WO2021082447A1 - 一种利用有机金属锂试剂制备氟磺酸锂的方法 - Google Patents

一种利用有机金属锂试剂制备氟磺酸锂的方法 Download PDF

Info

Publication number
WO2021082447A1
WO2021082447A1 PCT/CN2020/094586 CN2020094586W WO2021082447A1 WO 2021082447 A1 WO2021082447 A1 WO 2021082447A1 CN 2020094586 W CN2020094586 W CN 2020094586W WO 2021082447 A1 WO2021082447 A1 WO 2021082447A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
organometallic
fluorosulfonate
preparing
reagent according
Prior art date
Application number
PCT/CN2020/094586
Other languages
English (en)
French (fr)
Inventor
梁海波
谢文健
苏秋铭
辛伟贤
陈新滋
Original Assignee
广州理文科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州理文科技有限公司 filed Critical 广州理文科技有限公司
Priority to PCT/CN2020/094586 priority Critical patent/WO2021082447A1/zh
Priority to CN202080005196.7A priority patent/CN112739651B/zh
Publication of WO2021082447A1 publication Critical patent/WO2021082447A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides

Definitions

  • the invention relates to a method for preparing lithium fluorosulfonate by using an organometallic lithium reagent, and belongs to the technical field of chemical synthesis.
  • Lithium fluorosulfonate is abbreviated as LiFSO 3 and has a molecular weight of 106.1. Pure lithium fluorosulfonate is a white solid. It is a chemical substance that can be widely used in the field of electronic batteries. It is widely used and high-purity lithium fluorosulfonate is suitable for non-aqueous electrolyte additives for secondary lithium-ion batteries. Its electrochemical stability and thermal stability characteristics in the electrolyte can improve the cycle performance and high-temperature storage performance of the secondary lithium-ion battery.
  • the use process can inhibit the gas production of the electrolyte, thereby improving the secondary lithium-ion battery Its overall performance has been shown in some fields to replace electrolyte additives that seriously pollute the environment (such as lithium difluorophosphate, lithium perchlorate, lithium hexafluoroarsenate, etc.).
  • the use process can inhibit the gas production of the electrolyte, thereby increasing The overall performance of the battery, so the synthesis of high-purity lithium fluorosulfonate will be of great help to the improvement of the lithium-ion battery process.
  • the patent proposes that fluorosulfonic acid reacts with various inorganic lithium as the lithium source to generate lithium fluorosulfonate, and then the finished product of lithium fluorosulfonate is obtained through post-processing and purification, with high product purity.
  • the purpose of the present invention is to enrich the shortcomings of the lithium source in the reaction of the above invention, and to provide another new way to prepare lithium fluorosulfonate.
  • the technical solution of the present invention for preparing lithium fluorosulfonate by adopting a new route includes the following steps:
  • the organometallic lithium reagent described in step (1) includes alkyl lithium, alkynyl lithium, and aromatic lithium.
  • the alkyl lithium described in the content of the invention 4 includes one or more combinations of methyl lithium, ethyl lithium, n-butyl lithium, isobutyl lithium, tert-butyl lithium, and 1,5 dilithium pentane .
  • the alkynyl lithium described in Summary of the Invention 4 includes one or more combinations of ethynyl lithium, ethynyl dilithium (lithium carbide), and 1,3-dilithium propyne.
  • the aromatic lithium described in the content of the invention 4 includes one or more combinations of phenyl lithium, benzyl lithium, phenylethynyl lithium, 2,4,6-trimethylphenyl lithium, and naphthalene lithium.
  • step (1) of the technical solution are 0 to -78°C.
  • the temperature is 0 to -20°C.
  • the molar ratio of the reaction between the fluorosulfonic acid and the organometallic lithium reagent in the technical solution step (1) is 1.0:1.0-3.0, and the preferred ratio is 1.0:1.0-1.5.
  • reaction time described in step (1) of the technical solution is 1 to 6 hours, preferably the reaction time is 2 to 4 hours.
  • the vacuum degree of vacuum drying is 3-10 torr, preferably the vacuum degree is 4-6 torr, and the temperature is 0-60°C. Preferably the temperature is 20-40°C.
  • the halogen organic solvent described in step (2) of the technical solution is selected from chloroform, dichloromethane, chlorobenzene, dichlorobenzene, dichloroethane, bromobenzene, dibromobenzene, bromoethane, dibromoethane One or more combinations of.
  • the poor organic solvent described in step (2) of the technical solution is selected from n-hexane, cyclohexane, cyclopentane, dichloromethane, chloroform, dichloroethane, bromoethane, dibromoethane, toluene, One or more combinations of o-xylene and p-xylene.
  • step (2) of the technical solution is 3 to 5 torr, and the temperature is 20 to 40°C.
  • the extraction solvents are dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and bisfluoroethylene carbonate.
  • One or more combinations of nitriles are selected from one or more combinations of acetonitrile, propionitrile and isopropionitrile, and alcohols are selected from methanol, ethanol, propanol, isopropanol,
  • butanol, isobutanol ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethanol monoethyl ether, ethylene glycol diethyl ether, propylene glycol methyl ether, and propylene glycol ethyl ether.
  • the vacuum degree during concentration is 4-6 torr and the temperature is 20-40°C. Concentrate to 1/6 to 1/3 of the original solution volume.
  • the low-polarity aprotic solvent described in step (3) of the technical solution is selected from petroleum ether, n-hexane, cyclohexane, cyclopentane, dichloromethane, chloroform, dichloroethane, bromoethane, two One or more combinations of bromoethane, toluene, o-xylene, and p-xylene.
  • the crystallization time described in step (3) of the technical solution is 12 to 48 hours.
  • the preferred time is 16 to 24 hours.
  • the crystallization temperature is -20 ⁇ -10°C.
  • step (4) of the technical solution adopts G4 sand core vacuum suction filtration.
  • the vacuum drying described in step (4) of the technical solution has a vacuum degree of 3 to 4 torr, and a temperature of 10 to 50°C. Preferably the temperature is 20-40°C.
  • the preparation method provided by the invention can prepare fluorosulfonic acid lithium salt with high yield and stable product quality. It can also effectively reduce impurities such as potassium ion, sodium ion, calcium ion, fluoride ion, sulfate ion and moisture in the product content.
  • the dripping is completed in about 2.5 hours, after the dripping is completed. Continue the reaction for 1 hour. After the reaction is complete, stop stirring and slowly return to room temperature. At this time, solids will settle on the bottom of the bottle. Pour the reaction solvent out of a 1000ml bottle (bottle D). The solid was then washed with perfluorohexane (50 mL ⁇ 5 times). The washing liquid is also collected in bottle D for recovery. After the washing is completed, the residual solvent perfluorohexane is drained under a vacuum of 4 torr under reduced pressure to obtain a white solid. The solid was washed with (100 mL ⁇ 3 times) dichloromethane. After washing, use 4torr vacuum to drain the residual dichloromethane.
  • the crude product of lithium fluorosulfonate can be obtained.
  • the crude product was dissolved in 50 mL of ultra-dry dimethyl carbonate. After being fully dissolved, it was filtered with a 0.22 ⁇ m pore size PTFE membrane.
  • the obtained clear liquid was concentrated using a rotary evaporator at a vacuum of 4 torr to obtain a viscous concentrate. 100mL of toluene was added to the concentrate to crystallize at -20°C for 24 hours. The crystals were filtered again, and the crystals were removed from the vacuum drying oven and dried at 35°C for 8 hours under a vacuum of 3 torr. 4.75 g of white lithium fluorosulfonate crystals were obtained. The yield was 89.6%.
  • the dripping is completed in about 3 hours, after the dripping is completed. Continue the reaction for 1 hour. After the reaction is completed, stop stirring and slowly return to room temperature. At this time, a solid will precipitate on the bottom of the bottle.
  • the crude product of lithium fluorosulfonate can be obtained.
  • the crude product was dissolved in 50 mL of ultra-dry acetonitrile. After being fully dissolved, it was filtered with a 0.22 ⁇ m pore size PTFE membrane. The obtained clear liquid was concentrated using a rotary evaporator at a vacuum of 4 torr to obtain a viscous concentrate.
  • 150mL of dichloromethane was added to the concentrate for crystallization at -20°C for 24 hours. The crystals were filtered again, and the crystals were removed from the vacuum drying oven and dried at 35°C for 8 hours under a vacuum of 3 torr.
  • the dripping is completed in about 2 hours, after the dripping is completed. Continue the reaction for 2 hours. After the reaction is completed, stop stirring and return to room temperature. At this time, a solid will precipitate on the bottom of the bottle.
  • the crude product of lithium fluorosulfonate can be obtained.
  • the crude product was dissolved in 50 mL of ultra-dry methanol. After being fully dissolved, it was filtered with a 0.22 ⁇ m pore size PTFE membrane. The obtained clear liquid was concentrated using a rotary evaporator at a vacuum of 4 torr to obtain a viscous concentrate.
  • 150mL of dichloroethane was added to the concentrate for crystallization at -20°C for 24 hours. The crystals were filtered again, and the crystals were removed from the vacuum drying oven and dried at 35°C for 8 hours under a vacuum of 3 torr. 4.81 g of white lithium fluorosulfonate crystals were obtained. The yield was 90.8%.
  • the obtained clear liquid was concentrated using a rotary evaporator at a vacuum of 4 torr to obtain a viscous concentrate.
  • 150mL of dichloromethane was added to the concentrate for crystallization at -20°C for 24 hours.
  • the crystals were filtered again, and the crystals were removed from the vacuum drying oven and dried at 30°C for 8 hours under a vacuum of 4 torr. 4.85 g of white lithium fluorosulfonate crystals were obtained.
  • the yield was 91.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种利用有机金属锂试剂制备氟磺酸锂的方法,包括以下步骤:(1)以有机金属锂试剂为锂源,在低温条件与全氟己烷为溶剂下,慢慢与氟磺酸进行混合反应得到氟磺酸锂粗品。粗品采用反应溶剂洗涤5次。(2)对粗品进行减压抽干,再加入氟磺酸锂的不良有机溶剂洗涤3次,再真空抽干不良有机溶剂得固体。(3)向固体中加入碳酸酯类、腈类、醇类有机溶剂萃取,过滤,浓缩,向浓缩液中加入低极性非质子溶剂,静止结晶。(4)晶体再过滤,真空干燥便得到氟磺酸锂产品。以上制备步骤在惰性气体保护下进行无水操作。本发明提供的制备方法能制备氟磺酸锂盐,产率高,而且产品质量稳定,还能有效降低产品中的钾离子、钠离子、钙离子、氟离子、硫酸根离子和水份等杂质含量。

Description

一种利用有机金属锂试剂制备氟磺酸锂的方法 技术领域
本发明涉及一种利用有机金属锂试剂制备氟磺酸锂的方法,属于化学合成技术领域。
背景技术
1.氟磺酸锂简写LiFSO 3,分子量为106.1。纯净的氟磺酸锂是一种白色固体。是一个可以广泛应用电子电池领域的化学物质,应用较广泛,纯度高的氟磺酸锂适合用于二次锂离子电池的非水电解液添加剂。其在电解液中具有的电化学稳定性及热稳定的特质,能提高二次锂离子电池的循环性能及高温存储性能,使用过程能抑制电解液的气体量产生,从而提高二次锂离子电池的总体性能,在一些领域中显示出会取代对环境有严重污染的电解液添加剂(例如二氟磷酸锂、高氯酸锂、六氟合砷酸锂等)。
2.以下是现有技术中关于对氟磺酸锂的技术简介。
3.文章(J.Chem.SOC.(A),1967,(3),355-358)报道了在乙酸溶剂中采用氟磺酸与乙酸锂发生盐交换反应方法制备氟磺酸锂。
4.专利EP2698350(A1)、CN 103492319B针对氟磺酸锂的电性特质深入研究,发现其特性能提高二次锂离子电池的高温电容量,使用过程能抑制电解液的气体量产生,从而提高电池总体性能,因此合成高纯的氟磺酸锂对于提升锂离子电池工艺将有莫大的帮助。专利中提出以氟磺酸与各种无机锂为锂源反应生成氟磺酸锂,然后通过后处理纯化得到氟磺酸锂成品,产品纯度较高。由于这些专利中都没有提及到利用金属有机锂试剂为锂源的制备方法,故本发明为了丰富氟磺酸锂的制备路线,提出采用金属有机锂为锂源的制备方法。
发明内容
1.本发明的目的在于丰富以上发明反应的锂源来源缺憾,提供另外一条全新路径制备氟磺酸锂的方法。
2.为了丰富上述锂源来源问题,本发明采用全新路径制备氟磺酸锂的技术方案 为包括以下步骤:
(1)以有机金属锂试剂为锂源,在低温条件与全氟己烷为溶剂下,慢慢与氟磺酸进行混合反应得到氟磺酸锂粗品。粗品采用反应溶剂洗涤5次。
(2)对粗品进行减压抽干,再加入氟磺酸锂的不良有机溶剂洗涤3次,再真空抽干不良有机溶剂得固体。
(3)向固体中加入碳酸酯类、腈类、醇类有机溶剂萃取,过滤,浓缩,向浓缩液中加入低极性非质子溶剂,静止结晶。
(4)晶体再过滤,真空干燥便得到氟磺酸锂产品。
3.以上制备步骤在惰性气体保护下进行无水操作。
4.技术方案步骤(1)中所述的有机金属锂试剂包括烷基锂、炔基锂、芳香基锂。
5.发明内容4中所述的烷基锂包括甲基锂、乙基锂、正丁基锂、异丁基锂、叔丁基锂、1,5二锂戊烷的一种或多种组合。
6.发明内容4中所述的炔基锂包括乙炔基锂、乙炔基二锂(碳化锂)、1,3-二锂丙炔的一种或多种组合。
7.发明内容4中所述的芳香基锂包括苯基锂、苄基锂,苯乙炔基锂、2,4,6-三甲基苯锂、萘锂的一种或多种组合。
8.技术方案步骤(1)中所述的低温条件为0~-78℃。优选温度为0~-20℃。
9.技术方案步骤(1)中所述的氟磺酸酸与有机金属锂试剂进行反应的摩尔比例为1.0:1.0~3.0,优选比例为1.0:1.0~1.5。
10.技术方案步骤(1)中所述的反应时间为1~6小时,优选反应时间为2~4小时。
11.技术方案步骤(2)中减压抽干的真空度为3~10torr,优选真空度为4~6torr,温度为0~60℃。优选温度为20~40℃。
12.技术方案步骤(2)中所述的卤素有机溶剂选自氯仿、二氯甲烷、氯苯、二氯苯、二氯乙烷、溴苯、二溴苯、溴乙烷、二溴乙烷的一种或多种组合。
13.技术方案步骤(2)中所述的不良有机溶剂选自正己烷、环己烷、环戊烷、二氯甲烷、氯仿、二氯乙烷、溴乙烷、二溴乙烷、甲苯、邻二甲苯、对二甲苯的一种或多种组合。
14.技术方案步骤(2)中所述的真空抽干的真空度为3~5torr,温度为20~ 40℃。
15.技术方案步骤(3)中萃取溶剂碳酸酯类碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、双氟代碳酸乙烯酯中的一种或多种组合的一种或多种组合,腈类选自乙腈、丙腈、异丙腈的一种或多种组合,醇类选自甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、乙二醇单甲醚、乙二醇二甲醚、二乙醇单乙醚、乙二醇二乙醚、丙二醇甲醚、丙二醇乙醚的一种或多种组合。
16.技术方案步骤(3)中所述的浓缩时真空度为4~6torr、温度为20~40℃。浓缩至原溶液体积的1/6~1/3。
17.技术方案步骤(3)中所述的低极性非质子溶剂选自石油醚、正己烷、环己烷、环戊烷、二氯甲烷、氯仿、二氯乙烷、溴乙烷、二溴乙烷、甲苯、邻二甲苯、对二甲苯的一种或多种组合。
18.技术方案步骤(3)中所述的结晶时间为12~48小时。优选时间为16~24小时。结晶温度为-20~-10℃。
19.技术方案步骤(4)中所述的过滤采用G4砂芯减压抽滤过滤。
20.技术方案步骤(4)中所述的真空干燥真空度为3~4torr,温度为10~50℃。优选温度为20~40℃。
21.本发明所达到的有益效果:
本发明提供的制备方法能制备氟磺酸锂盐,产率高,而且产品质量稳定,还能有效降低产品中的钾离子、钠离子、钙离子、氟离子、硫酸根离子和水份等杂质含量。
具体实施方式
1.下面对本发明作进一步描述,以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
2.以下所有操作均在无水无氧条件下完成。
3.实施例1
取100mL溶剂存储瓶(瓶A)移入1mol/L(乙基锂/苯)溶液60mL(0.06mol),待用。另取100mL溶剂存储瓶(瓶B)移入5g(0.05mol)的氟磺酸与50mL全 氟己烷,充分混合,待用。准备一个1000mL反应瓶,先往瓶里添加50mL全氟己烷与搅拌子,并冷却至-10℃,然后瓶A与瓶B溶液分别通过毛细管缓缓滴加至1000mL反应瓶中开始反应。保持反应温度-10℃。滴加约2.5小时完成,滴加完毕后。继续反应1小时。反应完毕后,停止搅拌,慢慢恢复室温,此时会有固体沉淀在瓶底,把反应溶剂倾倒出一个1000ml瓶中(瓶D)。然后采用全氟己烷(50mL×5次)洗涤固体。洗涤液体统一也收集到瓶D中回收。洗涤完毕后,采用减压4torr真空度下抽干残留溶剂全氟己烷得到白色固体。固体采用(100mL×3次)二氯甲烷洗涤。洗涤完后再采用4torr真空度把残余的二氯甲烷抽干。便可以得到氟磺酸锂粗品。粗品采用50mL超干碳酸二甲酯溶解,充分溶解后,采用0.22μm孔径的PTFE滤膜进行过滤处理,得到的清液采用旋转蒸发仪在4torr真空度下浓缩得到粘稠状浓缩物。向浓缩物中加入100mL甲苯在-20度下进行结晶24小时。再过滤得到晶体,晶体移去真空干燥箱中3torr真空度下35℃下干燥8小时。得到白色氟磺酸锂晶体4.75g。产率89.6%。检测结果:ICP-OES(ppm):Na +=18.8ppm,K +=24.1ppm,Fe 2+=2.6ppm,Ca 2+=13.4ppm;Mg 2+=0.13ppm;IC:F =20.1ppm,Cl =8.3ppm,SO 4 2-=30.9ppm。KF:H 2O=22.8ppm。 19FNMR(400MHz,DMSO-d6):40.23ppm。
4.实施例2
取100mL溶剂存储瓶(瓶A)移入1.6mol/L(正丁基锂/正己烷)溶液39.1mL(0.0625mol),待用。另取100mL溶剂存储瓶(瓶B)移入5g(0.05mol)的氟磺酸与50mL全氟己烷,充分混合,待用。准备一个1000mL反应瓶,先往瓶里添加50ml全氟己烷与搅拌子,并冷却至-15℃,然后瓶A与瓶B溶液分别通过毛细管慢慢滴加至反应瓶中开始反应。保持反应温度-15℃。滴加约3小时完成,滴加完毕后。继续反应1小时。反应完毕后,停止搅拌,慢慢恢复室温,此时会有固体沉淀在瓶底,把反应溶剂全氟己烷倾倒出一个1000ml瓶中(瓶D)。然后采用全氟己烷(50mL×5次)洗涤固体。洗涤液体统一也收集到瓶D中回收。洗涤完毕后,采用减压3torr真空度下抽干残留溶剂全氟己烷得到白色固体。固体采用(60mL×3次)二氯甲烷洗涤。洗涤完后再采用4torr真空度把残余的二氯甲烷抽干。便可以得到氟磺酸锂粗品。粗品采用50mL超干乙腈溶解,充分 溶解后,采用0.22μm孔径的PTFE滤膜进行过滤处理,得到的清液采用旋转蒸发仪在4torr真空度下浓缩得到粘稠状浓缩物。向浓缩物中加入150mL二氯甲烷在-20度下进行结晶24小时。再过滤得到晶体,晶体移去真空干燥箱中3torr真空度下35℃下干燥8小时。得到白色氟磺酸锂晶体4.89g。产率92.3%。检测结果:ICP-OES(ppm):Na +=26.3ppm,K +=31.1ppm,Fe 2+=1.6ppm,Ca 2+=13.2ppm;Mg 2+=0.78ppm;IC:F =24.9ppm,Cl =7.5ppm,SO 4 2-=34.5ppm。KF:H 2O=25.1ppm。 19FNMR(400MHz,DMSO-d6):40.23ppm。
5.实施例3
取100mL溶剂存储瓶(瓶A)移入1.6mol/L(苯基锂/环己烷)溶液35.9mL(0.0575mol),待用。另取100mL溶剂存储瓶(瓶B)移入5g(0.05mol)的氟磺酸与50mL全氟己烷,充分混合,待用。准备一个1000mL反应瓶,先往瓶里添加50mL全氟己烷与搅拌子,并冷却至-20℃,然后瓶A与瓶B溶液分别通过毛细管慢慢滴加至反应瓶中开始反应。保持反应温度-20℃。滴加约2小时完成,滴加完毕后。继续反应2小时。反应完毕后,停止搅拌,恢复室温,此时会有固体沉淀在瓶底,把反应溶剂环己烷倾倒出一个1000ml瓶中(瓶D)。然后采用全氟己烷(30mL×5次)洗涤固体。洗涤液体统一也收集到瓶D中回收。洗涤完毕后,采用减压3torr真空度下抽干残留的溶剂全氟己烷得到白色固体。固体采用(60mL×3次)氯仿洗涤。洗涤完后再采用4torr真空度把残余的氯仿抽干。便可以得到氟磺酸锂粗品。粗品采用50mL超干甲醇溶解,充分溶解后,采用0.22μm孔径的PTFE滤膜进行过滤处理,得到的清液采用旋转蒸发仪在4torr真空度下浓缩得到粘稠状浓缩物。向浓缩物中加入150mL二氯乙烷在-20度下进行结晶24小时。再过滤得到晶体,晶体移去真空干燥箱中3torr真空度下35℃下干燥8小时。得到白色氟磺酸锂晶体4.81g。产率90.8%。检测结果:ICP-OES(ppm):Na +=21.9ppm,K +=28.7ppm,Fe 2+=0.92ppm,Ca 2+=18.1ppm;Mg 2+=0.63ppm;IC:F =26.7ppm,Cl =9.1ppm,SO 4 2-=32.7ppm。KF:H 2O=20.8ppm。 19FNMR(400MHz,DMSO-d6):40.22ppm。
6.实施例4
在500mL反应瓶(瓶A)中加入乙炔二锂(碳化锂)1.045g(0.0275mol),再加入全氟己烷50mL,然后冷却至-78℃,待用。另取100mL溶剂存储瓶(瓶B)移入5g(0.025mol)的氟磺酸与50mL全氟己烷,充分混合,待用。然后瓶B中溶液通过毛细管慢慢滴加至反应瓶A中。保持反应温度-78℃。滴加约3小时完成,滴加完毕后。继续反应1小时。反应完毕后,停止搅拌,恢复室温,把反应溶剂全氟己烷倾倒出一个1000ml瓶中(瓶D)。然后采用全氟己烷(30mL×3次)洗涤固体。洗涤液体统一也收集到瓶D中回收。洗涤完毕后,采用减压3torr真空度下抽干残留的溶剂全氟己烷得到白色固体。便可以得到氟磺酸锂粗品。粗品采用50mL无水乙二醇单甲醚溶解,充分溶解后,采用0.22μm孔径的PTFE滤膜进行过滤处理,得到的清液采用旋转蒸发仪在4torr真空度下浓缩得到粘稠状浓缩物。向浓缩物中加入150mL二氯甲烷在-20度下进行结晶24小时。再过滤得到晶体,晶体移去真空干燥箱中4torr真空度下30℃下干燥8小时。得到白色氟磺酸锂晶体4.85g。产率91.5%。检测结果:ICP-OES(ppm):Na +=17.5ppm,K +=13.6ppm,Fe 2+=0.53ppm,Ca 2+=3.79ppm;Mg 2+=0.85ppm;IC:F =29.8ppm,Cl =16.4ppm,SO 4 2-=26.8ppm。KF:H 2O=21.2ppm。 19FNMR(400MHz,DMSO-d6):40.23ppm。
7.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (17)

  1. 一种利用有机金属锂试剂制备氟磺酸锂的方法,包括以下步骤:
    (1)以有机金属锂试剂为锂源,在低温条件与全氟己烷为溶剂下,慢慢与氟磺酸进行混合反应得到氟磺酸锂粗品;粗品采用反应溶剂洗涤5次;
    (2)对粗品进行减压抽干,再加入氟磺酸锂的不良有机溶剂洗涤3次,再真空抽干不良有机溶剂得固体;
    (3)向固体中加入碳酸酯类、腈类、醇类有机溶剂萃取,过滤,浓缩,向浓缩液中加入低极性非质子溶剂,静止结晶;
    (4)晶体再过滤,真空干燥便得到氟磺酸锂产品。
  2. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(1)中有机金属锂试剂包括烷基锂、炔基锂、芳香基锂。
  3. 根据权利要求2所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述中的烷基锂包括甲基锂、乙基锂、正丁基锂、异丁基锂、叔丁基锂、1,5二锂戊烷的一种或多种组合。
  4. 根据权利要求2所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述中的炔基锂包括乙炔基锂、乙炔基二锂(碳化锂)、1,3-二锂丙炔的一种或多种组合。
  5. 根据权利要求2所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述中的芳香基锂包括苯基锂、苄基锂,苯乙炔基锂、2,4,6-三甲基苯锂、萘锂的一种或多种组合。
  6. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(1)中低温条件为0~-78℃,优选温度为0~-20℃。
  7. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(1)中氟磺酸与有机金属锂试剂进行反应的摩尔比例为1.0:1.0~3.0,优选比例为1.0:1.0~1.5。
  8. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(1)中反应时间为1~6小时,优选反应时间为2~4小时。
  9. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(2)中减压抽干的真空度为3~10torr,优选真空度为4~6torr, 温度为0~60℃,优选温度为20~40℃。
  10. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(2)中不良有机溶剂选自正己烷、环己烷、环戊烷、二氯甲烷、氯仿、二氯乙烷、溴乙烷、二溴乙烷、甲苯、邻二甲苯、对二甲苯的一种或多种组合。
  11. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(2)中真空抽干的真空度为3~5torr,温度为20~40℃。
  12. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(3)中萃取溶剂碳酸酯类碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯、双氟代碳酸乙烯酯中的一种或多种组合的一种或多种组合,腈类选自乙腈、丙腈、异丙腈的一种或多种组合,醇类选自甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、乙二醇单甲醚、乙二醇二甲醚、二乙醇单乙醚、乙二醇二乙醚、丙二醇甲醚、丙二醇乙醚的一种或多种组合。
  13. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(3)中浓缩时真空度为4~6torr、温度为20~40℃,浓缩至原溶液体积的1/6~1/3。
  14. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(3)中低极性非质子溶剂选自石油醚、正己烷、环己烷、环戊烷、二氯甲烷、氯仿、二氯乙烷、溴乙烷、二溴乙烷、甲苯、邻二甲苯、对二甲苯的一种或多种组合。
  15. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(3)中结晶时间为12~48小时,优选时间为16~24小时,结晶温度为-20~-10℃。
  16. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(4)中过滤采用G4砂芯减压抽滤过滤。
  17. 根据权利要求1所述的一种利用有机金属锂试剂制备氟磺酸锂的方法,其特征在于,所述步骤(4)中真空干燥真空度为3~4torr,温度为10~50℃,优选温度为20~40℃。
PCT/CN2020/094586 2020-06-05 2020-06-05 一种利用有机金属锂试剂制备氟磺酸锂的方法 WO2021082447A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/094586 WO2021082447A1 (zh) 2020-06-05 2020-06-05 一种利用有机金属锂试剂制备氟磺酸锂的方法
CN202080005196.7A CN112739651B (zh) 2020-06-05 2020-06-05 一种利用有机金属锂试剂制备氟磺酸锂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094586 WO2021082447A1 (zh) 2020-06-05 2020-06-05 一种利用有机金属锂试剂制备氟磺酸锂的方法

Publications (1)

Publication Number Publication Date
WO2021082447A1 true WO2021082447A1 (zh) 2021-05-06

Family

ID=75609553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094586 WO2021082447A1 (zh) 2020-06-05 2020-06-05 一种利用有机金属锂试剂制备氟磺酸锂的方法

Country Status (2)

Country Link
CN (1) CN112739651B (zh)
WO (1) WO2021082447A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113562746B (zh) * 2021-07-14 2023-09-01 珠海理文新材料有限公司 一种氟磺酸钾的制备方法
CN113562748A (zh) * 2021-07-23 2021-10-29 广州理文科技有限公司 一种超声波协助制备氟磺酸锂晶体的方法和装置
CN113502563B (zh) * 2021-09-03 2022-01-28 江苏恒力化纤股份有限公司 一种带追踪剂再生聚酯纤维的制备方法
CN115784265A (zh) * 2022-12-27 2023-03-14 山东永浩新材料科技有限公司 一种氟磺酸锂的精制提纯方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649301A (zh) * 2011-04-11 2015-05-27 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
JP2016008145A (ja) * 2014-06-23 2016-01-18 森田化学工業株式会社 フルオロ硫酸リチウムとそれを含む溶液、およびその製造方法
CN105858626A (zh) * 2016-03-31 2016-08-17 南京远淑医药科技有限公司 一种双氟磺酰亚胺锂盐的制备方法
CN109928371A (zh) * 2019-04-12 2019-06-25 广州理文科技有限公司 一种双氟磺酰亚胺锂盐的制备方法
JP2019218249A (ja) * 2018-06-21 2019-12-26 株式会社日本触媒 フルオロスルホン酸リチウムの保管方法、取扱い方法、包装体及び包装体の製造方法
CN111183114A (zh) * 2017-10-11 2020-05-19 大金工业株式会社 氟磺酸锂的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649301A (zh) * 2011-04-11 2015-05-27 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
JP2016008145A (ja) * 2014-06-23 2016-01-18 森田化学工業株式会社 フルオロ硫酸リチウムとそれを含む溶液、およびその製造方法
CN105858626A (zh) * 2016-03-31 2016-08-17 南京远淑医药科技有限公司 一种双氟磺酰亚胺锂盐的制备方法
CN111183114A (zh) * 2017-10-11 2020-05-19 大金工业株式会社 氟磺酸锂的制造方法
JP2019218249A (ja) * 2018-06-21 2019-12-26 株式会社日本触媒 フルオロスルホン酸リチウムの保管方法、取扱い方法、包装体及び包装体の製造方法
CN109928371A (zh) * 2019-04-12 2019-06-25 广州理文科技有限公司 一种双氟磺酰亚胺锂盐的制备方法

Also Published As

Publication number Publication date
CN112739651A (zh) 2021-04-30
CN112739651B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021082447A1 (zh) 一种利用有机金属锂试剂制备氟磺酸锂的方法
EP3381923B1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
JP5794028B2 (ja) テトラフルオロホウ酸リチウム溶液の製造方法
CN112739652B (zh) 一种氟磺酸锂盐的制备方法
JP5945603B2 (ja) 五員環状アニオン塩を調製するための方法
CN111573639A (zh) 一种利用有机金属锂试剂制备双氟磺酰亚胺锂的方法
JP6370852B2 (ja) ジスルホニルアミド塩の顆粒または粉末
WO2023202093A1 (zh) 一种双氟磺酰亚胺锂的制备方法、锂离子电池
KR102285464B1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR101982602B1 (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법(1)
CN104310421A (zh) 一种高纯四氟硼酸锂的制备方法
JP5402634B2 (ja) 精製された含フッ素ビススルホニルイミドのアンモニウム塩の製造方法
CN114014280B (zh) 一种双氟磺酰亚胺锂的制备方法
JPS5981870A (ja) 非水電解液用溶質の製造法
CN113929711A (zh) 一种二氟草酸硼酸锂的制备方法
CN111153808A (zh) 甲胺氢碘酸盐和甲脒氢碘酸盐原料的提纯方法
KR20200114967A (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
CN110627742A (zh) 一种含有至少一种环状配体结构的化合物的制备方法和纯化方法
KR20200114966A (ko) 불소 음이온의 함유량이 저감된 비스(플루오로설포닐)이미드 리튬염(LiFSI)의 제조 방법
KR102666044B1 (ko) 비스(플루오로술포닐)이미드 금속염의 대량 제조방법
JP2023034081A (ja) 含フッ素環状スルホニルイミド塩
JP2023034110A (ja) 含フッ素環状スルホニルイミド塩
WO2023020319A1 (zh) 一种咪唑羧酸酯的制备方法及其应用
JP2023034118A (ja) 含フッ素環状スルホニルイミド塩
KR20230085823A (ko) 비스(플루오로술포닐)이미드 금속염 용액의 경제적인 대량 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881396

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20881396

Country of ref document: EP

Kind code of ref document: A1