WO2017067418A1 - 散热结构和单板扩展散热方法 - Google Patents

散热结构和单板扩展散热方法 Download PDF

Info

Publication number
WO2017067418A1
WO2017067418A1 PCT/CN2016/102044 CN2016102044W WO2017067418A1 WO 2017067418 A1 WO2017067418 A1 WO 2017067418A1 CN 2016102044 W CN2016102044 W CN 2016102044W WO 2017067418 A1 WO2017067418 A1 WO 2017067418A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sink
board
sub
backplane
Prior art date
Application number
PCT/CN2016/102044
Other languages
English (en)
French (fr)
Inventor
苏展
孙建璞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017067418A1 publication Critical patent/WO2017067418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to the technical field of communication devices, in particular to a heat dissipation structure and a method for expanding a heat dissipation of a single board.
  • the embodiment of the present invention provides a heat dissipation structure, which can solve the problem that the single-board heat sink lacks sufficient convection heat dissipation area.
  • the embodiment of the invention further provides a method for expanding a heat dissipation of a single board.
  • an embodiment of the present invention provides a heat dissipation structure including: a subrack system; and a backplane heat dissipation device installed in a gap between the backplane or the backplane in the subrack system And connected to the single-board heatsink on the board through the heat-conducting connector, and set to expand the convection heat-dissipating area of the single-board heat sink.
  • a heat dissipation network is disposed on the shield heat sink of the subrack system, and the first part of the single board heat sink on the board is connected to the soaking network through the connecting component, and the soaking network is connected through the first sub heat conduction.
  • the device is connected to the backplane heat dissipation device; the second portion of the single-board heatsink on the single board is connected to the backplane heat dissipation device through the second sub-thermal connector.
  • the thermally conductive connector comprises a first sub-thermally conductive connector and a second sub-thermally conductive connector.
  • the first sub-thermal connector and the second sub-thermal connector each include a plug and a socket.
  • the first part of the single-board heat sink is away from the back-plate heat sink and the second part of the single-board heat sink is adjacent to the back of the first partial single-board heat sink. Board cooling equipment.
  • a single-board PCB of the single board is provided with a through port through which one end of the medium and/or the heat conducting structural member passes.
  • the connector is a dielectric or thermally conductive structural member.
  • the subrack system comprises: a shield plate heat sink provided with a soaking network; a single board PCB located above the shield plate heat sink and mounted on the shield plate heat sink; the heat source is located on the single board PCB The upper panel is mounted on the single-board PCB; the single-board heat sink is mounted on the heat source one by one; and the backplane.
  • the backplane includes an optical backplane and/or an electrical backplane
  • the shielded heatsink includes a first sub-shield heatsink and a second subshield heatsink that are electrically isolated
  • the soaking network is disposed at the The first sub-shield heat sink and/or the second sub-shield heat sink.
  • the embodiment of the present invention further provides a method for extending the heat dissipation of a single board.
  • the heat sink generated by the heat sink on the board is absorbed by the heat sink connected to the heat sink of the single board.
  • the heat dissipation device on the backplane implements the convective heat dissipation area of the extended single-board heatsink and improves the heat dissipation of the board.
  • the first part of the single-board heat sink absorbs heat generated by the heat source that is relatively far away from the heat dissipation device of the back board and transmits the heat to the connecting member, and the connecting piece transfers heat to the soaking network on the heat sink of the shielding plate, and then passes through the first sub-child
  • the thermal connector is passed to the backplane heat sink.
  • the second part of the single-board heat sink absorbs heat generated by the heat source adjacent to the heat dissipation device of the backboard, and is transmitted to the back-plane heat dissipation device through the second sub-thermal connector.
  • the first part of the single-board heat sinks are correspondingly mounted on a heat source that is relatively far away from the heat dissipation device of the backplane, and the second part of the single-plate heat sinks are correspondingly mounted on the heat source of the heat dissipation device adjacent to the backplane.
  • the first sub-thermal connector and the second sub-thermal connector each comprise a thermal connector plug and a thermal connector socket.
  • the heat dissipation structure provided by the embodiment of the present invention, the backplane heat dissipation device that connects the single-board heat sink on the single board, the single board is disposed in the gap between the backplane or the backplane of the sub-rack system.
  • the heat sink is directly or indirectly connected to the heat dissipation device of the backplane through the heat-dissipating connector. In this way, the convection heat dissipation area of the heat sink of the single-board heat sink is expanded to improve the heat dissipation of the single-board heat sink.
  • the traditional monolithic electric backplane is a complete whole, and the backboard is difficult to design the air duct.
  • the optoelectronic combined split backplane, the high-speed exchange optical signal and the low-speed electrical signal each have a separate carrying medium, so that some gaps and spaces will appear in the backplane area. This provides a better way to dissipate heat, space and air ducts for "connectors" and "backplane heat sinks.” Therefore, a heat sink is placed in the gap between the backplanes, and the heat of the high-power module and the high-power device of the single-board (ie, the heat of the heat source) is transmitted to the heat sink, which not only increases the heat dissipation in the original air duct.
  • the area also forms a low thermal resistance path from the heat dissipation area to the convection heat exchange area, which can reduce the normal operating temperature of the core device of the single board; to at least solve the related background and technology, the high power single board is dense, and the power consumption device is carried. Or the module lacks sufficient convection heat dissipation area.
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction, where the execution instruction is used to implement the implementation of the single board expansion heat dissipation method in the foregoing embodiment.
  • FIG. 1 is a schematic structural diagram of a communication subrack and a board slot according to the related art
  • FIG. 2 is a cross-sectional structural view of a partial single board of FIG. 1;
  • FIG. 3 is a schematic block diagram showing a cross-sectional structure of a partial single board of the heat dissipation structure according to the present invention.
  • FIG. 4 is a schematic exploded view of a heat dissipation structure according to a first embodiment of the present invention
  • FIG. 5 is a schematic exploded view of a heat dissipation structure according to a second embodiment of the present invention.
  • FIG. 6 is a partial schematic structural view of the heat dissipating structure shown in FIG. 5 for the thermal connector.
  • 2 backplane heat dissipation equipment 3 boards, 31 through ports, 32 single board PCBs, 4 single board radiators, 41 first part single board radiators, 42 second part single board radiators, 5 shield plate radiators, 51 One sub-shield radiator, 52 second sub-shield radiator, 6 soaking network, 711 first sub-thermal connector plug, 712 first sub-thermal connector socket, 721 second sub-thermal connector plug, 722 Two sub-thermal connector sockets, 8 connectors, 10 heat sources, 101 near the heat source of the backplane heat sink, 102 away from the heat source of the backplane heat sink, 11 backplane.
  • the heat dissipation structure provided by the present invention includes: a subrack system; and a backplane heat dissipation device 2 installed in the gap between the backboard 11 or the backboard 11 in the subrack system And the single-board heatsink 4 on the single board 3 is connected through the heat-conducting connector 7, and is configured to expand the convective heat-dissipating area of the single-plate heatsink 4, thereby improving the heat dissipation of the single-board 3.
  • a backplane heat dissipation device for connecting a single-plate heat sink on a single board is disposed in a gap between the backplane or the backplane of the sub-rack system, and the single-board heat sink is directly connected through the thermal conductive connector.
  • the convection heat dissipation area of the single-board heat sink is extended in this way to improve the heat dissipation of the single-board heat sink.
  • thermoelectric structure provided by the above embodiments of the present invention may further have the following additional technical features:
  • the shield heat sink 5 of the subrack system is provided with a soaking network 6, and the first part of the single board heat sink 41 on the single board 3 is heated by the connecting member 8
  • the network 6 is connected, the soaking network 6 is connected to the backplane heat sink 2 through the first sub-thermal connector 71; the second part of the board heatsink 42 on the board 3 is connected to the second sub-thermal connector 72.
  • the backplane heat sink 2 is connected.
  • the design of the backplane radiator can be flexibly configured according to the condition of the air duct and the size of the space, and supports various heat dissipation methods such as radiative heat dissipation, natural gravity heat pipe cooling, liquid cooling, and air conditioning in the cabinet without affecting the single board design”; According to the specific design of the subrack and the presence or absence of the air duct, the heat dissipation method can be flexibly configured. For example, when there is no air duct, the natural gravity type heat pipe heat dissipating sheet can be applied to the casing, or the liquid cooling cycle can be adopted.
  • the heat sink array can be used in the airway.
  • the “backplane heat sink” is designed in two sets of heat sinks on the front and back sides of the traditional electric backplane.
  • the second part of the single-board heat sink 42 on the single board 3 can also be connected to the soaking network 6 through the medium and/or the heat-conducting structural member (ie, the connecting member 8), and the purpose of the application can also be achieved. It will not be described again, but it should be within the scope of protection of this application.
  • the thermally conductive connector 7 includes a (pluggable) first sub-thermally conductive connector 71 and a (pluggable) second sub-thermally-conductive connector 72, a first sub-thermally-conductive connector 71 and a second sub-thermally conductive connector
  • the connectors 72 each include a plug and a socket; the plug and the socket may be a simple "heat transfer device and a soaking network" extension or structural protrusion, such as a heat pipe, a heat spreader, etc., or may be a separately welded riveted device, here It is beyond the scope of this application.
  • first sub-thermal connector plug 711 the first sub-thermal connector socket 712, the second sub-thermal connector plug 721, and the second sub-thermal connector socket 722.
  • the first part of the single-board heat sink 41 is away from the back-plane heat sink 2 and the second part of the single-board heat sink 42 with respect to the first part of the single-board heat sink 42 41 is adjacent to the backplane heat sink 2.
  • the second part of the single board heat sink is located between the first part of the single board heat sink and the back board heat sink 2 .
  • the single board 3 is provided with a through port 31, and one end of the medium and/or the heat conducting structural member passes through the through port 31, and the medium and/or the heat conducting structural member is perpendicular to the single board PCB32, the medium and/or the heat conducting structural member.
  • One end is connected to the first part of the single-board heat sink 4, and the other end is connected to the soaking network 6 through the through-port 31.
  • the through port 31 may be disposed on the single board At the center of the PCB, it can also be placed at the edge of the board PCB.
  • the number of the medium and/or the heat-conducting structural member, the number of the first-part single-plate heatsink 4, and the number of the network lines of the heat-generating network 6 may also be different, and the purpose of the application may also be achieved, which is not limited herein. It should be within the scope of protection of this application.
  • the medium includes a heat conductive medium for vertical heat conduction, such as a thermal conductive pad, a thermal grease, etc.; a heat conductive structural member such as a direct contact heat pipe, a metal boss, or the like.
  • a heat conductive medium for vertical heat conduction such as a thermal conductive pad, a thermal grease, etc.
  • a heat conductive structural member such as a direct contact heat pipe, a metal boss, or the like.
  • the subrack system includes: a shield heat sink 5 provided with a soaking network 6; a single board PCB located above the shield heat sink 5 and mounted on the shielding board
  • the heat source 10 is disposed above the single board PCB and mounted on the single board PCB; the single board heat sink 4 is mounted on the heat source 10 one by one; and the back board 11.
  • the heat pipe, or the surface of the groove with a graphite film can be applied as a specific technical realization means of the soaking network, and the purpose of the application can be achieved, and will not be described herein, and should belong to the protection scope of the present application.
  • the board 3 includes components such as a shield heat sink 5, a single board PCB 32, a heat source 10, and a single board heat sink 4.
  • the backplane 11 includes an optical backplane and/or an electrical backplane.
  • the shield heatsink 5 includes a first sub-shield heatsink and a second sub-shield heatsink.
  • the soaking network 6 is disposed at the first The sub-shield heat sink and/or the second sub-shield heat sink are thermally conductive by a thermally conductive rubber pad of electrically insulating material.
  • one of the first sub-shield heat sink and the second sub-shield heat sink is provided with a panel, that is, the shield heat sink is divided into two parts including a panel and a panel, so that the panel is subjected to lightning strikes or static electricity.
  • the high-voltage electricity does not affect the working position of the device or the optical module through the metal vertical heat conduction device of the shielding plate, and the two shielding plates are respectively fixed by the screw holes and the PCB to which they belong. .
  • the heat of the single-board heatsink with limited convection heat dissipation area of the single-board PCB is respectively transmitted to the preset back-plane heat-dissipating device in the backplane gap by two ways, which is equivalent to obtaining an additional heat-dissipating area, and simultaneously forming a heat-dissipating area to
  • the addition of a low thermal resistance path in the convection heat exchange zone is extremely beneficial to the miniaturization of high-power single-board, greatly reducing the difficulty of thermal design of the single-board, increasing the competitiveness of the product, and electromagnetic shielding, reliability and thermal management techniques. Perfectly combined with the device.
  • a single-slot board of the same rate class can enable a sub-rack of the same level to have a larger capacity, so that the device system has a powerful Market Competitiveness.
  • the size and power consumption of the line side optical module are large, and the single slot position is equivalent to the height of the module attached heat sink.
  • the on-board high-power business processing chip and FPGA and other devices have the same complex thermal design and the occupation of PCB area and air duct, making it impossible for high-power optical modules to expand and hang up through the heat sink. More heat sink area.
  • the first embodiment of the present invention solves the problem of the compatibility of the conventional electric backplane to alleviate the heat dissipation problem by applying the present invention, as follows:
  • the first partial single-board heat sink 41 is connected to the medium and/or the heat-conducting structural member; the medium and/or the heat-conductive structural member is required to pass through the through-port 31 on the single-board PCB, and the first sub-shield plate heat sink.
  • the soaking network 6 carried on 51 is connected; the soaking network 6 is connected to the first sub-thermal connector plug 711; in the working state, the first sub-thermal connector plug 711 and the first sub-thermal connector socket 712 Connected, the first sub-thermal connector socket 712 is connected to the backplane heat sink 2;
  • the "first partial single-board heat sink 41" is preferably a heat sink provided by an ultra-high power consumption optical module.
  • the heat sink is simultaneously limited in height, length, width and density as described in the background art.
  • it is not convenient to set the heat conduction device on the top surface, because if the heat conduction device is designed on the top surface, it may first cause structural interference to the chip and the module or its single-plate heat sink, and secondly, it may reduce the equivalent air passage cross-sectional area, so
  • the "first sub-shield heat sink 51" and associated thermal connectors ie, dielectric and/or thermally conductive structural members) conduct heat to the "backplane heat sink.”
  • the heat source of this embodiment focuses on the first heat dissipation path for heat dissipation.
  • the "medium and/or heat-conducting structural member” preferably adopts a combination application of two metal bosses and a square high-efficiency thermal conductive pad, and the high-efficiency thermal conductive pad with a thermal conductivity higher than 5 passes reasonable in the structural design.
  • the amount of compression is such as to ensure good heat conduction from the "first part of the single-plate heat sink 41" to the metal boss.
  • the optical module on the front of the board is transferred to the first sub-shield heatsink 51 on the back of the board to achieve vertical heat transfer.
  • the "soaking network 6" employs five embedded heat pipes. According to the results of the thermal simulation of the single-board thermal simulation, the embedded heat pipe is used as a soaking method to extend the heat from the horizontal and vertical directions to the entire radiator shield radiator surface and to the "first sub-thermal connector plug 711".
  • the "first sub-thermal connector plug 711" is used in conjunction with the "first sub-thermal connector socket 712" connected to the backplane heat sink.
  • the specific design of the plug is an embedded small heat equalizing plate, and the structure of the soaking plate protrudes into a plug. Because the heat-receiving board is supported by the shield plate and the different layers and the carrier of the electrical connector board PCB, the stress of the heat-conducting connector in this embodiment does not cause contact with the electrical connector. influences.
  • the "first sub-thermal connector plug 712" and the “same heat-conducting connector plug 711" connected to the "same heat-conducting connector 6" are used together.
  • the first sub-thermal connector socket 712 employs a structural member that is in direct contact with the heat pipe and is accurately positioned horizontally with the first sub-thermal connector plug 711.
  • the four corners of the first sub-thermal connector socket 712 are compressed to provide a certain pulling force, and the heat-receiving plate is pressed to ensure the inner plane of the hot first sub-thermal connector 712. It has good heat transfer with the outer plane of the first sub-thermal connector plug 711.
  • the "backplane heat dissipation device 2" is preferably designed in two sets of single-plate heat sinks on the front and back sides of the conventional electrical backplane.
  • a downwind sheet type heat sink group integrally fixed with the backing plate reinforcing rib is applied.
  • the natural gravity type heat pipe is used to heat the sheet to cover the casing, and the coolant in the heat pipe is heated and evaporated to absorb heat, and is transpiration to the heat sink to condense and release heat, and is flown back to the bottom of the heat pipe veneer radiator by gravity.
  • the "second partial single-plate heat sink 42", the "second sub-thermal conductive connector plug 721", and the “second sub-thermal conductive connector socket 722" in the common component are not required to be configured.
  • the first and the second are only used to distinguish two different heat dissipation paths.
  • only the first heat dissipation path is adopted, that is, the component that is far away from the backplane is thermally conducted to the backplane through the shield heat sink. .
  • the “single board PCB” is a heat source of a chip, a high-power optical module, and the associated carrier of the limited height-limited heat sink.
  • the supporting single board does not need to perform additional complicated thermal design, which reduces the difficulty of layout.
  • the “opening port of the single-board PCB” is a hollow-through port designed according to the overall heat design and pre-layout on the “single board PCB”. Through the size and shape of the port, refer to the specific design of the "Part 1 single-board heat sink 41". The number of passes through the mouth matches the number of bosses.
  • the “first sub-shield heatsink 51” is a portion of the conventional integral shield heat sink 5 that has a separate structure and electrical independent parts, and has a large area and is mainly used for heat dissipation. This part has three points different from the traditional shield plate heat sink. First, the material selection is more inclined to the heat sink material; second, it is thicker than the conventional shield plate heat sink; third, the shield plate heat sink is based on the simulation. The result is a soaking design.
  • the "second sub-shield heat sink 52" is a portion with a panel in the separate structural and electrically separate portions of the conventional integral shield heat sink 5.
  • the panel is irradiated with high-voltage static electricity, since the "first sub-shield radiator 51" and the “second sub-shield radiator 52" are completely isolated, the high-voltage power of the panel does not affect the "first partial single-board radiator 41"
  • the module circuit working adjacent to the "second part of the single-board heat sink 42" works.
  • the split structure and electrical isolation of the shield heat sink are one of the realization means and technical features of the "subrack system” heat dissipation reliability guarantee.
  • thermal pad + metal boss The specific implementation type of vertical heat conduction: thermal pad + metal boss;
  • the equipment architecture of the conventional integrated electrical backplane will seriously affect the number of service boards. And the cross capacity of the device.
  • the optical backplane will have a huge technical and market demand.
  • the optical back board will be extremely orthogonal to the service board. 4 (Single-board PCB and optical backplane orthogonally)), all parallel service boards on the front side of the rack of this embodiment are orthogonally connected with the four optical backplanes on the back of the rack at the corresponding optical connectors.
  • the optical backplane may be a fiber optic flexible board or an optoelectronic PCB containing an optical waveguide layer. Since it does not carry power consumption devices, it does not generate heat itself, and the optical backplane will have a large space gap.
  • the optical side forwarding board containing the same-rate-level customer-side optical module and the line-side optical module generally has the highest power consumption.
  • the single-slot design of the board will have a strong market competitiveness that is overwhelming, but it has a huge thermal design difficulty.
  • the “first heat source” is a non-hot swap high power optical module
  • the “second heat source” is a near back board high power consumption service chip
  • the “third heat source” is a panel hot pluggable. Unplug the module array.
  • the single-slot design is equivalent to the height of the heat sink attached to the device that defines the heat dissipation problem.
  • the complex thermal design integration of higher-rate on-board high-power service processing chips and FPGAs, and the occupation of PCB area and air ducts, the traditional way can not basically complete the design.
  • the backplane heat dissipation device of the airway is designed in the gap of the optical backplane, and the heat of the main heat source is transmitted to the backplane heat dissipation device of the optical backplane, which can successfully solve the above problem.
  • the heat source lacks the core problem of convective heat dissipation area.
  • the “first partial single-board heat sink 41” and the “medium and/or heat-conducting structural member” are connected; the “medium and/or heat-conducting structural member” needs to pass through the “single board” pre-layout.
  • "port”” is connected with “smoothing network 6" carried on the “first sub-shield radiator 51"; “soaking network 6" is connected with “first sub-thermal connector plug 711”;
  • the “first sub-thermal connector plug 711" is connected to "5, the first sub-thermal connector socket 712", and the “first sub-thermal connector socket 712" is connected to the "backplane heat sink 2".
  • the second part of the single-plate heat sink 42 is connected with the "second sub-thermal connector plug 721"; in the working state, the "second sub-thermal connector plug 721" and the “second hot-connected socket” are connected; The second thermal connection socket is connected to the "backplane heat sink 2".
  • Another "first part single-board heat sink 41" is connected to another "medium and/or heat-conducting structural member", and the other "medium and/or heat-conducting structural member" is required to pass through the "single-board PCB" pre-layout another " Through the port, it is connected with the "soaking network 6" carried on the "second sub-shield radiator 52".
  • the heat dissipation method description of this embodiment includes: the first way: “the first part of the single-board heat sink 41” collects the heat radiated by the "first heat source”; and the “first part of the single-plate heat sink” is adopted by the “medium and/or heat-conducting structural member” 41"
  • the collected heat is conducted to the "soaking network 6" on the "first sub-shield radiator 51", and through the "soaking network 6", the soaking and dissipating heat is realized, and the remaining heat is passed through
  • a thermal connector composed of a sub-thermal connector plug 711" and a "first sub-thermal connector socket 712" is transmitted to the "backplane heat dissipating device" between the photoelectric stereo backplanes to realize heat transfer;
  • the second part of the single-board heat sink 42 collects the heat radiated by the "second heat source”
  • the present embodiment also includes a flexible heat dissipation path: another "first partial single-board heat sink 41" collects heat from the third heat source to dissipate heat through another "medium and/or Or a thermally conductive structural member” conducts the above heat to the "smoothing network 6" on the "second sub-shield radiator 52" The soaking is performed and then conducted to the heat conducting connector mounted on the second sub-shield heatsink 52 through the electrically insulating thermal pad until it is transmitted to the backplane heat sink 2, and the heat is also dissipated through the first route.
  • the “first partial single-board heat sink” is a heat sink that is provided by an ultra-high power optical module.
  • the heat sink is limited by height, length, width and density as described in the background art.
  • it is inconvenient to set the heat conduction device to the “backplane heat dissipation device” on the top surface of the board because if the heat conduction device is designed on the top surface, structural interference may be caused to the chip and the module or its single-plate heat sink, and secondly, it may be reduced. Equivalent air duct cross-sectional area, so heat is transferred to the “backplane heat sink” through the “first shield radiator” and the associated thermal connector.
  • the first heat source of this embodiment applies the first heat dissipation path for heat dissipation.
  • the "connecting member 8" adopts a direct-contact heat pipe, and the square side faces of the plurality of heat pipes are directly connected with the "connecting member 8", and are fastened by screws to ensure good heat conduction. In this way, the vertical heat transfer from the first heat source on the front side of the single board to the “first sub-shield plate heat sink” on the back side of the single board is realized.
  • the "soaking network 6" employs four embedded heat pipes. According to the results of the thermal simulation of the single-board thermal simulation, the embedded heat pipe is used as a soaking method to extend the heat from the horizontal and vertical directions to the entire radiator shield radiator surface and to the four “first sub-thermal connector plugs 711”.
  • the “first sub-thermal connector plug ⁇ 4” and the “first sub-thermal connector socket ⁇ 4” connected to the backplane heat dissipating device are used together.
  • the specific design of the plug is an embedded small heat spreader and a conical heat pipe, and the conical heat pipe protrudes into a plug.
  • the thermal connector plug can be soldered and easily disassembled with a low melting point alloy, and because the thermal connector is supported by the shield plate radiator, and the board carrying the optical connector and the electrical connector is at a different level. And the carrier, so the stress of the thermal connector inserted and removed in this embodiment does not affect the contact between the optical connector and the electrical connector.
  • the "first sub-thermal connector plug 712" and the “same heat-conducting connector plug 711" connected to the "same heat-conducting connector 6" are used together.
  • the socket utilizes a direct heat pipe sleeve, and the plug provides precise horizontal positioning and good heat transfer.
  • the "backplane heat sink” is designed in the gap between the optical backplanes of the embodiment rack. It can increase the heat dissipation area in a few square meters of air duct. For reference only, only one of the heat sinks of the entire backplane heat sink is shown.
  • the “second part single-board heat sink” is an ultra-high power consumption chip or a heat sink provided by the optical module group, and the heat sink is simultaneously subjected to height, length, width and density as described in the background art. limit.
  • the second approach of the method of the invention can be used for heat dissipation.
  • the "second sub-thermal connector plug” is a heat pipe from which a heat sink extends. Same type as the first sub-thermal connector plug.
  • the "second sub-thermal connector socket” is a small type of heat pipe sleeve. The same type of structure as the first sub-thermal connector socket.
  • the “single-board PCB” is a heat source such as a chip, a high-power optical module, and an attached high-limit and wide-width heat sink. Carrier. To illustrate the design requirements for special location openings, it is not strictly a component of the related art and is only used to illustrate the connection and assembly relationships. In the technical solution, it should be noted that the first way of heat dissipation is below the single-board PCB, and the second way is above the single-board PCB.
  • the “passing port” is a “single board PCB” according to the overall thermal design, and the hollow opening is designed in the pre-layout, and the number of the passing ports matches the number of the direct-contact heat pipe platform.
  • the “first sub-shield heat sink” is a portion of the conventional integral shield heat sink which has a separate structure and is electrically independent, and has a large area and is mainly used for heat dissipation. There are three differences between this part and the traditional shielding plate radiator. First, the material selection is more inclined to the heat sink material; second, it is thicker than the traditional shielding plate radiator; third, the shielding plate radiator is based on The simulation results are designed to be uniform.
  • the "second sub-shield heat sink” is a portion with a panel in the separate structure and the electrically independent two parts on the conventional integral shield heat sink.
  • the panel is exposed to high voltage static electricity, because the "first shield heat sink” and the “second sub shield heat sink” are completely isolated, the high voltage power of the panel will not affect the "first part single board heat sink” and " The second part of the single-board heatsink is adjacent to the module circuit.
  • the split structure and electrical isolation of the shield heat sink are one of the realization means and technical features of the reliability guarantee of the "heat dissipation structure" of the three-dimensional backplane.
  • the difference from Embodiment 1 is that the divided area ratio is large, and at the same time, it is used for performing soaking and heat dissipation of the third heat source.
  • the “first partial single-board heat sink” refers to the heat sink and the cage that are provided by the panel hot-swappable optical module array.
  • the "connecting member” applies four metal bosses and four heat conducting pads.
  • the "soaking network 6" is applied with a surface-coated graphite film material for soaking and heat dissipation.
  • the device of the present invention is composed of a series of components having clear components and interconnection relationships, and a method with distinct technical features and a new plurality of heat dissipation paths solves the problem that the convection heat dissipation area of the single-board chip or the module single-board heat sink is limited. .
  • the number of heat dissipation sources 3
  • the first heat source is “ultra-high power line side module”
  • the second heat source is “main business chip”
  • the third heat source is “panel pluggable customer side optical module array” .
  • the first sub-shield plate heat sink is horizontally thermally and uniformly heated by the heat pipe;
  • the second sub-shield plate heat sink is horizontally thermally and uniformly heated by the graphite film.
  • thermal connector plug is a soaking plate and a pointed conical heat pipe
  • thermal connector socket is a structurally matched heat pipe sleeve
  • the single board heat sink 4 on the single board 3 absorbs the heat generated by the heat source 10 on the single board 3, and is transmitted through the heat conduction connector 7 directly or indirectly connected to the single board heat sink.
  • the heat dissipation device 2 of the backplane is configured to expand the convection heat dissipation area of the single-board heat sink 4 and improve the heat dissipation of the single board 3.
  • the heat dissipation method of the subrack system provided by the present invention is provided with a backplane heat dissipation device for connecting the single board heat sink on the single board in the gap between the fire backplanes on the backplane of the subrack system, for expanding the single board radiator
  • the convection heat dissipation area improves the heat dissipation of the board.
  • the first partial single-board heat sink absorbs heat generated by the heat source 10 relatively far from the back-plate heat sink 2 and is transferred to the medium and/or the heat-conducting structural member, the medium and/or the heat conductive.
  • the structural member transfers heat to the soaking network 6 on the shield heat sink 5, and then to the backplane heat sink 2 through the first sub-thermal joint 71;
  • the second portion of the single-board heat sink ie: the second partial The plate heat sink 42
  • the first part of the single-board heat sink is mounted on the heat source relatively far away from the heat-dissipating device of the back-plate, and the second part of the single-plate heat sink is mounted on the heat source of the heat-dissipating device opposite to the back-plate.
  • the first sub-thermal connector and the second sub-thermal connector each comprise a thermal connector plug and a thermal connector socket.
  • the single-board heatsink 4 of the sub-rack system of the backplane heat dissipation device 2 is preferably located in the lateral or longitudinal direction of the single-board heatsink 4 and the backplane heat-dissipating device 2 of the sub-rack system remote from the backplane heat dissipation device 2. between.
  • the present invention configures an additional backplane heat dissipation device by utilizing the stereo gap and space existing in the conventional electrical backplane and/or the optical backplane in the communication subrack, and dissipates the high power consumption device and the module (ie, the single board heat dissipation)
  • the heat of the device is transferred to the heat dissipation device of the backplane through a specially designed pluggable thermal connector, so that the board obtains an additional convection heat dissipation area, thereby improving the heat conduction and heat dissipation of the large power consumption device and the module on the board.
  • the invention mainly solves the increasingly difficult heat dissipation problem of the communication system single board, and can be applied not only to the current high-power type new electric back board, but also to the three-dimensional back board system of the corresponding optical back board and the electric back board combination in the future, ensuring Optimize the thermal design of high-power single boards to facilitate miniaturization of communication equipment or boards.
  • the heat dissipation structure provided by the present invention has a heat dissipation device for connecting the backplane of the single-board heat sink on the backplane or the backplane of the sub-rack system, and the heat sink of the single-board heat sink is thermally conductive.
  • the connector is directly or indirectly connected to the backplane for heat dissipation In this way, the device expands the convective heat dissipation area of the single-board heatsink to improve the heat dissipation of the board.
  • the traditional monolithic electric backplane is a complete whole, and the backboard is difficult to design the air duct.
  • the optoelectronic combined split backplane, high-speed switching optical signal and low-speed electrical signal each have separate carrier media, so that there will be some gaps and spaces in the backplane area, which is better for "connecting parts” and “backplane cooling equipment.” "Provides heat dissipation, space and air ducts.” Therefore, a heat sink is placed in the gap between the backplanes, and the heat of the high-power module and the high-power device of the single-board (ie, the heat of the heat source) is transmitted to the heat sink, which not only increases the heat dissipation in the original air duct.
  • the area also forms a low thermal resistance path from the heat dissipation area to the convection heat exchange area, which can reduce the normal operating temperature of the core device of the single board; to at least solve the related background and technology, the high power single board is dense, and the power consumption device is carried. Or the module lacks sufficient convection heat dissipation area.
  • connection may be a fixed connection, a detachable connection, or an integral Connections; they can be connected directly or indirectly through intermediate media.
  • connecting may be a fixed connection, a detachable connection, or an integral Connections; they can be connected directly or indirectly through intermediate media.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials, or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • the foregoing technical solution of the embodiment of the present invention may be applied to a single board heat dissipation system, including a subrack system in the heat dissipation structure; and the backplane heat dissipation device 2, installed on the backboard 11 in the subrack system or
  • the gap between the backplanes 11 and the single-board heatsink 4 on the single-board 3 are connected through the heat-dissipating connector 7 to extend the convective heat-dissipating area of the single-board heatsink 4 to improve the heat dissipation of the single-board 3.
  • a backplane heat dissipation device for connecting a single-plate heat sink on a single board is disposed in a gap between the backplane or the backplane of the sub-rack system, and the single-board heat sink is directly connected through the thermal conductive connector.
  • the convection heat dissipation area of the single-board heat sink is extended in this way to improve the heat dissipation of the single-board heat sink.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明公开了一种散热结构和单板扩展散热方法。散热结构包括:子架系统;和背板散热设备,安装在子架系统中的背板上或者背板间的空隙中、并与单板上的单板散热器通过导热连接器相连接,用于扩展单板散热器的对流散热面积,以此实现改善单板的散热性。

Description

散热结构和单板扩展散热方法 技术领域
本发明涉及通讯设备技术领域,尤指一种散热结构和一种单板扩展散热方法。
背景技术
从10G、40G,再到100G和400G,随着光摩尔定律的通讯技术发展,单个端口的速率和设备整体的交叉容量都越来越大。主要业务处理芯片和光电模块的功耗日益增大,单位比特的热功耗下降速度曲线跟不上端口速率增长的几何速度,单板的功耗将极为可观,散热性能较差。其散热的途径主要是从功耗器件等热源,到散热介质,再到散热片,最后通过经由散热片散热齿的各风道空气对流带走热量。
如图1所示,为了实现更多的单子架交叉和业务容量,即尽可能承载更多的业务单板,提高业内竞争力。传统单板的热设计受到单槽位和单个槽位宽度的要求和限制,这就导致“单板散热器的高度受到固有限制”。而单板上高功耗业务芯片和模块受到高速电信号的走线长度限制导致大量高功耗器件日益临近,需要散热的高功耗芯片或模块自带的单板散热器相互干涉导致部分“单板散热器长宽受限”,扩展或倒挂难以实现。而同等风速和噪音需求条件下,“单板散热器散热齿密度又受到限制”。部分单板器件还会阻碍风道(图1和图2中的箭头表示风向),降低等效横截面积。所以高功耗单板所面临的日益严重的散热压力的关键因素和瓶颈是缺乏足够的对流散热面积。
图1和图2中附图标记与部件名称之间的对应关系为:
1,子架系统,3,单板,4,单板散热器,5,屏蔽板散热器,10,热源,11,背板,12,芯片。
综上所述,随着技术的发展,下一代单板的导热和散热问题日益严峻。传统的系统单板热设计至少存在以下难点:缺乏有效散热面积,无法满足更高功耗单板的散热需求。
发明内容
为了解决上述技术问题,本发明实施例提供了一种散热结构,能够解决单板散热器缺乏足够对流散热面积的问题。
本发明实施例还提供了一种单板扩展散热方法。
为了达到本发明实施例目的,本发明实施例提供了一种散热结构,包括:子架系统;和背板散热设备,安装在所述子架系统中的背板上或者背板间的空隙中、并与单板上的单板散热器通过导热连接器相连接,设置为扩展单板散热器的对流散热面积。
可选地,所述子架系统的屏蔽板散热器上设置有均热网络,单板上的第一部分单板散热器通过连接件与均热网络相连接、均热网络通过第一子导热连接器与所述背板散热设备相连接;单板上的第二部分单板散热器通过第二子导热连接器与背板散热设备相连接。
可选地,所述导热连接器包括第一子导热连接器和第二子导热连接器。
可选地,第一子导热连接器和第二子导热连接器均包括插头和插座。
可选地,第一部分单板散热器相对于所述第二部分单板散热器远离所述背板散热设备、第二部分单板散热器相对于所述第一部分单板散热器临近所述背板散热设备。
可选地,单板的单板PCB上设置有通过口,介质和/或导热结构件的一端穿过所述通过口。
可选地,所述连接件为介质或导热结构件。
可选地,所述子架系统包括:设置有均热网络的屏蔽板散热器;单板PCB,位于屏蔽板散热器的上方、并安装在屏蔽板散热器上;热源,位于单板PCB的上方、并安装在所述单板PCB上;单板散热器,一一对应安装在热源上;和背板。
可选地,背板包括光背板和/或电背板,屏蔽板散热器包括相电气隔离设置地第一子屏蔽板散热器和第二子屏蔽板散热器,所述均热网络设置于所述第一子屏蔽板散热器和/或所述第二子屏蔽板散热器上。
本发明实施例还提供了一种单板扩展散热方法,单板上的单板散热器吸收单板上的热源产生的热量,通过与单板散热器直接或间接相连接的导热连接器传递给背板散热设备,实现扩展单板散热器的对流散热面积、改善单板的散热性。
可选地,第一部分单板散热器吸收相对远离背板散热设备的热源产生的热量并传递给连接件,连接件再将热量传递至屏蔽板散热器上的均热网络,而后通过第一子导热连接器传递给背板散热设备。
可选地,第二部分单板散热器吸收相对临近背板散热设备的热源产生的热量,通过第二子导热连接器传递给背板散热设备。
可选地,所述第一部分单板散热器一一对应安装在相对远离背板散热设备的热源上,所述第二部分单板散热器一一对应安装在相对临近背板散热设备的热源上。
可选地,所述第一子导热连接器和所述第二子导热连接器均包括热连接器插头和热连接器插座。
与现有技术相比,本发明实施例提供的散热结构,子架系统的背板上或背板之间的间隙内设置了连接单板上的单板散热器的背板散热设备,单板散热器通过导热连接器直接或间接连接背板散热设备,以此种方式扩展单板散热器的对流散热面积,实现改善单板的散热性。
传统的整体式电背板为完整的整体,背板难设计风道。而光电结合分体式背板,高速交换光信号和低速电信号各自具备分立的承载媒体,这样在背板区域将出现一些空隙和空间, 这更好地为“连接件”和“背板散热设备”提供了散热途径,空间和风道。故在背板之间的空隙放置散热装置,并将单板高功耗模块、高功耗器件的热量(即:热源的热量)传导到散热装置上,不仅额外增加了原有风道中的散热面积,还形成了一个散热区域到对流换热区的低热阻通路,能降低单板核心器件的正常工作温度;以至少解决相关背景和技术中,高功耗单板密集,承载的功耗器件或者模块缺乏足够对流散热面积的问题。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的单板扩展散热方法的实现。
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为相关技术所述的通信类子架及单板槽位的结构示意图;
图2为图1中局部单板的剖视结构示意图;
图3为本发明所述的散热结构的局部单板的剖视结构示意框图;
图4为本发明第一个实施例所述的散热结构的分解结构示意图;
图5为本发明第二个实施例所述的散热结构的分解结构示意图;
图6为图5所示散热结构中针对热连接器的局部结构示意图。
其中,图1和图2中附图标记与部件名称之间的对应关系为:
1,子架系统,3,单板,4,单板散热器,5,屏蔽板散热器,10,热源,11,背板,12,芯片。
图3至图6中附图标记与部件名称之间的对应关系为:
2背板散热设备,3单板,31通过口,32单板PCB,4单板散热器,41第一部分单板散热器,42第二部分单板散热器,5屏蔽板散热器,51第一子屏蔽板散热器,52第二子屏蔽板散热器,6均热网络,711第一子导热连接器插头,712第一子导热连接器插座,721第二子导热连接器插头,722第二子导热连接器插座,8连接件,10热源,101临近背板散热设备的热源,102远离背板散热设备的热源,11背板。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面结合附图描述本发明一些实施例所述的散热结构和子架系统的散热方法。
本发明提供的散热结构,如图3至图5所示,包括:子架系统;和背板散热设备2,安装在所述子架系统中的背板11上或者背板11间的空隙中、并与单板3上的单板散热器4通过导热连接器7相连接,设置为扩展单板散热器4的对流散热面积,实现改善单板3的散热性。
本发明实施例提供的散热结构,子架系统的背板上或背板之间的间隙内设置了连接单板上的单板散热器的背板散热设备,单板散热器通过导热连接器直接或间接连接背板散热设备,以此种方式扩展单板散热器的对流散热面积,实现改善单板的散热性。
另外,本发明上述实施例提供的散热结构还可具有如下附加的技术特征:
优选地,如图3至图5所示,所述子架系统的屏蔽板散热器5上设置有均热网络6,单板3上的第一部分单板散热器41通过连接件8与均热网络6相连接、均热网络6通过第一子导热连接器71与所述背板散热设备2相连接;单板3上的第二部分单板散热器42通过第二子导热连接器72与背板散热设备2相连接。
“背板散热器的设计具体可根据风道情况和空间大小,灵活配置并支持辐射散热、自然重力热管散热、液冷、机柜内空调等多种散热方式而不影响单板设计”;“可以根据子架具体的设计和风道的有无,散热的方式进行灵活配置。比如没有风道时,可以应用自然重力式热管散热页片贴合机壳,也可以采用液冷循环。有风道时,可以采用顺风道的散热片阵列。“背板散热器”是设计在传统电背板正反两面的两组散热器中。在背板PCB前侧,处于传统风道的边缘,并且加上导风孔的背板空气流引入,应用了和背板加强筋整体固定的顺风道页式散热片组的优选方式。
当然,单板3上的第二部分单板散热器42也可通过介质和/或导热结构件(即:连接件8)与均热网络6相连接,也可实现本申请的目的,在此不再赘述,但应属于本申请的保护范围内。
进一步地,所述导热连接器7包括(可插拔的)第一子导热连接器71和(可插拔的)第二子导热连接器72,第一子导热连接器71和第二子导热连接器72均包括插头和插座;插头和插座可以是简单的“导热设备和均热网络”的延伸或结构凸出,比如热管,均热板等,也可以是单独焊铆接的器件,在此不再赘述,均应属于本申请的保护范围内。
即:第一子导热连接器插头711、第一子导热连接器插座712,第二子导热连接器插头721,第二子导热连接器插座722。
可选地,第一部分单板散热器41相对于所述第二部分单板散热器42远离所述背板散热设备2、第二部分单板散热器42相对于所述第一部分单板散热器41临近所述背板散热设备2。
如:第二部分单板散热器位于第一部分单板散热器和背板散热设备2之间。
其中,单板3单板PCB上设置有通过口31,介质和/或导热结构件的一端穿过通过口31,介质和/或导热结构件垂直于单板PCB32,介质和/或导热结构件的一端连接第一部分单板散热器4、另一端穿过通过口31与均热网络6相连接。
再者,优选地,介质和/或导热结构件的数量、第一部分单板散热器4的数量和均热网络6的网络线数量相同、且一一对应,通过口31可以是设置在单板PCB的中部处,也可以是设置在单板PCB的边缘处。
当然,介质和/或导热结构件的数量、第一部分单板散热器4的数量和均热网络6的网络线数量也可不相同,也可实现本申请的目的,在此并不做限定,也应属于本申请的保护范围内。
介质包括垂直导热用的导热介质,比如导热胶垫、导热硅脂等;导热结构件,比如直触热管、金属凸台等。
具体地,如图3至图5所示,所述子架系统包括:设置有均热网络6的屏蔽板散热器5;单板PCB,位于屏蔽板散热器5的上方、并安装在屏蔽板散热器5上;热源10,位于单板PCB的上方、并安装在所述单板PCB上;单板散热器4,一一对应安装在热源10上;和背板11。
其中,可以应用热管,或者凹槽内表贴带胶石墨膜等方案作为均热网络的具体技术实现手段,均可实现本申请的目的,在此不再赘述,均应属于本申请的保护范围内。
单板3包括屏蔽板散热器5、单板PCB32、热源10和单板散热器4等部件。
其中,背板11包括光背板和/或电背板,屏蔽板散热器5包括相电气隔离设置地第一子屏蔽板散热器和第二子屏蔽板散热器,均热网络6设置于第一子屏蔽板散热器和/或第二子屏蔽板散热器上、通过电绝缘材质的导热胶垫导热。
其中,第一子屏蔽板散热器和第二子屏蔽板散热器中的一个上设置有面板,即:屏蔽板散热器分割成含有面板和不含有面板的两部分,这样在面板遭遇雷击或静电实验条件下,高压电不会通过屏蔽板的金属垂直导热设备影响器件或者光模块的工作地,两块屏蔽板分别通过各自所属的螺丝孔和PCB进行固定。。
将单板PCB对流散热面积受限的单板散热器的热量用两种途径分别传导到背板间隙中预设的背板散热设备上,相当于获得的额外的散热面积,同时形成散热区域到新增对流换热区的低热阻通路,极其有利于高功耗单板的小型化,大大降低了单板热设计的难度,增大产品的竞争力,将电磁屏蔽、可靠性和散热管理技术和装置完美地结合了起来。
如图3和图4所示第一具体实施例:在光通讯系统中,同等速率级别的单槽位的单板,能使同等级别的子架具有更大的容量,使设备系统具备强大的市场竞争力。而线路侧光模块的尺寸和功耗较大,单槽位相当于限定了模块附属散热片的高度。而板上高功耗业务处理芯片和FPGA等器件同等的复杂热设计和对PCB面积以及风道的占用,使得高功耗的光模块不可能再通过散热片扩展和倒挂的方式,再获得更多的散热片面积。本实施例1通过应用本发明对传统电背板的兼容缓解散热难题问题,具体如下:
本实施例1中,第一部分单板散热器41和介质和/或导热结构件连接;介质和/或导热结构件需穿过单板PCB上的通过口31,和第一子屏蔽板散热器51上所承载的均热网络6相连接;均热网络6和第一子导热连接器插头711相连接;在工作状态下,第一子导热连接器插头711和第一子导热连接器插座712相连,第一子导热连接器插座712和背板散热设备2相连;
本实施例中,“第一部分单板散热器41”优选为一个超高功耗的光模块自带的散热片,这块散热片如背景技术所述同时受到高度,长宽和密度的限制。但又不方便在顶面设置导热设备,因为如果在顶面设计导热设备,首先可能对芯片和模块或其单板散热器造成结构干涉,其次可能减少等效的风道横截面积,所以通过“第一子屏蔽板散热器51”和配套的热连接器(即:介质和/或导热结构件)将热量传导到“背板散热设备”。本实施例的热源重点应用第一散热途径进行散热。
本实施例中,“介质和/或导热结构件”优选采用了两个金属凸台和一块方形高效导热胶垫的组合应用,导热系数高于5的高效导热胶垫在结构设计中通过合理的压缩量以保证“第一部分单板散热器41”到金属凸台良好的导热。以此方案实现单板正面的光模块到单板背面“第一子屏蔽板散热器51”实现垂直热量传递。
本实施例中,“均热网络6”采用了5根嵌入式热管。根据单板热仿真云图结果,应用嵌入式热管作为均热手段将热量从横纵两个方向扩展到整个散热屏蔽板散热器水平面和传导到“第一子导热连接器插头711”。
本实施例中,“第一子导热连接器插头711”和背板散热设备相连的“第一子导热连接器插座712”配套使用。在实施例中,插头采用的具体设计是一块嵌入式小型均热板,均热板的结构突出为插头。因为均热板是靠屏蔽板散热器承力,和电学连接器单板PCB所在不同的层面和承载体,所以本实施例中的导热连接器插拔的应力不会对电连接器的接触造成影响。
本实施例中,“第一子导热连接器插座712”和“均热网络6”相连的“第一子导热连接器插头711”配套使用。在实施例中,第一子导热连接器插座712采用了和热管直触的结构件,和第一子导热连接器插头711精确的水平定位。当第一子导热连接器插头711插入时,第一子导热连接器插座712上四角的螺丝弹簧压缩,提供一定的拉力,压紧均热板以保证热第一子导热连接器插座712内平面和第一子导热连接器插头711外平面具有良好的热传递。
本实施例中,“背板散热设备2”优选设计在传统电背板正反两面的两组单板散热器中。在背板前侧,处于传统风道的边缘,并且加上导风孔的背板空气流引入,应用了和背板加强筋整体固定的顺风道页式散热片组。在背板PCB后侧和机壳的缝隙,因为默认没有风道,应 用自然重力式热管散热页片贴合机壳,热管内的冷却液受热蒸发吸热,蒸腾到散热片冷凝放热,受重力影响流回热管单板散热器最底部。
本实施例中,通用部件中的“第二部分单板散热器42”、“第二子导热连接器插头721”、“第二子导热连接器插座722”因为没有需求,所以可以不配置应用。如通用部件描述,第一,第二仅用于区别两种不同的散热途径,本实施例仅单一采用第一散热途径,即远离背板的组件通过屏蔽板散热器导热到背板的散热途径。
本实施例中,“单板PCB”为芯片、高功耗光模块等热源及其附属的限高限宽散热片的承载体。为说明特殊位置开通过口的设计需求,严格来说不是相关技术的部件,仅为说明连接和装配关系而用。在本技术方案中,配套的单板不需要进行额外的复杂热设计,降低其布局难度。
本实施例中,“单板PCB开通过口”为“单板PCB”上根据整体热设计,预布局时设计的镂空通过口。通过口的尺寸大小,形状参考“第一部分单板散热器41”的具体设计。通过口的数量和凸台的数量匹配。
本实施例中,“第一子屏蔽板散热器51”是在传统整体屏蔽板散热器5上分出结构和电气上独立两部分中没有面板、面积较大、主要用于散热的部分。该部分相比传统的屏蔽板散热器区别有三点,第一,材料的选择更倾向于散热片材料;第二,比传统的屏蔽板散热器有加厚;第三,屏蔽板散热器根据仿真结果做均热设计。
上述方案中,“第二子屏蔽板散热器52”是在传统整体屏蔽板散热器5上分出结构和电气上独立两部分中带有面板的部分。当面板被放射高压静电时,因为“第一子屏蔽板散热器51”和“第二子屏蔽板散热器52”完全隔离,所以面板的高压电不会影响“第一部分单板散热器41”和“第二部分单板散热器42”相临近的模块电路工作地。屏蔽板散热器的分割结构和电气隔离为“子架系统”散热可靠性保证的实现手段和技术特征之一。
此方案的背板的具体设计类型为“传统整体式电背板”。
为方便理解实施例和发明设备方案的描述,列举本实施例中的特征点:
1)散热源的个数:一个单一热源;
2)热连接器的组数:1组,整体不可拆卸;
3)背板散热器的类型;散热片组(前)+自然重力热管散热片(后);
4)垂直导热的具体实施类型:导热胶垫+金属凸台;
5)水平均热设备的具体实施类型:热管;
6)背板的具体设计类型:传统整体式电背板;
7)热连接器的参考结构设计:均热板(插头)+热管连接的板式结构件(插座)。
如图5所示第二具体实施例:在光纤通信系统中,随着电背板电信号走线长度的固有限制,含有传统式整体式电背板的设备架构将严重影响业务单板的数量和设备的交叉容量。光背板将具有巨大的技术和市场需求,为了避免插损,便于单板和背板的矩阵型连接,光背板将极大可能和业务单板呈正交连接的实施例2,“光背板×4(单板PCB和光背板正交局部)”,本实施例2机架正面所有平行的业务板都与机架背面4块光背板在对应的光连接器处正交连接。光背板可以是光纤柔性板,也可以是含有光波导层的光电PCB,由于不承载功耗器件,本身又不发热,光背板间将具有巨大的空间空隙。
而在光通讯系统的单板中,同时将含有多个超高功耗的热源,既含有同速率等级的客户侧光模块,又含有线路侧光模块的光转发板通常功耗最高。实现该单板的单槽位设计将具备压倒式的强大市场竞争力,但是具有巨大的热设计难度。本实施例中具有三组散热难题器件,“第一热源”是非热插拔高功耗光模块,“第二热源”是近背板高功耗业务芯片,“第三热源”是面板可热插拔光模块阵列。同前述传统设备劣势说明,单槽位设计相当于限定了散热问题器件附属散热片的高度。而更高速率等级的板上高功耗业务处理芯片和FPGA等器件的复杂热设计集成和对PCB面积以及风道的占用,传统的方式基本无法完成设计。本实施例通过应用本发,一方面在上述光背板的间隙内设计顺风道的背板散热设备,另一方面将上述主要热源的热量传导到光背板的背板散热设备上,可以成功解决上述热源缺乏对流散热面积的核心难题。
本实施例设备连接关系中,“第一部分单板散热器41”和“介质和/或导热结构件”连接;“介质和/或导热结构件”需穿过“单板”预布局的“通过口”,和“第一子屏蔽板散热器51”上所承载的“均热网络6”相连接;“均热网络6”和“第一子导热连接器插头711”相连接;在工作状态下,“第一子导热连接器插头711”和“5,第一子导热连接器插座712”相连,“第一子导热连接器插座712”和“背板散热设备2”相连。“第二部分单板散热器42”,和“第二子导热连接器插头721”连接;在工作状态下,“第二子导热连接器插头721”和“第二热连接插座”连接;“第二热连接插座”和“背板散热设备2”连接。另一个“第一部分单板散热器41”和另一个“介质和/或导热结构件”相连,另一个“介质和/或导热结构件”需穿过“单板PCB”预布局的另一个“通过口”,和“第二子屏蔽板散热器52”上所承载的“均热网络6”相连接。
本实施例的散热方法说明包括,第一途径:“第一部分单板散热器41”收集“第一热源”散发的热量;通过“介质和/或导热结构件”将“第一部分单板散热器41”收集的热量传导至“第一子屏蔽板散热器51”上的“均热网络6”,通过“均热网络6”,实现均热和散发热量的同时,再将剩余热量通过“第一子导热连接器插头711”和“第一子导热连接器插座712”所组成的热连接器,传递给光电立体式背板间的“背板散热设备”上,实现热量传递;第二途径:“第二部分单板散热器42”收集“第二热源”散发出的热量,通过“第二子导热连接器插头721”和“第二子导热连接器插座722”组成的导热连接器将所述热量传递给立体式背板间的“背板散热设备2”上。另外,需要说明的是,本实施例因为有三个热源,还包括一个灵活设置的散热途径:另一个“第一部分单板散热器41”收集第三热源散热的热量,通过另一个“介质和/或导热结构件”将上述热量传导到“第二子屏蔽板散热器52”上的“均热网络6” 进行均热,然后通过电绝缘的导热胶垫传导到第二子屏蔽板散热器52上安装的导热连接器上直至传递给背板散热设备2,同样通过第一途径进行散热。
本实施例中,“第一部分单板散热器”是一个超高功耗的光模块自带的散热片,这块散热片如背景技术所述同时受到高度,长宽和密度的限制。但又不方便在单板的顶面设置到“背板散热设备”的导热设备,因为如果在顶面设计导热设备,首先可能对芯片和模块或其单板散热器造成结构干涉,其次可能减少等效的风道横截面积,所以通过“第一屏蔽板散热器”和配套的热连接器将热量传导到“背板散热设备”。本实施例的第一热源应用第一散热途径进行散热。
本实施例中,“连接件8”采用了直触热管,多根热管的方形侧面和“连接件8”直接相连,通过螺丝拉紧固定,以保证良好的导热。以此方案实现单板正面的第一热源到单板背面“第一子屏蔽板散热器”的垂直热量传递。
本实施例中,“均热网络6”采用了4根嵌入式热管。根据单板热仿真云图结果,应用嵌入式热管作为均热手段将热量从横纵两个方向扩展到整个散热屏蔽板散热器水平面和传导到4个“第一子导热连接器插头711”。
本实施例中,“第一子导热连接器插头×4”和背板散热设备相连的“第一子导热连接器插座×4”配套使用。在实施例中,插头采用的具体设计是一块嵌入式小型均热板加圆锥热管,圆锥热管的突出为插头。需要说明的是,热连接器插头可以焊接和用低熔点合金方便的拆卸,并且因为热连接器是靠屏蔽板散热器承力,和承载光连接器和电连接器的单板所在不同的层面和承载体,所以本实施例中的热连接器插拔的应力不会对光连接器和电连接器的接触造成影响。
本实施例中,“第一子导热连接器插座712”和“均热网络6”相连的“第一子导热连接器插头711”配套使用。在实施例中,插座采用了直接的热管套筒,和插头能精确的水平定位和良好的热传递。
本实施例中,“背板散热设备”设计在实施例机架的光背板之间的间隙中。可增加几平方米风道内的散热面积。由于仅作为参考,图中仅画出整个背板散热设备的其中一组散热片。
本实施例中,“第二部分单板散热器”是一个超高功耗的芯片或者光模块组自带的散热片,这块散热片如背景技术所述同时受到高度,长宽和密度的限制。但是因为靠近背板,可以采用本发明方法的第二途径进行散热。
本实施例中,“第二子导热连接器插头”是一根散热片延伸出的热管。与第一子导热连接器插头同结构类型。
本实施例中,“第二子导热连接器插座”是一根小型号的热管套筒。与第一子导热连接器插座同结构类型。
本实施例中,“单板PCB”为芯片、高功耗光模块等热源及其附属的限高限宽散热片的承 载体。为说明特殊位置开孔的设计需求,严格来说不是相关技术的部件,仅为说明连接和装配关系而用。在本技术方案中,需要说明的是散热第一途径在单板PCB下方,第二途径在单板PCB上方。
本实施例中,“通过口”为“单板PCB”上根据整体热设计,预布局时设计的镂空开孔,通过口的数量和直触式热管平台的数量匹配。
本实施例中,“第一子屏蔽板散热器”是在传统整体屏蔽板散热器上分出结构和电气上独立两部分中没有面板、面积较大、主要用于散热的部分。该部分相比传统的屏蔽板散热器的区别有三点,第一,材料的选择更倾向于散热片材料;第二,比传统的屏蔽板散热器有加厚;第三,屏蔽板散热器根据仿真结果做均热设计。
本实施例中,“第二子屏蔽板散热器”是在传统整体屏蔽板散热器上分出结构和电气上独立两部分中带有面板的部分。当面板被放射高压静电时,因为“第一屏蔽板散热器”和“第二子屏蔽板散热器”完全隔离,所以面板的高压电不会影响与“第一部分单板散热器”和“第二部分单板散热器”相临近的模块电路工作地。屏蔽板散热器的分割结构和电气隔离为立体式背板“的散热结构”可靠性保证的实现手段和技术特征之一。在本实施例中,和实施例1的区别是,分割的面积比例较大,并且同时用于进行第三热源的均热和散热。
本实施例中,“第一部分单板散热器”是指面板可热插拔光模块阵列自带的散热片和笼体。
本实施例中,“连接件”应用4个金属凸台和4个导热胶垫。
本实施例中“均热网络6”应用表贴带胶石墨膜材料来进行均热和散热。
应用上述方案,在光背板或新型立体式背板的机架中,构成一种新的热设计实践所取代。由一系列具有明晰组件和互连关系的组件构成本发明设备,并且一种具有鲜明技术特征和全新多种散热途径的方法,解决单板芯片或模块单板散热器对流散热面积受限的问题。
为方便理解实施例和发明设备方案的描述,列举本实施例中的特征点:
1)散热源的个数:3个,第一热源为“超高功耗线路侧模块”,第二热源为“主要业务芯片”,第三热源为“面板可插拔客户侧光模块阵列”。
2)导热连接器的组数,第一导热连接器4组,第二导热连接器1组,均为可拆卸;
3)背板散热设备的类型;光电立体式背板,光背板之间的间隙内设计普通页式单板散热器。
4)垂直导热的具体实施类型:热管直触;
5)水平均热设备的具体实施类型:第一子屏蔽板散热器通过热管水平导热和均热;第二子屏蔽板散热器通过石墨膜水平导热和均热。
6)背板的具体设计类型:和业务板正交的光背板;
7)热连接器的具体设计,热连接器插头是均热板加尖头圆锥热管,热连接器插座是结构匹配的热管套筒。
显然,本领域的技术人员应该明白,上述的本发明实施例的各部件或各特征都可以用通用的设计和方法来具体实现,从应用角度,可选材料、具体的实现手段、应用特征可以自由组合,都属于本发明申请的设备和方法范畴。本方法包含的两种散热途径也可以根据实际情况仅选择其中一种使用,但仅使用一种视为本方法根据实际的特殊或简化情况,并不代表其有区别或者独特与本申请的方法技术特征。
本发明提供的子架系统的散热方法,单板3上的单板散热器4吸收单板3上的热源10产生的热量,通过与单板散热器直接或间接相连接的导热连接器7传递给背板散热设备2,实现扩展单板散热器4的对流散热面积、改善单板3的散热性。
本发明提供的子架系统的散热方法,子架系统的背板上火背板之间的间隙内设置了连接单板上的单板散热器的背板散热设备,用以扩展单板散热器的对流散热面积、改善单板的散热性。
优选地,第一部分单板散热器(即:第一部分单板散热器41)吸收相对远离背板散热设备2的热源10产生的热量并传递给介质和/或导热结构件,介质和/或导热结构件再将热量传递至屏蔽板散热器5上的均热网络6,而后通过第一子导热连接器71传递给背板散热设备2;第二部分单板散热器(即:第二部分单板散热器42)吸收相对临近背板散热设备2的热源10产生的热量,通过第二子导热连接器72传递给背板散热设备2。
较好地,所述第一部分单板散热器一一对应安装在相对远离背板散热设备的热源上,第二部分单板散热器一一对应安装在相对临近背板散热设备的热源上。
较好地,所述第一子导热连接器和所述第二子导热连接器均包括热连接器插头和热连接器插座。
其中,较好地临近背板散热设备2的子架系统的单板散热器4在横向或纵向上位于远离背板散热设备2的子架系统的单板散热器4和背板散热设备2之间。
本发明是通过利用通信子架内传统电背板和/或光背板中存在的立体间隙和空间,配置额外的背板散热设备,并将单板高功耗器件和模块(即:单板散热器)的热量通过特殊热设计的可插拔热连接器传导给上述背板散热设备,使得单板获得额外对流散热面积,从而改善单板上大功耗器件和模块的导热和散热难的问题。
本发明主要解决通信系统单板日益困难的散热问题,不但可以应用于现阶段高功耗新型电背板,也可应用于未来相应光背板和电背板组合的立体式背板系统上,保证优化高功耗单板的热设计,便于通讯设备或单板的小型化。
综上所述,本发明提供的散热结构,子架系统的背板上或背板之间的间隙内设置了连接单板上的单板散热器的背板散热设备,单板散热器通过导热连接器直接或间接连接背板散热 设备,以此种方式扩展单板散热器的对流散热面积,实现改善单板的散热性。
传统的整体式电背板为完整的整体,背板难设计风道。而光电结合分体式背板,高速交换光信号和低速电信号各自具备分立的承载媒体,这样在背板区域将出现一些空隙和空间,这更好地为“连接件”和“背板散热设备”提供了散热途径,空间和风道。故在背板之间的空隙放置散热装置,并将单板高功耗模块、高功耗器件的热量(即:热源的热量)传导到散热装置上,不仅额外增加了原有风道中的散热面积,还形成了一个散热区域到对流换热区的低热阻通路,能降低单板核心器件的正常工作温度;以至少解决相关背景和技术中,高功耗单板密集,承载的功耗器件或者模块缺乏足够对流散热面积的问题。
在本发明的描述中,术语“安装”、“相连”、“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例的上述技术方案,可以应用于于单板散热系统中,通过在散热结构中包括子架系统;和背板散热设备2,安装在所述子架系统中的背板11上或者背板11间的空隙中、并与单板3上的单板散热器4通过导热连接器7相连接,设置为扩展单板散热器4的对流散热面积,实现改善单板3的散热性,本发明实施例提供的散热结构,子架系统的背板上或背板之间的间隙内设置了连接单板上的单板散热器的背板散热设备,单板散热器通过导热连接器直接或间接连接背板散热设备,以此种方式扩展单板散热器的对流散热面积,实现改善单板的散热性。

Claims (10)

  1. 一种散热结构,包括:
    子架系统;和
    背板散热设备(2),安装在所述子架系统中的背板(11)上或者背板(11)间的空隙中、并与单板(3)上的单板散热器(4)通过导热连接器(7)相连接,设置为扩展单板散热器(4)的对流散热面积。
  2. 根据权利要求1所述的散热结构,其中,所述子架系统的屏蔽板散热器(5)上设置有均热网络(6),单板(3)上的第一部分单板散热器(41)通过连接件与均热网络(6)相连接、均热网络(6)通过第一子导热连接器(71)与所述背板散热设备(2)相连接;单板(3)上的第二部分单板散热器(42)通过第二子导热连接器(72)与背板散热设备(2)相连接。
  3. 根据权利要求2所述的散热结构,其中,所述导热连接器(7)包括第一子导热连接器(71)和第二子导热连接器(72);
    其中,第一子导热连接器(71)和第二子导热连接器(72)均包括插头和插座。
  4. 根据权利要求2所述的散热结构,其中,所述第一部分单板散热器(41)相对于所述第二部分单板散热器(42)远离所述背板散热设备(2)、所述第二部分单板散热器(42)相对于所述第一部分单板散热器(41)临近所述背板散热设备(2)。
  5. 根据权利要求2所述的散热结构,其中,单板(3)的单板PCB(32)上设置有通过口(31),所述连接件(8)的一端穿过所述通过口(31);
    其中,所述连接件(8)为介质和/或导热结构件。
  6. 根据权利要求2至5中任一项所述的散热结构,其中,所述子架系统包括:
    设置有均热网络(6)的屏蔽板散热器(5);
    单板PCB(32),位于屏蔽板散热器(5)的上方、并安装在屏蔽板散热器(5)上;
    热源(10),位于单板PCB(32)的上方、并安装在所述单板PCB(32)上;
    单板散热器(4),一一对应安装在热源(10)上;和
    背板(11)。
  7. 根据权利要求6所述的散热结构,其中,背板(11)包括光背板和/或电背板,屏蔽板散热器(5)包括相电气隔离设置地第一子屏蔽板散热器和第二子屏蔽板散热器,所述均热网络(6)设置于所述第一子屏蔽板散热器和/或所述第二子屏蔽板散热器上。
  8. 一种单板扩展散热方法,单板(3)上的单板散热器(4)吸收单板(3)上的热源产生的热量,通过与单板散热器(4)直接或间接相连接的导热连接器传递给背板散热设备(2), 实现扩展单板散热器(4)的对流散热面积、改善单板的散热性。
  9. 根据权利要求8所述的单板扩展散热方法,其中,第一部分单板散热器(41)吸收相对远离背板散热设备(2)的热源(10)产生的热量并传递给连接件,连接件再将热量传递至屏蔽板散热器上的均热网络,而后通过第一子导热连接器传递给背板散热设备(2)。
  10. 根据权利要求8所述的单板扩展散热方法,其中,第二部分单板散热器(41)吸收相对临近背板散热设备(2)的热源(10)产生的热量,通过第二子导热连接器传递给背板散热设备(2)。
PCT/CN2016/102044 2015-10-21 2016-10-13 散热结构和单板扩展散热方法 WO2017067418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510688637.9 2015-10-21
CN201510688637.9A CN106612602A (zh) 2015-10-21 2015-10-21 散热结构和单板扩展散热方法

Publications (1)

Publication Number Publication Date
WO2017067418A1 true WO2017067418A1 (zh) 2017-04-27

Family

ID=58556709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102044 WO2017067418A1 (zh) 2015-10-21 2016-10-13 散热结构和单板扩展散热方法

Country Status (2)

Country Link
CN (1) CN106612602A (zh)
WO (1) WO2017067418A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497931A (zh) * 2020-10-28 2022-05-13 中国科学院理化技术研究所 高温超导滤波器系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11439042B2 (en) * 2019-09-12 2022-09-06 Te Connectivity Solutions Gmbh Heat exchange assembly for a communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201187731Y (zh) * 2008-01-07 2009-01-28 丽鸿科技股份有限公司 一种led导光板及其散热装置
CN102612300A (zh) * 2012-02-23 2012-07-25 华为技术有限公司 一种射频拉远模块及其组装方法、基站及通信系统
CN202918632U (zh) * 2012-10-15 2013-05-01 中航华东光电有限公司 一种多功率器件的双面散热结构及其电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201187731Y (zh) * 2008-01-07 2009-01-28 丽鸿科技股份有限公司 一种led导光板及其散热装置
CN102612300A (zh) * 2012-02-23 2012-07-25 华为技术有限公司 一种射频拉远模块及其组装方法、基站及通信系统
CN202918632U (zh) * 2012-10-15 2013-05-01 中航华东光电有限公司 一种多功率器件的双面散热结构及其电子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497931A (zh) * 2020-10-28 2022-05-13 中国科学院理化技术研究所 高温超导滤波器系统

Also Published As

Publication number Publication date
CN106612602A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
CN101052268B (zh) 电子装置的热管理
CA2743110C (en) Liquid-cooled cooling apparatus, electronics rack and methods of fabrication thereof
TWI659292B (zh) 收發器冷卻設備以及包含其之交換器
WO2021227846A1 (zh) 适于电子设备液冷散热的液冷板及散热单元
CN106714525B (zh) 散热装置和电子设备
WO2023020554A1 (zh) 双层光模块装置及通信网络设备单板
WO2022100106A1 (zh) 可插拔设备、信息通信设备、散热系统和制造方法
WO2024083241A1 (zh) 工作组件和电子设备
CN112954949A (zh) 网络设备电源及用于网络设备电源的散热系统
WO2017067418A1 (zh) 散热结构和单板扩展散热方法
TW201218931A (en) Mainboard and electronic device employ the sam
WO2016188162A1 (zh) 单板散热装置及方法
WO2021008221A1 (zh) 框式设备
TWI328736B (en) Radiation structure for processors
CN208954029U (zh) 外置式计算机静音散热器
CN211786964U (zh) 一种加固计算机用散热结构及加固计算机
CN104703443B (zh) 一种散热插箱
WO2016174732A1 (ja) 情報機器及び情報機器ブレード
JP2016057997A (ja) プリント回路基板を収容可能な電気通信コンピューティングモジュール
CN113382602B (zh) 一种芯片散热系统
JP3195481U (ja) プリント回路基板を収容可能な電気通信コンピューティングモジュール
CN116234245B (zh) 一种超大功耗电子元器件导冷散热装置
CN213880683U (zh) 散热组件和机箱
CN219642152U (zh) 模块化一体机
CN213548134U (zh) 一种音箱散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856849

Country of ref document: EP

Kind code of ref document: A1