WO2023020554A1 - 双层光模块装置及通信网络设备单板 - Google Patents

双层光模块装置及通信网络设备单板 Download PDF

Info

Publication number
WO2023020554A1
WO2023020554A1 PCT/CN2022/113114 CN2022113114W WO2023020554A1 WO 2023020554 A1 WO2023020554 A1 WO 2023020554A1 CN 2022113114 W CN2022113114 W CN 2022113114W WO 2023020554 A1 WO2023020554 A1 WO 2023020554A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
optical module
double
cage structure
layer optical
Prior art date
Application number
PCT/CN2022/113114
Other languages
English (en)
French (fr)
Inventor
周恒�
褚玉军
Original Assignee
锐捷网络股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐捷网络股份有限公司 filed Critical 锐捷网络股份有限公司
Publication of WO2023020554A1 publication Critical patent/WO2023020554A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides

Definitions

  • the present application relates to the technical field of communication, in particular to a double-layer optical module device and a single board of communication network equipment.
  • the optical module With the continuous promotion and upgrading of 4G and 5G networks, communication networks are gradually developing towards high bandwidth and high speed.
  • the optical module has also evolved and upgraded its bandwidth, from 1GE, 10GE, and 100GE to 200G, 400GE, and 800GE.
  • the bandwidth upgrade process of the optical module is accompanied by a double increase in power consumption, but the package size of the optical module has not increased significantly. Therefore, the power density of the optical module continues to increase, and the difficulty of heat dissipation is gradually escalated.
  • optical module manufacturers, optical module cage manufacturers and communication equipment providers have taken some measures to improve the heat dissipation of optical modules, such as adding heat sinks to optical modules, using thermal interface materials to reduce thermal conduction resistance, and increasing system air volume, etc. These measures alleviate the heat dissipation problem of some optical module designs to a certain extent.
  • the embodiment of the present application provides a double-layer optical module device and a communication network equipment single board to solve the problem of difficult heat dissipation of the bottom optical module in the double-layer optical module cage.
  • the embodiment of the present application proposes a double-layer optical module device, including a cage structure, a first optical module, a second optical module, a first heat dissipation component, and a second heat dissipation component.
  • the first optical module and the second optical module are disposed inside the cage structure and stacked along a first direction, and there is a gap between the first optical module and the second optical module.
  • the first heat dissipation component is disposed inside the cage structure and located in the gap, and the first heat dissipation component is connected to the side wall of the second optical module facing the first optical module.
  • the second heat dissipation component is arranged outside the cage structure and connected to the first heat dissipation component through a heat transfer element.
  • the first direction is the height direction of the cage structure.
  • the second heat dissipation component is disposed on a side wall of the cage structure along a second direction, and the second direction is a width direction of the cage structure.
  • the number of the second heat dissipation components is at least two, and at least two of the second heat dissipation components are respectively arranged on both sides of the cage structure along the second direction.
  • the first heat dissipation component includes a first heat dissipation substrate and a first heat dissipation fin, and the first side of the first heat dissipation substrate along the first direction is connected to the second optical module.
  • the sidewalls are connected, and the first heat dissipation fins are disposed on the second side of the first heat dissipation substrate along the first direction.
  • the number of the first heat dissipation fins is at least two, at least two of the first heat dissipation fins are arranged in at least two rows along the second direction, and each row of the first heat dissipation fins
  • the heat dissipation fins include at least one first heat dissipation fin, and the second direction is a width direction of the cage structure.
  • the first heat dissipation assembly further includes a first boss, the first boss is arranged on the first side of the first heat dissipation substrate, and the first heat dissipation substrate passes through The first boss is connected to the side wall of the second optical module.
  • the second heat dissipation component includes a second heat dissipation substrate and second heat dissipation fins, and the first side of the second heat dissipation substrate along the second direction passes through the heat transfer element and the second heat dissipation fin.
  • the first heat dissipation component is connected, and the second heat dissipation fin is disposed on a second side of the second heat dissipation substrate along the second direction.
  • a first positioning hole is provided on the first heat dissipation component, and a second positioning hole is provided on the first side of the second heat dissipation substrate. Both ends of the heat transfer member are respectively disposed in the first positioning hole and the second positioning hole.
  • the number of the second heat dissipation fins is at least two, at least two of the second heat dissipation fins are arranged in at least two rows along the first direction, and each row of the The second heat dissipation fins include at least one second heat dissipation fin.
  • a third heat dissipation component is further included, and the third heat dissipation component is connected to a side wall of the first optical module away from the second optical module.
  • the third heat dissipation component includes a third heat dissipation substrate, a third heat dissipation fin, and a third boss, and the third boss is arranged on the third heat dissipation substrate along the first On the first side of one direction, the third boss is connected to the side wall of the first optical module, and the third heat dissipation fin is arranged on the second side of the third heat dissipation substrate along the first direction .
  • the number of the third heat dissipation fins is at least two, at least two of the third heat dissipation fins are arranged in at least two rows along the second direction, and each row of the first The heat dissipation fins include at least one third heat dissipation fin, and the second direction is a width direction of the cage structure.
  • the embodiment of the present application proposes a communication network equipment single board, including a circuit board, a main chip, and the aforementioned double-layer optical module device.
  • the double-layer optical module device and the main chip are respectively arranged on the circuit board, and the double-layer optical module device is electrically connected to the main chip.
  • the heat of the second optical module is conducted to the first heat dissipation component, and the heat on the first heat dissipation component is conducted to the second heat dissipation component through the heat transfer member.
  • the air cooling system of the board dissipates the heat on the first heat dissipation component and the second heat dissipation component to the external environment to realize the heat dissipation of the second optical module.
  • the cooperation of the first heat dissipation component and the second heat dissipation component increases the The heat dissipation area of the module increases the cooling air volume of the second optical module, improves the heat dissipation efficiency of the second optical module, and extends the heat dissipation surface of the second optical module to the outside of the cage structure through the second heat dissipation component, making full use of the
  • the air cooling system of the communication network equipment single board does not flow through the inside of the cage structure but directly flows to the main chip radiator, which greatly improves the heat dissipation efficiency of the second optical module. While solving the problem of heat dissipation of the bottom optical module, it also The problem of low utilization rate of the air volume of the air cooling system of the single board of the communication network equipment is solved.
  • FIG. 1 is a schematic structural diagram of a single board of a communication network device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the air flow direction of the air cooling system of the single board of the communication network equipment provided by the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an air inlet end of a single board of a communication network device provided in an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a double-layer optical module device provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural view of the cage structure of the double-layer optical module device provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of cooperation between the first heat dissipation component and the second heat dissipation component of the double-layer optical module device provided by the embodiment of the present application;
  • Fig. 7 is a schematic diagram of disassembly of the first heat dissipation component and the second heat dissipation component of the double-layer optical module device provided by the embodiment of the present application;
  • Fig. 8 is a schematic structural diagram of the first heat dissipation component of the double-layer optical module device provided by the embodiment of the present application.
  • FIG. 9 is another schematic structural view of the first heat dissipation component of the double-layer optical module device provided by the embodiment of the present application.
  • 1-Double-layer optical module device 2-circuit board, 3-main chip, 4-main chip radiator, 5-panel assembly, 6-air inlet, 7-cage structure, 8-window structure, 9-first Optical module, 10-second optical module, 11-first heat dissipation component, 12-second heat dissipation component, 13-heat transfer element, 14-first heat dissipation substrate, 15-first heat dissipation fin, 16-first convex platform, 17-the third cooling component, 18-connection port.
  • the double-layer optical module device 1 provided by the embodiment of the present application can be used as a communication A component of a network device board.
  • the single board of the communication network equipment may also include a circuit board 2 , and a main chip 3 , a heat sink 4 for the main chip, and a panel assembly 5 arranged on the circuit board 2 .
  • the double-layer optical module device 1 is electrically connected to the main chip 3, and the number of the double-layer optical module device 1 can be multiple, and the multiple double-layer optical module devices 1 are arranged at intervals.
  • the air flow direction of the air cooling system of the single board of the communication network equipment is shown in FIG. 2 , and the air can enter from one end provided with the double-layer optical module device 1 and exit from the other end.
  • the air inlet end of the single board of the communication network equipment has an air inlet 6, and the air enters through the air inlet 6, and flows through the double-layer optical module device 1 and the main chip 3, etc., realizing the double-layer optical module device 1 and the main chip 3.
  • the main chip 3 dissipates heat.
  • the double-layer optical module device provided by the embodiment of the present application includes a cage structure 7, a first optical module 9, a second optical module 10, a first heat dissipation component 11 and a second Heat dissipation assembly 12.
  • the cage structure 7 has an accommodation space inside.
  • the shape of the cage structure 7 can be a rectangular column or a square column.
  • the length direction of the cage structure 7 can be made to be the same as the air flow direction of the single board of the communication network equipment.
  • the front and rear ends of the cage structure 7 in the length direction may have window structures 8 , so that air can flow through the inside of the cage structure 7 and enhance the heat dissipation effect on the components arranged inside the cage structure 7 .
  • the left and right sides of the cage structure 7 along the length direction can also be provided with window structures 8 to enhance ventilation.
  • the first optical module 9 and the second optical module 10 can be arranged in the accommodation space inside the cage structure 7, and the cage structure 7 has an electromagnetic shielding effect, which can prevent the first optical module 9 and the second optical module 10 from being damaged. electromagnetic interference.
  • the first optical module 9 and the second optical module 10 can be stacked along the first direction, the first direction is the height direction of the cage structure 7, it can be understood that the first optical module 9 is the upper layer optical module, and the second optical module 10 is the bottom layer optical module. Moreover, there may be a gap between the first optical module 9 and the second optical module 10 .
  • the first heat dissipation component 11 can be arranged in the accommodation space inside the cage structure 7, and is located in the gap between the first optical module 9 and the second optical module 10, and the first heat dissipation component 11 and the second optical module 10 face the first
  • the side wall of the optical module 9 is connected, that is, connected to the top wall of the second optical module 10 .
  • the second heat dissipation component 12 is disposed outside the cage structure 7 and connected to the first heat dissipation component 11 through a heat transfer element 13 .
  • the heat of the second optical module 10 is conducted to the first heat dissipation assembly 11, and the heat on the first heat dissipation assembly 11 is then conducted to the second heat dissipation assembly 12 through the heat transfer element 13.
  • the single board of the communication network device The air cooling system dissipates the heat on the first heat dissipation component 11 and the second heat dissipation component 12 to the external environment, so as to realize the heat dissipation of the second optical module 10 .
  • the cooperation between the first heat dissipation component 11 and the second heat dissipation component 12 increases the heat dissipation area of the second optical module 10 and increases the cooling air volume of the second optical module 10 .
  • the heat dissipation surface of the second optical module 10 is extended to the outside of the cage structure 7 through the second heat dissipation component 12, and the air cooling system that makes full use of the single board of the communication network equipment does not flow through the inside of the cage structure 7 but directly flows to the heat sink of the main chip 4 airflow, the heat dissipation efficiency of the second optical module 10 is greatly improved. While solving the problem of insufficient heat dissipation area of the bottom optical module, it also solves the problem of low utilization rate of the air volume of the air cooling system of the single board of the communication network equipment. Improve heat dissipation efficiency without increasing the air volume and operating power consumption of the air-cooling system.
  • the second heat dissipation component 12 is arranged outside the cage structure 7, so that the size of the cage structure 7 does not need to be changed, and the adaptability is stronger and the flexibility is higher.
  • the second heat dissipation component 12 may be disposed on the side wall of the cage structure 7 along the second direction, so that the overall structure of the double-layer optical module device 1 is more compact.
  • the second direction is the width direction of the cage structure 7 , and when the shape of the cage structure 7 is a rectangular column or a square column, the second direction is perpendicular to the first direction.
  • the second heat dissipation assembly 12 When dissipating heat, the air flows along the length direction of the cage structure 7, the second heat dissipation assembly 12 is located on the side of the cage structure 7, the length direction of the second heat dissipation assembly 12 is consistent with the length direction of the cage structure 7, the air flows smoothly, and the second heat dissipation assembly 12 The heat on the surface can be removed more quickly.
  • the second heat dissipation component 12 may abut against the outer wall of the cage structure 7 , and the second heat dissipation component 12 is supported and positioned by the heat transfer element 13 .
  • the number of the second heat dissipation components 12 can be at least two, and at least two second heat dissipation components 12 can be respectively arranged on both sides of the cage structure 7 along the second direction, that is, they can be respectively arranged on the cage structure 7 left and right sides.
  • FIG. 4 exemplifies the case where there are two second heat dissipation assemblies 12 , at this time, one second heat dissipation assembly 12 may be provided on the left and right sides of the cage structure 7 .
  • the number of the second heat dissipation components 12 is large, which directly increases the heat dissipation area of the second optical module 10 and the cooling air volume, so that the heat dissipation efficiency is further improved.
  • the first heat dissipation assembly 11 may include a first heat dissipation substrate 14 and first heat dissipation fins 15, and the first side of the first heat dissipation substrate 14 along the first direction may be connected to The sidewall of the second optical module 10 abuts against, that is, abuts against the top wall of the second optical module 10 , and the first heat dissipation fins 15 are disposed on the second side of the first heat dissipation substrate 14 along the first direction.
  • the second side of the first heat dissipation substrate 14 is the opposite side to the first side, and it can be understood that the second side and the first side are the upper side and the lower side of the first heat dissipation substrate 14 respectively.
  • the first heat dissipation substrate 14 abuts against the top wall of the second optical module 10, the heat of the second optical module 10 is directly conducted to the first heat dissipation substrate 14, and the arrangement of the first heat dissipation fins 15 increases the size of the first heat dissipation assembly 11.
  • the heat dissipation area enables the heat of the second optical module 10 to be dissipated faster.
  • the number of the first heat dissipation fins 15 can be multiple, and the plurality of first heat dissipation fins 15 can be arranged in multiple rows along the second direction, and each row of first heat dissipation fins 15 follows the direction of air flow.
  • each row of first heat dissipation fins 15 may include one or more first heat dissipation fins 15 .
  • the large number of first heat dissipation fins 15 directly increases the heat dissipation area of the first heat dissipation assembly 11 and improves heat dissipation efficiency.
  • the first heat dissipation assembly 11 may also include a first boss 16, and the first boss 16 may be arranged on the first side of the first heat dissipation substrate 14, that is, arranged on the first side of the first heat dissipation substrate 14 facing the second optical module. 10 , the first heat dissipation substrate 14 abuts against the top wall of the second optical module 10 through the first boss 16 .
  • the setting of the first boss 16 can make the first heat dissipation assembly 11 contact with the second optical module 10 more closely, and can also adjust the overall height of the first heat dissipation assembly 11, and if necessary, the first heat dissipation fin 15 can be connected to the first The optical modules 9 are in contact, so that the first heat dissipation component 11 can also dissipate heat to the first optical module 9 .
  • the first boss 16 and the first heat dissipation fins 15 can be integrally formed with the first heat dissipation substrate 14 , and can be made of copper, aluminum and other materials with good thermal conductivity.
  • the second heat dissipation component 12 may include a second heat dissipation substrate and second heat dissipation fins.
  • the first side of the second heat dissipation substrate along the second direction is connected to the first heat dissipation assembly 11 through the heat transfer element 13 , and the second heat dissipation fins are arranged on the second side of the second heat dissipation substrate along the second direction.
  • the heat of the first heat dissipation component 11 is conducted to the second heat dissipation substrate through the heat transfer member 13, which increases the heat dissipation area of the second optical module 10, and the setting of the second heat dissipation fins increases the heat dissipation area of the second heat dissipation component 12 , so that the heat dissipation area of the second optical module 10 is further increased, and the heat dissipation effect is more remarkable.
  • the number of the second heat dissipation fins can be multiple, and the plurality of second heat dissipation fins can be arranged in multiple rows along the first direction, and each row of second heat dissipation fins can include one or more second heat dissipation fins piece.
  • the first positioning hole may be provided on the first heat dissipation component 11 , following the above, the first positioning hole may be provided on the side wall of the first heat dissipation substrate 14 along the second direction.
  • a second positioning hole may be provided on the first side of the second heat dissipation substrate, that is, the second positioning hole is provided on a side wall of the second heat dissipation substrate facing the cage structure 7 .
  • the heat transfer element 13 passes through the side wall of the cage structure 7, and the two ends of the heat transfer element 13 can be plugged into the first positioning hole and the second positioning hole respectively, and the heat transfer element 13 and the first heat dissipation substrate 14 and the second heat dissipation
  • the contact area of the substrate is larger, and it is easier to conduct heat conduction.
  • the number of heat transfer elements 13 may be multiple.
  • the heat transfer element 13 can be columnar, and its cross-sectional shape can be circular or elliptical.
  • the shapes of the first positioning hole and the second positioning hole match the cross-sectional shape of the heat transfer element 13 .
  • the heat transfer member 13 can be made of copper, aluminum and other materials with good thermal conductivity.
  • the relative positions of the heat transfer element 13 and the first heat dissipation substrate 14 and the second heat dissipation substrate can be fixed through a heat conduction medium.
  • the heat conduction medium can be heat conduction curing glue or solder paste, etc., and can be placed inside the first positioning hole and the second positioning hole. After inserting the heat-conducting medium and inserting the heat-transfer element 13, the heat-transfer element 13 is fixed under the cooperation of the positioning holes and the adhesion of the heat-conducting medium. Moreover, the heat conduction medium can also enhance heat conduction, thereby improving heat dissipation efficiency.
  • the cage structure 7 has an opening through which the heat transfer element 13 passes, and the size of the opening may be equal to or slightly larger than the radial size of the heat transfer element 13 .
  • the double-layer optical module device 1 provided in the embodiment of the present application may further include a third heat dissipation component 17, and the third heat dissipation component 17 is far away from the first optical module 9 from the second
  • the side wall of the optical module 10 is connected, that is, connected to the top wall of the first optical module 9 , and the third heat dissipation component 17 can dissipate heat to the first optical module 9 .
  • the third heat dissipation component 17 may include a third heat dissipation substrate, a third heat dissipation fin, and a third boss.
  • the third boss is arranged on the first side of the third heat dissipation substrate along the first direction, that is, the third boss is arranged on the side of the third heat dissipation substrate facing the first optical module 9, and the third boss is connected to the first optical module 9.
  • the heat of the first optical module 9 is directly conducted to the third heat dissipation substrate.
  • the third heat dissipation fin is arranged on the second side of the third heat dissipation substrate along the first direction, and the arrangement of the third heat dissipation fin increases the heat dissipation area of the third heat dissipation assembly 17, so that the heat of the first optical module 9 can be faster scattered.
  • the number of the third heat dissipation fins can be multiple, and the plurality of third heat dissipation fins can be arranged in multiple rows along the second direction, and each row of third heat dissipation fins can include one or more third heat dissipation fins piece.
  • the third heat dissipation assembly 17 can be arranged outside the cage structure 7, as shown in FIG. And abut against the top wall of the first optical module 9 .

Abstract

本申请公开了一种双层光模块装置及通信网络设备单板。该双层光模块装置包括笼子结构、第一光模块、第二光模块、第一散热组件以及第二散热组件。笼子结构内部具有容纳空间。第一光模块和第二光模块设置在笼子结构内部并沿第一方向层叠设置,且第一光模块和第二光模块之间具有间隙。第一散热组件设置在笼子结构内部并位于间隙内,且第一散热组件与第二光模块面向第一光模块的侧壁连接。第二散热组件设置在笼子结构外部,且通过传热件与第一散热组件连接。第一方向为笼子结构的高度方向。本申请的双层光模块装置,第一散热组件和第二散热组件配合,增大了第二光模块的散热面积,增加了对第二光模块的冷却风量,提升了第二光模块的散热效率。

Description

双层光模块装置及通信网络设备单板
相关申请的交叉引用
本申请要求在2021年08月18日提交中国专利局、申请号为202110946824.8、申请名称为“双层光模块装置及通信网络设备单板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种双层光模块装置及通信网络设备单板。
背景技术
随着4G、5G网络的不断推进升级,通信网络逐步向高带宽、高速率发展。光模块,作为通信设备中重要的数据传输模块,其带宽也随之演进升级,从1GE、10GE、100GE向200G、400GE、800GE演进。在光模块的带宽升级过程中伴随而来的是功耗的成倍提升,但光模块的封装尺寸并没有明显提升。因此,光模块的功率密度不断增加,散热难度逐步升级。
目前,光模块厂家、光模块笼子制造商和通信设备提供商均针对光模块散热进行了一些改善措施,例如,为光模块增加散热器、使用导热界面材料降低传导热阻、提升系统风量等,这些措施在一定程度上缓解了部分光模块设计的散热问题。
但是,对于双层光模块笼子的设计,散热问题依然存在。由于受限于笼子尺寸,底层光模块的散热面积和风量均受到一定限制,底层光模块所支持的散热功耗成为通信网络设备发展的瓶颈,需要迫切解决。
发明内容
本申请实施例提供一种双层光模块装置及通信网络设备单板,以解决双 层光模块笼子中的底层光模块散热困难的问题。
一方面,本申请实施例提出了一种双层光模块装置,包括笼子结构、第一光模块、第二光模块、第一散热组件以及第二散热组件。所述笼子结构内部具有容纳空间。所述第一光模块和所述第二光模块设置在所述笼子结构内部并沿第一方向层叠设置,且所述第一光模块和所述第二光模块之间具有间隙。所述第一散热组件设置在所述笼子结构内部并位于所述间隙内,且所述第一散热组件与所述第二光模块面向所述第一光模块的侧壁连接。所述第二散热组件设置在所述笼子结构外部,且通过传热件与所述第一散热组件连接。所述第一方向为所述笼子结构的高度方向。
根据本申请实施例的一个方面,所述第二散热组件设置在所述笼子结构沿第二方向的侧壁上,所述第二方向为所述笼子结构的宽度方向。
根据本申请实施例的一个方面,所述第二散热组件的个数为至少两个,至少两个所述第二散热组件分别设置在所述笼子结构沿所述第二方向的两侧。
根据本申请实施例的一个方面,所述第一散热组件包括第一散热基板及第一散热鳍片,所述第一散热基板沿所述第一方向的第一侧与所述第二光模块的侧壁连接,所述第一散热鳍片设置在所述第一散热基板沿所述第一方向的第二侧。
根据本申请实施例的一个方面,所述第一散热鳍片的个数为至少两个,至少两个所述第一散热鳍片沿第二方向排列成至少两排,每排所述第一散热鳍片包括至少一个所述第一散热鳍片,所述第二方向为所述笼子结构的宽度方向。
根据本申请实施例的一个方面,所述第一散热组件还包括第一凸台,所述第一凸台设置在所述第一散热基板的所述第一侧,所述第一散热基板通过所述第一凸台与所述第二光模块的侧壁连接。
根据本申请实施例的一个方面,所述第二散热组件包括第二散热基板及第二散热鳍片,所述第二散热基板沿所述第二方向的第一侧通过所述传热件与所述第一散热组件连接,所述第二散热鳍片设置在所述第二散热基板沿所 述第二方向的第二侧。
根据本申请实施例的一个方面,所述第一散热组件上设置有第一定位孔,所述第二散热基板的所述第一侧设置有第二定位孔。所述传热件的两端分别设置在所述第一定位孔和所述第二定位孔内。
根据本申请实施例的一个方面,所述第二散热鳍片的个数为至少两个,至少两个所述第二散热鳍片沿所述第一方向排列成至少两排,每排所述第二散热鳍片包括至少一个所述第二散热鳍片。
根据本申请实施例的一个方面,还包括第三散热组件,所述第三散热组件与所述第一光模块远离所述第二光模块的侧壁连接。
根据本申请实施例的一个方面,所述第三散热组件包括第三散热基板、第三散热鳍片及第三凸台,所述第三凸台设置在所述第三散热基板沿所述第一方向的第一侧,所述第三凸台与所述第一光模块的侧壁连接,所述第三散热鳍片设置在所述第三散热基板沿所述第一方向的第二侧。
根据本申请实施例的一个方面,所述第三散热鳍片的个数为至少两个,至少两个所述第三散热鳍片沿第二方向排列成至少两排,每排所述第一散热鳍片包括至少一个所述第三散热鳍片,所述第二方向为所述笼子结构的宽度方向。
另一方面,本申请实施例提出了一种通信网络设备单板,包括电路板、主芯片以及如前述的双层光模块装置。所述双层光模块装置和所述主芯片分别设置在所述电路板上,所述双层光模块装置与所述主芯片电性连接。
本申请实施例提供的双层光模块装置,第二光模块的热量传导到第一散热组件上,第一散热组件上的热量通过传热件再传导到第二散热组件上,通信网络设备单板的风冷系统将第一散热组件及第二散热组件上的热量散发到外界环境中,实现对第二光模块的散热,第一散热组件和第二散热组件配合,增大了第二光模块的散热面积,增加了对第二光模块的冷却风量,提升了第二光模块的散热效率,并且,通过第二散热组件将第二光模块的散热面延伸到了笼子结构外部,充分利用了通信网络设备单板的风冷系统未流经笼子结 构内部而直接流向主芯片散热器的气流,使得第二光模块的散热效率大幅提升,在解决了底层光模块散热困难的问题的同时,还解决了通信网络设备单板的风冷系统风量利用率不高的问题。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的通信网络设备单板的结构示意图;
图2为本申请实施例提供的通信网络设备单板的风冷系统空气流动方向示意图;
图3为本申请实施例提供的通信网络设备单板的进风端的结构示意图;
图4为本申请实施例提供的双层光模块装置的结构示意图;
图5为本申请实施例提供的双层光模块装置的笼子结构的结构示意图;
图6为本申请实施例提供的双层光模块装置的第一散热组件和第二散热组件的配合示意图;
图7为本申请实施例提供的双层光模块装置的第一散热组件和第二散热组件的拆分示意图;
图8为本申请实施例提供的双层光模块装置的第一散热组件的一种结构示意图;
图9为本申请实施例提供的双层光模块装置的第一散热组件的另一种结构示意图。
附图标记:
1-双层光模块装置,2-电路板,3-主芯片,4-主芯片散热器,5-面板组件,6-进风口,7-笼子结构,8-开窗结构,9-第一光模块,10-第二光模块,11-第一散热组件,12-第二散热组件,13-传热件,14-第一散热基板,15-第一散热鳍片,16-第一凸台,17-第三散热组件,18-连接口。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,术语“第一”和“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性;“多个”的含义是两个或两个以上;术语“内”、“外”、“顶部”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
为了方便理解,首先介绍本申请实施例提供的双层光模块装置的应用场景,如图1所示,作为一种可能的应用方式,本申请实施例提供的双层光模块装置1可以作为通信网络设备单板的组成部分。通信网络设备单板还可以包含电路板2、以及设置在电路板2上的主芯片3、主芯片散热器4及面板组件5等。其中,双层光模块装置1与主芯片3电性连接,且双层光模块装置1的个数可以为多个,多个双层光模块装置1间隔布置。通信网络设备单板的风冷系统的空气流动方向如图2所示,可以由设置有双层光模块装置1的一端进风,由另一端出风。如图3所示,通信网络设备单板的进风端具有进风口6,空气由进风口6进入,流经双层光模块装置1及主芯片3等,实现对双层光模块装置1及主芯片3散热。
请参阅图4、图5、图6及图7,本申请实施例提供的双层光模块装置包括笼子结构7、第一光模块9、第二光模块10、第一散热组件11以及第二散热组 件12。
其中,笼子结构7内部具有容纳空间。笼子结构7的形状可以为矩形柱状或方形柱状。设置笼子结构7时,可以使笼子结构7的长度方向与通信网络设备单板的空气流动方向相同。如图5所示,笼子结构7在长度方向上的前后两端可以具有开窗结构8,使得空气能够流经笼子结构7内部,增强对设置在笼子结构7内部的元器件的散热效果。并且,笼子结构7沿长度方向的左右两侧也可设置有开窗结构8,以加强通风。
如图5所示,第一光模块9和第二光模块10可以设置在笼子结构7内部的容纳空间,笼子结构7具有电磁屏蔽作用,能够防止第一光模块9及第二光模块10受到电磁干扰。第一光模块9和第二光模块10可以沿第一方向层叠设置,第一方向为笼子结构7的高度方向,可以理解为第一光模块9为上层光模块,第二光模块10为底层光模块。并且,第一光模块9和第二光模块10之间可以具有间隙。
第一散热组件11可以设置在笼子结构7内部的容纳空间,并位于第一光模块9和第二光模块10之间的间隙内,且第一散热组件11与第二光模块10面向第一光模块9的侧壁连接,即与第二光模块10的顶壁连接。第二散热组件12设置在笼子结构7外部,且通过传热件13与第一散热组件11连接。
在本实施例中,第二光模块10的热量传导到第一散热组件11上,第一散热组件11上的热量通过传热件13再传导到第二散热组件12上,通信网络设备单板的风冷系统将第一散热组件11及第二散热组件12上的热量散发到外界环境中,实现对第二光模块10的散热。第一散热组件11和第二散热组件12配合,增大了第二光模块10的散热面积,增加了对第二光模块10的冷却风量。并且,通过第二散热组件12将第二光模块10的散热面延伸到了笼子结构7外部,充分利用了通信网络设备单板的风冷系统未流经笼子结构7内部而直接流向主芯片散热器4的气流,使得第二光模块10的散热效率大幅提升,在解决了底层光模块散热面积不足的问题的同时,还解决了通信网络设备单板的风冷系统风量利用率不高的问题,在无需提升风冷系统风量及运行功耗的情况下提高散 热效率。此外,第二散热组件12设置在笼子结构7外部,从而不用改变笼子结构7的尺寸,适配性更强,灵活性更高。
在一种可能的实施例中,第二散热组件12可以设置在笼子结构7沿第二方向的侧壁上,使得双层光模块装置1的整体结构更加紧凑。第二方向为笼子结构7的宽度方向,当笼子结构7的形状为矩形柱状或方形柱状时,第二方向与第一方向垂直。散热时,空气沿笼子结构7的长度方向流动,第二散热组件12位于笼子结构7侧面,第二散热组件12的长度方向与笼子结构7的长度方向一致,空气流动顺畅,第二散热组件12上的热量能够更快速地被带走。具体实施时,第二散热组件12可以与笼子结构7的外壁抵接,第二散热组件12由传热件13支撑并定位。
在具体实施中,第二散热组件12的个数可以为至少两个,至少两个第二散热组件12可以分别设置在笼子结构7沿第二方向的两侧,即可以分别设置在笼子结构7的左右两侧。图4示例了第二散热组件12的个数为两个的情况,此时笼子结构7的左右两侧可以各设置一个第二散热组件12。第二散热组件12的个数较多,直接增大了第二光模块10的散热面积,及冷却风量,使得散热效率进一步提高。
参阅图8及图9,作为一种可能的实施方式,第一散热组件11可以包括第一散热基板14及第一散热鳍片15,第一散热基板14沿第一方向的第一侧可以与第二光模块10的侧壁抵接,即与第二光模块10的顶壁抵接,第一散热鳍片15设置在第一散热基板14沿第一方向的第二侧。第一散热基板14的第二侧为第一侧的对侧,可以理解为第二侧和第一侧分别为第一散热基板14的上侧和下侧。第一散热基板14与第二光模块10的顶壁抵接,第二光模块10的热量直接传导到第一散热基板14上,第一散热鳍片15的设置增大了第一散热组件11的散热面积,使得第二光模块10的热量能够更快散发。
在具体实施中,第一散热鳍片15的个数可以为多个,多个第一散热鳍片15可以沿第二方向排列成多排,每排第一散热鳍片15均顺应空气流动方向,每排第一散热鳍片15可以包括一个或多个第一散热鳍片15。第一散热鳍片15 的个数较多,直接增大了第一散热组件11的散热面积,提高散热效率。
在具体实施中,第一散热组件11还可以包括第一凸台16,第一凸台16可以设置在第一散热基板14的第一侧,即设置在第一散热基板14面向第二光模块10的一侧,第一散热基板14通过第一凸台16与第二光模块10的顶壁抵接。第一凸台16的设置可以使得第一散热组件11与第二光模块10接触更为紧密,还可以调整第一散热组件11的整体高度,必要时可以使第一散热鳍片15与第一光模块9接触,从而第一散热组件11也能够对第一光模块9进行散热。第一凸台16及第一散热鳍片15可以与第一散热基板14一体成型,可以采用铜、铝等导热性能较好的材质制成。
作为一种可能的实施方式,相似地,第二散热组件12可以包括第二散热基板及第二散热鳍片。第二散热基板沿第二方向的第一侧通过传热件13与第一散热组件11连接,第二散热鳍片设置在第二散热基板沿第二方向的第二侧。第一散热组件11的热量通过传热件13传导到第二散热基板上,增大了第二光模块10的散热面积,第二散热鳍片的设置增大了第二散热组件12的散热面积,使得第二光模块10的散热面积进一步增大,散热效果更显著。相似地,第二散热鳍片的个数可以为多个,多个第二散热鳍片可以沿第一方向排列成多排,每排第二散热鳍片可以包括一个或多个第二散热鳍片。
在具体实施中,第一散热组件11上可以设置有第一定位孔,承接上述,第一定位孔可以设置在第一散热基板14沿第二方向的侧壁上。第二散热基板的第一侧可以设置有第二定位孔,即第二定位孔设置在第二散热基板面向笼子结构7的侧壁上。传热件13穿过笼子结构7的侧壁,传热件13的两端可以分别插接在第一定位孔和第二定位孔内,传热件13与第一散热基板14及第二散热基板的接触面积较大,更容易进行热传导。其中,传热件13的个数可以为多个。传热件13可以为柱状,其横截面形状可以为圆形或椭圆形,第一定位孔及第二定位孔的形状与传热件13的横截面形状相匹配。传热件13可以采用铜、铝等导热性能较好的材质制成。可以通过导热介质使传热件13与第一散热基板14及第二散热基板的相对位置固定,导热介质可以为导热固化胶或锡 膏等,可以在第一定位孔及第二定位孔内部点入导热介质,传热件13插接后,传热件13在定位孔的配合作用下及导热介质的粘合作用下被固定。并且,导热介质还能够增强热传导,从而提高散热效率。可以理解,笼子结构7上具有供传热件13穿过的开口,开口的尺寸可以等于或略大于传热件13的径向尺寸。
在一种可能的实施例中,如图4所示,本申请实施例提供的双层光模块装置1还可以包括第三散热组件17,第三散热组件17与第一光模块9远离第二光模块10的侧壁连接,即与第一光模块9的顶壁连接,第三散热组件17可以对第一光模块9进行散热。
在具体实施中,第三散热组件17可以包括第三散热基板、第三散热鳍片及第三凸台。第三凸台设置在第三散热基板沿第一方向的第一侧,即第三凸台设置在第三散热基板面向第一光模块9的一侧,第三凸台与第一光模块9的顶壁抵接,第一光模块9的热量直接传导到第三散热基板上。第三散热鳍片设置在第三散热基板沿第一方向的第二侧,第三散热鳍片的设置增大了第三散热组件17的散热面积,使得第一光模块9的热量能够更快地散发。相似地,第三散热鳍片的个数可以为多个,多个第三散热鳍片可以沿第二方向排列成多排,每排第三散热鳍片可以包括一个或多个第三散热鳍片。
在具体实施中,第三散热组件17可以设置在笼子结构7的外部,如图5所示,笼子结构7的顶部对应第三凸台设置有连接口18,第三凸台穿过连接口18而与第一光模块9的顶壁抵接。
本领域内的技术人员应明白,以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种双层光模块装置,包括:
    笼子结构,所述笼子结构内部具有容纳空间;
    第一光模块和第二光模块,所述第一光模块和所述第二光模块设置在所述笼子结构内部并沿第一方向层叠设置,且所述第一光模块和所述第二光模块之间具有间隙;
    第一散热组件,所述第一散热组件设置在所述笼子结构内部并位于所述间隙内,且所述第一散热组件与所述第二光模块面向所述第一光模块的侧壁连接;
    第二散热组件,所述第二散热组件设置在所述笼子结构外部,且通过传热件与所述第一散热组件连接;
    所述第一方向为所述笼子结构的高度方向。
  2. 根据权利要求1所述的双层光模块装置,所述第二散热组件设置在所述笼子结构沿第二方向的侧壁上,所述第二方向为所述笼子结构的宽度方向。
  3. 根据权利要求2所述的双层光模块装置,所述第二散热组件的个数为至少两个,至少两个所述第二散热组件分别设置在所述笼子结构沿所述第二方向的两侧。
  4. 根据权利要求1所述的双层光模块装置,所述第一散热组件包括第一散热基板及第一散热鳍片,所述第一散热基板沿所述第一方向的第一侧与所述第二光模块的侧壁连接,所述第一散热鳍片设置在所述第一散热基板沿所述第一方向的第二侧。
  5. 根据权利要求4所述的双层光模块装置,所述第一散热鳍片的个数为至少两个,至少两个所述第一散热鳍片沿第二方向排列成至少两排,每排所述第一散热鳍片包括至少一个所述第一散热鳍片,所述第二方向为所述笼子结构的宽度方向。
  6. 根据权利要求4或5所述的双层光模块装置,所述第一散热组件还包 括第一凸台,所述第一凸台设置在所述第一散热基板的所述第一侧,所述第一散热基板通过所述第一凸台与所述第二光模块的侧壁连接。
  7. 根据权利要求2或3所述的双层光模块装置,所述第二散热组件包括第二散热基板及第二散热鳍片,所述第二散热基板沿所述第二方向的第一侧通过所述传热件与所述第一散热组件连接,所述第二散热鳍片设置在所述第二散热基板沿所述第二方向的第二侧。
  8. 根据权利要求7所述的双层光模块装置,所述第一散热组件上设置有第一定位孔,所述第二散热基板的所述第一侧设置有第二定位孔;
    所述传热件的两端分别设置在所述第一定位孔和所述第二定位孔内。
  9. 根据权利要求7所述的双层光模块装置,所述第二散热鳍片的个数为至少两个,至少两个所述第二散热鳍片沿所述第一方向排列成至少两排,每排所述第二散热鳍片包括至少一个所述第二散热鳍片。
  10. 根据权利要求1所述的双层光模块装置,还包括第三散热组件,所述第三散热组件与所述第一光模块远离所述第二光模块的侧壁连接。
  11. 根据权利要求10所述的双层光模块装置,所述第三散热组件包括第三散热基板、第三散热鳍片及第三凸台,所述第三凸台设置在所述第三散热基板沿所述第一方向的第一侧,所述第三凸台与所述第一光模块的侧壁连接,所述第三散热鳍片设置在所述第三散热基板沿所述第一方向的第二侧。
  12. 根据权利要求11所述的双层光模块装置,所述第三散热鳍片的个数为至少两个,至少两个所述第三散热鳍片沿第二方向排列成至少两排,每排所述第一散热鳍片包括至少一个所述第三散热鳍片,所述第二方向为所述笼子结构的宽度方向。
  13. 一种通信网络设备单板,包括电路板、主芯片以及如权利要求1至12任一项所述的双层光模块装置,所述双层光模块装置和所述主芯片分别设置在所述电路板上,所述双层光模块装置与所述主芯片电性连接。
PCT/CN2022/113114 2021-08-18 2022-08-17 双层光模块装置及通信网络设备单板 WO2023020554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110946824.8 2021-08-18
CN202110946824.8A CN113710060A (zh) 2021-08-18 2021-08-18 双层光模块装置及通信网络设备单板

Publications (1)

Publication Number Publication Date
WO2023020554A1 true WO2023020554A1 (zh) 2023-02-23

Family

ID=78653302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113114 WO2023020554A1 (zh) 2021-08-18 2022-08-17 双层光模块装置及通信网络设备单板

Country Status (2)

Country Link
CN (1) CN113710060A (zh)
WO (1) WO2023020554A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113710060A (zh) * 2021-08-18 2021-11-26 锐捷网络股份有限公司 双层光模块装置及通信网络设备单板
CN116027493A (zh) * 2021-10-25 2023-04-28 中兴智能科技南京有限公司 冷却装置以及电子设备
CN115808754B (zh) * 2023-02-08 2023-05-09 苏州浪潮智能科技有限公司 光模块冷却装置、光模块系统及光通讯装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204362490U (zh) * 2015-01-07 2015-05-27 加弘科技咨询(上海)有限公司 一种高效散热光模块装置
CN208047116U (zh) * 2018-02-11 2018-11-02 武汉驿天诺科技有限公司 一种光模块散热装置
CN208937755U (zh) * 2018-10-16 2019-06-04 上海欣诺通信技术股份有限公司 光传输设备
CN110806620A (zh) * 2018-08-06 2020-02-18 华为技术有限公司 单板及网络设备
US20210231890A1 (en) * 2020-01-23 2021-07-29 Cisco Technology, Inc. Air cooled cage design
CN113710060A (zh) * 2021-08-18 2021-11-26 锐捷网络股份有限公司 双层光模块装置及通信网络设备单板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991194A (zh) * 2015-02-12 2016-10-05 中兴通讯股份有限公司 一种光模块散热结构及通讯设备
JP2016220082A (ja) * 2015-05-21 2016-12-22 日立金属株式会社 光伝送モジュール及び伝送装置
CN106413343B (zh) * 2016-09-12 2019-04-26 华为技术有限公司 散热器、散热装置、散热系统及通信设备
CN107645889A (zh) * 2017-09-29 2018-01-30 武汉光迅科技股份有限公司 一种对单板上光模块进行散热的装置及方法
TWI677276B (zh) * 2018-01-10 2019-11-11 正淩精密工業股份有限公司 能提升光模塊散熱效能的高頻連接裝置
CN110376686B (zh) * 2018-04-13 2022-04-29 华为技术有限公司 光模块插装座及通信设备
CN110333582A (zh) * 2019-06-25 2019-10-15 武汉永信丰科技有限公司 一种光模块散热结构
CN211454039U (zh) * 2019-12-30 2020-09-08 武汉九鸿光电科技有限公司 一种光模块散热装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204362490U (zh) * 2015-01-07 2015-05-27 加弘科技咨询(上海)有限公司 一种高效散热光模块装置
CN208047116U (zh) * 2018-02-11 2018-11-02 武汉驿天诺科技有限公司 一种光模块散热装置
CN110806620A (zh) * 2018-08-06 2020-02-18 华为技术有限公司 单板及网络设备
CN208937755U (zh) * 2018-10-16 2019-06-04 上海欣诺通信技术股份有限公司 光传输设备
US20210231890A1 (en) * 2020-01-23 2021-07-29 Cisco Technology, Inc. Air cooled cage design
CN113710060A (zh) * 2021-08-18 2021-11-26 锐捷网络股份有限公司 双层光模块装置及通信网络设备单板

Also Published As

Publication number Publication date
CN113710060A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2023020554A1 (zh) 双层光模块装置及通信网络设备单板
US6795315B1 (en) Cooling system
US20080192428A1 (en) Thermal management system for computers
US11650384B2 (en) Thermal optimizations for OSFP optical transceiver modules
US20080084668A1 (en) Conductive heat transport cooling system and method for a multi-component electronics system
TWI722195B (zh) 電子裝置及電子裝置之放熱構造
JP5522066B2 (ja) 光通信用カードモジュール
CN110536585A (zh) 冷却装置及服务器装置
CN212278664U (zh) 适于电子设备液冷散热的液冷板及具有其的散热单元
WO2022100106A1 (zh) 可插拔设备、信息通信设备、散热系统和制造方法
CN211062709U (zh) 一种散热片及电路板散热装置
JP2017005010A (ja) 電子機器
WO2021036249A1 (zh) 一种散热器、电子设备及汽车
TWI328736B (en) Radiation structure for processors
WO2022193669A1 (zh) 一种头戴显示设备及其散热机构
US7610950B2 (en) Heat dissipation device with heat pipes
CN214852404U (zh) 一种控制设备
US20050199377A1 (en) Heat dissipation module with heat pipes
CN108633238A (zh) 一种用于两片对插印制板的散热装置
WO2017067418A1 (zh) 散热结构和单板扩展散热方法
KR200319226Y1 (ko) 방사형 방열핀을 갖는 히트파이프용 방열판
CN210042701U (zh) 散热结构及具有该散热结构的功率变换器
CN211152537U (zh) 服务器散热器
CN114115470A (zh) 硬盘托架、硬盘组件及主机装置
WO2020102983A1 (zh) 电路板及超算服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE