WO2021114208A1 - 脱硝催化剂及使用该催化剂的脱硝方法 - Google Patents

脱硝催化剂及使用该催化剂的脱硝方法 Download PDF

Info

Publication number
WO2021114208A1
WO2021114208A1 PCT/CN2019/125057 CN2019125057W WO2021114208A1 WO 2021114208 A1 WO2021114208 A1 WO 2021114208A1 CN 2019125057 W CN2019125057 W CN 2019125057W WO 2021114208 A1 WO2021114208 A1 WO 2021114208A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
fer
atoms
organic template
molecular sieve
Prior art date
Application number
PCT/CN2019/125057
Other languages
English (en)
French (fr)
Inventor
陈海军
韩飞
袁梦琦
钱东岳
孙涵
Original Assignee
南开大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南开大学 filed Critical 南开大学
Priority to JP2022514775A priority Critical patent/JP2023501862A/ja
Priority to PCT/CN2019/125057 priority patent/WO2021114208A1/zh
Priority to KR1020227010457A priority patent/KR20220053012A/ko
Priority to BR112022008194A priority patent/BR112022008194A2/pt
Priority to EP19955408.0A priority patent/EP4005671A4/en
Priority to CN201980098763.5A priority patent/CN114206495B/zh
Priority to US17/638,775 priority patent/US20220387980A1/en
Publication of WO2021114208A1 publication Critical patent/WO2021114208A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/655Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2096Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide

Definitions

  • the present disclosure relates to the field of denitration, and more specifically, to a denitration catalyst and a denitration method using the catalyst.
  • Nitrogen oxides are highly irritating and corrosive, and can cause damage to human health.
  • nitrogen and oxygen compounds in the atmosphere are also easy to interact with other harmful compounds to produce harmful substances such as sulfates and nitrates.
  • Selective catalytic reduction technology is currently the main flue gas denitration technology. It uses a reducing agent (ammonia or ammonia produced by the decomposition of urea) under the action of a catalyst to selectively react with nitrogen oxides in the flue gas to generate nitrogen. And water to remove nitrogen oxides (NH 3 -SCR denitration process).
  • Non-patent literature [1, 2] uses ethanol as a reducing agent to perform selective catalytic reduction and denitrification on an alumina-supported silver-based catalyst, but the catalytic reaction temperature is relatively high, and the highest conversion rate can be reached at about 400°C.
  • Non-patent literature [3] uses Zn to modify alumina to achieve the purpose of improving the catalyst's ethanol-SCR catalytic activity. The research results of these documents show that the highest conversion temperature of nitrogen oxides on the catalyst is about 400°C.
  • Non-patent literature [4] studied the ethanol-SCR catalytic performance of BEA molecular sieve-supported silver catalyst. The maximum conversion temperature is about 300°C, but the conversion efficiency is low ( ⁇ 30%).
  • Non-patent literature [5] prepared BEA molecular sieve supported iron, cobalt and other transition metal catalysts, and compared the catalytic denitrification activity of such catalysts with methanol and ethanol as reducing agents. The results show that the catalytic denitrification performance of ethanol is higher when using ethanol as the reducing agent, but the reaction temperature still needs to reach 300°C or more to achieve the highest conversion rate.
  • Non-Patent Document 6 The catalytic activity of a perovskite material LaFe 0.8 Cu 0.2 O 3 and alumina-supported silver-based catalyst (Ag/Al 2 O 3 ) was compared using methanol as a reducing agent.
  • Patent literature [1,2,3] discloses a method for catalytic denitration of industrial waste gas by using a sodium-type molecular sieve supported cobalt-based catalyst with alcohol as a reducing agent.
  • the denitration efficiency of this kind of catalyst is low.
  • the method of further adding alkali metal ions is used to improve the reaction activity of the catalyst.
  • the addition of alkali metal ions usually destroys the structural stability of the molecular sieve, resulting in hydrothermal of the catalyst The stability is insufficient and cannot meet the needs of the actual application of the catalyst.
  • the catalyst is also prone to deactivation due to the coking of organic matter in the molecular sieve.
  • Patent Document 4 discloses a method for preparing a bismuth-containing molecular sieve catalyst by dissolving a bismuth source in an alcohol solvent, and then supporting bismuth on a molecular sieve.
  • methanol is used as a reducing agent for industrial waste gas denitration treatment
  • this bismuth-containing molecular sieve catalyst has a better conversion rate of nitric oxide (NO) in the low temperature range
  • NO nitric oxide
  • N 2 O nitrous oxide
  • N 2 O is not only an air pollutant, but also a greenhouse gas. Therefore, this catalyst cannot be practically used in industrial denitration purification processes.
  • Non-Patent Document 1 ACS Catal., 2018, 8(4) 2699-2708
  • Non-Patent Document 2 Environ.Sci.Technol.,2015(49)481-488
  • Non-Patent Document 3 Appl.Catal.B-Environ., 2012(126)275-289
  • Non-Patent Document 4 Microporous Mesoporous Mater., 2015,203,163-169
  • Non-Patent Document 5 Appl. Catal. B-Environ., 2012 (123-124) 134-140
  • Non-Patent Document 6 J.Catal.377(2019)480–493
  • Patent Document 1 WO2013146729
  • Patent Document 2 JP2013226544
  • Patent Document 3 JP2014172007
  • Patent Document 4 WO2017057736
  • the present disclosure solves the problems of low reaction activity of the catalyst and poor selectivity for conversion to nitrogen when a lower alcohol containing 6 or less carbon atoms is used as a reducing agent for selective catalytic reduction and denitration.
  • the present disclosure provides an alcohol-SCR denitration catalyst with high activity and high nitrogen selectivity, so as to solve the problem that the catalyst is easily lost due to the formation of ammonium sulfate when the NH 3 -SCR denitration process is used to treat high-sulfur industrial waste gas. Problems such as blockage of live and flue equipment.
  • the inventor of this case has conducted in-depth research on the above technical problems and found that one or more of the above technical problems can be solved through the following technical solutions.
  • a FER-type zeolite which contains at least silicon, aluminum, and oxygen as skeleton atoms, wherein the molar ratio of silicon atoms to aluminum atoms is 2-100:1, and the molar ratio of silicon atoms to aluminum atoms is 2-100:1.
  • the zeolite is analyzed by 29 Si solid nuclear magnetic resonance spectroscopy, the peak area in the chemical shift range of -90 to -110 ppm accounts for more than 25% of the peak area in the chemical shift range of -90 to -125 ppm.
  • the number of moles of aluminum atoms accounts for 1 to 33% of the total number of moles of non-oxygen element atoms in the zeolite.
  • the cations outside the zeolite framework also contain at least hydrogen ions.
  • the framework atoms of the zeolite further include one or more selected from titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, zinc, gallium, germanium, arsenic, tin and boron. The atom of the element.
  • the zeolite further contains one or more cations selected from alkali metals, alkaline earth metals, rare earth metals, and transition metals.
  • the number of moles of atoms of the other element accounts for less than 40% of the total number of moles of non-oxygen element atoms in the zeolite. In another embodiment, the number of moles of atoms of the other element accounts for 30% or less of the total number of moles of non-oxygen element atoms in the zeolite. In yet another embodiment, the number of moles of atoms of the other element accounts for 20% or less of the total number of moles of non-oxygen element atoms in the zeolite.
  • a bismuth-containing FER-type zeolite which contains at least silicon, aluminum, and oxygen as skeleton atoms, wherein the molar ratio of silicon atoms to aluminum atoms is 2-100:1,
  • the peak area in the chemical shift range of -50-40 ppm accounts for more than 28% of the peak area in the chemical shift range of -50 to 150 ppm.
  • the mass content of bismuth is 0.05% or more and 20% or less.
  • the number of moles of the silicon atoms accounts for 50-95% of the total number of moles of non-oxygen element atoms in the zeolite.
  • the cations outside the zeolite framework further include at least hydrogen ions.
  • the framework atoms of the zeolite further comprise one or more selected from the group consisting of titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, zinc, gallium, germanium, arsenic, tin and boron. Atoms of other elements.
  • the zeolite further contains one or more cations selected from alkali metals, alkaline earth metals, rare earth metals, and transition metals.
  • the number of moles of atoms of the other element accounts for less than 40% of the total number of moles of non-oxygen element atoms in the zeolite. In another embodiment, the number of moles of atoms of the other element accounts for 30% or less of the total number of moles of non-oxygen element atoms in the zeolite. In yet another embodiment, the number of moles of atoms of the other element accounts for 20% or less of the total number of moles of non-oxygen element atoms in the zeolite.
  • a method for preparing the FER-type zeolite described herein comprising: (a) placing a mixture containing at least a silicon source, an aluminum source, an organic template and an optional inorganic base in Mixing in water to obtain a preliminary gel; (b) subjecting the preliminary gel to a hydrothermal synthesis reaction to obtain a reaction product; (c) calcining the reaction product and removing the organic template to obtain the FER-type zeolite , Wherein if the initial gel contains alkali metal ions, the zeolite obtained by roasting and removing the organic template in step (c) is ion-exchanged with ammonium salt to remove part or all of the zeolite Alkali metal ions are then calcined to obtain the FER-type zeolite.
  • the molar ratio of the silicon source, the aluminum source, the organic template R, the optional inorganic base AOH, and water is 5-100 SiO 2 :1Al 2 O 3 :5-50R : 2 ⁇ 20A 2 O: 200 ⁇ 2000H 2 O.
  • the organic template comprises one or more nitrogen-containing alicyclic heterocyclic compounds.
  • the organic template is selected from pyrrolidine, morpholine, N-methylmorpholine, piperidine, piperazine, N,N'-dimethylpiperazine, 1,4-diazepine One or more of heterobicyclo(2,2,2)octane, N-methylpiperidine, 3-methylpiperidine, quinuclidine, N-methylpyrrolidone and hexamethyleneimine .
  • the organic template is selected from one or more of pyrrolidine, morpholine, hexamethyleneimine and piperidine.
  • the organic template is pyrrolidine.
  • a method for preparing the bismuth-containing FER-type zeolite described herein comprising: (a) including at least a silicon source, an aluminum source, an organic template, and optionally The mixture of inorganic bases is mixed in water to obtain an aqueous gel, and the aqueous gel is mixed with a bismuth source solution dissolved in an organic solvent to obtain a preliminary gel; (b) subjecting the preliminary gel to a hydrothermal synthesis reaction , To obtain a reaction product; (c) calcining the reaction product and removing the organic template to obtain the FER-type zeolite, wherein if the initial gel contains alkali metal ions, the step (c) is calcined and combined The zeolite obtained by removing the organic template is ion-exchanged with ammonium salt to remove part or all of the alkali metal ions contained in the zeolite, and then calcined to obtain the FER-type
  • the present disclosure also provides a method for preparing the bismuth-containing FER-type zeolite described herein, which includes: (a) placing a mixture containing at least a silicon source, an aluminum source, an organic template and optionally an inorganic base in water Mixing to obtain a preliminary gel; (b) subjecting the preliminary gel to a hydrothermal synthesis reaction to obtain a reaction product; (c) calcining the reaction product and removing the organic template to obtain a zeolite; (d) The zeolite and the bismuth source are ion-exchanged or impregnated in an organic solvent, and then calcined to obtain the FER-type zeolite, wherein if the initial gel contains alkali metal ions, the step (c) is calcined and removed The zeolite obtained from the organic template is ion-exchanged with an ammonium salt to remove part or all of the alkali metal ions contained in the zeolite, and then calcined to
  • the molar ratio of the silicon source, aluminum source, bismuth source, organic template R, optional inorganic base AOH and water is 5-100 SiO 2 : 1Al 2 O 3 : 0 ⁇ 0.5Bi 2 O 3 : 5 ⁇ 50R: 2 ⁇ 20A 2 O: 200 ⁇ 2000H 2 O.
  • the organic template comprises one or more nitrogen-containing alicyclic heterocyclic compounds.
  • the organic template is selected from pyrrolidine, morpholine, N-methylmorpholine, piperidine, piperazine, N,N'-dimethylpiperazine, 1,4-diazepine One or more of heterobicyclo(2,2,2)octane, N-methylpiperidine, 3-methylpiperidine, quinuclidine, N-methylpyrrolidone and hexamethyleneimine .
  • the organic template is selected from one or more of pyrrolidine, morpholine, hexamethyleneimine and piperidine.
  • the organic template is pyrrolidine.
  • a catalytic reactor for nitrogen oxide purification which is provided with the FER-type zeolite described herein or the FER-type zeolite prepared according to the method described herein as a denitration catalyst.
  • a nitrogen oxide purification system in which the catalytic reactor for nitrogen oxide purification described herein is provided.
  • a denitration method including using the FER-type zeolite described herein or the FER-type zeolite prepared according to the method described herein as a denitration catalyst, and using a carbon number of 6 or less
  • the alcohol is used as a reducing agent for selective catalytic reduction and denitration.
  • the FER-type zeolite described herein or the FER-type zeolite prepared according to the method described herein in the selective catalytic reduction denitrification process for example, the use of an alcohol containing less than 6 carbon atoms Use as a reducing agent in the selective catalytic reduction denitration process.
  • the zeolite described herein or the zeolite prepared according to the method described herein can effectively solve the problems of low activity and poor selectivity of selective catalytic reduction denitrification catalysts using lower alcohols as reducing agents in the prior art, thereby effectively Implement the catalytic purification of nitrogen oxides, especially the selective catalytic reduction of nitrogen oxides. Therefore, the zeolite described herein can be used as an industrial exhaust gas denitration catalyst, and is widely used in power plants, industrial kilns, internal combustion engines, etc., to effectively remove the emitted nitrogen oxide exhaust gas.
  • Figure 1 is an XRD pattern of molecular sieve A prepared according to an embodiment of the present disclosure
  • Figure 2 is a 29 Si solid nuclear magnetic resonance spectrum of molecular sieve A prepared according to an embodiment of the present disclosure
  • Fig. 3 is a 29 Si solid-state nuclear magnetic resonance spectrum of molecular sieve B prepared according to an embodiment of the present disclosure
  • Fig. 4 is a 29 Si solid-state nuclear magnetic resonance spectrum of molecular sieve C prepared according to an embodiment of the present disclosure
  • Fig. 5 is a 29 Si solid nuclear magnetic resonance spectrum of molecular sieve D prepared according to an embodiment of the present disclosure
  • Fig. 6 is a 29 Si solid-state nuclear magnetic resonance spectrum of molecular sieve E prepared according to a comparative example of the present disclosure
  • Fig. 7 is a 27 Al solid nuclear magnetic resonance spectrum of molecular sieve F prepared according to an embodiment of the present disclosure
  • Fig. 8 is a 27 Al solid nuclear magnetic resonance spectrum of molecular sieve G prepared according to an embodiment of the present disclosure
  • Fig. 9 is a 27 Al solid nuclear magnetic resonance spectrum of a molecular sieve H prepared according to an embodiment of the present disclosure.
  • Fig. 10 is a 27 Al solid nuclear magnetic resonance spectrum of molecular sieve I prepared according to an embodiment of the present disclosure
  • Figure 11 is a 27 Al solid nuclear magnetic resonance spectrum of molecular sieve J prepared according to an embodiment of the present disclosure
  • Figure 12 is a 27 Al solid nuclear magnetic resonance spectrum of a molecular sieve K prepared according to a comparative example of the present disclosure
  • Figure 13 is a 27 Al solid nuclear magnetic resonance spectrum of a molecular sieve L prepared according to a comparative example of the present disclosure.
  • Fig. 14 is a 27 Al solid nuclear magnetic resonance spectrum of a molecular sieve M prepared according to a comparative example of the present disclosure.
  • the zeolite mentioned in this article refers to the FER type zeolite specified by the International Zeolite Association (hereinafter referred to as IZA).
  • Zeolites are usually oxygen at each vertex of a framework atom tetrahedron (such as SiO 4 tetrahedron, AlO 4 tetrahedron, or PO 4 tetrahedron, and element atoms other than oxygen are usually called non-oxygen atoms or T atoms).
  • FER-type zeolite For FER-type zeolite, its structure can be determined by X-ray diffraction (XRD), and it is necessary to detect at least the interplanar spacing shown in Table 1 below That is, if it has the interplanar spacing shown in Table 1 below, the zeolite may be an FER-type molecular sieve.
  • XRD X-ray diffraction
  • the FER-type zeolite described herein When the FER-type zeolite described herein is analyzed by 29 Si solid nuclear magnetic resonance spectrum, its peak area in the chemical shift range of -90 to -110 ppm accounts for more than 25% of the peak area in the chemical shift range of -90 to -125 ppm. When the FER-type zeolite containing bismuth element described herein is analyzed by 27 Al solid nuclear magnetic resonance spectroscopy, its peak area in the chemical shift range of -50-40 ppm accounts for more than 28% of the peak area in the chemical shift range of -50 to 150 ppm. After research, it is found that the zeolite with the above characteristics has high alcohol-SCR denitration catalytic activity and excellent nitrogen selectivity.
  • the bismuth-free zeolite described herein has excellent catalytic denitrification performance, which may be attributed to the distribution of framework silicon atoms at specific sites in the FER-type zeolite. It is generally believed that the characteristic peaks in the chemical shift range of -90 ⁇ -110ppm in the 29 Si solid-state nuclear magnetic resonance spectrum reflect the information of the framework silicon connected to the framework Al. The higher the area ratio of the absorption peak in this interval, the more characteristic acid active sites of the FER zeolite, and the higher the alcohol SCR catalytic activity of the FER zeolite.
  • the peak area in the range of -50-40 ppm chemical shift in the 27 Al solid nuclear magnetic resonance spectrum reflects the information of non-4-coordinated aluminum in the zeolite.
  • the peak area in the chemical shift range from -90 to -110 ppm accounts for more than 25% of the peak area in the chemical shift range from -90 to -125 ppm, for example 30% or more, 35% or more, 40% or more, or 45% or more.
  • the peak area in the chemical shift range of -50 to 40 ppm accounts for more than 28% of the peak area in the chemical shift range of -50 to 150 ppm, for example, 30 % Or more, 35% or more, or 40% or more.
  • zeolite refers to a zeolite containing at least oxygen, aluminum, and silicon as atoms constituting a skeleton structure, and a part of the skeleton atoms may be substituted by one or more elements other than the aforementioned three elements.
  • the composition ratio (molar ratio) of silicon and aluminum constituting the zeolite is not particularly limited. In one embodiment, the molar ratio of silicon atoms to aluminum atoms is 2-100:1, such as 2:1, 5:1, 10:1, 15:1, 20:1, 30:1, 40:1 or 50:1.
  • the number of moles of aluminum atoms accounts for 1 to 33% of the total number of moles of non-oxygen element atoms in the zeolite, such as 2%, 3%, 4%, 5%, 10%, 15%, 20%. %, 25% or 30%.
  • the number of moles of silicon atoms accounts for 50-95% of the total number of moles of non-oxygen element atoms in the zeolite, such as 55%, 60%, 65%, 70%, 75%, 80%, 85%. %, 90% or 95%.
  • the position where bismuth exists in the zeolite and its specific chemical valence state are not particularly limited.
  • Bismuth may exist in the framework of the zeolite or outside the framework of the zeolite. From the viewpoint of catalytic activity, bismuth preferably exists outside the framework.
  • the mass percentage of bismuth is 0.05%-20%, such as 0.1%-10%, and can also be any value within the above range, such as 0.5%, 1%, 2%, 3%, 4%. %, 5%, 6%, 7%, 8%, 9% or 10%.
  • the content of bismuth element is less than 0.05%, the low-temperature activity tends to decrease, and the catalytic activity is insufficient.
  • the content of bismuth exceeds 20%, it is usually easy to generate aggregated bismuth oxide, which reduces the catalytic performance.
  • the zeolite described herein may also contain other elements besides oxygen, aluminum, silicon, such as phosphorus, titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, zinc, gallium, germanium, arsenic, tin, boron, etc. .
  • the content of other element atoms accounts for 40% or less of the total number of moles of non-oxygen element atoms in the zeolite, preferably 30% or less, and more preferably 20% or less.
  • the zeolite in the present invention may also contain cationic components outside the framework.
  • the cations are not particularly limited, such as alkali metal elements such as H, Li, Na, and K, Mg, Ca, etc. Alkaline earth metal elements, cations of rare earth metal elements such as La and Ce, or transition metal elements such as Cu and Fe, preferably hydrogen cations.
  • the method for synthesizing zeolite adopts a hydrothermal synthesis method, by preparing raw materials and water to form a preliminary gel (hereinafter also referred to as an aqueous gel), and then placing it in a reaction vessel to perform a hydrothermal synthesis reaction, thereby synthesizing Zeolite.
  • a preliminary gel hereinafter also referred to as an aqueous gel
  • the raw materials used in the manufacturing process of the FER-type molecular sieve described herein mainly include silicon raw materials, aluminum raw materials, optional bismuth raw materials, and heteroatom nitrogen-containing alicyclic heterocyclic compounds (ie, organic template ), optional inorganic base, and water.
  • a component having a crystallization promoting effect such as seed crystals, may also be added.
  • silicon raw material colloidal silica, amorphous silica, fumed silica, water glass (sodium silicate), trimethylethoxysilane, orthosilicic acid
  • silicon raw material colloidal silica, amorphous silica, fumed silica, water glass (sodium silicate), trimethylethoxysilane, orthosilicic acid
  • aluminum raw material herein also referred to as aluminum source
  • aluminum sulfate, aluminum nitrate, sodium aluminate, aluminum oxide, aluminum hydroxide, boehmite, aluminum chloride, aluminum silicate gel, metallic aluminum, etc. can be used. One or two or more of the same.
  • bismuth raw material (herein also referred to as a bismuth source)
  • a bismuth raw material one or two or more of bismuth nitrate, bismuth phosphate, bismuth sulfate, bismuth acetate, bismuth chloride, and bismuth chlorate can be used.
  • these raw materials There are no particular restrictions on these raw materials, as long as they can be sufficiently uniformly mixed with other ingredients.
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, the aluminate of the aluminum raw material, the alkali component or silicic acid in the silicate of the silicon raw material can be used.
  • alkali components in the salt gel One or two or more of the alkali components in the salt gel.
  • the corresponding oxide A 2 O of the inorganic base AOH is generally used to calculate the molar ratio.
  • the templating agent can be an alicyclic heterocyclic compound containing heteroatom nitrogen, and pyrrolidine, morpholine, N-methylmorpholine, piperidine, piperazine, N,N'-dimethyl Piperazine, 1,4-diazabicyclo(2,2,2)octane, N-methylpiperidine, 3-methylpiperidine, quinuclidine, N-methylpyrrolidone, hexamethylene
  • pyrrolidine, morpholine, hexamethylene imine, and piperidine are preferably used, and pyrrolidine is particularly preferably used.
  • the aluminum raw material solution is prepared by dissolving the above aluminum raw material in water.
  • the aluminum raw material concentration of the aluminum raw material solution is preferably 5 to 50% by weight, and particularly preferably 10 to 40% by weight, in terms of the ease of gel preparation and production efficiency.
  • this aluminum raw material solution does not substantially contain silicon atoms.
  • substantially not contained means that the silicon content in the aluminum raw material solution is 1% by weight or less, and it is preferably not contained at all.
  • the bismuth raw material solution is prepared by dissolving the above-mentioned bismuth raw material (herein also referred to as the bismuth source) in a liquid. Since bismuth ions are prone to hydrolysis in aqueous solutions, leading to precipitation, the bismuth raw materials are dissolved in organic solvents, such as ethylene glycol, glycerol, toluene and other organic solvents.
  • the concentration is preferably 1 to 20% by weight, particularly preferably 2 to 10% by weight, from the viewpoints of the ease of gel preparation and production efficiency.
  • Inorganic alkali is added to the aqueous solution to prepare an inorganic alkali solution. Then, the inorganic alkali solution, the silicon raw material solution, the aluminum raw material solution, and the organic template are uniformly mixed to prepare a gel-like mixture, which can be an aqueous gel for the next reaction. If it is intended to prepare a bismuth-containing zeolite, the bismuth raw material solution can be uniformly added to the above-mentioned gel-like mixture to obtain an aqueous gel for the next reaction.
  • the addition speed of each raw material solution is not limited, and it can be appropriately selected according to the use conditions.
  • the addition speed is also not limited, and it can be appropriately selected according to the conditions of use.
  • the silicon raw material is a liquid, it can be used as long as the silicon raw material is formulated into an aqueous dispersion of about 5 to 60% by weight of silica like silica gel.
  • the concentration of the raw materials containing silicon atoms is 5% by weight or more, especially 10% by weight or more, and 60% by weight or less, especially 50% by weight or less. Dispersions.
  • the silicon raw material liquid does not substantially contain aluminum atoms.
  • substantially not contained means that the content of aluminum in the liquid of the silicon-containing raw material is 1% by weight or less, and it is preferably not contained at all.
  • the water content of the hydrogel supplied to the hydrothermal synthesis reaction considering the ease of formation of molecular sieve crystals and the production cost, the water content is 20% by weight or more, especially 30% by weight or more and 80% by weight or less, In particular, it is 70% by weight or less.
  • the aqueous gel prepared by the above operation can be hydrothermally synthesized immediately after preparation, but in order to obtain a molecular sieve with high crystallinity, it is preferable to mature for a specific time under a predetermined temperature condition.
  • the aging temperature is usually 100°C or lower, preferably 80°C or lower, and more preferably 60°C or lower.
  • the lower limit is not particularly limited, but is usually 0°C or higher, preferably 10°C or higher.
  • the maturation temperature can be constant during maturation, or it can be gradually changed.
  • the aging time is not particularly limited, and is usually 2 hours or more, 3 hours or more, 5 hours or more or 8 hours or more, and usually 30 days or less, 10 days or less, 4 days or less or 2 days or less.
  • the hydrothermal synthesis is carried out as follows: put the water-based gel prepared as above into a pressure-resistant container, under autogenous pressure, or under the pressure of gas to a degree that does not hinder crystallization, under stirring conditions, or rotate or swing the container Under the conditions of, or in the static state, keep the temperature, so as to carry out the hydrothermal synthesis.
  • the reaction temperature in the hydrothermal synthesis is usually 90°C or higher, preferably 120°C or higher, more preferably 150°C or higher, and usually 300°C or lower, preferably 250°C or lower, and more preferably 220°C or lower.
  • the reaction time is not particularly limited, and it is usually 2 hours or more, 6 hours or more, or 12 hours or more, and usually 30 days or less, 10 days or less, or 7 days or less.
  • the reaction temperature can be constant during the reaction or can be gradually changed.
  • the FER-type molecular sieve as the product is separated from the hydrothermal synthesis reaction liquid.
  • the obtained FER type molecular sieve (hereinafter referred to as "FER type molecular sieve containing template etc.") contains one or more of organic template, bismuth, and other alkali metals in the pores.
  • the method of separating a molecular sieve containing a template or the like from the hydrothermal synthesis reaction liquid is not particularly limited, and methods such as filtration, decantation, or direct drying are usually mentioned.
  • the FER-type molecular sieve containing the template etc. separated and recovered from the hydrothermal synthesis reaction solution can be washed with water and dried (for example, dried at 80°C to 100°C) as needed. Hours to 12 hours) followed by removal of organic template and alkali metal ions.
  • the removal treatment of the template and/or alkali metal may be a liquid phase treatment using an acidic solution, a chemical solution containing a template decomposing component, an ion exchange treatment using a resin or the like, or a thermal decomposition treatment, or these treatments may be used in combination.
  • a liquid phase treatment using an acidic solution e.g., a chemical solution containing a template decomposing component, an ion exchange treatment using a resin or the like, or a thermal decomposition treatment, or these treatments may be used in combination.
  • the firing temperature is preferably 400°C or higher, more preferably 450°C or higher, still more preferably 500°C or higher, preferably 900°C or lower, more preferably 850°C or lower, and still more preferably 800°C or lower.
  • the inert gas a gas such as nitrogen may be used, and an inert component such as water vapor (for example, 5% to 10% of water vapor) may be added to the gas.
  • H-type NH 4 may also be used in the ion exchange capacity of the zeolite is converted into the alkali metal portion of H-type NH 4, which is a method known techniques can be employed. It can be treated with ammonium salt such as NH 4 NO 3 , NH 4 Cl, (NH 4 ) 2 SO 4 or acidic solution such as hydrochloric acid at room temperature to 100° C. and then washed with water.
  • NH 4 type molecular sieves can be further converted into H type molecular sieves by roasting.
  • the firing temperature is preferably 300°C or higher, more preferably 350°C or higher, still more preferably 400°C or higher, preferably 900°C or lower, more preferably 800°C or lower, and even more preferably 600°C or lower.
  • the inert gas a gas such as nitrogen may be used, and an inert component such as water vapor (for example, 5% to 10% of water vapor) may be added to the gas.
  • the ion exchange capacity of zeolite can also be used by ion-exchanging the hydrothermally synthesized zeolite or the zeolite with the organic template removed and the bismuth source in an organic solvent, and then drying the exchanged zeolite (for example, 80°C ⁇ Drying at 100°C for 1 hour to 12 hours) and calcining.
  • the firing temperature is preferably 300°C or higher, more preferably 350°C or higher, still more preferably 400°C or higher, preferably 900°C or lower, more preferably 800°C or lower, and even more preferably 600°C or lower.
  • the calcination time can be 1 hour to 6 hours, for example, 2 hours, 3 hours, 4 hours, or 5 hours.
  • the inert gas a gas such as nitrogen may be used, and an inert component such as water vapor (for example, 5% to 10% of water vapor) may be added to the gas.
  • the roasting equipment of the present disclosure is not particularly limited, and common industrial kilns such as muffle furnace, tunnel kiln, or rotary kiln can be used. In view of the convenience of continuous production, it is preferable to use a rotary kiln.
  • the zeolite of the present disclosure can be used directly in powder form, or it can be mixed with a binder to prepare a mixture containing zeolite for use.
  • the adhesive used can generally be inorganic adhesives such as silica, alumina, zirconia, or polysiloxane organic adhesives.
  • Polysiloxanes refer to oligomers or polymers having a polysiloxane bond in the main chain, and also include substances in which a part of the substituent of the main chain of the polysiloxane bond is hydrolyzed to form a hydroxyl group.
  • the amount of the adhesive is not particularly limited, but it can usually be 1 to 20% by weight, and from the viewpoint of the strength during molding, it is 2 to 15% by weight.
  • the zeolite of the present disclosure or a mixture containing the zeolite can also be used after being pelletized or shaped.
  • the method of granulation or molding is not particularly limited, and various known methods can be used.
  • the zeolite mixture is shaped and used as a shaped body.
  • the shape of the molded body may be various.
  • the method of applying the zeolite may be a coating method or a forming method to shape the zeolite into a honeycomb shape. catalyst.
  • the coating method usually involves mixing zeolite with inorganic adhesives such as silica, alumina, or zirconia to form a slurry, then coating it on the surface of a honeycomb made of cordierite and other inorganic materials, and then drying , Fired.
  • the forming method generally involves kneading zeolite with inorganic binders such as silica and alumina or inorganic fibers such as alumina fibers and glass fibers, forming them into a honeycomb shape by an extrusion method or a compression method, and then drying and firing.
  • the zeolite of the present disclosure When the zeolite of the present disclosure is used as a catalyst, the zeolite purifies nitrogen oxides by contacting with exhaust gas containing nitrogen oxides.
  • the nitrogen oxides to be purified by this document include nitrogen monoxide, nitrogen dioxide, nitrous oxide and the like.
  • purifying nitrogen oxides refers to reacting nitrogen oxides on a catalyst to convert them into nitrogen and oxygen. At this time, the nitrogen oxide may be directly reacted, or it may coexist with the reducing agent in the catalyst for the purpose of improving purification efficiency.
  • the zeolite described herein can make the purification reaction of nitrogen oxide compounds easier to proceed.
  • the alcohol as the reducing agent has the reducing ability at the temperature of the industrial exhaust gas reduction treatment.
  • the compound is not particularly limited, but it is preferable to use alcohols having 6 or less carbon atoms, such as methanol, ethanol, propanol, isopropanol, etc., preferably methanol and ethanol.
  • the zeolite of the present disclosure can purify various gasoline and diesel engines for diesel vehicles, gasoline vehicles, stationary power-generating ships, agricultural machinery, construction machinery, two-wheeled or three-wheeled vehicles, and aircraft Nitrogen oxides contained in various exhaust gases from gas turbines.
  • the X-ray diffraction measuring instrument is Rigaku MiniFlex600, the detection light source is Cu K ⁇ , the tube voltage is 40kV, the tube current is 40mA, the detection angle range is 3-55°, and the scanning speed is 8°/min.
  • the solid-state nuclear magnetic measurement instrument is Bruker Avance III HD 400WB, the resonance frequency measured by 27 Al NMR is 104.3MHz, the repetition time is 0.1s, and the rotation frequency is 10kHz.
  • the 29 Si NMR test has a resonance frequency of 79.5MHz, a repetition time of 6s, and a rotation frequency of 5kHz.
  • the sized zeolite (2 ml) was filled into the atmospheric fixed-bed flow-through reaction tube.
  • the gas containing the composition of Table 2 was circulated on the catalyst layer while heating the catalyst layer.
  • the nitrogen oxide removal activity of the catalyst is evaluated by the value of the following formula.
  • the water-based gel was put into a temperature- and pressure-resistant container, and after hydrothermal synthesis at 160°C for 72 hours, the reaction solution was cooled.
  • the powder obtained by filtration and recovery was dried at 100° C. for 2 hours to obtain a molecular sieve A1 containing a template agent.
  • the molecular sieve A1 is calcined in the air at 600° C. for 6 hours to remove the organic template to obtain molecular sieve A2.
  • the 29 Si solid-state nuclear magnetic resonance spectrum of molecular sieve A is shown in Figure 2, and its peak area in the chemical shift range of -90 to -110 ppm accounts for 45% of the peak area in the chemical shift range of -90 to -125 ppm.
  • the results of the methanol-SCR catalytic activity of molecular sieve A are shown in Table 3.
  • the composition of the gel is: 28SiO 2 :1Al 2 O 3 :19.6C 4 H 9 N: 8.68 Na 2 O: 1120H 2 O.
  • the water-based gel was put into a temperature- and pressure-resistant container, and after hydrothermal synthesis at 160°C for 72 hours, the reaction solution was cooled.
  • the powder obtained by filtration and recovery was dried at 100° C. for 2 hours to obtain a molecular sieve B1 containing a template agent.
  • the molecular sieve B1 is calcined in air at 600° C. for 6 hours to remove the organic template to obtain molecular sieve B2.
  • the 29 Si solid nuclear magnetic resonance spectrum of molecular sieve B is shown in Figure 3, and its peak area in the chemical shift range of -90 to -110 ppm accounts for 36% of the peak area in the chemical shift range of -90 to -125 ppm.
  • Table 3 shows the results of the methanol-SCR catalytic activity of molecular sieve B.
  • the water-based gel was put into a temperature- and pressure-resistant container, and after hydrothermal synthesis at 160°C for 72 hours, the reaction solution was cooled.
  • the powder obtained by filtration and recovery was dried at 100° C. for 2 hours to obtain a molecular sieve C1 containing a template agent.
  • the molecular sieve C1 is calcined in air at 600° C. for 6 hours to remove the organic template to obtain molecular sieve C2.
  • the 29 Si solid nuclear magnetic resonance spectrum of molecular sieve C is shown in Figure 4, and its peak area in the chemical shift range of -90 to -110 ppm accounts for 32.2% of the peak area in the chemical shift range of -90 to -125 ppm.
  • Table 3 shows the results of the methanol-SCR catalytic activity of molecular sieve C.
  • the water-based gel was put into a temperature- and pressure-resistant container, and after hydrothermal synthesis at 160°C for 72 hours, the reaction solution was cooled.
  • the powder obtained by filtration and recovery was dried at 100° C. for 2 hours to obtain a molecular sieve D1 containing a template agent.
  • the molecular sieve D1 is calcined in air at 600° C. for 6 hours to remove the organic template to obtain molecular sieve D2.
  • the 29 Si solid nuclear magnetic resonance spectrum of molecular sieve D is shown in Figure 5, and its peak area in the chemical shift range of -90 to -110 ppm accounts for 33% of the peak area in the chemical shift range of -90 to -125 ppm.
  • Table 3 shows the results of the methanol-SCR catalytic activity of molecular sieve D.
  • molecular sieve E NH 4 type FER molecular sieve (HSZ-720NHA, SiO 2 /Al 2 O 3 molar ratio 18) from TOSOH of Japan, calcined in air at 600°C for 12 hours to obtain molecular sieve E.
  • the 29 Si solid nuclear magnetic resonance spectra of molecular sieve E are shown in Figure 6.
  • the peak area in the chemical shift range from -90 to -110 ppm accounts for 23% of the peak area in the chemical shift range from -90 to -125 ppm.
  • the results of the methanol-SCR catalytic activity of molecular sieve E are shown in Table 3.
  • the 27 Al solid nuclear magnetic resonance spectrum of molecular sieve F is shown in Figure 7, and its peak area in the chemical shift range of -50 to 40 ppm accounts for 31.5% of the peak area in the chemical shift range of -50 to 150 ppm.
  • Table 4 shows the results of the methanol-SCR catalytic activity of molecular sieve F.
  • the composition of the gel was 17.4SiO 2 :1Al 2 O 3 :0.03Bi 2 O 3 :12.18C 4 H 9 N:5.39Na 2 O:696H 2 O.
  • the water-based gel was put into a temperature- and pressure-resistant container, and after hydrothermal synthesis at 160°C for 72 hours, the reaction solution was cooled.
  • the powder obtained by filtration and recovery was dried at 100° C. for 2 hours to obtain a molecular sieve G1 containing a template agent.
  • the molecular sieve G1 is calcined in the air at 600° C. for 6 hours to remove the organic template to obtain molecular sieve G2.
  • Table 4 shows the results of the methanol-SCR catalytic activity of molecular sieve G.
  • 0.2g of bismuth nitrate pentahydrate was dissolved in 12.4g of ethylene glycol, and the ethylene glycol solution of bismuth nitrate was added dropwise to the aqueous gel to obtain the final aqueous gel.
  • the composition of the gel was 19.12SiO 2 : 1Al 2 O 3 :0.05Bi 2 O 3 :13.38C 4 H 9 N:5.93Na 2 O:764.8H 2 O.
  • the water-based gel was put into a temperature- and pressure-resistant container, and after hydrothermal synthesis at 160°C for 72 hours, the reaction solution was cooled.
  • the powder obtained by filtration and recovery was dried at 100° C. for 2 hours to obtain a molecular sieve I1 containing a template agent.
  • the molecular sieve I1 is calcined in the air at 600° C. for 6 hours to remove the organic template to obtain the molecular sieve I2.
  • the 27 Al solid nuclear magnetic resonance spectrum of molecular sieve I is shown in Figure 10, and its peak area in the chemical shift range of -50 to 40 ppm accounts for 32.9% of the peak area in the chemical shift range of -50 to 150 ppm.
  • the results of the methanol-SCR catalytic activity of molecular sieve I are shown in Table 4.
  • 0.2g of bismuth nitrate pentahydrate was dissolved in 12.2g of ethylene glycol, and the above-mentioned ethylene glycol solution of bismuth nitrate was added dropwise to the aqueous sol to obtain the final aqueous gel.
  • the composition of the gel was: 30.4SiO 2 :1Al 2 O 3 :0.08Bi 2 O 3 :21.28C 4 H 9 N:9.4Na 2 O:1216H 2 O.
  • the aqueous sol was put into a temperature-resistant and pressure-resistant container, and after hydrothermal synthesis at 160°C for 72 hours, the reaction solution was cooled, and the obtained powder was filtered and recovered. Dry at 100°C for 2 hours to obtain molecular sieve J1 containing template.
  • the molecular sieve J1 is calcined in the air at 600° C. for 6 hours to remove the organic template to obtain molecular sieve J2.
  • the 27 Al solid nuclear magnetic resonance spectrum of molecular sieve K is shown in Figure 12, and its peak area in the chemical shift range of -50-40 ppm accounts for 26% of the peak area in the chemical shift range of -50 to 150 ppm.
  • the results of the methanol-SCR catalytic activity of molecular sieve K are shown in Table 4.
  • the 27 Al solid nuclear magnetic resonance spectrum of molecular sieve L is shown in Figure 13, and its peak area in the chemical shift range of -50 to 40 ppm accounts for 24.1% of the peak area in the chemical shift range of -50 to 150 ppm.
  • the results of the methanol-SCR catalytic activity of molecular sieve L are shown in Table 4.
  • the peak area of the chemical shift range from -90 to -110 ppm accounts for more than 25% of the peak area of the chemical shift range from -90 to -125 ppm.
  • Good methanol-SCR catalytic activity, and at the same time has good nitrogen selectivity.

Abstract

一种FER型沸石,至少包含硅、铝、氧作为骨架原子,其中硅原子与铝原子的摩尔比为2~100:1,并且对所述沸石采用 29Si固体核磁共振谱进行分析时,在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的25%以上。一种FER沸石的制备方法及其用途。

Description

脱硝催化剂及使用该催化剂的脱硝方法 技术领域
本公开内容涉及脱硝领域,更具体地,涉及一种脱硝催化剂及使用该催化剂的脱硝方法。
背景技术
氮氧化合物(NO x)具有强刺激性与腐蚀性,会对人体健康造成损害。另外,大气中的氮氧化合物还容易与其它有害化合物相互作用,生成硫酸盐、硝酸盐等有害物。选择性催化还原技术(SCR)是目前主要的烟气脱硝技术,它是利用还原剂(氨或尿素分解产生的氨)在催化剂的作用下,选择性与烟气中的氮氧化合物反应生成氮气和水,从而除去氮氧化合物(NH 3-SCR脱硝工艺)。
然而,在处理煤、重油等高含硫燃料工业产生的工业废气时,这类燃料在工业过程中会产生一定量的氧化硫,并且,由于催化剂的存在,在富氧条件下,三氧化硫的生成量大幅增加。氧化硫会与作为还原剂的氨气发生反应生成硫铵。硫铵具有腐蚀性和粘性,容易附着于物体的表面,不仅容易导致催化剂失活,同时还会导致烟道设备的损坏。尽管有很多文献报道试图通过改良催化剂的组分来提高催化剂的耐硫性能,但只要使用氨为还原剂,就很难从根本上解决工业废气处理系统中由于硫铵的生成所导致的催化剂表面被污染失活、烟道设备被堵塞等问题。
由于低级醇不容易和氧化硫反应生成类似硫铵的沉积物,以廉价的低级醇取代氨作为还原剂,选择性催化还原氮氧化合物生成氮气(醇-SCR脱硝工艺),可以避免由于硫铵的生成导致催化剂失活与设备故障等问题。另外,低级醇或者其水溶液较氨水更容易被安全存储,也不会发生类似尿素水溶液在低温下容易因析出尿素而导致管路堵塞的问题。
非专利文献[1,2]利用乙醇作为还原剂,在氧化铝负载的银基催化剂上进行选择性催化还原脱硝,但其催化反应温度较高,在400℃左右才能达到最高转化率。非专利文献[3]采用Zn对氧化铝进行改性,达到提升催化剂的乙醇-SCR催化活性的目的。这些文献的研究结果表明,该催化剂上氮氧化合物的最高转化温度为400℃左右。非专利文献[4]研究了BEA分子筛负载银催化剂的乙醇-SCR催化性能,其最高转化温度在300℃左右,但转化效率较低(<30%)。非专利文献[5]制备了BEA分子筛负载铁,钴等过渡金属的催化剂,比较了这类催化剂上分别以甲醇和乙醇作还原剂的催化脱硝反应活性。其结果表明:采用乙醇作为还原剂催化脱硝性能更高,但其反应温度仍需达到300℃以上才能达到最高转化率。[非专利文献6]利用甲醇作为还原剂,比较了 一种钙钛矿材料LaFe 0.8Cu 0.2O 3和氧化铝负载银基催化剂(Ag/Al 2O 3)的催化活性,LaFe 0.8Cu 0.2O 3催化脱硝性能较Ag/Al 2O 3催化剂有明显提升,但其达到最高转化率得温度区间依然在300℃以上,不能满足工业废气,尤其是低速船用柴油机尾气需要在较低温度下进行脱硝处理的需要。
专利文献[1,2,3]中公开了以醇为还原剂,利用钠型分子筛负载钴基催化剂对工业废气进行催化脱硝的方法。然而这种催化剂脱硝效率较低,为了提高脱硝效率,采用了进一步添加碱金属离子的方法提高催化剂的反应活性,但碱金属离子的加入通常会破坏分子筛的结构稳定性,从而导致催化剂的水热稳定性不足,不能满足催化剂实际应用的需求。另外,这种催化剂在使用过程中,催化剂还容易因为有机物在分子筛中的结焦而失活。专利文献4公开了采用将铋源溶解于醇类溶剂中,进而在分子筛上负载铋,制备含铋分子筛催化剂的方法。在以甲醇为还原剂进行工业废气脱硝处理时,尽管这种含铋分子筛催化剂,在低温区间内具有较好的一氧化氮(NO)的转化率,但这种催化剂的选择性较差,产生大量的一氧化二氮(N 2O)副产物。N 2O不仅仅是一种空气污染物,并且是一种温室气体。因而这种催化剂不能被实际应用于工业脱硝净化工艺。
现有技术文献
非专利文献1:ACS Catal.,2018,8(4)2699–2708
非专利文献2:Environ.Sci.Technol.,2015(49)481-488
非专利文献3:Appl.Catal.B-Environ.,2012(126)275-289
非专利文献4:Microporous Mesoporous Mater.,2015,203,163-169
非专利文献5:Appl.Catal.B-Environ.,2012(123-124)134-140
非专利文献6:J.Catal.377(2019)480–493
专利文献1:WO2013146729
专利文献2:JP2013226544
专利文献3:JP2014172007
专利文献4:WO2017057736
发明内容
解决的技术问题
本公开内容解决在以含碳原子数6以下的低级醇为还原剂进行选择性催化还原脱硝时,催化剂的反应活性低并且转化为氮气的选择性差等问题。本公开内容提供了一种具有高活性、高氮气选择性的醇-SCR脱硝催化剂,从而解决目前使用NH 3-SCR脱硝工艺处理高含硫工业废气时由于硫铵的生成所导致的催化剂容易失活、烟道设备堵塞等问题。
解决技术问题的技术方案
本案的发明人对上述技术问题进行了深入的研究,并发现可以通过以下技术方案来解决上述一个或多个技术问题。
根据本公开内容的第一方面,提供了一种FER型沸石,所述沸石至少包含硅、铝、氧作为骨架原子,其中硅原子与铝原子的摩尔比为2~100:1,并且对所述沸石采用 29Si固体核磁共振谱进行分析时,在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的25%以上。
在一个实施方案中,所述铝原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的1~33%。在另一个实施方案中,所述沸石骨架外的阳离子还至少包含氢离子。在一个实施方案中,所述沸石的骨架原子还包含选自钛、锆、钒、铬、锰、铁、钴、锌、镓、锗、砷、锡和硼中的一种或多种的其它元素的原子。在另一个实施方案中,所述沸石还包含选自碱金属、碱土金属、稀土金属和过渡金属中的一种或多种的阳离子。
在一个实施方案中,所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的40%以下。在另一个实施方案中,所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的30%以下。在又一个实施方案中,所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的20%以下。
根据本公开内容的第二方面,提供了一种含铋的FER型沸石,所述沸石至少包含硅、铝、氧作为骨架原子,其中硅原子与铝原子的摩尔比为2~100:1,对所述沸石采用 27Al固体核磁共振谱进行分析时,在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的28%以上。
在一个实施方案中,铋的质量含量为0.05%以上且20%以下。在另一个实施方案中,所述硅原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的50~95%。在又一个实施方案中,所述沸石骨架外的阳离子还至少包含氢离子。在另一个实施方案中,所述沸石的骨架原子还包含选自钛、锆、钒、铬、锰、铁、钴、锌、镓、锗、砷、锡和硼中的一种或多种的其它元素的原子。在又一个实施方案中,所述沸石还包含选自碱金属、碱土金属、稀土金属和过渡金属中的一种或多种的阳离子。
在一个实施方案中,所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的40%以下。在另一个实施方案中,所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的30%以下。在又一个实施方案中,所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的20%以下。
根据本公开内容的第三方面,提供了一种制备本文所述的FER型 沸石的方法,包括:(a)将至少包含硅源、铝源、有机模板剂和任选的无机碱的混合物在水中混合,获得初凝胶;(b)使所述初凝胶进行水热合成反应,获得反应产物;(c)将所述反应产物焙烧并去除所述有机模板剂,得到所述FER型沸石,其中如果初始凝胶中含有碱金属离子,则将步骤(c)中经焙烧并去除所述有机模板剂而获得的沸石与铵盐进行离子交换,以除去所述沸石中包含的部分或全部碱金属离子,随后焙烧,得到所述FER型沸石。
在一个实施方案中,在所述初凝胶中,硅源、铝源、有机模板剂R、任选的无机碱AOH以及水的摩尔比为5~100SiO 2:1Al 2O 3:5~50R:2~20A 2O:200~2000H 2O。在另一个实施方案中,所述有机模板剂包含一种或多种含氮的脂环族杂环化合物。在又一个实施方案中,所述有机模板剂选自吡咯烷、吗啉、N-甲基吗啉、哌啶、哌嗪、N,N'-二甲基哌嗪、1,4-二氮杂二环(2,2,2)辛烷、N-甲基哌啶、3-甲基哌啶、奎宁环、N-甲基吡咯烷酮和六亚甲基亚胺中的一种或多种。在另一个实施方案中,所述有机模板剂选自吡咯烷、吗啉、六亚甲基亚胺和哌啶中的一种或多种。在又一个实施方案中,所述有机模板剂为吡咯烷。
根据本公开内容的第四方面,提供了一种制备本文所述的含铋FER型沸石的方法,所述方法包括:(a)将至少包含硅源、铝源、有机模板剂和任选的无机碱的混合物在水中混合,获得水性凝胶,将所述水性凝胶与溶解于有机溶剂中的铋源溶液混合,获得初凝胶;(b)使所述初凝胶进行水热合成反应,获得反应产物;(c)将所述反应产物焙烧并去除所述有机模板剂,得到所述FER型沸石,其中如果初始凝胶中含有碱金属离子,则将步骤(c)中经焙烧并去除所述有机模板剂而获得的沸石与铵盐进行离子交换,以除去所述沸石中包含的部分或全部碱金属离子,随后焙烧,得到所述FER型沸石。
另外,本公开内容还提供了一种制备本文所述的含铋FER型沸石的方法,包括:(a)将至少包含硅源、铝源、有机模板剂和任选的无机碱的混合物在水中混合,获得初凝胶;(b)使所述初凝胶进行水热合成反应,获得反应产物;(c)将所述反应产物焙烧并去除所述有机模板剂,得到沸石;(d)将所述沸石与铋源在有机溶剂中进行离子交换或浸渍,随后焙烧,得到所述FER型沸石,其中如果初始凝胶中含有碱金属离子,则将步骤(c)中经焙烧并去除所述有机模板剂而获得的沸石与铵盐进行离子交换,以除去所述沸石中包含的部分或全部碱金属离子,随后焙烧,得到步骤(c)所述的沸石。
在一个实施方案中,在所述初凝胶中,硅源、铝源、铋源、有机模板剂R、任选的无机碱AOH以及水的摩尔比为5~100SiO 2:1Al 2O 3:0~0.5Bi 2O 3:5~50R:2~20A 2O:200~2000H 2O。在另一个实施方案中,所述有机模板剂包含一种或多种含氮的脂环族杂环化合物。在又一个实施方案中,所述有机模板剂选自吡咯烷、吗啉、N-甲基吗啉、哌啶、 哌嗪、N,N'-二甲基哌嗪、1,4-二氮杂二环(2,2,2)辛烷、N-甲基哌啶、3-甲基哌啶、奎宁环、N-甲基吡咯烷酮和六亚甲基亚胺中的一种或多种。在另一个实施方案中,所述有机模板剂选自吡咯烷、吗啉、六亚甲基亚胺和哌啶中的一种或多种。在又一个实施方案中,所述有机模板剂为吡咯烷。
根据本公开内容的第五方面,提供了一种氮氧化物净化用催化反应器,其中设置有包含本文所述的FER型沸石或者根据本文所述的方法制备得到的FER型沸石作为脱硝催化剂。
根据本公开内容的第六方面,提供了一种氮氧化物净化系统,其中设置有本文所述的氮氧化物净化用催化反应器。
根据本公开内容的第七方面,提供了一种脱硝方法,包括使用本文所述的FER型沸石或者根据本文所述的方法制备得到的FER型沸石作为脱硝催化剂,并且使用含碳原子数6以下的醇作为还原剂进行选择性催化还原脱硝。
根据本公开内容的第八方面,提供了本文所述的FER型沸石或者根据本文所述的方法制备得到的FER型沸石在选择性催化还原脱硝过程中、例如使用含碳原子数6以下的醇作为还原剂的选择性催化还原脱硝过程中的用途。
本文所述的沸石或根据本文所述的方法制得的沸石,可有效地解决现有技术中存在的以低级醇为还原剂的选择性催化还原脱硝催化剂活性低、选择性差的问题,从而有效地实施氮氧化物的催化净化,尤其是氮氧化物的选择性催化还原。因此,本文所述的沸石能够作为工业废气脱硝催化剂,被广泛应用于电厂、工业窑炉、内燃机等之中,以有效地去除所排放的氮氧化物废气。
附图说明
在下文参考附图来进一步描述本文所例示的实施方案,但是所述附图仅仅是为了让本领域技术人员更好地理解本发明,而不旨在限定本发明的范围。
图1是根据本公开内容的一个实施例制备的分子筛A的XRD图;
图2是根据本公开内容的一个实施例制备的分子筛A的 29Si固体核磁共振谱;
图3是根据本公开内容的一个实施例制备的分子筛B的 29Si固体核磁共振谱;
图4是根据本公开内容的一个实施例制备的分子筛C的 29Si固体核磁共振谱;
图5是根据本公开内容的一个实施例制备的分子筛D的 29Si固体核磁共振谱;
图6是根据本公开内容的一个比较例制备的分子筛E的 29Si固体 核磁共振谱;
图7是根据本公开内容的一个实施例制备的分子筛F的 27Al固体核磁共振谱;
图8是根据本公开内容的一个实施例制备的分子筛G的 27Al固体核磁共振谱;
图9是根据本公开内容的一个实施例制备的分子筛H的 27Al固体核磁共振谱;
图10是根据本公开内容的一个实施例制备的分子筛I的 27Al固体核磁共振谱;
图11是根据本公开内容的一个实施例制备的分子筛J的 27Al固体核磁共振谱;
图12是根据本公开内容的一个比较例制备的分子筛K的 27Al固体核磁共振谱;
图13是根据本公开内容的一个比较例制备的分子筛L的 27Al固体核磁共振谱;和
图14是根据本公开内容的一个比较例制备的分子筛M的 27Al固体核磁共振谱。
具体实施方式
在下文中,将根据具体实施方案来进一步阐述本公开内容的发明构思。然而,所列举的具体实施方案仅出于例示目的,而不旨在限制本公开内容的范围。本领域技术人员会认识到,以下任一实施方案中的具体特征可以用于任何其它实施方案,只要其不背离本文所述的发明构思即可。
沸石
本文所提及的沸石均是指由国际沸石协会(International Zeolite Association)(以下简称IZA)规定的FER型沸石。沸石通常为由骨架原子四面体(如SiO 4四面体、AlO 4四面体或者PO 4四面体,并且通常将氧元素之外的元素原子称之为非氧原子或T原子)的各个顶点的氧原子通过共用联结而成的规则网目状结构。对于FER型沸石而言,其结构可以通过X射线衍射法(XRD)确定,需要至少检测出下述表1所示的晶面间距
Figure PCTCN2019125057-appb-000001
即,如果具有以下表1所示的晶面间距,则该沸石可以为FER型分子筛。
表1
Figure PCTCN2019125057-appb-000002
Figure PCTCN2019125057-appb-000003
本文所述的FER型沸石,采用 29Si固体核磁共振谱进行分析时,其在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的25%以上。本文所述的含铋元素的FER型沸石,采用 27Al固体核磁共振谱进行分析时,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的28%以上。经研究,发现具有上述特征的沸石,其醇-SCR脱硝催化活性高,并且具有优异的氮气选择性。
虽然不希望受到任何理论的约束,但据信,本文所述的不含铋的沸石具有优良的催化脱硝性能,可能归因于骨架硅原子在FER型沸石中的特定位点的分布。通常认为 29Si固体核磁共振谱中-90~-110ppm化学位移区间内的特征峰反映了与骨架Al相连接的骨架硅的信息。这一区间吸收峰的面积占比越高,表明FER型沸石的特征酸活性位点越多,从而FER沸石的醇SCR催化活性越高。
另一方面,对于本文所述的含铋的沸石而言,据信 27Al固体核磁共振谱中-50~40ppm化学位移区间的峰面积反映了沸石中非4配位的铝的信息。这一区间吸收峰的面积占比越高,表明了沸石中非骨架铝的含量越高。对于含铋的FER型沸石来说,非骨架铝的含量越高,铋与非骨架铝的相互作用越大,产生优异的催化活性与催化选择性。
因此,对本文所述的FER型沸石采用 29Si固体核磁共振谱进行分析时,在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的25%以上,例如30%以上、35%以上、40%以上或45%以上。对本文所述的含铋的FER型沸石采用 27Al固体核磁共振谱进行分析时,在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的28%以上,例如30%以上、35%以上或40%以上。
在本文中,沸石是指至少含有氧、铝、硅作为构成骨架结构的原子的沸石,并且骨架原子中的一部分可以被一种或一种以上的前述三 元素以外的元素所取代。构成沸石的硅与铝的构成比例(摩尔比)无特别限定。在一个实施方案中,硅原子与铝原子的摩尔比为2~100:1,例如2:1、5:1、10:1、15:1、20:1、30:1、40:1或50:1。在另一个实施方案中,铝原子的摩尔数占沸石中的非氧元素原子的总摩尔数的1~33%,例如2%、3%、4%、5%、10%、15%、20%、25%或30%。在又一个实施方案中,硅原子的摩尔数占沸石中的非氧元素原子的总摩尔数的50~95%,例如55%、60%、65%、70%、75%、80%、85%、90%或95%。
在本文的沸石中,铋在沸石中存在的位置及其具体的化学价态并未特别限定。铋可以存在于沸石的骨架,也可以存在于沸石的骨架之外。从催化活性的角度来看,铋优选存在于骨架之外。在一个实施方案中,铋的质量百分含量为0.05%~20%,例如0.1%~10%,也可以为上述范围内的任意数值,例如0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%或10%。铋元素的含量低于0.05%时,有低温活性降低的倾向,催化活性不足。铋元素的含量超过20%时,通常容易生成聚集态的氧化铋,使得催化性能降低。
此外,本文所述的沸石还可以含有除氧,铝,硅以外的其它元素,例如磷、钛、锆、钒、铬、锰、铁、钴、锌、镓、锗、砷、锡、硼等。其它元素原子的含量占沸石中的非氧元素原子的总摩尔数的40%以下,优选30%以下,进一步地优选20%以下。除了含有组成沸石骨架结构的构成成分之外,本发明中的沸石还可以含有骨架外的阳离子成分,所述阳离子无特别限定,如H,Li、Na、K等碱金属元素,Mg、Ca等碱土金属元素,La、Ce等稀土金属元素,或Cu、Fe等过渡金属元素的阳离子,优选氢阳离子。
沸石的合成
在本公开内容中,沸石的合成方法采用水热合成法,通过将原料与水配制成初凝胶(下文中也称水性凝胶),然后置入反应容器内进行水热合成反应,从而合成沸石。
<原料>
在本文所述的FER型分子筛的制造过程中使用的原料主要包含硅原料、铝原料、任选的铋原料、作为模板剂的含杂原子氮的脂环族杂环化合物(即,有机模板剂)、任选的无机碱,和水。此外,也可以添加晶种等具有结晶化促进作用的成分。
作为硅原料(本文也称为硅源),可以使用胶态二氧化硅、无定形二氧化硅、气相二氧化硅、水玻璃(硅酸钠)、三甲基乙氧基硅烷、正硅酸四乙酯、硅酸铝盐凝胶等中的1种或2种以上。作为铝原料(本文也称为铝源),可以使用硫酸铝、硝酸铝、铝酸钠、氧化铝、氢氧化铝、勃姆石、氯化铝、硅酸铝盐凝胶、金属铝等中的1种或2种以上。作为铋原料(本文也称为铋源),可以使用硝酸铋、磷酸铋、硫酸铋、乙酸铋、 氯化铋、氯酸铋等中的1种或2种以上。对这些原料没有特别的限制,只要能够与其它成分充分均匀混合即可。
作为无机碱,可以使用碱金属氢氧化物如氢氧化钠、氢氧化钾、氢氧化铷、氢氧化铯,上述铝原料的铝酸盐、上述硅原料的硅酸盐中的碱成分或硅酸盐凝胶中的碱成分等中的1种或2种以上。在分子筛的制造过程中,作为碱金属离子或碱土金属离子,优选使用选自由锂、钠、钾、铷、铯、钙、镁、锶以及钡组成的组中的至少一种金属离子来进行结晶化。通过包含这些碱金属离子,容易进行结晶化且不易生成副产物(杂质晶体)。需要注意,在计算凝胶中的组分的摩尔比时,一般采用无机碱AOH的相对应的氧化物A 2O来计算摩尔比。
合成的沸石结构与选用的模板剂相关。在一个实施方案中,模板剂可以为含杂原子氮的脂环族杂环化合物,可以使用吡咯烷、吗啉、N-甲基吗啉、哌啶、哌嗪、N,N'-二甲基哌嗪、1,4-二氮杂二环(2,2,2)辛烷、N-甲基哌啶、3-甲基哌啶、奎宁环、N-甲基吡咯烷酮、六亚甲基亚胺等,优选使用吡咯烷、吗啉、六亚甲基亚胺、哌啶,特别优选使用吡咯烷。
<铝原料溶液的制备>
铝原料溶液是使上述铝原料溶解于水来制备的。铝原料溶液的铝原料浓度从凝胶制备容易程度,生产效率方面考虑,优选5~50重量%、特别优选为10~40重量%。
需要说明的是,该铝原料溶液实质上不含有硅原子。这里,“实质上不含有”是指在铝原料溶液中的硅含量为1重量%以下,优选完全不含有。
<铋原料溶液的制备>
铋原料溶液是使上述铋原料(本文也称为铋源)溶解于液体中来制备的。由于铋离子在水溶液中容易发生水解,导致沉淀,因而将铋原料溶解于有机溶剂中,例如溶于乙二醇,丙三醇,甲苯等有机溶剂中。浓度从凝胶制备容易程度,生产效率方面考虑,优选1~20重量%、特别优选为2~10重量%。
<水性凝胶的制备>
在水溶液中加入无机碱,制备无机碱溶液。然后,将无机碱溶液、硅原料溶液、铝原料溶液、有机模板剂均匀混合,制备成凝胶状混合物,即可为用于下一步反应的水性凝胶。如果意欲制备含铋的沸石,可以将铋原料溶液均匀加入到上述凝胶状混合物中,从而得到用于下一步反应的水性凝胶。
在凝胶状混合物的制备过程中,各原料溶液的添加速度没有限制,根据使用条件适当选择即可。加入铋原料溶液时,其添加速度也没有限制,根据使用条件适当选择即可。
需要说明的是,如果硅原料是液体,只要该硅原料像二氧化硅凝 胶那样被配制成5~60重量%左右的二氧化硅的水分散液,便可使用。制备其它含有硅原子的原料的液体时,优选制备成含有硅原子的原料的浓度为5重量%以上、特别是10重量%以上、且60重量%以下、特别是50重量%以下的水溶液或者水分散液。
与铝原料溶液一样,该硅原料的液体实质上不含有铝原子。这里,“实质上不含有”是指含硅原料的液体中,铝的含量为1重量%以下,优选完全不含有。
对于供给到水热合成反应的水性凝胶的水含量,从分子筛晶体生成的容易程度、制造成本方面考虑,含水量为20重量%以上,特别是30重量%以上、且为80重量%以下、特别是70重量%以下。
如上操作制得的水性凝胶可以在制备后立即进行水热合成,但为了得到具有高结晶性的分子筛,优选在规定温度条件下熟化特定时间。熟化温度通常为100℃以下、优选为80℃以下、更优选为60℃以下,其下限没有特别限定,通常为0℃以上、优选为10℃以上。熟化温度在熟化中可以是恒定的,也可以是逐渐变化的。熟化时间没有特别限定,通常为2小时以上、3小时以上、5小时以上或8小时以上,通常为30天以下、10天以下、4天以下或2天以下。
<水热合成>
水热合成如下进行:将如上操作制得的水性凝胶放入耐压容器,在自生压力下、或不阻碍结晶化的程度的气体加压下,在搅拌条件下,或使容器旋转或摇摆的条件下,或者在静置状态下,保持温度,由此进行水热合成。
水热合成时的反应温度通常为90℃以上、优选120℃以上、更优选150℃以上,通常300℃以下、优选250℃以下、进一步优选220℃以下。反应时间没有特别限定,通常为2小时以上、6小时以上、12小时以上,通常为30天以下、10天以下、7天以下。反应温度在反应中可以是恒定的,也可以逐渐变化的。
在上述水热合成后,将作为产物的FER型分子筛从水热合成反应液分离。得到的FER型分子筛(以下成为“含有模板等的FER型分子筛”),其在细孔内含有有机模板、铋及其它碱金属中的一种或多种。从水热合成反应液分离含有模板等的分子筛的方法没有特别限定,通常可以列举过滤、倾析或直接干燥等方法。
<除杂、焙烧及离子交换>
为了将制造过程中使用的有机模板剂及碱金属离子等去除,从水热合成反应液分离回收的含有模板等的FER型分子筛可以根据需要在水洗、干燥(例如80℃~100℃下干燥1小时至12小时)后进行后续的有机模板剂及碱金属离子去除。
模板和/或碱金属的去除处理可以采用使用酸性溶液、包含模板分解成分的化学溶液的液相处理、使用树脂等的离子交换处理、热分解 处理,也可以组合使用这些处理。通常,通过在空气或含有氧的非活性气体氛围、或者非活性气体氛围下以300℃~1000℃的温度进行焙烧、或者利用乙醇水溶液等有机溶剂来提取,能够将含有的有机物(模板等)去除。
从制造方面考虑,优选通过焙烧将模板等去除。这时,焙烧温度优选为400℃以上、更优选为450℃以上、进一步优选为500℃以上,优选为900℃以下、更优选为850℃以下、进一步优选为800℃以下。作为非活性气体,可以使用氮等气体,也可以在气体中加入水蒸气(例如5%至10%的水蒸气)等非活性组分。
另外,也可以利用沸石的离子交换能力将碱金属部分变换成H型、NH 4型,其方法可以采用公知的技术。可以通过利用NH 4NO 3、NH 4Cl、(NH 4) 2SO 4等铵盐或者盐酸等酸性溶液在室温~100℃下进行处理后水洗。NH 4型的分子筛可以进一步通过焙烧转化为H型分子筛。其焙烧温度优选为300℃以上、更优选为350℃以上、进一步优选为400℃以上,优选为900℃以下、更优选为800℃以下、进一步优选为600℃以下。作为非活性气体,可以使用氮等气体,也可以在气体中加入水蒸气(例如5%至10%的水蒸气)等非活性组分。
同样地,也可以利用沸石的离子交换能力,通过将水热合成后的沸石或去除有机模板剂的沸石与铋源在有机溶剂中进行离子交换,随后将交换后的沸石干燥(例如80℃~100℃下干燥1小时至12小时)并焙烧。其焙烧温度优选为300℃以上、更优选为350℃以上、进一步优选为400℃以上,优选为900℃以下、更优选为800℃以下、进一步优选为600℃以下。焙烧时间可以为1小时至6小时,例如2小时、3小时、4小时或5小时。作为非活性气体,可以使用氮等气体,也可以在气体中加入水蒸气(例如5%至10%的水蒸气)等非活性组分。
本公开内容的焙烧的设备无特别限定,可以采用马弗炉、隧道窑或回转窑等常见工业窑炉。从连续生产的便利性来考虑,优选使用回转窑。
沸石的使用方法
本公开内容的沸石可以直接以粉末状使用,也可以与胶粘剂混合,制成含有沸石的混合物后使用。所用的胶粘剂通常可以为二氧化硅、氧化铝、氧化锆等无机胶粘剂或者聚硅氧烷类有机胶粘剂。聚硅氧烷类是指主链具有聚硅氧烷键的低聚物或聚合物,也包括聚硅氧烷键的主链的取代基的一部分被水解而形成羟基的物质。胶粘剂的用量无特别限定,通常可以为1~20重量%,从成形时的强度方面考虑,为2~15重量%。
本公开内容的沸石或者含该沸石的混合物也可造粒或成形后使用。造粒或成形的方法无特别限定,可以采用各种公知的方法进行。通常,使所述沸石混合物成形,作为成形体使用。成形体的形状可以为多种。 例如,当本公开内容的沸石用作移动源(车辆、船舶等)的废气中氮氧化物净化用催化剂时,应用该沸石的方法可以是涂敷法或成形法,以将沸石成型为蜂窝状催化剂。所述涂敷法通常为将沸石与二氧化硅、氧化铝或氧化锆等无机胶粘剂混合,制作成浆,再将其涂敷在由堇青石等无机物制作的蜂窝状物的表面,随后干燥、烧制而成。所述成形法通常为将沸石与二氧化硅、氧化铝等无机胶粘剂或氧化铝纤维、玻璃纤维等无机纤维混炼,通过挤出法或压缩法成形为蜂窝状,并进而干燥、烧制。
氮氧化物及其净化
本公开内容的沸石作为催化剂时,沸石通过与含有氮氧化物的废气接触来净化氮氧化物。通过本文的待净化的氮氧化物包括一氧化氮、二氧化氮、一氧化二氮等。本文中,净化氮氧化物是指使氮氧化物在催化剂上反应,转化成氮气和氧气等。此时,氮氧化物可以直接反应,也可以出于提高净化效率的目的,与还原剂共存于催化剂中。在使用还原剂时,本文所述的沸石能使得氮氧化合物的净化反应更容易进行,在工业废气净化用催化剂中,作为还原剂的醇只要是在工业废气的还原处理的温度下具有还原能力的化合物即可,无特殊限定,但优选使用作为碳原子数为6以下的醇,如甲醇、乙醇、丙醇、异丙醇等,优选甲醇、乙醇。采用本公开内容的沸石作为催化剂时,可以净化从柴油汽车、汽油汽车、固定式发电船舶、农业机械、建设机械、二轮或三轮机动车、航空机用的各种汽柴油发动机、锅炉、燃气轮机等中排出的各种废气所含的氮氧化物。
实施例
提供以下的实施例便于更好的理解本公开内容的实施方案,但不用于对其作出任何限定。下述实施例中所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
X射线衍射(XRD)测定
X射线衍射测定仪器为Rigaku MiniFlex600,检测光源Cu Kα,管电压为40kV,管电流为40mA,检测角度范围为3-55°,扫描速度为8°/min。通过X射线衍射测定合成的沸石的物相结构:将研磨后的样品粉末加入玻璃平板上的方孔内,然后将玻璃平板插入测角仪的轴线位置,在Cu Kα光源照射下,探头以2θ/min速度旋转。
固体核磁(NMR)测定
固体核磁测定仪器为Bruker Avance III HD 400WB, 27Al NMR测试的共振频率为104.3MHz,重复时间为0.1s,旋转频率为10kHz。 29Si NMR测试的共振频率为79.5MHz,重复时间为6s,旋转频率为5kHz。
催化剂活性的评价方法
将制备的沸石冲压成型后,粉碎,整粒。将整粒过的沸石(2ml)填充到常压固定床流通式反应管内。以1000ml/min(空间速度SV=30000/小时),使含表2的组成的气体在催化剂层上流通,同时对催化剂层进行加热。分别在不同的温度下,根据出口NO浓度,N 2O浓度以及NO 2浓度,由下式的值来评价催化剂的氮氧化物除去活性。
(NO转化率)={(入口NO浓度)―(出口NO浓度)}/(入口NO浓度)
(N 2选择性)={(入口NO浓度)―(出口NO浓度)―(出口NO 2浓度)―1/2(出口N 2O浓度)}/{(入口NO浓度)―(出口NO浓度)}
表2
NO浓度 1000ppm
甲醇浓度 2000ppm
氮气浓度 余量
水蒸气浓度 5.0体积%
氧气浓度 14.0体积%
气体流量 1L/分钟
催化剂量 2ml
体积空速 30000/小时
实施例1
将0.04g氢氧化钠溶解于15g水中,然后加入17g液体硅酸钠(模数:3.3,此处及下文均是指SiO 2与Na 2O的摩尔比)以及3.7g的吡咯烷配成混合溶液。将2.94g十八水合硫酸铝溶解于26.5g水中,然后滴加至前述混合溶液中,搅拌均匀得到水性凝胶,其凝胶的组成为:17SiO 2:1Al 2O 3:11.9C 4H 9N:5.27Na 2O:680H 2O。在室温下搅拌熟化12小时后,将水性凝胶放入耐温耐压容器,160℃水热合成72小时后,冷却反应液。过滤回收所得到的粉体在100℃干燥2小时,得到含模板剂的分子筛A1。将分子筛A1在空气中600℃焙烧6小时,去除有机模板剂,得到分子筛A2。
将1.1g氯化铵溶解于16g水中,然后加入4g分子筛A2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体在100℃干燥2小时。将所得的粉体在500℃的空气中焙烧2小时,得到分子筛A。分子筛A的XRD测定结果如图1所示,为FER型分子筛。分子筛A的 29Si固体核磁共振谱如图2所示,其在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的45%。分子筛A的甲醇-SCR的催化活性结果如表3所示。
实施例2
将0.04g氢氧化钠溶解于15g水中,然后加入17g液体硅酸钠(模数:3.3)以及3.7g的吡咯烷配成混合溶液。将1.77g十八水合硫酸铝溶解于27.1g水中,然后滴加至前述混合溶液中,搅拌均匀得到水性凝胶,其凝胶的组成为:28SiO 2:1Al 2O 3:19.6C 4H 9N:8.68Na 2O:1120H 2O。在室温下搅拌熟化12小时后,将水性凝胶放入耐温耐压容器,160℃水热合成72小时后,冷却反应液。过滤回收所得到的粉体在100℃干燥2小时,得到含模板剂的分子筛B1。将分子筛B1在空气中600℃焙烧6小时,去除有机模板剂,得到分子筛B2。
将0.72g氯化铵溶解于16g水中,然后加入4g分子筛B2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在500℃的空气中焙烧2小时,得到分子筛B。分子筛B的XRD测定结果表明其为FER型分子筛。分子筛B的 29Si固体核磁共振谱如图3所示,其在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的36%。分子筛B的甲醇-SCR的催化活性结果如表3所示。
实施例3
将0.04g氢氧化钠溶解于15g水中,然后加入17g液体硅酸钠(模数:3.3)以及3.7g的吡咯烷配成混合溶液。将1.665g十八水合硫酸铝溶解于28g水中,然后滴加至前述混合溶液中,搅拌均匀得到水性凝胶,其凝胶的组成为:30SiO 2:1Al 2O 3:21C 4H 9N:9.3Na 2O:1200H 2O。在室温下搅拌熟化12小时后,将水性凝胶放入耐温耐压容器,160℃水热合成72小时后,冷却反应液。过滤回收所得到的粉体在100℃干燥2小时,得到含模板剂的分子筛C1。将分子筛C1在空气中600℃焙烧6小时,去除有机模板剂,得到分子筛C2。
将0.72g氯化铵溶解于16g水中,然后加入4g分子筛C2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在500℃的空气中焙烧2小时,得到分子筛C。分子筛C的XRD测定结果表明其为FER型分子筛。分子筛C的 29Si固体核磁共振谱如图4所示,其在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的32.2%。分子筛C的甲醇-SCR的催化活性结果如表3所示。
实施例4
将0.04g氢氧化钠溶解于15g水中,然后加入17g液体硅酸钠(模数:3.3)以及3.7g的吡咯烷配成混合溶液。将1.249g十八水合硫酸铝溶解于28g水中,然后滴加至前述混合溶液中,搅拌均匀得到水性凝 胶,其凝胶的组成为:40SiO 2:1Al 2O 3:28C 4H 9N:12.4Na 2O:1600H 2O。在室温下搅拌熟化12小时后,将水性凝胶放入耐温耐压容器,160℃水热合成72小时后,冷却反应液。过滤回收所得到的粉体在100℃干燥2小时,得到含模板剂的分子筛D1。将分子筛D1在空气中600℃焙烧6小时,去除有机模板剂,得到分子筛D2。
将0.72g氯化铵溶解于16g水中,然后加入4g分子筛D2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在500℃的空气中焙烧2小时,得到分子筛D。分子筛D的XRD测定结果表明其为FER型分子筛。分子筛D的 29Si固体核磁共振谱如图5所示,其在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的33%。分子筛D的甲醇-SCR的催化活性结果如表3所示。
比较例1
日本TOSOH公司NH 4型FER分子筛(HSZ-720NHA,SiO 2/Al 2O 3摩尔比18),在空气中600℃焙烧12小时,得到分子筛E,分子筛E的 29Si固体核磁共振谱如图6所示,其在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的23%。分子筛E的甲醇-SCR的催化活性结果如表3所示。
实施例5
将0.3g五水合硝酸铋溶解于17.8g乙二醇中,制备得到硝酸铋的乙二醇溶液,然后在溶液中,加入实施例1所制备的分子筛A,室温下搅拌2小时,过滤,回收得到的粉体,经过80℃干燥12小时后,在含有10%的水蒸气的空气气氛下600℃焙烧5小时,得到分子筛F。分子筛F的XRD测定结果表明其为FER型分子筛。分子筛F的 27Al固体核磁共振谱如图7所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的31.5%。分子筛F的甲醇-SCR的催化活性结果如表4所示。
实施例6
将0.04g氢氧化钠溶解于15g水中,然后加入17g液体硅酸钠(模数:3.3)以及3.7g的吡咯烷配成混合溶液。将2.85g十八水合硫酸铝溶解于26.5g水中,然后滴加至前述混合溶液中,搅拌均匀得到初始水性凝胶。然后,将0.12g五水合硝酸铋溶解于7.5g乙二醇中,将上述硝酸铋的乙二醇溶液滴加到水性凝胶中,得到最终水性凝胶,凝胶的组成为:17.4SiO 2:1Al 2O 3:0.03Bi 2O 3:12.18C 4H 9N:5.39Na 2O:696H 2O。在室温下搅拌熟化12小时后,将水性凝胶放入耐温耐压容器,160℃水热合成72小时后,冷却反应液。过滤回收所得到的粉体在100℃干燥 2小时,得到含模板剂的分子筛G1。将分子筛G1在空气中600℃焙烧6小时,去除有机模板剂,得到分子筛G2。
将1.1g氯化铵溶解于16g水中,然后加入4g分子筛G2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在空气中600℃焙烧5小时,得到分子筛G。分子筛G的XRD测定结果表明其为FER型分子筛。分子筛G的 27Al固体核磁共振谱如图8所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的39.8%。分子筛G的甲醇-SCR的催化活性结果如表4所示。
实施例7
将1.1g氯化铵溶解于16g水中,然后加入4g实施例6所合成的分子筛G2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在空气中700℃焙烧5小时,得到分子筛H。分子筛H的XRD测定结果表明其为FER型分子筛。分子筛H的 27Al固体核磁共振谱如图9所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的38.1%。分子筛H的甲醇-SCR的催化活性结果如表4所示。
实施例8
将0.04g氢氧化钠溶解于15g水中,然后加入17g液体硅酸钠(模数:3.3)以及3.7g的吡咯烷配成混合溶液。将2.78g十八水合硫酸铝溶解于26.6g水中,滴加至前述混合溶液中,搅拌均匀得到初始水性凝胶。然后,将0.2g五水合硝酸铋溶解于12.4g乙二醇中,将上述硝酸铋的乙二醇溶液滴加到水性凝胶中,得到最终水性凝胶,其凝胶的组成为:19.12SiO 2:1Al 2O 3:0.05Bi 2O 3:13.38C 4H 9N:5.93Na 2O:764.8H 2O。在室温下搅拌熟化12小时后,将水性凝胶放入耐温耐压容器,160℃水热合成72小时后,冷却反应液。过滤回收所得到的粉体在100℃干燥2小时,得到含模板剂的分子筛I1。将分子筛I1在空气中600℃焙烧6小时,去除有机模板剂,得到分子筛I2。
将1.1g氯化铵溶解于16g水中,然后加入4g分子筛I2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在含有10%的水蒸气的空气中600℃焙烧5小时,得到分子筛I。分子筛I的XRD测定结果表明其为FER型分子筛。分子筛I的 27Al固体核磁共振谱如图10所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的32.9%。分子筛I的甲醇-SCR的催化活性结果如表4所示。
实施例9
将0.04g氢氧化钠溶解于15g水中,然后加入17g液体硅酸钠(模数:3.3)以及3.7g的吡咯烷配成混合溶液。将1.71g十八水合硫酸铝溶解于27.1g水中,滴加至前述混合溶液中,搅拌均匀得到初始水性溶胶。然后,将0.2g五水合硝酸铋溶解于12.2g乙二醇中,将上述硝酸铋的乙二醇溶液滴加到水性溶胶中,得到最终水性凝胶,其凝胶的组成为:30.4SiO 2:1Al 2O 3:0.08Bi 2O 3:21.28C 4H 9N:9.4Na 2O:1216H 2O。在室温下搅拌熟化12小时后,将水性溶胶放入耐温耐压容器,160℃水热合成72小时后,冷却反应液,过滤回收所得到的粉体。100℃干燥2小时,得到含模板剂的分子筛J1。将分子筛J1在空气中600℃焙烧6小时,去除有机模板剂,得到分子筛J2。
将0.72g氯化铵溶解于16g水中,然后加入4g分子筛J2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在含有10%的水蒸气的空气中600℃焙烧5小时,得到分子筛J。分子筛J的XRD测定结果表明其为FER型分子筛。分子筛J的 27Al固体核磁共振谱如图11所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的32.2%。分子筛I的甲醇-SCR的催化活性结果如表4所示。
比较例2
将0.3g五水合硝酸铋溶解于17.8g乙二醇中,制备得到硝酸铋的乙二醇溶液,然后在溶液中,加入比较例1所制备的分子筛E,室温下搅拌2小时,过滤,回收得到的粉体,经过80℃干燥12小时后,在空气气氛下500℃焙烧4小时,得到分子筛K。分子筛K的XRD测定结果表明其为FER型分子筛。分子筛K的 27Al固体核磁共振谱如图12所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的26%。分子筛K的甲醇-SCR的催化活性结果如表4所示。
比较例3
将1.1g氯化铵溶解于16g水中,然后加入4g实施例8所制备的分子筛I2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在空气中500℃焙烧2小时,得到分子筛L。分子筛L的XRD测定结果表明其为FER型分子筛。分子筛L的 27Al固体核磁共振谱如图13所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的24.1%。分子筛L的甲醇-SCR的催化活性结果如表4所示。
比较例4
将0.72g氯化铵溶解于16g水中,然后加入4g实施例9所制备的 分子筛J2形成浆料,80℃反应2小时进行离子交换。冷却反应液,过滤回收所得到的粉体,100℃干燥2小时。将所得的粉体在空气中500℃焙烧2小时,得到分子筛M。分子筛M的XRD测定结果表明其为FER型分子筛。分子筛M的 27Al固体核磁共振谱如图14所示,其在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的17.9%。分子筛L的甲醇-SCR的催化活性结果如表4所示。
表3
Figure PCTCN2019125057-appb-000004
表4
Figure PCTCN2019125057-appb-000005
通过上述实施例及比较例的结果可知, 29Si固体核磁共振谱中-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的25%以上的FER分子筛表现出较好的甲醇-SCR催化活性,并同时具有良好的氮气选择性。 27Al固体核磁共振谱中-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的28%以上的含铋FER分子筛,分子筛表现出较好的甲醇-SCR催化活性,同时在250℃下N 2O的生成量大幅减少,氮气选择性得到明显提升。
尽管参考特定的实施例来描述本文所述的实施方案,但是应当理解,本领域技术人员会对其作出多种调整和改变,只要其不违背本公开内容的范围和主旨即可。

Claims (15)

  1. 一种FER型沸石,其特征在于,所述沸石至少包含硅、铝、氧作为骨架原子,其中硅原子与铝原子的摩尔比为2~100:1,并且对所述沸石采用 29Si固体核磁共振谱进行分析时,在-90~-110ppm化学位移区间的峰面积占-90~-125ppm化学位移区间峰面积的25%以上。
  2. 根据权利要求1所述的FER型沸石,其中,所述铝原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的1~33%;和/或
    所述沸石骨架外的阳离子还至少包含氢离子。
  3. 根据权利要求1或2所述的FER型沸石,其中,所述沸石的骨架原子还包含选自钛、锆、钒、铬、锰、铁、钴、锌、镓、锗、砷、锡和硼中的一种或多种的其它元素的原子;和/或
    所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的40%以下,例如30%以下,如20%以下;和/或
    所述沸石还包含选自碱金属、碱土金属、稀土金属和过渡金属中的一种或多种的阳离子。
  4. 一种含铋的FER型沸石,其特征在于,所述沸石至少包含硅、铝、氧作为骨架原子,其中硅原子与铝原子的摩尔比为2~100:1,对所述沸石采用 27Al固体核磁共振谱进行分析时,在-50~40ppm化学位移区间的峰面积占-50~150ppm化学位移区间峰面积的28%以上。
  5. 根据权利4所述的FER型沸石,其中,铋的质量含量为0.05%以上且20%以下;和/或
    所述硅原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的50~95%,和/或
    所述沸石骨架外的阳离子还至少包含氢离子。
  6. 根据权利要求4或5所述的FER型沸石,其中,所述沸石的骨架原子还包含选自钛、锆、钒、铬、锰、铁、钴、锌、镓、锗、砷、锡和硼中的一种或多种的其它元素的原子;和/或
    所述其它元素的原子的摩尔数占所述沸石中的非氧元素原子的总摩尔数的40%以下,例如30%以下,如20%以下;和/或
    所述沸石还包含选自碱金属、碱土金属、稀土金属和过渡金属中的一种或多种的阳离子。
  7. 一种制备权利要求1至3中任一项所述的FER型沸石的方法, 其特征在于,所述方法包括:
    (a)将至少包含硅源、铝源、有机模板剂和任选的无机碱的混合物在水中混合,获得初凝胶;
    (b)使所述初凝胶进行水热合成反应,获得反应产物;
    (c)将所述反应产物焙烧并去除所述有机模板剂,得到所述FER型沸石,
    其中如果初始凝胶中含有碱金属离子,则将步骤(c)中经焙烧并去除所述有机模板剂而获得的沸石与铵盐进行离子交换,以除去所述沸石中包含的部分或全部碱金属离子,随后焙烧,得到所述FER型沸石。
  8. 根据权利要求7所述的方法,在所述初凝胶中,硅源、铝源、有机模板剂R、任选的无机碱AOH以及水的摩尔比为5~100SiO 2:1Al 2O 3:5~50R:2~20A 2O:200~2000H 2O;和/或
    所述有机模板剂包含一种或多种含氮的脂环族杂环化合物,例如所述有机模板剂选自吡咯烷、吗啉、N-甲基吗啉、哌啶、哌嗪、N,N'-二甲基哌嗪、1,4-二氮杂二环(2,2,2)辛烷、N-甲基哌啶、3-甲基哌啶、奎宁环、N-甲基吡咯烷酮和六亚甲基亚胺中的一种或多种,例如所述有机模板剂选自吡咯烷、吗啉、六亚甲基亚胺和哌啶中的一种或多种,如所述有机模板剂为吡咯烷。
  9. 一种制备权利要求4至6中任一项所述的FER型沸石的方法,其特征在于,所述方法包括:
    (a)将至少包含硅源、铝源、有机模板剂和任选的无机碱的混合物在水中混合,获得水性凝胶,将所述水性凝胶与溶解于有机溶剂中的铋源溶液混合,获得初凝胶;
    (b)使所述初凝胶进行水热合成反应,获得反应产物;
    (c)将所述反应产物焙烧并去除所述有机模板剂,得到所述FER型沸石,
    其中如果初始凝胶中含有碱金属离子,则将步骤(c)中经焙烧并去除所述有机模板剂而获得的沸石与铵盐进行离子交换,以除去所述沸石中包含的部分或全部碱金属离子,随后焙烧,得到所述FER型沸石。
  10. 根据权利要求9所述的方法,在所述初凝胶中,硅源、铝源、铋源、有机模板剂R、任选的无机碱AOH以及水的摩尔比为5~100SiO 2:1Al 2O 3:0~0.5Bi 2O 3:5~50R:2~20A 2O:200~2000H 2O;和/或所述有机模板剂包含一种或多种含氮的脂环族杂环化合物,例如所述有机模板剂选自吡咯烷、吗啉、N-甲基吗啉、哌啶、哌嗪、N,N'-二甲基哌嗪、1,4-二氮杂二环(2,2,2)辛烷、N-甲基哌啶、3-甲基哌啶、奎宁环、N-甲基吡咯烷酮和六亚甲基亚胺中的一种或多种,例如所述 有机模板剂选自吡咯烷、吗啉、六亚甲基亚胺和哌啶中的一种或多种,如所述有机模板剂为吡咯烷。
  11. 一种制备权利要求4至6中任一项所述的FER型沸石的方法,其特征在于,所述方法包括:
    (a)将至少包含硅源、铝源、有机模板剂和任选的无机碱的混合物与水混合,获得初凝胶;
    (b)使所述初凝胶进行水热合成反应,获得反应产物;
    (c)将所述反应产物焙烧并去除所述有机模板剂,得到沸石;
    (d)将所述沸石与铋源在有机溶剂中进行离子交换或浸渍,随后焙烧,得到所述FER型沸石,
    其中如果初始凝胶中含有碱金属离子,则将步骤(c)中经焙烧并去除所述有机模板剂而获得的沸石与铵盐进行离子交换,以除去所述沸石中包含的部分或全部碱金属离子,随后焙烧,得到步骤(c)所述的沸石。
  12. 一种氮氧化物净化用催化反应器,其特征在于,所述催化反应器中设置有包含权利要求1至6中任一项所述的FER型沸石或者根据权利要求7至11中任一项所述的方法制备得到的FER型沸石作为脱硝催化剂。
  13. 一种氮氧化物净化系统,其特征在于,所述系统中设置有权利要求12所述的氮氧化物净化用催化反应器。
  14. 一种脱硝方法,其特征在于,所述方法包括使用权利要求1至6中任一项所述的FER型沸石或者根据权利要求7至11中任一项所述的方法制备得到的FER型沸石作为脱硝催化剂,并且使用含碳原子数6以下的醇作为还原剂进行选择性催化还原脱硝。
  15. 权利要求1至6中任一项所述的FER型沸石或者根据权利要求7至11中任一项所述的方法制备得到的FER型沸石在选择性催化还原脱硝过程中的用途。
PCT/CN2019/125057 2019-12-13 2019-12-13 脱硝催化剂及使用该催化剂的脱硝方法 WO2021114208A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022514775A JP2023501862A (ja) 2019-12-13 2019-12-13 脱硝触媒および該触媒を用いた脱硝方法
PCT/CN2019/125057 WO2021114208A1 (zh) 2019-12-13 2019-12-13 脱硝催化剂及使用该催化剂的脱硝方法
KR1020227010457A KR20220053012A (ko) 2019-12-13 2019-12-13 탈질 촉매 및 이를 이용한 탈질 방법
BR112022008194A BR112022008194A2 (pt) 2019-12-13 2019-12-13 Catalisador de desnitrificação e método de desnitrificação usando o catalisador
EP19955408.0A EP4005671A4 (en) 2019-12-13 2019-12-13 DENITRIATION CATALYST AND DENITRIATION PROCESS USING THE CATALYST
CN201980098763.5A CN114206495B (zh) 2019-12-13 2019-12-13 脱硝催化剂及使用该催化剂的脱硝方法
US17/638,775 US20220387980A1 (en) 2019-12-13 2019-12-13 Denitration catalyst and denitration method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125057 WO2021114208A1 (zh) 2019-12-13 2019-12-13 脱硝催化剂及使用该催化剂的脱硝方法

Publications (1)

Publication Number Publication Date
WO2021114208A1 true WO2021114208A1 (zh) 2021-06-17

Family

ID=76329339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125057 WO2021114208A1 (zh) 2019-12-13 2019-12-13 脱硝催化剂及使用该催化剂的脱硝方法

Country Status (7)

Country Link
US (1) US20220387980A1 (zh)
EP (1) EP4005671A4 (zh)
JP (1) JP2023501862A (zh)
KR (1) KR20220053012A (zh)
CN (1) CN114206495B (zh)
BR (1) BR112022008194A2 (zh)
WO (1) WO2021114208A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751053A (zh) * 2021-10-11 2021-12-07 中国环境科学研究院 一种适用于低浓度大风量有机挥发物的催化剂及制备方法
CN115301252A (zh) * 2022-08-17 2022-11-08 攀钢集团攀枝花钢铁研究院有限公司 一种低成本脱硝催化剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917895B (zh) * 2022-07-21 2022-09-16 山东天璨环保科技有限公司 稀土脱硝催化剂的制备方法
CN115108565B (zh) * 2022-08-29 2022-11-25 中国科学院山西煤炭化学研究所 一种氢型fer分子筛及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86108200A (zh) * 1985-12-09 1987-09-09 国际壳牌研究有限公司 镁碱沸石的制备方法及其作为脱蜡催化剂(载体)的应用
WO2002072244A2 (de) * 2001-03-13 2002-09-19 Uhde Gmbh Verfahren zur verringerung des n2o-gehalts in gasen und ausgewählte katalysatoren
WO2013146729A1 (ja) 2012-03-30 2013-10-03 日立造船株式会社 燃焼排ガスの浄化方法、および脱硝触媒
JP2013226544A (ja) 2012-03-30 2013-11-07 Hitachi Zosen Corp 燃焼排ガスの浄化方法、および脱硝触媒
JP2014172007A (ja) 2013-03-12 2014-09-22 Hitachi Zosen Corp 排ガス中の窒素酸化物の還元除去方法
CN106132540A (zh) * 2014-03-27 2016-11-16 日立造船株式会社 蜂窝结构体、及使用该蜂窝结构体的废气净化用催化剂、以及废气净化用催化剂的制备方法
CN106413888A (zh) * 2014-02-07 2017-02-15 日立造船株式会社 燃烧排气净化用催化剂及燃烧排气的净化方法
WO2017057736A1 (ja) 2015-10-02 2017-04-06 日立造船株式会社 排ガス浄化用触媒およびその製造方法
CN109070067A (zh) * 2016-03-31 2018-12-21 日立造船株式会社 废气净化催化剂
CN110013875A (zh) * 2019-05-28 2019-07-16 河南师范大学 一种氟改性分子筛fer的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86108200A (zh) * 1985-12-09 1987-09-09 国际壳牌研究有限公司 镁碱沸石的制备方法及其作为脱蜡催化剂(载体)的应用
WO2002072244A2 (de) * 2001-03-13 2002-09-19 Uhde Gmbh Verfahren zur verringerung des n2o-gehalts in gasen und ausgewählte katalysatoren
WO2013146729A1 (ja) 2012-03-30 2013-10-03 日立造船株式会社 燃焼排ガスの浄化方法、および脱硝触媒
JP2013226544A (ja) 2012-03-30 2013-11-07 Hitachi Zosen Corp 燃焼排ガスの浄化方法、および脱硝触媒
JP2014172007A (ja) 2013-03-12 2014-09-22 Hitachi Zosen Corp 排ガス中の窒素酸化物の還元除去方法
CN106413888A (zh) * 2014-02-07 2017-02-15 日立造船株式会社 燃烧排气净化用催化剂及燃烧排气的净化方法
CN106132540A (zh) * 2014-03-27 2016-11-16 日立造船株式会社 蜂窝结构体、及使用该蜂窝结构体的废气净化用催化剂、以及废气净化用催化剂的制备方法
WO2017057736A1 (ja) 2015-10-02 2017-04-06 日立造船株式会社 排ガス浄化用触媒およびその製造方法
CN109070067A (zh) * 2016-03-31 2018-12-21 日立造船株式会社 废气净化催化剂
CN110013875A (zh) * 2019-05-28 2019-07-16 河南师范大学 一种氟改性分子筛fer的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ACS CATAL., vol. 8, no. 4, 2018, pages 2699 - 2708
APPL. CATAL. B-ENVIRON., no. 123-124, 2012, pages 134 - 140
ENVIRON. SCI. TECHNOL., no. 49, 2015, pages 481 - 488
J. CATAL., vol. 377, 2019, pages 480 - 493
MICROPOROUS MESOPOROUS MATER, vol. 203, 2015, pages 163 - 169
See also references of EP4005671A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751053A (zh) * 2021-10-11 2021-12-07 中国环境科学研究院 一种适用于低浓度大风量有机挥发物的催化剂及制备方法
CN113751053B (zh) * 2021-10-11 2022-08-12 中国环境科学研究院 一种适用于低浓度大风量有机挥发物的催化剂及制备方法
CN115301252A (zh) * 2022-08-17 2022-11-08 攀钢集团攀枝花钢铁研究院有限公司 一种低成本脱硝催化剂及其制备方法
CN115301252B (zh) * 2022-08-17 2023-10-20 攀钢集团攀枝花钢铁研究院有限公司 一种低成本脱硝催化剂及其制备方法

Also Published As

Publication number Publication date
US20220387980A1 (en) 2022-12-08
BR112022008194A2 (pt) 2022-07-12
KR20220053012A (ko) 2022-04-28
CN114206495B (zh) 2023-05-23
CN114206495A (zh) 2022-03-18
JP2023501862A (ja) 2023-01-20
EP4005671A4 (en) 2023-03-01
EP4005671A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
WO2021114208A1 (zh) 脱硝催化剂及使用该催化剂的脱硝方法
JP6328593B2 (ja) Cha構造を有するゼオライトの製造方法
US9517942B2 (en) Transition-metal-containing zeolite
JP5169779B2 (ja) 窒素酸化物浄化触媒及び窒素酸化物浄化方法
JP5895510B2 (ja) チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
CN111960434B (zh) 一种cha型菱沸石分子筛及其合成方法与应用
KR101766930B1 (ko) 신규 메탈로실리케이트, 그 제조 방법, 질소 산화물 정화 촉매, 그 제조 방법, 및 그것을 사용한 질소 산화물 정화 방법
JP5828276B2 (ja) 窒素酸化物浄化用触媒
JP5704083B2 (ja) 触媒、窒素酸化物浄化用素子、及び窒素酸化物浄化用システム
JP4957176B2 (ja) 窒素酸化物浄化触媒及び窒素酸化物浄化方法
US7794680B2 (en) Nitrogen oxide-reducing catalyst and method for reducing nitrogen oxide
CN110961144A (zh) 一种具有cha/lev拓扑结构共生复合分子筛及其制备方法和scr应用
KR20210002659A (ko) 높은 산도를 갖는 저-실리카 캐버자이트 제올라이트
CN117120374A (zh) 过渡金属促进的菱沸石的一锅合成
JP5594121B2 (ja) 新規メタロシリケート及び窒素酸化物浄化触媒
US20180178205A1 (en) Method for producing transition-metal-containing zeolite, transition metal zeolite produced by the method, and exhaust gas purification catalyst including the zeolite
WO2019117183A1 (ja) β型ゼオライト及びその製造方法
JP2009166032A (ja) 窒素酸化物浄化触媒及び窒素酸化物浄化方法
WO2021193653A1 (ja) ディーゼル自動車排ガス浄化触媒装置に用いられるNH3-SCR触媒用のCu-CHA型ゼオライト、及びこれを含むディーゼル自動車排ガス浄化触媒装置
CN110961148A (zh) 一种aei/lev结构共生复合分子筛及其制备方法和scr应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514775

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2019955408

Country of ref document: EP

Effective date: 20220224

ENP Entry into the national phase

Ref document number: 20227010457

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008194

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022008194

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220428

NENP Non-entry into the national phase

Ref country code: DE