show that the above solid product is a SAPO-34 molecular sieve with a CHA structure, and the relative crystallinity is >95%;
  • XRF characterization shows that the Na and K alkali metal content in the product is lower than 50ppm
  • the microscopic morphology of the product is shown in Figure 5.
  • the results of laser particle size analysis show that the particle size range is concentrated in the range of 1-5 ⁇ m; SEM characterization shows that the product presents a cubic block shape.
  • the preparation conditions of the catalyst in this example, the amount of each raw material added and the preparation process are the same as in Example 1, the difference is that this example uses OSDA2 structure directing agent instead of OSDA1.
  • the characterization results of the crystal phase structure of the product are shown in Figure 2.
  • XRD characterization of the obtained solid product shows that the SAPO-34 molecular sieve with a CHA structure has a relative crystallinity >95%;
  • XRF characterization shows that the content of Na and K alkali metals in the product is low
  • the microscopic appearance of the product is shown in Figure 6.
  • the results of laser particle size analysis show that the particle size range is concentrated in the range of 1-5 ⁇ m; SEM characterization shows that the product presents a cubic block shape.
  • the crystal phase structure characterization results of the product are shown in Figure 3.
  • the obtained solid product was characterized by XRD, showing that the mixed crystal product of SAPO-34 and SSZ-13 molecular sieves with a CHA structure had a relative crystallinity >95%;
  • the Na, K alkali metal content is less than 50ppm, and the silicon-aluminum ratio (SiO 2 /Al 2 O 3 ) is 13.4;
  • the microscopic appearance of the product is shown in Figure 7, and the results of laser particle size analysis show that the particle size range is concentrated in the range of 1-5 ⁇ m ; Characterized by SEM, showing that the product presents a cubic block shape.
  • the obtained solid product was characterized by XRD, showing that the mixed crystal product of SAPO-34 and SSZ-13 molecular sieves with a CHA structure had a relative crystallinity >95%; by XRF, it showed that the content of Na and K alkali metals in the product was less than 50ppm, and the silicon-aluminum
  • the ratio (SiO 2 /Al 2 O 3 ) is 13.4; the results of laser particle size analysis show that the particle size range is concentrated in the range of 1-5 ⁇ m; the SEM characterization shows that the product presents a cubic block shape.
  • N,N,N-trimethyl-1-adamantyl ammonium hydroxide is the mainstream templating agent for industrial synthesis of Na-type CHA structure SSZ-13 molecular sieve.
  • the XRD characterization shows that the obtained solid product is amorphous and has no characteristic diffraction peaks of molecular sieves with a CHA structure.
  • Cu-TEPA tetraethylenepentaamine copper
  • Cu-TEPA tetraethylenepentaamine copper
  • This comparative example adopts the same preparation conditions, the addition amount of each raw material and the preparation process as in Example 1, the difference is that an equimolar Cu-TEPA is used instead of OSDA1.
  • This embodiment adopts the ion exchange method, and the molecular sieve carrier is selected from the molecular sieve product prepared in Example 3, as follows:
  • This embodiment adopts the mixed grinding method, and the molecular sieve carrier is selected from the molecular sieve product prepared in Example 3, as follows:
  • the impregnation method is adopted, and the molecular sieve carrier is selected from the molecular sieve product prepared in Example 3, as follows:
  • the in-situ synthesis method is adopted, and the molecular sieve carrier is selected from the molecular sieve product prepared in Example 3, specifically as follows:
  • This embodiment is based on the catalyst prepared in Example 5, introducing Mn, Fe element modification, specifically as follows:
  • Example 5 Take 20 g of the catalyst product in Example 5, stir and disperse in 150 g of deionized aqueous solution, add 5 g of manganese nitrate solution (50 wt %) and 2 g of ferric nitrate solution, heat up to 80 ° C and stir at a constant temperature for 6 h under airtight conditions; after the constant temperature is over, Stirred under reduced pressure and evaporated to dryness to obtain a khaki solid powder.
  • the above-mentioned khaki solid powder was dried at 120° C. for 6 hours, and then roasted at a constant temperature of 550° C. for 5 hours to obtain a modified samarium-based CHA molecular sieve catalyst.
  • the modified samarium-based CHA molecular sieve catalyst prepared in Example 9 was made into a 40-60 mesh powder sample, and the NH 3 -SCR catalytic performance was evaluated in a micro fixed-bed reactor.
  • the size of the quartz reaction tube used is 15mm, and the heating rate of the evaluation test is 5°C/min.
  • the test results are shown in Figure 4.
  • the test results show that the NOx light-off temperature T 50 of the above catalyst is 180°C, and the activation temperature window T 90 is 220-575°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种直接制备H型CHA结构分子筛的合成方法及应用,以化学式为(C 4H 8NO) 3PO和/或(C 4H 8NO) 2PO(C 4H 10N)的化合物为结构导向剂,通过水热合成发直接制备H型CHA结构分子筛。本发明所述的结构导向剂具有分子拓扑结构,有助于快速高效搭建CHA分子筛骨架结构,制备的产物形貌规整,相对结晶度高,合成方法能够直接合成H型CHA结构分子筛,相对结晶度>95%。无需铵交换环节,直接干燥焙烧即可获得分子筛产品,简便易行,适宜规模化生产,钐基CHA分子筛催化剂凭借Sm元素的本征活性以及H型CHA结构分子筛理化特性,在NH 3-SCR技术中表现出优异的氨气吸附能力、低温活性,活性温度窗口、N 2选择性和结构稳定性,在上述催化剂的作用下氮氧化物与还原剂发生反应转化成无害的氮气和水。

Description

一种直接制备H型CHA结构分子筛的合成方法及应用 技术领域
本发明属于分子筛合成技术领域,尤其是涉及一种直接制备H型CHA结构分子筛的合成方法及应用。
背景技术
据公安部统计,截至2021年3月,全国机动车保有量达3.78亿辆,其中汽车2.87亿辆。飞速发展的汽车工业促进了我国交通运输行业的长足发展,给人们的生产生活带来了极大的便利。然而,随之而来的汽车尾气污染问题日益严峻。据《移动源污染中国移动源环境管理年报(2020)》报道,2019年我国全年机动车四项污染物排放总量达1603.8万吨,其中,氮氧化物(NO X)为635.6万吨。柴油车是NO X排放的主要贡献者,占汽车排放总量的88.9%以上。我国柴油车排放标准主要沿用欧洲排放法规,选择性催化还原(SCR)技术是催化净化柴油车NO X的主要途径。SCR系统由催化剂、尿素喷射系统、尿素储存罐和控制系统组成。其中,催化剂作为关键部件,直接决定了SCR系统的效率。随着我国机动车排放标准不断升级,NO X排放限值进一步降低,同时明确限制N 2O、NH 3量。国六标准阶段,因钒钨钛催化剂存在低温性能差、温度窗口窄、副产物N 2O高且高热环境钒挥发等缺点,分子筛SCR催化剂被视为未来的发展趋势。该类催化剂以分子筛为载体负载活性金属构成,具备低毒、高活性、宽窗口、高选择性等优点。该类催化剂由分子筛作为载体负载活性金属构成,常见的分子筛载体有LTA、CHA、BEA、AFX结构等,常见的活性组分有Cu、Fe、Ce、Mn等。以CHA结构分子筛为代表的分子筛基SCR催化剂因其独特的微孔孔道结构和适宜的表面酸性,其催化剂在NH 3-SCR反应中表现出良好的低温活性,较宽的活性温度窗口、高的氮气选 择性、低毒的催化材料。其中,欧六/国六阶段应用最广泛的典型商用SCR催化剂为Cu/CHA分子筛催化剂。
目前,CHA结构分子筛存在合成周期长,难度大,成本高、废液难处理等问题,导致国六SCR后处理装置成本居高不下,限制其大规模市场应用。公开号为CN110407231A的专利公开采用新型模板剂5,6,7,8-四氢萘-2-基-三甲基氢氧化铵和/或对乙烯基苯基-N,N,N-三甲基氢氧化铵合成CHA结构分子筛,省掉了现有技术中的碱金属离子交换工序,合成步骤简单,生产成本低,无COD废水排放,对环境无污染。公开号为CN110523432A的专利公开了高酸密度、低铜的Cu-CHA分子筛催化剂,具有较宽的催化活性温度窗口,兼顾低温和高温活性,经过水热老化处理后仍然表现出良好的催化活性。同样,专利CN109867294A、CN104128200A、CN110665538B、CN108083292A、CN103818927B中均公开铜基CHA分子筛催化剂及其制备方法。然而,该体系催化剂的知识产权已被国外企业垄断,极大地限制了国内规模化应用。
发明内容
有鉴于此,本发明旨在提出一种直接制备H型CHA结构分子筛的合成方法及应用,以实现无需经过铵交换工艺可直接作为载体制备以钐元素为活性组分的CHA基分子筛SCR催化剂。
为达到上述目的,本发明的技术方案是这样实现的:
一种用于合成CHA结构分子筛的结构导向剂,所述结构导向剂包括化合物A及化合物B中的至少一种,
化合物A的化学式为(C 4H 8NO) 3PO,
化合物A的结构式为
Figure PCTCN2022113796-appb-000001
化合物B的化学式为(C 4H 8NO) 2PO(C 4H 10N),
化合物B的结构式为
Figure PCTCN2022113796-appb-000002
一种直接制备H型CHA结构分子筛的合成方法,应用了如上所述的结构导向剂,包括以下步骤:
步骤一、将结构导向剂与去离子水常温混合搅拌至澄清,加入铝溶胶,剧烈搅拌0.5-2h,形成溶胶-凝胶,例如可以是0.5h、0.7h、0.8h、1.0h、1.2h、1.5h、1.6h、1.8h、2h;
步骤二、在溶胶-凝胶中加入硅源及晶种,在水热合成釜内进行水热合成反应得到反应液;
步骤三、将反应液过滤,清洗滤饼,加热,得到H型CHA结构分子筛。
上述合成方法利用原料自身酸碱平衡设计中性合成体系(pH),避免引入苛性碱,经水热合成可直接制备CHA结构分子筛。
进一步地,步骤二的具体操作如下:
在溶胶-凝胶中加入硅源与晶种,搅拌均匀后转移至水热合成釜内,密 闭环境下升温至155-180℃反应7-48h,得到反应液,例如可以是155℃下反应48h、160℃下反应40h、165℃下反应32h、170℃下反应24h、175℃下反应16h、180℃下反应7h。
进一步地,铝溶胶的有效成分包括Al 2O 3,硅源的有效成分包括SiO 2,Al 2O 3、SiO 2、结构导向剂、去离子水的摩尔比为1:0.1-50:0.1-20:10-200,例如可以是1:0.1:0.1:10、1:1:5:60、1:5:2:70、1:10:3:80、1:15:4:90、1:20:5:100、1:30:10:120、1:40:15:160、1:50:20:200;优选为1:1-20:0.1-5:60-100。
进一步地,所述铝溶胶的固含量为5%-50%,所述硅源包括硅溶胶、气相二氧化硅、白炭黑、正硅酸乙酯中的至少一种,所述晶种包括硅铝比小于25的CHA结构分子筛,目的是提供晶核,促进氢型CHA结构分子筛合成,其晶粒尺寸不超过5μm,优选不超过500nm;优选地,所述晶种包括具有CHA结构的SSZ-13分子筛、SAPO-34分子筛中的至少一种。
进一步地,步骤三的具体操作如下:
将反应液在板框压滤机中进行固液分离,用清水洗涤滤饼至少3次后,在120℃温度下干燥至水含量低于6wt%,以2℃/min速率升温至350-450℃恒温1-2h,之后升温至500-550℃恒温3-6h,得到H型CHA结构分子筛。
一种钐基CHA分子筛催化剂,包括载体、活性组分及金属助剂,所述载体为CHA结构分子筛,所述活性组分的金属元素为Sm元素,所述金属助剂的金属元素包括Mn、Ce、W、Mo、Sn、Y、La、Pr、Nd、Zr、Nb、Pt、Pd、Ag中至少一种;优选地,所述活性组分元素分布于CHA结构分子筛D6R、CHA笼和/或表面;进一步优选地,金属助剂的金属元素包括Mn、Mo、Nd、Pt、Pd中至少一种。本发明中的钐基CHA分子筛催化剂为稀土、过渡金属元素改性Sm基CHA结构分子筛催化剂,主要目的是提升上述催化剂的低温 活性、拓宽温度窗口、改善氮气选择性、抑制高温水热劣化。
进一步地,所述载体包括SSZ-13、SAPO-34、SAPO-44、ZK-4中至少一种,优选SSZ-13、SAPO-34;和/或含有CHA结构(菱沸石)的两种以上晶相结构的分子筛,具体包括八元环、十元环、十二元环分子筛中至少一种,优选八元环分子筛。
进一步地,按质量比Sm:CHA结构分子筛=0.5-15wt%,按摩尔比Sm:金属助剂=1:0.01-10;优选地,按质量比Sm:CHA结构分子筛=2.5-7.5wt%,按摩尔比Sm:金属助剂=1:0.5-5;进一步优选地,所述钐基CHA分子筛催化剂是通过离子交换法、浸渍法、溶胶凝胶法、原位合成法、熔盐合成法、一锅法、混合研磨法中至少一种合成的;进一步优选地,所述钐基CHA分子筛催化剂是通过离子交换法、浸渍法、原位合成法中至少一种合成的。
如上所述的钐基CHA分子筛催化剂在催化还原排放尾气中的氮氧化物中的应用。
相对于现有技术,本发明所述的直接制备H型CHA结构分子筛的合成方法及应用具有以下优势:
(1)本发明所述的结构导向剂具有分子拓扑结构,有助于快速高效搭建CHA分子筛骨架结构,制备的产物形貌规整,相对结晶度高;
(2)本发明所述的合成方法能够直接合成H型CHA结构分子筛,相对结晶度>95%。无需铵交换环节,直接干燥焙烧即可获得分子筛产品,简便易行,适宜规模化生产;
(3)本发明所述的钐基CHA分子筛催化剂凭借Sm元素的本征活性以及CHA结构分子筛理化特性,在NH 3-SCR技术中表现出优异的氨气吸附能力、低温活性(T 50=180℃),活性温度窗口(T 90=220-575℃)、N 2选择性和结构稳定性,在上述催化剂的作用下氮氧化物与还原剂发生反应转化成 无害的氮气和水。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例1制备的分子筛产物晶相结构示意图;
图2为本发明实施例2制备的分子筛产物晶相结构示意图;
图3为本发明实施例3制备的分子筛产物晶相结构示意图;
图4为钐基CHA分子筛催化剂的NO X转化率曲线示意图;
图5为本发明实施例1制备的分子筛产物微观形貌示意图;
图6为本发明实施例2制备的分子筛产物微观形貌示意图;
图7为本发明实施例3制备的分子筛产物微观形貌示意图;
图8为本发明实施例所述的结构导向剂OSDA1的 1H核磁谱示意图;
图9为本发明实施例所述的结构导向剂OSDA1的 13C核磁谱示意图;
图10为本发明实施例所述的结构导向剂OSDA2的 1H核磁谱示意图;
图11为本发明实施例所述的结构导向剂OSDA2的 13C核磁谱示意图;
图12为本发明实施例所述的结构导向剂的三维分子结构示意图。
具体实施方式
除有定义外,以下实施例中所用的技术术语具有与本发明所属领域技术人员普遍理解的相同含义。以下实施例中所用的试验试剂,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规方法。
在本发明中,NH 3-SCR性能测试采用的模拟烟气组成分:500ppm NO,500ppm NH 3,10%O 2,N 2为平衡气,总流量为1000ml/min,反应空速30000h -1
在本发明中,低温性能指标为T 50,代表的是当NO X转化率达到50%时对应的温度;温度窗口指标T 90,代表的是当NO X转化率超过90%时对应的温度范围。
除非另外指出,在本发明说明书和权利要求说明书里出现的所有数字,如温度、时间以及浆料投料质量百分比等数值均不应该被理解为绝对精确值,该数值是在本领域内的普通技术人员所理解的、公知技术所允许的误差范围内。
下面结合实施例及附图来详细说明本发明。
本发明实施例中OSDA1的结构式为
Figure PCTCN2022113796-appb-000003
化学式为(C 4H 8NO) 3PO,OSDA2的结构式为
Figure PCTCN2022113796-appb-000004
化学式为(C 4H 8NO) 2PO(C 4H 10N)。
实施例1
取25gOSDA1溶解于190ml去离子水,常温充分搅拌,缓慢滴加固含量 30%铝溶胶10.9g,加毕后剧烈搅拌1h,形成乳白色溶胶-凝胶;随后加入30%硅溶胶60g、SSZ-13分子筛晶种0.05g,搅拌均匀后转移至水热合成釜内,升温至165℃晶化反应24h。
反应结束后,使用板框压滤机进行固液分离,用清水反复洗涤滤饼3次,120℃干燥至产物水含量低于6wt%后进行焙烧,以2℃/min速率升温至350℃恒温1h,随后升温至550℃恒温6h,获得白色粉末固体产物。
产物晶相结构表征结果如图1所示,XRD表征结果显示上述固体产物是具备CHA结构的SAPO-34分子筛,相对结晶度>95%;XRF表征显示产物中Na、K碱金属含量低于50ppm;产物微观形貌如图5所示,激光粒度分析结果显示粒度区间集中分布在1-5μm;SEM表征显示产物呈现立方体块状形貌。
实施例2
本实例催化剂的制备条件、各原料加入量和制备流程同实施例1,区别在于,本实施例使用OSDA2结构导向剂替代OSDA1。
产物晶相结构表征结果如图2所示,所得固体产物经XRD表征,显示具备CHA结构的SAPO-34分子筛,相对结晶度>95%;经XRF表征,显示产物中Na、K碱金属含量低于50ppm;产物微观形貌如图6所示,经激光粒度分析,结果显示粒度区间集中分布在1-5μm;经SEM表征,显示产物呈现立方体块状形貌。
实施例3
本实例催化剂的制备条件和制备流程同实施例1,区别在于,本实施例使用OSDA1/OSDA2=1:1的复合结构引导剂替代OSDA1。
产物晶相结构表征结果如图3所示,所得固体产物经XRD表征,显示具备CHA结构的SAPO-34、SSZ-13分子筛混晶产物,相对结晶度>95%;经XRF 表征,显示产物中Na、K碱金属含量低于50ppm,硅铝比(SiO 2/Al 2O 3)为13.4;产物微观形貌如图7所示,经激光粒度分析,结果显示粒度区间集中分布在1-5μm;经SEM表征,显示产物呈现立方体块状形貌。
实施例4
本实例催化剂的制备条件和制备流程同实施例3,区别在于,本例使用等摩尔的正硅酸乙酯替代硅溶胶。
所得固体产物经XRD表征,显示具备CHA结构的SAPO-34、SSZ-13分子筛混晶产物,相对结晶度>95%;经XRF表征,显示产物中Na、K碱金属含量低于50ppm,硅铝比(SiO 2/Al 2O 3)为13.4;经激光粒度分析,结果显示粒度区间集中分布在1-5μm;经SEM表征,显示产物呈现立方体块状形貌。
对比例1
N,N,N-三甲基-1-金刚烷氢氧化铵是当前工业合成Na型CHA结构SSZ-13分子筛的主流模板剂。
本对比例采用与实施例1相同的制备条件、各原料加入量和制备流程,区别在于使用N,N,N-三甲基-1-金刚烷氢氧化铵替代OSDA1。
经XRD表征显示,所得固体产物为无定型,没有CHA结构分子筛特征衍射峰。
对比例2
Cu-TEPA(四乙烯五胺铜)是当前一步法制备铜基CHA结构SSZ-13分子筛催化剂的主流模板剂。
本对比例采用与实施例1相同的制备条件、各原料加入量和制备流程,区别在于使用等摩尔的Cu-TEPA替代OSDA1。
经XRD表征显示,所得固体产物不具备CHA结构分子筛特征衍射峰。
实施例5
本实施例采用离子交换法,分子筛载体选取实施例3制备的分子筛产物,具体如下:
配制1mol/L硝酸钐溶液,量取200g置于500ml烧杯中,加入10g分子筛,搅拌均匀分散;密闭情况下升温至80℃恒温搅拌反应6h;恒温结束后,过滤、反复洗涤滤饼3次,获得固体粉体;120℃干燥6h,550℃恒温焙烧5h,即得到钐基CHA分子筛催化剂。
实施例6
本实施例采用混合研磨法,分子筛载体选取实施例3制备的分子筛产物,具体如下:
称取0.8g硝酸钐,溶于20g去离子水中,加入10g分子筛,搅拌均匀分散;转移至行星式球磨机中,持续研磨4h,控制粒度分布在0.5-1μm,蒸发干燥,获得固体粉体;120℃干燥6h,550℃恒温焙烧5h,即得到钐基CHA分子筛催化剂。
实施例7
本实施例采用浸渍法,分子筛载体选取实施例3制备的分子筛产物,具体如下:
称取0.8g硝酸钐,溶于20g去离子水中,加入10g分子筛,搅拌均匀分散;密闭情况下升温至80℃恒温搅拌反应6h;恒温结束后,恒温结束后,减压搅拌蒸干,获得固体粉体;120℃干燥6h,550℃恒温焙烧5h,即得到钐基CHA分子筛催化剂。
实施例8
本实施例采用原位合成法,分子筛载体选取实施例3制备的分子筛产物, 具体如下:
取15g OSDA1和10g OSDA2溶解于190ml去离子水,常温充分搅拌,缓慢滴加固含量30%铝溶胶10.9g,加毕后剧烈搅拌1h,形成乳白色溶胶-凝胶;随后加入30%硅溶胶60g、SSZ-13分子筛晶种0.05g,搅拌均匀后,加入1.6g硝酸钐、5g氨水,搅拌均匀转移至水热合成釜内,升温至165℃晶化反应24h。
反应结束后,使用板框压滤机进行固液分离,用清水反复洗涤滤饼3次,120℃干燥至产物水含量低于6wt%后进行焙烧,以2℃/min速率升温至350℃恒温1h,随后升温至550℃恒温6h,获得钐基CHA分子筛催化剂。
实施例9
本实施例是在实施例5制备的催化剂基础上,引入Mn、Fe元素改性,具体如下:
取实施例5中催化剂产物20g,搅拌均匀分散于150g去离子水溶液中,加入5g硝酸锰溶液(50wt%)和2g硝酸铁溶液,密闭情况下升温至80℃恒温搅拌反应6h;恒温结束后,减压搅拌蒸干,得到土黄色固体粉末。
将上述土黄色固体粉末120℃干燥6h,550℃恒温焙烧5h,即得到改性钐基CHA分子筛催化剂。
实施例10
将实施例9制备的改性钐基CHA分子筛催化剂制成40-60目粉末样,在微型固定床反应器上进行NH 3-SCR催化性能评价。使用的石英反应管尺寸为15mm,评价测试升温速率5℃/min。模拟气氛组成:500ppm NO,500ppm NH 3,10%O 2,N 2为平衡气,总流量为1000ml/min,反应空速30000h -1。测试结果如图4所示。
测试结果表明,上述催化剂的NO X起燃温度T 50=180℃,活性温度窗口T 90=220-575℃。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于合成CHA结构分子筛的结构导向剂,其特征在于:所述结构导向剂包括化合物A及化合物B中的至少一种,
    化合物A的化学式为(C 4H 8NO) 3PO,
    化合物A的结构式为
    Figure PCTCN2022113796-appb-100001
    化合物B的化学式为(C 4H 8NO) 2PO(C 4H 10N),
    化合物B的结构式为
    Figure PCTCN2022113796-appb-100002
  2. 一种直接制备H型CHA结构分子筛的合成方法,应用了如权利要求1所述的结构导向剂,其特征在于,包括以下步骤:
    步骤一、将结构导向剂与去离子水混合搅拌至澄清,加入铝溶胶,剧烈搅拌形成溶胶-凝胶;
    步骤二、在溶胶-凝胶中加入硅源及晶种,在水热合成釜内进行水热合成反应得到反应液;
    步骤三、将反应液过滤,清洗滤饼,加热,得到H型CHA结构分子筛。
  3. 根据权利要求2所述的合成方法,其特征在于,步骤二的具体操作如 下:
    在溶胶-凝胶中加入硅源与晶种,搅拌均匀后转移至水热合成釜内,密闭环境下升温至155-180℃反应7-48h,得到反应液。
  4. 根据权利要求2所述的合成方法,其特征在于:铝溶胶的有效成分包括Al 2O 3,硅源的有效成分包括SiO 2,Al 2O 3、SiO 2、结构导向剂、去离子水的摩尔比为1:0.1-50:0.1-20:10-200。
  5. 根据权利要求2所述的合成方法,其特征在于:所述铝溶胶的固含量为5%-50%,所述硅源包括硅溶胶、气相二氧化硅、白炭黑、正硅酸乙酯中的至少一种,所述晶种包括硅铝比小于25的CHA结构分子筛。
  6. 根据权利要求2所述的合成方法,其特征在于,步骤三的具体操作如下:
    将反应液在板框压滤机中进行固液分离,用清水洗涤滤饼至少3次后,在120℃温度下干燥至水含量低于6wt%,以2℃/min速率升温至350-450℃恒温1-2h,之后升温至500-550℃恒温3-6h,得到H型CHA结构分子筛。
  7. 一种钐基CHA分子筛催化剂,其特征在于:包括载体、活性组分及金属助剂,所述载体为CHA结构分子筛,所述活性组分的金属元素为Sm元素,所述金属助剂的金属元素包括Mn、Ce、W、Mo、Sn、Y、La、Pr、Nd、Zr、Nb、Pt、Pd、Ag中至少一种。
  8. 根据权利要求7所述的钐基CHA分子筛催化剂,其特征在于:所述载体包括八元环分子筛、十元环分子筛、十二元环分子筛、含有CHA结构的两种以上晶相结构的分子筛中至少一种。
  9. 根据权利要求7所述的钐基CHA分子筛催化剂,其特征在于:按质量比Sm:CHA结构分子筛=0.5-15wt%,按摩尔比Sm:金属助剂=1:0.01-10。
  10. 如权利要求7-9任一所述的钐基CHA分子筛催化剂在催化还原排放尾气中的氮氧化物中的应用。
PCT/CN2022/113796 2021-08-26 2022-08-21 一种直接制备h型cha结构分子筛的合成方法及应用 WO2023025069A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/337,461 US20230339767A1 (en) 2021-08-26 2023-06-20 Synthesis method for directly preparing h-type molecular sieve having cha framework type and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110985026.6 2021-08-26
CN202110985026.6A CN113429438B (zh) 2021-08-26 2021-08-26 一种直接制备h型cha结构分子筛的合成方法及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/337,461 Continuation US20230339767A1 (en) 2021-08-26 2023-06-20 Synthesis method for directly preparing h-type molecular sieve having cha framework type and use thereof

Publications (1)

Publication Number Publication Date
WO2023025069A1 true WO2023025069A1 (zh) 2023-03-02

Family

ID=77797940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113796 WO2023025069A1 (zh) 2021-08-26 2022-08-21 一种直接制备h型cha结构分子筛的合成方法及应用

Country Status (3)

Country Link
US (1) US20230339767A1 (zh)
CN (2) CN113429438B (zh)
WO (1) WO2023025069A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429438B (zh) * 2021-08-26 2022-01-04 中汽研(天津)汽车工程研究院有限公司 一种直接制备h型cha结构分子筛的合成方法及应用
CN114956111B (zh) * 2022-07-25 2022-11-18 山东齐鲁华信高科有限公司 一种Cr-SSZ-13@Cu-SSZ-13核壳型分子筛及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4638076A (en) * 1985-08-16 1987-01-20 Texaco Inc. Phosphoramide additives for preparation of organic carbonates
CN104437608A (zh) * 2014-10-09 2015-03-25 南开大学 一种用于氮氧化物氨选择催化还原的催化剂
CN104475152A (zh) * 2014-10-09 2015-04-01 南开大学 用于氮氧化物氢气选择催化还原的催化剂及其应用
CN108002403A (zh) * 2017-12-13 2018-05-08 卓悦环保新材料(上海)有限公司 一种cha分子筛的合成方法
CN108786911A (zh) * 2018-05-18 2018-11-13 中触媒新材料股份有限公司 一种含稀土的Cu-AEI分子筛催化剂及其制备方法
CN110407231A (zh) * 2018-04-28 2019-11-05 中国石油化工股份有限公司 合成含铜cha结构分子筛的方法及含铜cha结构分子筛
CN113429438A (zh) * 2021-08-26 2021-09-24 中汽研(天津)汽车工程研究院有限公司 一种直接制备h型cha结构分子筛的合成方法及应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226569B2 (en) * 2005-06-23 2007-06-05 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-56
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
CN106799255A (zh) * 2017-02-23 2017-06-06 华中科技大学 一步法合成Cu‑SSZ‑39分子筛催化剂的制备方法及其应用
CN109126862A (zh) * 2018-08-20 2019-01-04 中国汽车技术研究中心有限公司 一种加快合成cha结构分子筛的方法及其催化剂在nh3-scr反应中的应用
WO2020039074A1 (en) * 2018-08-24 2020-02-27 Umicore Ag & Co. Kg Method for the preparation of a molecular sieve of the cha-type
CN110508319A (zh) * 2019-09-10 2019-11-29 清华大学 一种铈掺杂CuCex-SAPO-18分子筛催化剂及制备方法
CN112691699B (zh) * 2019-10-23 2023-08-29 中国石油化工股份有限公司 Scm-25分子筛组合物、其制备方法及其用途
CN111871451B (zh) * 2020-08-10 2023-03-28 中触媒新材料股份有限公司 一种新型结构模板剂合成的cha分子筛及其scr催化剂与应用
CN112429746B (zh) * 2020-10-27 2022-07-12 中触媒新材料股份有限公司 Cha分子筛及其合成方法及用其合成的催化剂及应用
CN112939021B (zh) * 2021-05-13 2021-07-20 中汽研(天津)汽车工程研究院有限公司 一种结构导向剂、制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4638076A (en) * 1985-08-16 1987-01-20 Texaco Inc. Phosphoramide additives for preparation of organic carbonates
CN104437608A (zh) * 2014-10-09 2015-03-25 南开大学 一种用于氮氧化物氨选择催化还原的催化剂
CN104475152A (zh) * 2014-10-09 2015-04-01 南开大学 用于氮氧化物氢气选择催化还原的催化剂及其应用
CN108002403A (zh) * 2017-12-13 2018-05-08 卓悦环保新材料(上海)有限公司 一种cha分子筛的合成方法
CN110407231A (zh) * 2018-04-28 2019-11-05 中国石油化工股份有限公司 合成含铜cha结构分子筛的方法及含铜cha结构分子筛
CN108786911A (zh) * 2018-05-18 2018-11-13 中触媒新材料股份有限公司 一种含稀土的Cu-AEI分子筛催化剂及其制备方法
CN113429438A (zh) * 2021-08-26 2021-09-24 中汽研(天津)汽车工程研究院有限公司 一种直接制备h型cha结构分子筛的合成方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN YUJUE, ZHIQINGWANG YANGDONGHE, WENJUNWANG CHUANMINGYANG, WEIMIN: "Progresses in the Application of Structure Directing Agents to Zeolite Synthesis", PETROCHEMICAL TECHNOLOGY, SINOPEC - CHINA PETRO-CHEMICAL CORPORATION, CN, vol. 45, no. 2, 1 January 2016 (2016-01-01), CN , pages 227 - 236, XP093040615, ISSN: 1000-8144, DOI: 10.3969/j.issn.1000-8144.2016.02.018 *
ZHAO ZHENCHAO, YU RUI, SHI CHUAN, GIES HERMANN, XIAO FENG-SHOU, DE VOS DIRK, YOKOI TOSHIYUKI, BAO XINHE, KOLB UTE, MCGUIRE ROBERT,: "Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH 3 -SCR of NO x", CATALYSIS SCIENCE & TECHNOLOGY, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 9, no. 1, 2 January 2019 (2019-01-02), UK , pages 241 - 251, XP055882445, ISSN: 2044-4753, DOI: 10.1039/C8CY02033G *

Also Published As

Publication number Publication date
CN113429438B (zh) 2022-01-04
CN113856749A (zh) 2021-12-31
US20230339767A1 (en) 2023-10-26
CN113429438A (zh) 2021-09-24
CN113856749B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2023025069A1 (zh) 一种直接制备h型cha结构分子筛的合成方法及应用
CN109996764A (zh) 采用碱土金属的新的沸石合成
CN111036280B (zh) Fe/Cu-SSZ-13分子筛的制备方法
CN101314135B (zh) 水热或溶剂热体系制备双催化中心分子筛核壳材料的方法
WO2020249105A1 (zh) 一种scr催化剂及制备方法
CN112299436B (zh) 一种Cu-SSZ-39@SSZ-39核壳型分子筛及其制备方法和应用
CN112279269B (zh) 一步法制备Cu-SSZ-39分子筛的方法
WO2021114208A1 (zh) 脱硝催化剂及使用该催化剂的脱硝方法
WO2021082140A1 (zh) 含铜分子筛Cu-CHA及其催化剂、应用
WO2023130745A1 (zh) 一种aei-cha共生分子筛及其催化剂
CN104415779A (zh) 一种催化裂化再生烟气脱硝用分子筛催化剂及其制备方法
WO2023138204A1 (zh) 一种ssz-16含铜催化剂的制备方法
CN111437878A (zh) 一种Cu-SAPO-34分子筛、其制备方法及其在选择性催化还原脱硝中的应用
US20200316573A1 (en) Ammonia facilitated cation loading of zeolite catalysts
CN114345402A (zh) 一种铁基分子筛催化剂的制备方法
JP2019104677A (ja) β型ゼオライト及びその製造方法
CN112811437B (zh) 一种Cu-SSZ-13@SSZ-13分子筛的合成方法
CN114308114A (zh) 一种脱硝催化剂及其制备方法、应用
WO2020222105A2 (en) Methods of preparation of metal exchanged zeolites
CN113262814A (zh) 一种铁改性型zsm-5沸石催化剂的制备方法
JP5609620B2 (ja) 新規メタロシリケート
JP2019202929A (ja) ゼオライトの製造方法
CN115646535B (zh) 一种核壳型双功能催化剂及其制备方法与应用
US11992827B2 (en) MSECT-4 molecular sieves with off and ERI topologies, preparation method therefor, and applications thereof
WO2024139860A1 (zh) Ssz-52分子筛的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE