WO2023020319A1 - 一种咪唑羧酸酯的制备方法及其应用 - Google Patents

一种咪唑羧酸酯的制备方法及其应用 Download PDF

Info

Publication number
WO2023020319A1
WO2023020319A1 PCT/CN2022/110823 CN2022110823W WO2023020319A1 WO 2023020319 A1 WO2023020319 A1 WO 2023020319A1 CN 2022110823 W CN2022110823 W CN 2022110823W WO 2023020319 A1 WO2023020319 A1 WO 2023020319A1
Authority
WO
WIPO (PCT)
Prior art keywords
imidazole
solvent
preparation
imidazole carboxylate
organic phase
Prior art date
Application number
PCT/CN2022/110823
Other languages
English (en)
French (fr)
Inventor
常楠
时二波
吕鹏程
印李达
周铭柯
Original Assignee
张家港市国泰华荣化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港市国泰华荣化工新材料有限公司 filed Critical 张家港市国泰华荣化工新材料有限公司
Priority to EP22857631.0A priority Critical patent/EP4389737A1/en
Publication of WO2023020319A1 publication Critical patent/WO2023020319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method and application of imidazole carboxylate.
  • Electrolyte is an important component of lithium-ion batteries.
  • different additives are usually added to the electrolyte. Since the internal reactions of lithium-ion batteries are very complicated during operation, it is required that the added additives have high purity and Avoid bringing in impurities to affect the operation of lithium-ion batteries.
  • Imidazole carboxylate can be used as an additive to the electrolyte to improve the performance of lithium-ion batteries, but there is currently no preparation method for imidazole carboxylate with simple process steps, mild reaction conditions, high yield, and high purity.
  • the object of the present invention is to provide a kind of preparation method of simple process step, mild reaction condition, high yield, high purity imidazole carboxylate.
  • Another object of the present invention is to provide an application of the imidazole carboxylate prepared by the above preparation method in lithium-ion battery electrolyte.
  • One aspect of the present invention provides a method for preparing imidazole carboxylate, which involves reacting imidazole formyl chloride and alcohol in the presence of a first solvent and an organic base to generate imidazole carboxylate.
  • the chemical structural formula of the alcohol is shown in formula (1), wherein the formula (1) is R—OH, and R in the formula (1) is a hydrocarbon group.
  • the chemical structural formula of the imidazole carboxylate is shown in formula (2), and the formula (2) is R in the formula (2) is a hydrocarbon group.
  • the R is a hydrocarbon group with 1 to 5 carbon atoms, and further is a straight chain hydrocarbon group with 1 to 5 carbon atoms.
  • the R is selected from any of propynyl, butynyl, pentynyl, propenyl, butenyl, pentenyl, methyl, ethyl, propyl, butyl, pentyl A sort of.
  • the molar ratio of the alcohol to the imidazole carboxyl chloride is (0.8-0.9):1.
  • the alcohol and the organic base are fed dropwise in the form of a mixture.
  • the reaction rate of alcohol and imidazole formyl chloride can be effectively controlled by dropping feeding, and the complete reaction of alcohol and imidazole formyl chloride can be guaranteed as far as possible.
  • the temperature of the dropwise addition is controlled to be 0-30°C.
  • the dropping rate is controlled to be 2-8 g/min, further 4-6 g/min.
  • the first solvent includes one or more of toluene, ethyl acetate, methylene chloride, and ethylene dichloride.
  • the first solvent is selected from any one of methylene dichloride, ethylene dichloride, and toluene; when the alcohol is an unsaturated alcohol, the first solvent The solvent is selected from any one of methylene chloride, ethyl acetate, ethylene dichloride, and toluene.
  • the mass ratio of the first solvent to the imidazole carboxylic acid chloride is (20-25):1.
  • the organic base includes one or more of triethylamine, pyridine and imidazole.
  • the molar ratio of the organic base to the imidazole carboxyl chloride is (0.95-1.05):1.
  • the reaction temperature is controlled to be 0-30°C, further 0-20°C, further 0-10°C.
  • the time for controlling the reaction is 1-3 hours, and further is 1-2 hours.
  • the preparation method also includes the step of post-processing the reacted reaction liquid, the post-processing includes first mixing the reaction liquid with water, standing, and collecting the organic phase after separation, and then treating the The organic phase is dehydrated to remove moisture in the organic phase, and part of the first solvent in the organic phase is removed, and then mixed with the second solvent to carry out the steps of crystallization, filtration, and drying.
  • the imidazole carboxylate dissolved in the organic phase is precipitated by adopting the method of mixing and crystallizing the second solvent and the organic phase, and the imidazole carboxylate product prepared in this way has high purity.
  • the removed part of the first solvent is 83%-93% of the total mass of the first solvent.
  • the second solvent is one or more of petroleum ether, n-hexane, and cyclohexane.
  • the mass ratio of the second solvent to the imidazole formyl chloride is (4.0-5.5):1, and further is (4.5-5.0):1.
  • the temperature of the mixed crystallization is controlled to be -20-0°C.
  • the preparation method includes the following steps:
  • the first solvent and the imidazole formyl chloride are mixed to obtain a mixed solution, and the mixture of the alcohol and the organic base is added dropwise to the mixed solution to make the imidazole formyl chloride Reacting with the alcohol at 0-30°C for 1-3 hours, wherein the dropping rate is controlled to be 2-8 g/min;
  • reaction liquid after the reaction in step (1) is mixed with water for water washing, and after the water washing is finished, the reaction liquid containing water is left to stand, layered, and the organic phase is collected, wherein the feeding of the water
  • the mass is 15% to 30% of the total mass of the first solvent, the imidazole formyl chloride, the alcohol and the organic base;
  • the organic phase after dehydration is evaporated under reduced pressure to remove part of the first solvent and then mixed with the second solvent for crystallization, filtration, and drying to obtain the imidazole carboxylate finished product, wherein the removed part
  • the first solvent is 83% to 93% of the total mass of the first solvent
  • the mass ratio of the second solvent to the imidazole formyl chloride is (4.0 to 5.5): 1
  • the mixed crystallization is controlled
  • the temperature is -20 ⁇ 0°C.
  • the present invention optimizes the preparation process of imidazole carboxylate, so that the prepared imidazole carboxylate can have both high yield and high purity, and the yield can reach more than 92%, while the purity can reach more than 99.5%. It can be directly used as an additive in the electrolyte of lithium-ion batteries.
  • the feed mass of the water in the step (2) is 20-30% of the total feed mass of the first solvent, the imidazole formyl chloride, the alcohol and the organic base.
  • Another aspect of the present invention provides a kind of application of the imidazole carboxylate prepared by the above preparation method in lithium ion battery electrolyte.
  • the added amount of the imidazole carboxylate is 0.1-2.0% of the total mass of the electrolyte, further 0.1-0.5%.
  • the present invention has the following advantages compared with the prior art:
  • the preparation method of the imidazole carboxylate in the present invention has a simple process route, mild reaction conditions, and strong operability.
  • the prepared imidazole carboxylate can have both high yield and high purity, and can be used as an additive for lithium ion The electrolyte of the battery.
  • the dehydrated organic phase was evaporated under reduced pressure to remove 2200g of dichloromethane, and 600g of petroleum ether was added to the remaining organic phase for crystallization at -20°C. After crystallization, the solid was collected by filtration and dried to harvest the finished product.
  • the dehydrated organic phase was evaporated under reduced pressure to remove 2100g of dichloromethane, and 600g of petroleum ether was added to the remaining organic phase for crystallization at -20°C. After crystallization, the solid was collected by filtration and dried to harvest the finished product.
  • the dehydrated organic phase was evaporated under reduced pressure to remove 2500g of dichloromethane, and 600g of petroleum ether was added to the remaining organic phase for crystallization at -20°C. After crystallization, the solid was collected by filtration and dried to harvest the finished product.
  • This embodiment compares with embodiment 1, and product purity is lower.
  • the main component of the colorless liquid is Its yield was 92% and its purity was 97.9%.
  • Comparing Example 1 with Comparative Example 1 the product of Comparative Example 1 is not pure enough to meet the requirements of electrolyte additives, and more waste water produced does not meet environmental protection requirements.
  • Comparative Example 2 needs to use phosgene as a raw material, and phosgene is more toxic and difficult to handle.
  • the imidazole carboxylate prepared in the embodiment 1 is applied in the electrolyte, and the specific implementation method is as follows:
  • EC, DMC and EMC were mixed uniformly at a volume ratio of 1:1:1, and 1mol/L LiPF 6 was added to the mixed solution, and then added to the 0.3wt% of 2-propyn-1-yl 1H-imidazole-1-carboxylate was added to the electrolytic solution to prepare the electrolytic solution.
  • the electrolytes prepared in the above application example 1 and application example 2 were respectively tested in a 4.2V lithium cobalt oxide graphite battery for capacity retention at 85°C for 4 hours and cycle capacity retention at 45°C for 300 cycles.
  • the relevant experimental data are shown in Table 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种咪唑羧酸酯的制备方法及其应用,主要解决了咪唑羧酸酯制备工艺复杂、操作繁琐以及制备得到的咪唑羧酸酯收率低、纯度低的技术问题。本发明通过使咪唑甲酰氯和醇在第一溶剂和有机碱的存在下反应生成咪唑羧酸酯并通过后处理进一步获得高收率、高纯度的咪唑羧酸酯,具有制备方法简单、制备条件温和、可操作性强的优点。

Description

一种咪唑羧酸酯的制备方法及其应用 技术领域
本发明涉及一种咪唑羧酸酯的制备方法及其应用。
背景技术
近年来,随着人们环境保护意识的不断增强,围绕着绿色可持续发展能源的问题,全世界范围内对高能化学电源的研究不断向纵深发展,其中锂离子电池成为最具有实用优势的电源种类之一。
电解液是锂离子电池的重要组分,为了改善锂离子电池的性能通常通过向电解液中添加不同的添加剂,由于锂离子电池运行时内部反应十分复杂,这就要求加入的添加剂具有高纯度以避免带入杂质影响锂离子电池的运行。
咪唑羧酸酯能够作为电解液的添加剂改善锂离子电池的性能,但目前并未有工艺步骤简单、反应条件温和、高收率、高纯度的咪唑羧酸酯的制备方法。
发明内容
本发明的目的在于提供一种工艺步骤简单、反应条件温和、高收率、高纯度咪唑羧酸酯的制备方法。
本发明的另一目的是提供一种上述制备方法制得的咪唑羧酸酯在锂离子电池电解液中的应用。
为实现上述目的,本发明采取的技术方案如下:
本发明一方面提供一种咪唑羧酸酯的制备方法,使咪唑甲酰氯和醇在第一溶剂和有机碱的存在下反应生成咪唑羧酸酯。
优选地,所述醇的化学结构式如式(1)所示,所述式(1)为R-OH,所述式(1)中的R为烃基。
优选地,所述咪唑羧酸酯的化学结构式如式(2)所示,所述式(2)为
Figure PCTCN2022110823-appb-000001
所述式(2)中的R为烃基。
其中,所述咪唑甲酰氯与所述醇反应的反应方程式为
Figure PCTCN2022110823-appb-000002
进一步优选地,所述R为碳原子数为1~5的烃基,更进一步为碳原子数为1~5的直链烃基。
更进一步优选地,所述R选自丙炔基、丁炔基、戊炔基、丙烯基、丁烯基、戊烯基、甲基、乙基、丙基、丁基、戊基中的任一种。
优选地,所述醇与所述咪唑甲酰氯的投料摩尔比为(0.8~0.9):1。
优选地,所述醇和所述有机碱以混合物的形式进行滴加投料。采用滴加投料能够有效控制醇与咪唑甲酰氯的反应速度,尽可能保证醇与咪唑甲酰氯完全反应。
进一步优选地,控制所述滴加的温度为0~30℃。
进一步优选地,控制所述滴加的速度为2~8g/min,更进一步为4~6g/min。
优选地,所述第一溶剂包括甲苯、乙酸乙酯、二氯甲烷、二氯乙烷中的一种或多种。
进一步优选地,当所述醇为饱和醇时,所述第一溶剂选自二氯甲烷、二氯乙烷、甲苯中的任一种;当所述醇为不饱和醇时,所述第一溶剂选自二氯甲烷、乙酸乙酯、二氯乙烷、甲苯中的任一种。
进一步优选地,所述第一溶剂与所述咪唑甲酰氯的投料质量比为(20~25):1。
优选地,所述有机碱包括三乙胺、吡啶、咪唑中的一种或多种。
进一步优选地,所述有机碱与所述咪唑甲酰氯的投料摩尔比为(0.95~1.05):1。
优选地,控制所述反应的温度为0~30℃,进一步为0~20℃,更进一步为0~10℃。
进一步优选地,控制所述反应的时间为1~3h,更进一步为1~2h。
优选地,所述制备方法还包括对反应后的反应液进行后处理的步骤,所述后处理包括先将所述反应液与水混合、静置、分层后收集有机相,再对所述有机相进行脱水处理以去除所述有机相中的水分,再将所述有机相中的部分所述第一溶剂去除后再与第二溶剂混合进行析晶、过滤、干燥的步骤。采用第二溶剂与有机相混合析晶的方式,将溶解在有机相中的咪唑羧酸酯析出,此种方式制备得到的咪唑羧酸酯成品纯度高。
进一步优选地,去除的部分所述第一溶剂为所述第一溶剂总质量的83%~93%。
进一步优选地,所述第二溶剂为石油醚、正己烷、环己烷中的一种或多种。
更进一步优选地,所述第二溶剂与所述咪唑甲酰氯的投料质量比为(4.0~5.5):1,更进一步为(4.5~5.0):1。
进一步优选地,控制所述混合析晶的温度为-20~0℃。
根据一些优选的实施方式,所述制备方法包括以下步骤:
(1)在氮气保护下将所述第一溶剂与所述咪唑甲酰氯混合制得混合液,向所述混合液中滴加所述醇与所述有机碱的混合物以使所述咪唑甲酰氯与所述醇在0~30℃下反应1~3h,其中,控制所述滴加的速度为2~8g/min;
(2)将步骤(1)中反应后的反应液与水混合进行水洗,所述水洗结束后将含有水的所述反应液静置、分层、收集有机相,其中,所述水的投料质量为所述第一溶剂、所述咪唑甲酰氯、所述醇以及所述有机碱的投料总质量的15~30%;
(3)将所述有机相与脱水剂混合以对所述有机相进行脱水处理,其中,所述脱水剂包括无水硫酸钠、无水硫酸镁、无水氯化钙中的一种或多种;
(4)将脱水后的所述有机相进行减压蒸发去除部分所述第一溶剂后再与第二溶剂混合进行析晶、过滤、干燥处理以获得咪唑羧酸酯成品,其中,去除的部分所述第一溶剂为所述第一溶剂总质量的83%~93%,所述第二溶剂与所述咪唑甲酰氯的投料质量比为(4.0~5.5):1,控制所述混合析晶的温度为-20~0℃。
本发明通过对咪唑羧酸酯的制备工艺的优化,使得制得的咪唑羧酸酯能够同时兼具高收率和高纯度,其收率达92%以上的同时,纯度可达99.5%以上,可直接作为添加剂应用到锂离子电池的电解液中。
进一步优选地,所述步骤(2)中所述水的投料质量为所述第一溶剂、所述咪唑甲酰氯、所述醇以及所述有机碱的投料总质量的20~30%。本发明的另一方面提供一种如上述制备方法制得的咪唑羧酸酯在锂离子电池电解液中的应用。
优选地,所述咪唑羧酸酯的添加量为电解液总质量的0.1~2.0%,进一步为0.1~0.5%。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明中的咪唑羧酸酯的制备方法工艺路线简单、反应条件温和、可操作性强,制备得到的咪唑羧酸酯能够同时兼具高收率和高纯度,并可作为添加剂应用于锂离子电池的电解液。
附图说明
附图1为本发明实施例1中产物的核磁氢谱图;
附图2为本发明实施例1中产物的核磁碳谱图。
具体实施方式
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常 规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
在氮气保护下将2600g二氯甲烷、130g咪唑甲酰氯混合搅拌,0~10℃下滴加50g丙炔醇和101g三乙胺的混合物,其中滴加速度为5g/min,边滴加边搅拌,滴加完毕后在0~10℃下反应2小时。
反应完毕后,向反应液中加入576g去离子水对反应液进行水洗,水洗后静置分层提取有机相,并向有机相中加入200g的无水硫酸钠对有机相进行脱水。
脱水后的有机相经减压蒸发去除2200g二氯甲烷,向剩余的有机相中加入600g石油醚在-20℃下进行析晶,析晶后过滤收集固体并对固体进行干燥后收获成品。
经称量成品质量127g,收率95%。采用核磁对产物进行表征,相关表征谱图如图1以及图2所示,结果证实为目标产物咪唑羧酸丙炔酯,纯度99.8%。
实施例2至15
采用实施例1的制备方法制备咪唑羧酸酯,其中与实施例1的区别如下表1所示。
表1
Figure PCTCN2022110823-appb-000003
Figure PCTCN2022110823-appb-000004
Figure PCTCN2022110823-appb-000005
实施例16
在氮气保护下将2600g二氯甲烷、130g咪唑甲酰氯混合搅拌,0~10℃下滴加50g丙炔醇和101g三乙胺的混合物,其中滴加速度为5g/min,边滴加边搅拌,滴加完毕后在0~10℃下反应2小时。
反应完毕后,向反应液中加入618g去离子水对反应液进行水洗,水洗后静置分层提取有机相,并向有机相中加入200g的无水硫酸钠对有机相进行脱水。
脱水后的有机相经减压蒸发去除2100g二氯甲烷,向剩余的有机相中加入600g石油醚在-20℃下进行析晶,析晶后过滤收集固体并对固体进行干燥后收获成品。
经称量成品质量70g,收率53%。采用核磁对产物进行表征,结果证实为目标产物咪唑羧酸丙炔酯,纯度99.5%。
该实施例与实施例1相比较,产物收率较低。
实施例17
在氮气保护下将2600g二氯甲烷、130g咪唑甲酰氯混合搅拌,0~10℃下滴加50g丙炔醇和101g三乙胺的混合物,其中滴加速度为5g/min,边滴加边搅拌,滴加完毕后在0~10℃下反应2小时。
反应完毕后,向反应液中加入618g去离子水对反应液进行水洗,水洗后静置分层提取有机相,并向有机相中加入200g的无水硫酸钠对有机相进行脱水。
脱水后的有机相经减压蒸发去除2500g二氯甲烷,向剩余的有机相中加入600g石油醚在 -20℃下进行析晶,析晶后过滤收集固体并对固体进行干燥后收获成品。
经称量成品质量130g,收率97%。采用核磁对产物进行表征,结果证实为目标产物咪唑羧酸丙炔酯,纯度98.5%。
该实施例与实施例1相比较,产物纯度较低。
对比例1
将276g的CDI(N,N'-羰基二咪唑)加入3795ml二氯甲烷中,在冰水浴下滴加丙炔醇与二氯甲烷的混合液(混合液由56g丙炔醇溶于678ml二氯甲烷中制成),搅拌1h,升温至室温搅拌12h,反应结束用1200ml水洗涤三次,收集有机相,有机相用无水硫酸镁进行干燥,干燥后过滤减压浓缩得到无色液体138g。
其中,无色液体主要成分为
Figure PCTCN2022110823-appb-000006
其收率为92%,纯度为97.9%。
实施例1与对比例1相比较,对比例1产品纯度不足,无法满足电解液添加剂的需求,并且产生的废水更多不符合环保要求。
对比例2
以56g丙炔醇为原料,降温至-8℃,以50ml/min的速率向反应釜中通入光气,控制反应温度小于5℃,反应结束后,保温30min,然后在室温下通入氮气1.5h,减压蒸馏收集118℃馏分,在反应釜内加入174ml二氯甲烷和75g咪唑,以100ml/min的速率向反应釜内加入106ml三乙胺,加入完毕通氮气置换反应釜中气体,升温至回流温度,向反应釜中滴加上述馏分,滴加1h,反应5h,抽滤,滤饼用二氯甲烷洗涤,分出母液用碱液洗至ph7.3,用无水硫酸镁干燥后减压蒸馏,得到141g产品,收率94%,纯度99.4%。
实施例1与对比例2相比较,对比例2需要使用光气作为原料,光气毒性较大,不易操作。
应用例1
将实施例1中制备得到的咪唑羧酸酯应用于电解液中,具体实施方式如下:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、DMC和EMC以1:1:1的体积比混合均匀,在混合溶液中加入1mol/L的LiPF 6,然后向该电解液中分别添加0.3wt%的2-丙炔-1-基1H-咪唑-1-羧酸酯,制得电解液。
应用例2在充氩气的手套箱中(H 2O含量<10ppm),将EC、DMC和EMC以1:1:1的体积比混合均匀,在混合溶液中加入1mol/L的LiPF 6,制得电解液。
将上述应用例1以及应用例2配制的电解液,分别在4.2V钴酸锂石墨电池中测试85℃高温搁置4小时容量保持率、45℃300周循环容量保持率,相关实验数据见表2。
表2
Figure PCTCN2022110823-appb-000007
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (15)

  1. 一种咪唑羧酸酯的制备方法,其特征在于,使咪唑甲酰氯和醇在第一溶剂和有机碱的存在下反应生成咪唑羧酸酯。
  2. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,所述醇的化学结构式如式(1)所示,所述式(1)为R-OH,所述式(1)中的R为烃基;和/或,所述醇与所述咪唑甲酰氯的投料摩尔比为(0.8~0.9):1。
  3. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,所述咪唑羧酸酯的化学结构式如式(2)所示,所述式(2)为
    Figure PCTCN2022110823-appb-100001
    所述式(2)中的R为烃基。
  4. 根据权利要求2所述的咪唑羧酸酯的制备方法,其特征在于,所述R为碳原子数为1~5的烃基。
  5. 根据权利要求4所述的咪唑羧酸酯的制备方法,其特征在于,所述R选自丙炔基、丁炔基、戊炔基、丙烯基、丁烯基、戊烯基、甲基、乙基、丙基、丁基、戊基中的任一种。
  6. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,所述醇和所述有机碱以混合物的形式进行滴加投料,控制所述滴加的温度为0~30℃,和/或,控制所述滴加的速度为2~8g/min。
  7. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,所述第一溶剂包括甲苯、乙酸乙酯、二氯甲烷、二氯乙烷中的一种或多种,所述第一溶剂与所述咪唑甲酰氯的投料质量比为(20~25):1。
  8. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,所述有机碱包括三乙胺、吡啶、咪唑中的一种或多种,所述有机碱与所述咪唑甲酰氯的投料摩尔比为(0.95~1.05):1。
  9. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,控制所述反应的温度为0~30℃,和/或,控制所述反应的时间为1~3h。
  10. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,所述制备方法还包括对反应后的反应液进行后处理的步骤,所述后处理包括先将所述反应液与水混合、静置、分层后收集有机相,再对所述有机相进行脱水处理以去除所述有机相中的水分,再将所述有机相中的部分所述第一溶剂去除后再与第二溶剂混合进行析晶、过滤、干燥的步骤。
  11. 根据权利要求10所述的咪唑羧酸酯的制备方法,其特征在于,去除的部分所述第一溶剂为所述第一溶剂总质量的83%~93%。
  12. 根据权利要求10所述的咪唑羧酸酯的制备方法,其特征在于,所述第二溶剂为石油醚、正己烷、环己烷中的一种或多种,所述第二溶剂与所述咪唑甲酰氯的投料质量比为(4.0~5.5):1。
  13. 根据权利要求1所述的咪唑羧酸酯的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)在氮气保护下将所述第一溶剂与所述咪唑甲酰氯混合制得混合液,向所述混合液中滴加所述醇与所述有机碱的混合物以使所述咪唑甲酰氯与所述醇在0~30℃下反应1~3h,其中,控制所述滴加的速度为2~8g/min;
    (2)将步骤(1)中反应后的反应液与水混合进行水洗,所述水洗结束后将含有水的所述反应液静置、分层、收集有机相,其中,所述水的投料质量为所述第一溶剂、所述咪唑甲酰氯、所述醇以及所述有机碱的投料总质量的15~30%;
    (3)将所述有机相与脱水剂混合以对所述有机相进行脱水处理,其中,所述脱水剂包括无水硫酸钠、无水硫酸镁、无水氯化钙中的一种或多种;
    (4)将脱水后的所述有机相进行减压蒸发去除部分所述第一溶剂后再与第二溶剂混合进行析晶、过滤、干燥处理以获得咪唑羧酸酯成品,其中,去除的部分所述第一溶剂为所述第一溶剂总质量的83%~93%,所述第二溶剂与所述咪唑甲酰氯的投料质量比为(4.0~5.5):1,控制所述混合析晶的温度为-20~0℃。
  14. 一种如权利要求1所述的制备方法制得的咪唑羧酸酯在锂离子电池电解液中的应用。
  15. 根据权利要求14所述的咪唑羧酸酯在锂离子电池电解液中的应用,其特征在于,所述咪唑羧酸酯的添加量为电解液总质量的0.1~2.0%。
PCT/CN2022/110823 2021-08-16 2022-08-08 一种咪唑羧酸酯的制备方法及其应用 WO2023020319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22857631.0A EP4389737A1 (en) 2021-08-16 2022-08-08 Method for preparing imidazole carboxylate and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110935166.2A CN115703741B (zh) 2021-08-16 2021-08-16 一种咪唑羧酸酯的制备方法及其应用
CN202110935166.2 2021-08-16

Publications (1)

Publication Number Publication Date
WO2023020319A1 true WO2023020319A1 (zh) 2023-02-23

Family

ID=85180320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110823 WO2023020319A1 (zh) 2021-08-16 2022-08-08 一种咪唑羧酸酯的制备方法及其应用

Country Status (3)

Country Link
EP (1) EP4389737A1 (zh)
CN (1) CN115703741B (zh)
WO (1) WO2023020319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118117171A (zh) * 2024-04-28 2024-05-31 河北省科学院能源研究所 一种高压电解液及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574210A (zh) * 2017-07-14 2019-12-13 株式会社Lg化学 非水电解质溶液添加剂和包括该添加剂的用于锂二次电池的非水电解质溶液及锂二次电池
WO2020130575A1 (ko) * 2018-12-17 2020-06-25 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) * 2019-01-17 2020-07-23 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020175907A1 (ko) * 2019-02-28 2020-09-03 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN112778205A (zh) * 2019-11-06 2021-05-11 石家庄圣泰化工有限公司 咪唑类添加剂的合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214420B (zh) * 2013-04-26 2015-04-08 台州职业技术学院 一种2-丁基-4-氯-5-甲酰基咪唑的制备方法
KR102452329B1 (ko) * 2019-01-17 2022-10-11 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574210A (zh) * 2017-07-14 2019-12-13 株式会社Lg化学 非水电解质溶液添加剂和包括该添加剂的用于锂二次电池的非水电解质溶液及锂二次电池
WO2020130575A1 (ko) * 2018-12-17 2020-06-25 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) * 2019-01-17 2020-07-23 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020175907A1 (ko) * 2019-02-28 2020-09-03 주식회사 엘지화학 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN112778205A (zh) * 2019-11-06 2021-05-11 石家庄圣泰化工有限公司 咪唑类添加剂的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIN HU, YANG, BAO-JUN; GAN, CHAO-LUN; ZHAO, SHI-YONG; HE, PING; ZHOU, HAO-SHEN: "The application of carboxylic ester as solvent of electrolytes in lithium ion secondary batteries", DIANCHI-GONGYE = CHINESE BATTERY INDUSTRY, ZHONGGUO DIANCHI GONGYE XUEHUI, CN, vol. 21, no. 2, 25 April 2017 (2017-04-25), CN , pages 1 - 3, XP093036273, ISSN: 1008-7923 *
VELEMA WILLEM A., KIETRYS ANNA M., KOOL ERIC T.: "RNA Control by Photoreversible Acylation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 140, no. 10, 14 March 2018 (2018-03-14), pages 3491 - 3495, XP093029667, ISSN: 0002-7863, DOI: 10.1021/jacs.7b12408 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118117171A (zh) * 2024-04-28 2024-05-31 河北省科学院能源研究所 一种高压电解液及其制备方法和应用

Also Published As

Publication number Publication date
CN115703741A (zh) 2023-02-17
EP4389737A1 (en) 2024-06-26
CN115703741B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP6740424B1 (ja) 所定比率混合による高純度リチウム塩の調製方法及びその応用
WO2023202093A1 (zh) 一种双氟磺酰亚胺锂的制备方法、锂离子电池
CN110818674A (zh) 硫酸乙烯酯的制备方法
CN108423651B (zh) 一种制备二氟磷酸锂的方法
WO2021088222A1 (zh) 咪唑类添加剂的合成方法
WO2023020319A1 (zh) 一种咪唑羧酸酯的制备方法及其应用
CN111285884A (zh) 季戊四醇硫酸酯的制备方法
WO2021082447A1 (zh) 一种利用有机金属锂试剂制备氟磺酸锂的方法
CN114455549A (zh) 一种硫化锂的制备方法、硫化锂及其应用
CN108598471B (zh) 一种钠离子电池含钴正极材料及其制备方法
CN101570543A (zh) 一种美洛西林钠溶媒结晶制备方法
CN101570337A (zh) 一种电池级氟化锂的生产方法
CN103342372A (zh) 一种四氟硼酸锂的制备方法
CN114805412B (zh) 一种制备双草酸硼酸锂的工艺
WO2024060557A1 (zh) 一种掺铝碳酸钴及其制备方法
WO2023000701A1 (zh) 一种超声波协助制备氟磺酸锂晶体的方法和装置
WO2019095245A1 (zh) 一种二磺酸亚甲酯化合物的合成方法
CN115947713A (zh) 一种1,3-丙烷磺酸内酯的制备方法
CN116354920A (zh) 一种4,4-联-1,3-二氧戊环-2,2-二酮的制备方法
CN109369474B (zh) 一种二(三氟甲基磺酰)亚胺锂盐的制备方法
CN218530890U (zh) 一种含双二硫结构化合物的制备系统
CN113725430A (zh) 四氟草酸磷酸锂及其衍生物的制备方法、电解液和二次电池
CN115677651B (zh) 一种烷基磺酸内酯的制备方法
CN114605457B (zh) 双草酸硼酸锂的制备方法
JP4189193B2 (ja) 非対称有機アニオンの金属塩の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857631

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022857631

Country of ref document: EP

Effective date: 20240318