WO2020175907A1 - 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2020175907A1
WO2020175907A1 PCT/KR2020/002732 KR2020002732W WO2020175907A1 WO 2020175907 A1 WO2020175907 A1 WO 2020175907A1 KR 2020002732 W KR2020002732 W KR 2020002732W WO 2020175907 A1 WO2020175907 A1 WO 2020175907A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
electrolyte
formula
lithium
Prior art date
Application number
PCT/KR2020/002732
Other languages
English (en)
French (fr)
Inventor
김현승
안유하
이철행
오정우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080013584.XA priority Critical patent/CN113678298A/zh
Priority to JP2021548615A priority patent/JP7233801B2/ja
Priority to US17/431,890 priority patent/US20220140391A1/en
Priority to EP20762755.5A priority patent/EP3913719A4/en
Publication of WO2020175907A1 publication Critical patent/WO2020175907A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a lithium secondary battery with excellent high temperature characteristics and a lithium secondary battery including the same.
  • Secondary battery-based technology is the most suitable technology for various purposes, and can be applied to personal IT devices as it can be miniaturized, and can also be applied to large devices such as power storage devices.
  • lithium-ion batteries which are the battery system with the highest energy density theoretically, are in the spotlight.
  • Lithium-ion batteries are largely composed of transition metal oxides containing lithium.
  • It is composed of a positive electrode, a negative electrode capable of storing lithium, an electrolyte used as a medium to transfer lithium ions, and a separator.
  • the electrolyte causes a reduction decomposition reaction, and the reduced decomposition product forms a solid electrolyte interphase (SEI) film that allows lithium ions to permeate on the cathode interface, but inhibits further decomposition of the electrolyte.
  • SEI solid electrolyte interphase
  • the SEI film is sufficient to inhibit further electrolyte degradation.
  • the electrolyte is mainly decomposed during storage, and the charged graphite is discharged, as a result, the potential of the entire secondary battery is lowered.
  • the lithium salt contained in the electrolyte occurs.
  • SEI formed on the surface of the anode and cathode after activation of by-products generated by the decomposition reaction As the membrane is decomposed, the passivation ability of the SEI membrane is degraded, resulting in an additional decomposition of the electrolyte, causing self-discharge.
  • the present invention aims to solve the above problems and provides an electrolyte for a lithium secondary battery capable of removing by-products generated by the decomposition reaction of lithium salts at high temperatures.
  • the lithium secondary battery electrolyte by including the lithium secondary battery electrolyte, it is intended to provide a lithium secondary battery with improved high temperature lifespan and high temperature storage characteristics.
  • the present invention includes a lithium salt, a first additive, a second additive, and an organic solvent, the first additive comprises a compound represented by the following formula 1, and the second additive It provides an electrolyte for a lithium secondary battery comprising a compound represented by the following formula (2).
  • An alkylene group, and the ring show is a substituted or unsubstituted heteroring having 3 to 8 carbon atoms containing at least one nitrogen atom and including at least one double bond in the ring)
  • the present invention provides a lithium secondary battery including a positive electrode; a negative electrode; and an electrolyte for a lithium secondary battery of the present invention.
  • the compound represented by Formula 1 and the compound represented by Formula 2 contained in the lithium secondary battery electrolyte of the present invention are compounds containing N atoms in the structure, and the N atoms act as Lewis bases and are electrolytes under high temperature conditions.
  • the Lewis acid generated as a decomposition product it is possible to suppress further decomposition of the organic solvent in the electrolyte. Therefore, it is possible to prevent damage to the film formed on the electrode interface by reaction by-products in advance, thereby minimizing the increase in the internal resistance of the battery.
  • deterioration of the battery life characteristics can be minimized, a lithium secondary battery with improved high temperature life characteristics and high temperature storage characteristics can be realized.
  • Figure 2 shows the resistance increase rate of the secondary battery measured according to Experimental Example 2
  • the electrolyte for a lithium secondary battery according to the present invention includes a lithium salt, a first additive, a second additive, and an organic solvent, and the first additive includes a compound represented by the following formula (1), and the second additive Includes a compound represented by the following formula (2).
  • Lithium salt is used as a medium to transfer ions in lithium secondary batteries. Typically,
  • It may contain at least one or more compounds selected from the group consisting of, and preferably contain.
  • the electrolyte for a lithium secondary battery of the present invention uses an additive containing a compound represented by the following formula 1 in order to remove by-products generated by the chain reaction as shown in the reaction formula 1 above.
  • a compound represented by the above formula (1) to formula (1) shows to 1 (: The number of days of at least one compound selected from the group consisting of the compounds represented by.
  • S Silver is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, and 3 ⁇ 4 to 3 ⁇ 4 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, and an alkyl group having 1 to 5 carbon atoms in which at least one hydrogen element is substituted with a halogen element. It is selected from the group consisting of.
  • the compound represented by Chemical Formula 1 may be selected from the group consisting of compounds represented by the following Chemical Formulas 1show-1 to 1show-5.
  • PF 5 is a Lewis oxide compound.
  • Lewis acid compounds such as PF 5 form an organic solvent or an SEI film on the electrode interface. Therefore, lithium is used to suppress the decomposition reaction of the SEI film under high temperature conditions and to solve problems such as an increase in the resistance of the battery and deterioration of the battery life characteristics due to the generation of decomposition products. It is necessary to remove the Lewis acid compound, which is a product of high temperature decomposition of salts.
  • Lewis oxide compounds are species that receive electron pairs, and Lewis bases are species that can give electron pairs, and compounds with a strong nature to give electrons can be used as Lewis bases.
  • a compound corresponding to a Lewis base capable of reacting with Lewis acid was used as an additive included in the electrolyte.
  • Ring A in the compound represented by Formula 1 above is nitrogen having a lone pair of electrons. It contains at least one element and supplies electrons to a Lewis acid compound such as PF 5 , including a triple bond at the end, and performs a PF 5 and Lewis acid-base reaction instead of the components constituting the SEI film formed on the electrode. Therefore, by removing the hair, 2020/175907 1»(:1 ⁇ 1 ⁇ 2020/002732
  • the 8£1 membrane can be prevented from being damaged.
  • the 8£1 component can be modified, and the 8£1 film can be formed more stably, resulting in the high temperature stability of the 8£1 film itself. Can be improved.
  • the first additive is 0.02 parts by weight to 1.0 parts by weight, preferably 0.3 parts by weight to 1.0 parts by weight, based on 100 parts by weight of the lithium secondary battery electrolyte.
  • the Lewis oxide compound can be sufficiently removed.
  • the electrolyte for a lithium secondary battery of the present invention is represented by the formula (2) as a second additive.
  • the compound represented by Chemical Formula 2 decomposes to form an 8£1 film formed on the surface of the cathode, and the 8£1 film containing the decomposition product of the compound represented by Chemical Formula 2 is represented by the above formula 1 It is formed more sturdily than the case of using only the compound, which can improve the high temperature durability of the battery.
  • the second additive may be contained in an amount of 0.02 parts by weight to 1.0 parts by weight, more preferably 0.3 parts by weight to 1.0 parts by weight, and preferably 0.3 parts by weight to 0.7 parts by weight, based on 0 parts by weight of the lithium secondary battery electrolyte. If the lithium imidazole salt represented by the above formula 2 is included within the above range, the initial resistance of the battery increases 2020/175907 PCT/KR2020/002732 High temperature durability is achieved by forming a stable SEI film on the cathode while minimizing it.
  • the electrolyte for a lithium secondary battery according to the present invention forms a stable film on the surface of the cathode and anode, suppresses the decomposition of the electrolyte solvent, and improves the mobility of lithium ions without significantly increasing the initial resistance.
  • Other additives may additionally be included that can serve as supplements.
  • additives are vinylsilane compounds, phosphates or
  • At least one compound selected from the group consisting of phosphite-based compounds, sulfite-based compounds, sulfone-based compounds, sulfate-based compounds, sultone-based compounds, halogen-substituted carbonate-based compounds, nitrile-based compounds, borate-based compounds, and lithium salt-based compounds May include.
  • the vinylsilane-based compound is electrochemically reduced on the surface of the cathode to form a stable SEI, thereby improving the durability of the battery. More specifically, the vinylsilane-based compound may include tetravinylsilane and the like.
  • the phosphate-based or phosphite-based compound is electrochemically decomposed on the surface of the positive electrode and the negative electrode to help form the SEI film, and can improve the life characteristics of the secondary battery. More specifically, lithium
  • Difluoro (bisoxalato) phosphate Lifluoro (bisoxalato) phosphate, lithium difluoro phosphate, tetramethyl trimethyl silyl phosphate, trimethyl silyl phosphite,
  • Tris (2, 2, 2 -trifluoroethyl) phosphate and tris (trifluoroethyl) phosphite may comprise one or more compounds selected from the group consisting of.
  • the sulfite-based compound is ethylene sulfite, methylethylene sulfite, ethyl
  • Propylene sulfite, 4, 6-dimethylpropylene sulfite, 4, 6-diethylpropylene sulfite, and 1,3-butylene glycol sulfite may contain at least one compound selected from the group consisting of.
  • the sulfone-based compound may include at least one compound selected from the group consisting of divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, and methyl vinyl sulfone.
  • the sulfate-based compound is ethylene sulfate (Esa),
  • Trimethylene sulfate (TMS), and methyl trimethylene sulfate (MTMS) may include one or more compounds selected from the group consisting of.
  • the sultone-based compound is 1,3 -propane sultone (PS), 1,4 -butane sultone, ethene sultone, 2020/175907 1»(:1 ⁇ 1 ⁇ 2020/002732
  • 1,3 -propenesultone 113 ⁇ 4, 1,4 -butenesultone, and 1 -methyl-1,3 -propenesultone may contain at least one or more compounds selected from the group consisting of.
  • the nitrile-based compound is succinonitrile ratio, adiponitrile),
  • the lithium salt-based compound is a compound different from the lithium salt contained in the electrolyte
  • It may contain one or more compounds selected from the group consisting of women and foreigners.
  • the other additives may be contained in an amount of 20 parts by weight or less, preferably 10 parts by weight or less, based on 100 parts by weight of the electrolyte for a lithium secondary battery.
  • the content of the additives exceeds the above range, the lithium secondary battery charges and discharges.
  • the internal reaction of the electrolyte may occur excessively, and it may not be sufficiently decomposed at high temperature, so that it may remain unreacted or precipitated in the electrolyte, thereby reducing the lifespan or resistance characteristics of the lithium battery.
  • the organic solvent is a solvent commonly used in lithium secondary batteries, for example, an ether compound, A compound, an amide compound, a linear carbonate compound, a cyclic carbonate compound, or a nitrile compound may be used alone or in combination of two or more.
  • a cyclic carbonate compound, a linear carbonate compound, or a carbonate compound, which is a mixture thereof, can be used as an organic solvent.
  • cyclic carbonate compound examples include ethylene carbonate ⁇ 0, propylene carbonate 0, 1,2-butylene carbonate, 2, 3-butylene carbonate,
  • Carbonate is a highly viscous organic solvent and has a high dielectric constant, so it can be preferably used because it dissociates lithium salts in the electrolyte well.
  • a low viscosity, low dielectric constant linear carbonate compound such as ethyl methyl carbonate, diethyl carbonate or dimethyl carbonate is used.
  • an electrolyte having a high electrical conductivity can be made, so that it can be used more preferably.
  • esters in the organic solvent methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, butyrolactone, 1 valerolactone, caprolactone, 0 -valerolactone and 8-
  • a single compound selected from the group consisting of caprolactone, or a mixture of at least two or more may be used, but is not limited thereto.
  • a lithium secondary battery according to an embodiment of the present invention includes a positive electrode, a negative electrode, a separator that can be selectively placed between the positive electrode and the negative electrode, and an electrolyte for a lithium secondary battery.
  • an electrolyte for a lithium secondary battery in this case, in the electrolyte for the lithium secondary battery As the details are the same as the above, detailed explanations are omitted.
  • the positive electrode can be prepared by coating a positive electrode active material slurry including a positive electrode active material, an electrode binder, an electrode conductive material, and a solvent on the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it does not cause chemical changes in the battery and has conductivity, and for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface treatment with carbon, nickel, titanium, silver, etc. can be used on the surface. At this time, the positive electrode current collector may strengthen the bonding strength of the positive electrode active material by forming microscopic irregularities on the surface, and film, sheet, foil It can be used in various forms such as net, porous material, foam, and non-woven material.
  • the positive electrode active material is capable of reversible intercalation and deintercalation of lithium.
  • the lithium composite metal oxide may include a lithium composite metal oxide containing lithium and at least one metal such as cobalt, manganese, nickel or aluminum. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (for example, a lithium-manganese oxide).
  • LiMn0 2 , LiMn 2 0 4, etc. lylium-cobalt oxide (for example, 00 0 0 2, etc.), lylium-nickel oxide (for example, 1 0 2, etc.), lylium-nickel- Manganese oxide (for example, 0 2 (here, 0 ⁇ Y1 ⁇ 1), LiMn 2-zl Ni zl 0 4 (here, 0 ⁇ Z1 ⁇ 2), etc.),
  • LiCo0 2 , LiMn0 2 , LiNi0 2 , and lithium nickel manganese cobalt oxide are LiCo0 2 , LiMn0 2 , LiNi0 2 , in that it can increase the capacity characteristics and stability of the battery . .2 )0 2 , Li(Nio .5 Mno .3 Coo .2 )0 2 , or Li(Nio . G Mno . I Coo .
  • lithium nickel cobalt aluminum oxide e.g., LiNi 0.8 Coo .15 Alo. o 5 0 2 , etc.
  • lithium nickel cobalt aluminum oxide e.g., LiNi 0.8 Coo .15 Alo. o 5 0 2 , etc.
  • days such as days, and improved remarkably also the lithium composite metal oxide, considering the effects of the bovine type and content of the non-control member for forming the lithium composite metal oxide is Li (Nio .6 Mn 0.2 Coo.2)02, Li(Nio.5Mn ().3 Co ().2 )02, Li(Nio. 7 Mno.i5Coo.i5) ( ) 2 or Li(Nio.i 3 ⁇ 4 Mn ( ).i Coo.i)02, etc., any one or a mixture of two or more of them may be used.
  • the electrode binder is a combination of the positive electrode active material and the electrode conductive material, and the current collector.
  • Rubber-carboxymethylcellulose SBR-CMC
  • fluorine rubber fluorine rubber
  • various copolymers SBR-carboxymethylcellulose (SBR-CMC)
  • the electrode conductive material is used to further improve the conductivity of the positive electrode active material.
  • the electrical material for the electrode is not particularly limited as long as it does not induce chemical changes in the cell and has conductivity, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; metal powders such as fluorinated carbon, aluminum, nickel powder; zinc oxide , Conductive whiskey such as potassium titanate; Conductive metal oxides such as titanium oxide; conductive materials such as polyphenylene derivatives, etc.
  • a specific example of a commercially available conductive material is Chevron Chemical Company, a series of acetylene blacks, and Denka Singapore Private Limited), Gulf Oil Company products, etc.), Ketjenblack, EC series (Armak Company), Vulcan XC-72 (Cabot Company) and Super P (Timcal) have.
  • the solvent may contain an organic solvent such as NMP (N-methyl-2-pyrrolidone), and the positive electrode active material, and optionally an electrode binder and an electrode conductive material, in an amount such that a desirable viscosity is included. Can be used.
  • NMP N-methyl-2-pyrrolidone
  • the cathode may be produced by coating a cathode active material slurry including a cathode active material, a binder for an electrode, a conductive material for an electrode, a solvent, etc. on the cathode current collector.
  • the cathode is a metal.
  • the current collector itself can be used as an electrode.
  • the cathode current collector has a high level of chemical change in the cell.
  • it has conductivity, it is not particularly limited, for example, copper, stainless steel, aluminum, nickel, titanium, plastic carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum -Cadmium alloy can be used. Also, as with the anode current collector, it is possible to strengthen the bonding strength of the cathode active material by forming fine irregularities on the surface, and film, sheet, foil, net, porous material, foam, non-woven fabric, etc. It can be used in various forms.
  • the cathode active material includes natural graphite, artificial graphite, carbonaceous materials; lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe metals (Me);
  • Alloys composed of metals (Me); oxides of the metals (Me); and one or more negative electrode active materials selected from the group consisting of a composite of the metals (Me) and carbon.
  • separator conventional porous polymer films used as separators, for example, ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, etc.
  • ethylene homopolymer propylene homopolymer
  • ethylene/butene copolymer ethylene/butene copolymer
  • ethylene/hexene copolymer ethylene/methacrylate copolymer
  • ethylene/methacrylate copolymer etc.
  • Ethylene carbonate (EC): ethyl methyl carbonate (EMC) 3: 7 mixed in a volume ratio
  • a non-aqueous solvent was prepared by dissolving the organic solvent LiPF 6 to a concentration of 0.7 M and LiFSI to a concentration of 0.3 M.
  • a positive electrode active material LiNi 0.8 Coo .i Mno .i 0 2 ; NCM811), carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed in a weight ratio of 97.5: 1:1.5 Then, the anode active material slurry (solid content: 50% by weight) was added to N-methyl-2-pyrrolidone (NMP) as a solvent.
  • NMP N-methyl-2-pyrrolidone
  • the anode active material slurry was formed of an aluminum (A1) thin film of an anode current collector having a thickness of After coating and drying to produce a positive electrode, a roll press was performed to prepare a positive electrode.
  • carbon black as a conductive material
  • SBR-CMC styrene-butadiene rubber-carboxymethylcellulose
  • An electrode assembly was manufactured by sequentially laminating a polyolefin-based porous separator coated with the positive electrode, inorganic particles (A1 2 0 3 ) and a negative electrode. Thereafter, the electrode assembly was stored in a pouch-type battery case, and the lithium was carried out. An electrolyte for a secondary battery was injected to prepare a pouch-type lithium secondary battery.
  • Lithium in the same manner as in Example 1 except that 0.2 g of tetravinylsilane, 1.0 g of lithium difluorophosphate, 1.0 g of ethylene sulfonate, 0.5 g of 1,3-propane sultone and 0.2 g of LiBF 4 and 6.0 g of fluorine benzene were added.
  • An electrolyte for a secondary battery and a lithium secondary battery were prepared.
  • CC-CV constant current-constant voltage
  • Discharge capacity retention rate (%) (100 cycles rear discharge capacity/initial discharge capacity) xl00(%)
  • Resistance increase rate (%) ⁇ (resistance after 100 cycles-initial resistance)/ (initial resistance) ⁇ xl00(%)
  • the lithium secondary battery manufactured in Example 1 is compared with the lithium secondary battery manufactured in Comparative Examples 1 to 3, even when charging and discharging 100 cycles at a high temperature (45 O C).
  • the chain decomposition reaction is suppressed, the loss of reversible lithium ions is minimized, so after 100 cycles, the discharge capacity retention rate (%) is improved, and the resistance increase rate (%) decreases.
  • CC-CV constant current-constant voltage
  • the increase rate (%) was calculated and shown in Fig. 2. At this time, the voltage drop was measured using a PNE-0506 charger/discharger (manufacturer: PNE solution, 5 V, 6).
  • the lithium secondary battery manufactured in Example 1 has a lower resistance increase rate compared to the lithium secondary battery manufactured in Comparative Examples 1 to 3 even after being stored for 4 weeks at a high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬염, 제1첨가제, 제2첨가제 및 유기용매를 포함하고, 상기 제1첨가제는 화학식 1로 표시되는 화합물을 포함하며, 상기 제2첨가제는 화학식 2로 표시되는 화합물을 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.

Description

명세서
발명의명칭:리튬이차전지용전해질및이를포함하는리튬이차 전지
기술분야
[I] 과字!츰워 (들')과의상호이용
四 본출원은 2019년 02월 28일자한국특허출원제 2019-0024104호에기초한 우선권의이익을주장하며,해당한국특허출원의문헌에개시된모든내용은 본명세서의일부로서포함된다.
[3]
[4] 기숨분야
[5] 본발명은고온특성이우수한리튬이차전지용전해질및이를포함하는리튬 이차전지에관한것이다.
배경기술
[6] 정보사회의발달로인한개인 IT디바이스와전산망이발달되고이에수반하여 전반적인사회의전기에너지에대한의존도가높아지면서,전기에너지를 효율적으로저장하고활용하기위한기술개발이요구되고있다.
[7] 이차전지기반기술은여러용도에가장적합한기술로서 ,소형화가가능하여 개인 IT디바이스등에적용될수있고,전력저장장치등과같은대형 디바이스에도적용될수도있다.
[8] 이차전지기술중에서도이론적으로에너지밀도가가장높은전지시스템인 리튬이온전지가각광을받고있다.
[9] 리튬이온전지는,크게리튬을함유하고있는전이금속산화물로구성된
양극과,리튬을저장할수있는음극,리튬이온을전달하는매개체가되는 전해질,세퍼레이터로구성되어있다.이중전해질의경우전지의
안정성 (stability, safety)등에큰영향을주는구성성분으로알려지면서,이에 대해많은연구가진행되고있다.
[1이 한편,전지의활성화공정동안전해질은환원분해반응을일으키고,환원 분해된산물은음극계면상에리튬이온은투과시키지만,전해질의추가적인 분해는억제하는 Solid electrolyte interphase (SEI)막을형성한다.
[I I] SEI막은전자전도성을가지지않지만,이온전도성을가지고있으므로,
리튬이온이동을도와주는역할을한다.
[12] 한편, SEI막이추가적인전해질분해를억제시킬수있을정도로충분한
부동태능력을가지지못하는경우,저장중에전해질이주가적으로분해되어 충전된흑연이자가방전되고,그결과전체이차전지의전위가저하하는현상이 나타나게된다.예컨대,고온조건하에서는전해질에포함된리튬염의분해 반응에의하여발생되는부산물이활성화후양극및음극의표면에형성된 SEI 막을되려분해시켜, SEI막의부동태 (passivation)능력을저하시키고,이로인해 전해질이추가적으로분해되어,자가방전이유발되는문제가야기된다.
[13] 이에 ,고온조건하에서 SEI막의부동태능력을유지하기위하여 ,염의
분해산물발생을억제할수있는성분을포함하는전해질에대한연구가시급한 상황이다.
[14]
[15] 서해기숨무허
[16] 공개특허공보제 10-2017-0132239호
발명의상세한설명
기술적과제
[17] 본발명은상기와같은문제점을해결하기위한것으로,고온에서리튬염의 분해반응에따라발생한부산물을제거할수있는리튬이차전지용전해질을 제공하고자한다.
[18] 또한,본발명에서는상기리튬이차전지용전해질을포함함으로써,고온수명 특성및고온저장특성이향상된리튬이차전지를제공하고자한다.
과제해결수단
[19] 일구현예에따르면,본발명은리튬염,제 1첨가제,제 2첨가제및유기용매를 포함하고,상기제 1첨가제는하기화학식 1로표시되는화합물을포함하며,상기 제 2첨가제는하기화학식 2로표시되는화합물을포함하는리륨이차전지용 전해질을제공한다.
[2이 [화학식 1]
[21]
Figure imgf000004_0001
[22] (상기화학식 1에서,상기 II은치환또는비치환된탄소수 1내지 5인
알킬렌기이고,상기고리쇼는하나이상의질소원자를포함하며,고리내에 적어도하나이상의이중결합을포함하는치환또는비치환된탄소수 3내지 8인 헤테로고리임)
[23]
[24] [화학식 2] 2020/175907 1»(:1^1{2020/002732
[25]
Figure imgf000005_0001
[26] (상기화학식 2에서 ,상기 II’는 다 0正2,(:¾ (:21正4,(:2¾¾,(:2¾¾,(:此, (그正7,(〕 此,(〕3¾¾,(〕4 ,(〕4¾1 (〕4¾¾(〕 „,(〕止5〔 〕¾,(〕2¾〔犯¾,(〕2¾1네¾ 및 0^00^3으로이루어진군에서선택되는적어도하나의작용기임)
[27]
[28] 또한,본발명은양극;음극;및본발명의리튬이차전지용전해질;을포함하는 리튬이차전지를제공한다.
발명의효과
[29] 본발명의리튬이차전지용전해질에포함되는화학식 1로표시되는화합물및 화학식 2로표시되는화합물은구조내에 N원자를포함하는화합물로,상기 N 원자는루이스염기로작용하여고온조건하에서전해질분해산물로발생하는 루이스산을제거함으로써전해질내의유기용매의추가분해를억제할수 있도록한다.따라서,반응부산물에의하여전극계면상에형성된 막이 손상되는것을미연에방지하여전지내저항이증가하는것을최소화하고,전지 수명특성이열화되는것을최소화할수있으므로,고온수명특성및고온저장 특성이개선된리튬이차전지를구현할수있다.
도면의간단한설명
[3이 본명세서에첨부되는다음의도면은본발명의바람직한실시예를예시하는 것이며,전술한발명의내용과함께본발명의기술사상을더욱이해시키는 역할을하는것이므로,본발명은그러한도면에기재된사항에만한정되어 해석되어서는아니다.
[31] 도 1은실험예 1에따라측정된이차전지의용량유지율및저항증가율을
나타내는그래프이다.
[32] 도 2는실험예 2에따라측정된이차전지의저항증가율을나타내는
그래프이다.
발명의실시를위한최선의형태
[33] 이하,본발명에대해보다자세히설명한다. 2020/175907 1»(:1^1{2020/002732
[34] 본명세서 및청구범위에사용된용어나단어는통상적이거나사전적인의미로 한정해서 해석되어서는아니되며,발명자는그자신의 발명을가장최선의 방법으로설명하기위해용어의 개념을적절하게정의할수있다는원칙에 입각하여본발명의 기술적사상에부합하는의미와개념으로해석되어야만 한다.
[35] 본명세서에서사용되는용어는단지 예시적인실시예들을설명하기 위해 사용된것으로,본발명을한정하려는의도는아니다.단수의표현은문맥상 명백하게다르게뜻하지 않는한,복수의표현을포함한다.
[36] 본명세서에서, "포함하다’’, "구비하다’’또는 "가지다’’등의용어는실시된 특징,숫자,단계,구성요소또는이들을조합한것이존재함을지정하려는 것이지,하나또는그이상의다른특징들이나숫자,단계,구성요소,또는 이들을조합한것들의존재또는부가가능성을미리 배제하지 않는것으로 이해되어야한다.
[37]
[38] <리튬이차전지용전해질>
[39] 본발명에 따른리튬이차전지용전해질은,리튬염,제 1첨가제 ,제 2첨가제및 유기용매를포함하며,상기제 1첨가제는하기화학식 1로표시되는화합물을 포함하고,상기 제 2첨가제는하기 화학식 2로표시되는화합물을포함한다.
Figure imgf000006_0001
[42] (상기 화학식 1에서 ,상기 II은치환또는비치환된탄소수 1내지 5인
알킬렌기이고,상기고리쇼는하나이상의 질소원자를포함하며,고리내에 적어도하나이상의 이중결합을포함하는치환또는비치환된탄소수 3내지 8인 헤테로고리임)
[43]
[44] [화학식 2] 2020/175907 1»(:1^1{2020/002732
Figure imgf000007_0001
및 0^00^3으로이루어진군에서선택되는적어도하나의작용기임)
[47]
[48]
[49] (1)리튬염
[5이 먼저,리튬염에대하여설명한다.
[51] 리튬염은리튬이차전지내에서이온을전달하기위한매개체로서사용된다. 통상적으로,
[別(幻섟02
Figure imgf000007_0002
이루어진군에서선택되는적어도하나이상의화합물을포함할수있으며, 바람직하게는 포함할수있다.
[52] 리튬염중특
Figure imgf000007_0003
는다른리튬염들에비하여상대적으로 이온전도도가높기때문에많이사용되고있다.그러나,고온에서전해질에 포함된유기용매가분해되는경우,상기유기용매의분해산물과유기용매 내에리튬염이용해되어발생되는리튬염의음이온인모 6등이반응하게되면, 모 와같은루이스산(1 \ )부산물을발생시킬수있다.루이스산 부산물의경우,유기용매의자발적인분해반응을촉진시키고,전극계면상에 형성되어 있는 8£1막을붕괴하는부반응을일으킨다.상기부반응이억제되지 않는경우,전지내저항이급격히상승하고,전지의용량특성등이저하될수 있다.
[53] 보다구체적으로,리튬염으로서 1고平6를사용하는경우,음이온인
Figure imgf000007_0004
음극 쪽에서전자를잃게되며모 가생성될수있다.이때,하기반응식 1과같은 화학반응이연쇄적으로진행될수있다.
[54] [반응식 1] 2020/175907 1»(:1^1{2020/002732
[55]
Figure imgf000008_0001
Figure imgf000008_0002
[56] 상기 연쇄적인반응이진행되는경우,발생되는 1또를비롯한다른부산물에 의하여유기용매의분해나 8만막과의부반응이 발생되어 전지의성능이 지속적으로저하될수있다.
[57]
[58] (2)제 1첨가제
[59] 본발명의 리튬이차전지용전해질은상기 반응식 1과같은연쇄적인반응에 따라발생되는부산물을제거하기위하여하기화학식 1로표시되는화합물을 포함하는첨가제를사용한다.
[6이 [화학식 1]
[61]
Figure imgf000008_0003
[62] 상기화학식 1에서,상기 II은치환또는비치환된탄소수 1내지 5인
알킬렌기이고,상기고리쇼는하나이상의 질소원자를포함하며,고리내에 적어도하나이상의 이중결합을포함하는치환또는비치환된탄소수 3내지 8인 헤테로고리이다.
[63] 예를들어,상기 화학식 1로표시되는화합물은,하기 화학식 1쇼내지 1(:로 표시되는화합물들로이루어진군에서선택되는하나이상의 화합물일수있다.
[64] [화학식 1시
[65]
Figure imgf000008_0004
2020/175907 1»(:1/10公020/002732
66
67; [화학식 1미
Figure imgf000009_0001
은치환또는비치환된탄소수 1내지 5인 알킬렌기이고,상기 ¾은내지 ¾은각각독립적으로수소,탄소수 1내지 5인 알킬기 및하나이상의수소원소가할로겐원소로치환된탄소수 1내지 5인 알킬기로이루어진군에서선택된다.
보다구체적으로,상기 화학식 1로표시되는화합물은하기화학식 1쇼-1내지 1쇼-5로표시되는화합물들로이루어진군에서선택될수있다.
[75] [화학식 1쇼-1] 5»(7171^112020/002732
, 0 2020/175907
[76]
Figure imgf000010_0001
[77]
[화학식 1쇼-2]
[78]
[79]
Figure imgf000010_0002
[80]
[811 [화학식 1쇼-3]
[82]
Figure imgf000010_0003
[831
[84] [화학식 1八_4] 2020/175907 1»(:1/10公020/002732
Figure imgf000011_0001
[9이 유기용매에용해된리튬염이고온조건하에서분해될때발생되는부산물중 하나인 PF5는루이스산화합물에해당한다.상기 PF5등과같은루이스산 화합물은유기용매또는전극계면상의 SEI막을구성하는성분들과반응하여 분해반응을일으킬수있다.따라서,고온조건하에서 SEI막의분해반응을 억제시켜,분해반응산물이발생됨에따른전지내저항상승및전지수명특성 저하등의문제점을해소하기위해서는리튬염의고온분해산물인루이스산 화합물을제거할필요가있다.
[91] 루이스산화합물은전자쌍을받는화학종이고,루이스염기란,전자쌍을줄수 있는화학종으로서,전자를주려는성격이강한화합물을루이스염기로서 사용할수있다.
[92] 따라서,본발명의경우,루이스산과반응할수있는루이스염기 (Lewis base)에 해당되는화합물을전해질에포함되는첨가제로사용하였다.상기화학식 1로 표시되는화합물내의고리 A는비공유전자쌍을가지는질소원소를적어도 하나이상포함하고,말단부에삼중결합을포함하여, PF5등과같은루이스산 화합물에전자를공급하여,전극상에형성된 SEI막을구성하는성분들대신 PF5 와루이스산-염기반응을수행한다.따라서 ,모 를제거하여전극상에형성된 2020/175907 1»(:1^1{2020/002732
8£1막이손상되는것을미연에 방지할수있다.
[93] 한편,상기화학식 1로표시되는화합물의 말단부에 위치하는삼중결합의 경우, 8£1성분을개질시킬수있어 , 8£1막을더욱안정적으로형성시킬수있어 8£1 막자체의고온안정성또한향상시킬수있다.
[94] 한편,상기제 1첨가제는리튬이차전지용전해질 100중량부에 대하여 0.02 중량부내지 1.0중량부,바람직하게는 0.3중량부내지 1.0중량부,보다
바람직하게는 0.1중량부내지 0.7중량부로포함될수있다.상기 제 1첨가제가 상기 범위내에포함되는경우충분히루이스산화합물을제거할수
있으면서도,안정적으로 8만막을형성할수있다.
[95]
[96] (3)제 2첨가제
[97] 또한,본발명의 리튬이차전지용전해질은제 2첨가제로하기 화학식 2로
표시되는화합물을포함한다.
[98] [화학식 2]
[99]
Figure imgf000012_0001
[100] 상기화학식
3댜,(〕3¾1 (:3
Figure imgf000012_0002
및 0^00^으로이루어진군에서선택되는하나이상의작용기이다.
[101] 상기화학식 2로표시되는화합물은분해되면서 ,음극표면상에 형성되는 8£1 막을형성하는데,상기화학식 2로표시되는화합물의분해산물을포함하는 8£1 막은상기화학식 1로표시되는화합물만을사용하는경우보다도더욱견고하게 형성되어 전지의고온내구성을향상시킬수있다.
[102] 보다구체적으로,상기 화학식 2로표시되는화합물로서 ,리튬
4, 5 -디시아노- 2-(트리플루오로메틸)이미다졸(1^01)1)을사용할수있다.
[103] 상기제 2첨가제는리튬이차전지용전해질 0중량부에 대하여 0.02중량부 내지 1.0중량부,보다바람직하게는 0.3중량부내지 1.0중량부,바람직하게는 0.3중량부내지 0.7중량부로포함될수있다.상기화학식 2로표시되는리튬 이미다졸염이상기범위 내로포함되는경우,전지의초기 저항이증가되는것은 2020/175907 PCT/KR2020/002732 최소화하면서도,음극상에안정적인 SEI막을형성하여고온내구성을
증진시킬수있다.
[104]
[105] (4)기타첨가제
[106] 한편,본발명에따른리튬이차전지용전해질은초기저항을크게증가시키지 않으면서,음극및양극표면에안정한피막을형성하거나,전해질내용매의 분해를억제하고,리튬이온의이동성을향상시키는보완제역할을할수있는 기타첨가제를추가적으로포함할수있다.
[107] 예를들어,기타첨가제는바이닐실란계화합물,포스페이트계또는
포스파이트계화합물,설파이트계화합물,설폰계화합물,설페이트계화합물, 설톤계화합물,할로겐치환된카보네이트계화합물,니트릴계화합물, 보레이트계화합물,및리튬염계화합물로이루어진군으로부터선택되는하나 이상의화합물을포함할수있다.
[108] 상기바이닐실란계화합물은음극표면에서전기화학적으로환원되어안정한 SEI를형성하여전지의내구성을개선시킬수있다.보다구체적으로,바이닐 실란계화합물로서테트라바이닐실란등을포함할수있다.
[109] 상기포스페이트계또는포스파이트계화합물은양극과음극표면에서전기 화학적으로분해되어 SEI막형성에도움을주는성분으로,이차전지의수명 특성을향상시킬수있다.보다구체적으로,리튬
디플루오로 (비스옥살라토)포스페이트,리튬디플루오로포스페이트,테트라메틸 트리메틸실릴포스페이트,트리메틸실릴포스파이트,
트리스 (2, 2, 2 -트리플루오로에틸)포스페이트및트리스 (트리플루오로에틸) 포스파이트로이루어진군으로부터선택된 1종이상의화합물을포함할수 있다.
[110] 상기설파이트계화합물은에틸렌설파이트,메틸에틸렌설파이트,에틸
에틸렌설파이트, 4, 5 -디메틸에틸렌설파이트, 4, 5 -디에틸에틸렌설파이트, 프로필렌설파이트, 4, 5 -디메틸프로필렌설파이트, 4, 5 -디에틸
프로필렌설파이트, 4, 6 -디메틸프로필렌설파이트, 4, 6 -디에틸프로필렌 설파이트,및 1,3 -부틸렌글리콜설파이트로이루어진군으로부터선택된 1종 이상의화합물을포함할수있다.
[111] 상기설폰계화합물로는디비닐설폰,디메틸설폰,디에틸설폰,메틸에틸설폰, 및메틸비닐설폰으로이루어진군으로부터선택된 1종이상의화합물을포함할 수있다.
[112] 상기설페이트계화합물은에틸렌설페이트 (Ethylene Sulfate; Esa),
트리메틸렌설페이트 (Trimethylene sulfate; TMS),및메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)로이루어진군으로부터선택된 1종이상의 화합물을포함할수있다.
[113] 상기설톤계화합물은 1,3 -프로판설톤 (PS), 1,4 -부탄설톤,에텐설톤, 2020/175907 1»(:1^1{2020/002732
1,3 -프로펜설톤 11¾, 1,4 -부텐설톤,및 1 -메틸- 1,3 -프로펜설톤으로이루어진 군으로부터선택된적어도하나이상의화합물을포함할수있다.
[114] 상기할로겐치환된카보네이트계화합물로서 ,플루오로에틸렌
카보네이트 £(그)등을포함할수있다.
[115] 또한,상기니트릴계화합물은숙시노니트릴 비,아디포니트릴 ),
아세토니트릴,프로피오니트릴,부티로니트릴,발레로니트릴,카프릴로니트릴, 헵탄니트릴,사이클로펜탄카보니트릴,사이클로핵산카보니트릴,
2 -플루오로벤조니트릴, 4 -플루오로벤조니트릴,다이플루오로벤조니트릴, 트리플루오로벤조니트릴,페닐아세토니트릴, 2 -플루오로페닐아세토니트릴,및 4 -플루오로페닐아세토니트릴로이루어진군에서선택되는하나이상의 화합물을포함할수있다.
[116] 상기보레이트계화합물은
Figure imgf000014_0001
리튬비스옥살레이토보레이트 (06(0204)2: 0606)등을포함할수있다
[117] 상기리튬염계화합물은상기전해질에포함되는리튬염과상이한화합물로서 ,
여民및 出民로이루어진군으로부터선택된 1종이상의화합물을포함할수 있다.
[118] 상기기타첨가제는리튬이차전지용전해질 100중량부에대하여 20중량부 이하,바람직하게는 10중량부이하로포함될수있다.상기첨가제들의함량이 상기범위를초과하면리튬이차전지가충방전하는도중전해질내부반응이 과도하게발생할수있고,고온에서충분히분해되지못하여,전해질내에서 미반응물또는석출된채로존재할수있으며,이에따라이차전지의수명또는 저항특성이저하될수있다.
[119]
[12이 (5)유기용매
[121] 다음으로,상기유기용매에대하여설명한다.
[122] 본발명에서,유기용매는리튬이차전지에통상적으로사용되는용매로서 , 예를들면에테르화합물,
Figure imgf000014_0002
화합물,아미드 화합물,선형카보네이트화합물,환형카보네이트화합물또는니트릴화합물 등을각각단독으로또는 2종이상혼합하여사용할수있다.
[123] 그중에서대표적으로환형카보네이트화합물,선형카보네이트화합물또는 이들의혼합물인카보네이트화합물을유기용매를사용할수있다.
[124] 상기환형카보네이트화합물의구체적인예로는에틸렌카보네이트田0, 프로필렌카보네이트 0, 1,2 -부틸렌카보네이트, 2, 3 -부틸렌카보네이트,
1,2 -펜틸렌카보네이트, 2, 3 -펜틸렌카보네이트,비닐렌카보네이트,및이들의 할로겐화물로이루어진군에서선택되는단일화합물또는적어도 2종이상의 혼합물이 있다.또한,상기선형카보네이트화합물의구체적인예로는디메틸 카보네이트 (DMC),디에틸카보네이트必£ ,디프로필카보네이트 (0모(〕), 에틸메틸카보네이트 (EMC),메틸프로필카보네이트 (伴0및에틸프로필 2020/175907 1»(:1^1{2020/002732 카보네이트田! )로이루어진군에서선택된화합물또는적어도 2종이상의 혼합물등이 대표적으로사용될수있으나,이에 한정되는것은아니다.
[125] 특히 ,상기환형카보네이트화합물인프로필렌카보네이트및에틸렌
카보네이트는고점도의유기용매로서유전율이높아전해질내의 리튬염을잘 해리시키므로바람직하게사용될수있으며,이러한환형카보네이트화합물에 에틸메틸카보네이트,디에틸카보네이트또는디메틸카보네이트와같은 저점도,저유전율선형카보네이트화합물을적당한비율로혼합하여사용하면 높은전기 전도율을가지는전해질을만들수있어서더욱바람직하게사용될수 있다.
[126] 또한,상기유기용매중에스테르로는메틸아세테이트,에틸아세테이트, 프로필아세테이트,메틸프로피오네이트,에틸프로피오네이트, 부티로락톤, 1발레로락톤, 카프로락톤, 0 -발레로락톤및 8 -카프로락톤으로이루어진 군에서선택되는단일화합물또는적어도 2종이상의혼합물을사용할수 있으나,이에 한정되는것은아니다.
[127]
[128] <리튬이차전지>
[129] 다음으로,본발명에 따른리튬이차전지를설명한다.
[130] 본발명의 일구현예에 따른리튬이차전지는,양극,음극및상기 양극과음극 사이에선택적으로게재될수있는세퍼레이터 및상기 리튬이차전지용 전해질을포함한다.이때,상기 리튬이차전지용전해질에 대해서는상술한 내용과동일하므로,구체적인설명을생략한다.
[131]
[132] (1)양극
[133] 상기 양극은양극집전체상에 양극활물질,전극용바인더,전극용도전재및 용매등을포함하는양극활물질슬러리를코팅하여 제조할수있다.
[134] 상기 양극집전체는당해 전지에화학적 변화를유발하지 않으면서도전성을 가진것이라면특별히 제한되는것은아니며,예를들어,스테인리스스틸, 알루미늄,니켈,티탄,소성 탄소,또는알루미늄이나스테인리스스틸의표면에 카본,니켈,티탄,은등으로표면처리한것등이사용될수있다.이때,양극 집전체는,표면에 미세한요철을형성하여 양극활물질의결합력을강화시킬 수도있으며,필름,시트,호일,네트,다공질체,발포체,부직포체등다양한 형태로사용될수있다.
[135] 상기 양극활물질은리튬의 가역적인인터칼레이션및디인터칼레이션이
가능한화합물로서,구체적으로는코발트,망간,니켈또는알루미늄과같은 1종 이상의금속과리튬을포함하는리튬복합금속산화물을포함할수있다.보다 구체적으로,상기 리튬복합금속산화물은리륨-망간계산화물(예를들면, LiMn02, LiMn204등),리륨-코발트계산화물(예를들면, 00002등),리륨-니켈계 산화물(예를들면, 1 02등),리륨-니켈-망간계산화물(예를들면, 02(여기에서 , 0<Y1<1), LiMn2-zlNizl04(여기에서 , 0 < Z1 < 2)등),
리륨-니켈-코발트계산화물 (예를들면, 1 ¾_«(:아202(여기에서, 0<Y2<1)등), 리튬-망간-코발트계산화물 (예를들면, LiCo^sMn^CM여기에서, 0<Y3<1), LiMn 2-Z2COZ204(여기에서, 0< Z2< 2)등),리륨-니켈-망간-코발트계산화물 (예를들면, Li(NiplCoqlMnrl)02(여기에서, 0< pi < 1, 0 < ql < 1, 0 < rl < l, pl+ql+rl=l)또는 Li(Nip2Coq2Mnr2)04(여기에서 , 0 < p2 < 2, 0 < q2 < 2, 0 < r2 < 2, p2+q2+r2=2)등), 또는리륨-니켈-코발트-전이금속 (M)산화물 (예를들면, Li(Nip3Coq3Mnr3Msl)02 (여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg및 Mo로이루어지는군에서선택되고, p3, q3, r3및 si은각각독립적인원소들의원자분율로서, 0< p3 < 1, 0< q3 < 1, 0< r3 < l, 0< sl < l, p3+q3+r3+sl=l이다)등)등을들수있으며,이들중어느 하나또는둘이상의화합물이포함될수있다.
[136] 이중에서도전지의용량특성및안정성을높일수있다는점에서상기리튬 복합금속산화물은 LiCo02, LiMn02, LiNi02,리튬니켈망간코발트산화물 (예를 들면, Li(Nio.6Mno.2Coo.2)02, Li(Nio.5Mno.3Coo.2)02,또는 Li(Nio. gMno. iCoo. i ) O2등),또는 리튬니켈코발트알루미늄산화물 (예를들면, LiNi0.8Coo.15Alo.o502등)등일수 있으며,리튬복합금속산화물을형성하는구성원소의종류및함량비제어에 따른개선효과의현저함을고려할때상기리튬복합금속산화물은 Li(Nio.6Mn0.2 Coo.2)02, Li(Nio.5Mn().3Co().2)02, Li(Nio.7Mno.i5Coo.i5)〔)2또는 Li(Nio.i¾Mn().iCoo.i)02등일 수있으며,이들중어느하나또는둘이상의혼합물이사용될수있다.
[137] 상기전극용바인더는양극활물질과전극용도전재등의결합과집전체에
대한결합에조력하는성분이다.구체적으로,폴리불화비닐리덴,
폴리비닐알코올,카르복시메틸셀룰로우즈 (CMC),전분,
히드록시프로필셀룰로우즈,재생셀룰로우즈,폴리비닐피롤리돈,
테트라플루오로에틸렌,폴리에틸렌 (PE),폴리프로필렌,
에틸렌-프로필렌-디엔테르폴리머 ,술폰화에틸렌-프로필렌-디엔테르폴리머 , 스티렌-부타디엔고무,스티렌-부타디엔
고무-카르복시메틸셀룰로우즈 (SBR-CMC),불소고무,다양한공중합체등을들 수있다.
[138] 상기전극용도전재는양극활물질의도전성을더욱향상시키기위한
성분이다.상기전극용도전재는당해전지에화학적변화를유발하지않으면서 도전성을가진것이라면특별히제한되는것은아니며,예를들어,그라파이트; 카본블랙,아세틸렌블랙,케첸블랙,채널블랙,퍼니스블랙,램프블랙,서멀 블랙등의탄소계물질;탄소섬유나금속섬유등의도전성섬유;불화카본, 알루미늄,니켈분말등의금속분말;산화아연,티탄산칼륨등의도전성위스키 ; 산화티탄등의도전성금속산화물;폴리페닐렌유도체등의도전성소재등이 사용될수있다.시판되고있는도전재의구체적인예로는아세틸렌블랙계열인 쉐브론케미칼컴퍼니 (Chevron Chemical Company)나덴카블랙 (Denka Singapore Private Limited),걸프오일컴퍼니 (Gulf Oil Company)제품등), 케트젠블랙 (Ketjenblack), EC계열 (아르막컴퍼니 (Armak Company)제품), 불칸 (Vulcan) XC-72(캐보트컴퍼니 (Cabot Company)제품)및수퍼 (Super) P(Timcal사제품)등이 있다.
[139] 상기용매는 NMP(N-methyl-2-pyrrolidone)등의유기용매를포함할수있으며 , 상기양극활물질,및선택적으로전극용바인더및전극용도전재등을포함할 때바람직한점도가되는양으로사용될수있다.
[14이
[141] (2)음극
[142] 또한,상기음극은,예를들어,음극집전체상에음극활물질,전극용바인더, 전극용도전재및용매등을포함하는음극활물질슬러리를코팅하여제조할수 있다.한편,상기음극은금속집전체자체를전극으로사용할수있다.
[143] 상기음극집전체는,당해전지에화학적변화를유발하지않으면서높은
도전성을가지는것이라면특별히제한되는것은아니며,예를들어,구리, 스테인리스스틸,알루미늄,니켈,티탄,소성탄소,구리나스테인리스스틸의 표면에카본,니켈,티탄,은등으로표면처리한것,알루미늄-카드뮴합금등이 사용될수있다.또한,양극집전체와마찬가지로,표면에미세한요철을 형성하여음극활물질의결합력을강화시킬수도있으며,필름,시트,호일,네트, 다공질체,발포체,부직포체등다양한형태로사용될수있다.
[144] 상기음극활물질로는천연흑연,인조흑연,탄소질재료;리튬함유티타늄복합 산화물 (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni또는 Fe인금속류 (Me);상기
금속류 (Me)로구성된합금류;상기금속류 (Me)의산화물;및상기금속류 (Me)와 탄소와의복합체로이루어진군에서선택된 1종또는 2종이상의음극활물질을 들수있다.
[145] 상기전극용바인더,전극용도전재및용매에대한내용은상술한내용과
동일하므로,구체적인설명을생략한다.
[146]
[147] 상기세퍼레이터로는종래에세퍼레이터로사용된통상적인다공성고분자 필름,예를들어에틸렌단독중합체,프로필렌단독중합체,에틸렌/부텐 공중합체,에틸렌/핵센공중합체및에틸렌/메타크릴레이트공중합체등과같은 폴리올레핀계고분자로제조한다공성고분자필름을단독으로또는이들을 적층하여사용할수있으며,무기물입자 (예: A1203)가도포된폴리올레핀계 다공성고분자필름또는통상적인다공성부직포,예를들어고융점의유리 섬유,폴리에틸렌테레프탈레이트섬유등으로된부직포를사용할수있으나, 이에한정되는것은아니다.
[148]
[149] 이하,구체적인실시예를통해본발명을보다구체적으로설명한다.다만,하기 실시예는본발명의이해를돕기위한예시일뿐,본발명의범위를한정하는 것은아니다.본기재의범주및기술사상범위내에서다양한변경및수정이 가능함은당업자에게있어서명백한것이며,이러한변형및수정이첨부된 특허청구범위에속하는것은당연한것이다.
[15이
[151] [실시예]
[152] 1.실시예 1
[153] (1)리튬이차전지용전해질제조
[154] 에틸렌카보네이트 (EC):에틸메틸카보네이트 (EMC) = 3:7부피비로혼합한
유기용매 LiPF6를 0.7M농도및 LiFSI를 0.3M농도가되도록용해하여비수성 용매를제조하였다.상기비수성용매 90.1g에제 1첨가제로화학식 1A-1로 표시되는화합물 0.5g,제 2첨가제로리륨
4, 5 -디시아노- 2-(트리플루오로메틸)이미다졸 (Aldrich사제조, CAS:
761441-54-7) 0.5 g,기타첨가제로테트라비닐실란 0.2 g,리튬디플루오르 포스페이트 1.0 g에틸렌설포네이트 1.0 g, 1,3 -프로판설톤 0.5 g및 LiBF4 0.2 g, 플루오르벤젠 6.0 g을첨가하여리튬이차전지용전해질을제조하였다.
[155]
[156] (2)리튬이차전지제조
[157] 양극활물질 (LiNi0.8Coo.iMno.i02; NCM811),도전재로카본블랙 (carbon black), 바인더로폴리비닐리덴플루오라이드 (PVDF)를 97.5: 1:1.5중량비로혼합한후 용매인 N-메틸- 2 -피롤리돈 (NMP)에첨가하여양극활물질슬러리 (고형분함량: 50중량%)를제조하였다.상기양극활물질슬러리를두께가 의양극 집전체인알루미늄 (A1)박막에도포한후건조하여양극을제조한후,롤 프레스 (roll press)를실시하여양극을제조하였다.
[158] 음극활물질 (SiO:그라파이트 = 5:95중량비),도전재로카본블랙 (carbon black), 바인더로스티렌-부타디엔고무-카르복시메틸셀룰로우즈 (SBR-CMC)를
95: 1.5:3.5중량비로혼합한후,용매인물에첨가하여음극활물질슬러리 (고형분 함량: 60중량%)를제조하였다.상기음극활물질슬러리를두께가 6쌔!의음극 집전체인구리 (Cu)박막에도포하고,건조하여음극을제조한후,롤프레스 (roll press)를실시하여음극을제조하였다.
[159] 상기양극,무기물입자 (A1203)가도포된폴리올레핀계다공성세퍼레이터및 음극을순차적으로적층하여전극조립체를제조하였다.이후,파우치형전지 케이스내에상기전극조립체를수납하고,상기리튬이차전지용전해질을 주액하여파우치형리튬이차전지를제조하였다.
[16이
[161] [비교예]
[162] 1.비교예 1
[163] 제 1첨가제및제 2첨가제를모두첨가하지않는대신,비수성용매 91.1g에
테트라비닐실란 0.2 g,리튬디플루오르포스페이트 1.0 g에틸렌설포네이트 1.0 g, 1,3 -프로판설톤 0.5 g및 LiBF4 0.2 g,플루오르벤젠 6.0 g을첨가하는것을 제외하고는실시예 1과동일한방법으로리튬이차전지용전해질및리튬이차 전지를제조하였다.
[164]
[165] 2.비교예 2
[166] 비수성용매 90.1g에제 1첨가제를첨가하지않고,제 2첨가제로리튬
4, 5 -디시아노- 2-(트리플루오로메틸)이미다졸을 l.Og,기타첨가제로
테트라비닐실란 0.2 g,리튬디플루오르포스페이트 1.0 g에틸렌설포네이트 1.0 g, 1,3 -프로판설톤 0.5 g및 LiBF4 0.2 g,플루오르벤젠 6.0 g을첨가한것을 제외하고는실시예 1과동일한방법으로리튬이차전지용전해질및리튬이차 전지를제조하였다.
[167]
[168] 3.비교예 3
[169] 비수성용매 90.1g에제 2첨가제를첨가하지않고,제 1첨가제로화학식 1A-1로 표시되는화합물 l.Og,기타첨가제로테트라비닐실란 0.2 g,리튬디플루오르 포스페이트 1.0 g에틸렌설포네이트 1.0 g, 1,3 -프로판설톤 0.5 g및 LiBF4 0.2 g, 플루오르벤젠 6.0 g을첨가한것을제외하고는실시예 1과동일한방법으로 리튬이차전지용전해질및리튬이차전지를제조하였다.
[17이
[171] [실험예]
[172] 1.실험예 1:고온 (45기수명특성평가
[173] 상기실시예 1및비교예 1내지 3에서제조된각각의리튬이차전지를 0.1C CC로활성화한후,디가스 (degass)를진행하였다.이후, 25OC에서
정전류-정전압 (CC-CV)충전조건으로 4.20V까지 0.33C CC으로충전한다음 0.05C current cut을진행하였고, CC조건으로 2.5V까지 0.33C으로방전하였다. 상기충방전을 1사이클로하여 3사이클을진행하였다.
[174] 다음으로, 45OC에서정전류-정전압 (CC-CV)충전조건으로 4.20V까지 0.33 C CC으로충전한다음 0.05 C current cut을진행하였고, CC조건으로 2.5V까지 0.33 C으로방전하였다.상기충방전을 1사이클로하고,고온 (45OC)에서 100 사이클을반복하였다.이때, 1사이클후의방전용량을초기방전용량으로 정의한다.초기방전용량및 100사이클후방전용량을 PNE-0506
충방전기 (제조사: (주) PNE솔루션, 5V, 6A)를이용하여각각측정한뒤,이를 하기 [식 1]에대입하여방전용량유지율 (discharge capacity retention, %)을계산한 다음,그결과를도 1에나타내었다.
[175] [식 1]
[176] 방전용량유지율 (%) = (100사이클후방전용량/초기방전용량) xl00(%)
[177]
[178] 한편, 45。(:에서 1사이클을거친상태 (초기상태), 45。(:에서 100사이클을거친 상태의전지를각각 25OC에서 , S0C(State Of Charge, SOC) 50%로충전시켰다. 이후, 2.5C로 W초간방전펄스 (pulse)를준상태에서나타나는전압강하를 통하여직류내부저항 (Direct Current Internal Resistance;이하 "DC-z7?"°l라 칭함)을계산하여,초기저항및 100사이클후의저항을각각측정하였다.
[179] 이후,측정된각각의저항값을하기 [식 2]에대입하여저항증가율 (%)을
계산한후,이를도 1에나타내었다.이때,상기전압강하는 PNE-0506 충방전기 (제조사: (주) PNE솔루션, 5 V, 6서를사용하여측정하였다.
[18이 [식 2]
[181] 저항증가율 (%)={(100사이클후의저항-초기저항)/ (초기저항)} xl00(%)
[182]
[183] 도 1을참조하면,실시예 1에서제조된리튬이차전지는비교예 1내지 3에서 제조된리튬이차전지에비하여고온 (45OC)에서 100사이클의충방전을하는 경우에도전해질의연쇄적인분해반응이억제됨에따라,가역성리튬이온의 손실이최소화되어 , 100사이클후방전용량유지율 (%)은향상되고,저항 증가율 (%)은감소한것을확인할수있다.
[184]
[185] 2.실험예 2:고온 (60 )저장특성평가
[186] 실시예 1및비교예 1내지 3에서제조된각각의리튬이차전지를 0.1 C CC로 활성화한후,디가스를진행하였다.
[187] 이후, 25OC에서정전류-정전압 (CC-CV)충전조건으로 4.20 V까지 0.33 C CC으로충전한다음 0.05 C current cut을진행하였고, CC조건으로 2.5 V까지 0.33 C으로방전하였다.상기충방전을 1사이클로정의하며 , 3사이클을 진행하였다.
[188] 다음으로, S0C(State Of Charge, SOC) 100%까지 0.33 C CC조건으로재충전한 뒤,고온 (60OC)에서 4주동안저장하였다.이때, 0주, 2주, 4주동안고온저장된 각각의리튬이차전지에대해 25OC에서 S0C(State Of Charge, SOC) 50%이 되도록충전한뒤 2.5 C로 W초간방전펄스 (pulse)를준상태에서나타나는전압 강하를통하여 DC-W를계산하고,이를하기 [식 3]에대입하여저항
증가율 (%)을계산하여도 2에나타내었다.이때,상기전압강하는 PNE-0506 충방전기 (제조사: (주) PNE솔루션, 5 V, 6서를사용하여측정하였다.
[189] [식 3]
[19이 저항증가율 (%)= {(고온저장후의저항-초기저항)/ (초기저항)} xl00(%)
[191]
[192] 도 2를참조하면,실시예 1에서제조된리튬이차전지는고온에서 4주동안 저장된후에도,저항증가율이비교예 1내지 3에서제조된리튬이차전지에 비하여낮은것을확인할수있다.
[193] 이는,실시예에따라제조된리튬이차전지의경우,음극표면에 SEI막이 안정적으로형성되었으며,전해질내에리튬염이분해되며발생되는루이스산 부산물또한제거되어전지가고온에노출되는경우에도 SEI막의손상이 2020/175907 1»(:1/10公020/002732 억제된것으로판단된다.

Claims

2020/175907 1»(:1^1{2020/002732 청구범위 [청구항 1] 리튬염,제 1첨가제 ,제 2첨가제 및유기용매를포함하고, 상기 제 1첨가제는하기 화학식 1로표시되는화합물을포함하며, 상기 제 2첨가제는하기 화학식 2로표시되는화합물을포함하는것인 리튬이차전지용전해질.
[화학식 1]
Figure imgf000022_0001
(상기화학식 1에서,
상기 II은치환또는비치환된탄소수 1내지 5인알킬렌기이고, 상기고리쇼는하나이상의 질소원자를포함하며,고리내에 적어도하나 이상의 이중결합을포함하는치환또는비치환된탄소수 3내지 8인 헤테로고리임)
[화학식 2]
Figure imgf000022_0002
(상기화학식 2에서,
Figure imgf000022_0003
[청구항 2] 제 1항에 있어서, 2020/175907 1»(:1^1{2020/002732 상기 화학식 1로표시되는화합물은하기화학식 1쇼내지 1(:로표시되는 화합물들로이루어진군에서선택되는것인리튬이차전지용전해질. [화학식 1시
Figure imgf000023_0001
(상기화학식 에서,
상기 II은치환또는비치환된탄소수 1내지 5인알킬렌기이고, 상기 ¾은수소,탄소수 1내지 5인알킬기 및하나이상의수소원소가 할로겐원소로치환된탄소수 1내지 5인알킬기로이루어진군에서 선택되는것임)
[화학식 1피
Figure imgf000023_0002
(상기화학식 에서,
상기 II은치환또는비치환된탄소수 1내지 5인알킬렌기이고, 상기 ¾는수소,탄소수 1내지 5인알킬기 및하나이상의수소원소가 할로겐원소로치환된탄소수 1내지 5인알킬기로이루어진군에서 선택되는것임)
[화학식 1(:] 2020/175907 1»(:1^1{2020/002732
Figure imgf000024_0001
(상기화학식 1(:에서,
상기 II은치환또는비치환된탄소수 1내지 5인알킬렌기이고, 상기 ¾은수소,탄소수 1내지 5인알킬기 및하나이상의수소원소가 할로겐원소로치환된탄소수 1내지 5인알킬기로이루어진군에서 선택되는것임)
[청구항 3] 제 1항에 있어서,
상기 화학식 1로표시되는화합물은하기화학식 1쇼-1내지 1쇼-5로 표시되는화합물들로이루어진군에서선택되는것인리튬이차전지용 전해질.
[화학식 1 1]
Figure imgf000024_0002
[화학식 1 2] 2020/175907 1»(:1/10公020/002732
Figure imgf000025_0001
[화학식 1^5]
2020/175907 1»(:1^1{2020/002732
Figure imgf000026_0001
[청구항 4] 제 1항에 있어서,
상기 화학식 2로표시되는화합물은리륨
4, 5 -디시아노- 2-(트리플루오로메틸)이미다졸인것인리튬이차전지용 전해질.
[청구항 5] 제 1항에 있어서,
상기 제 1첨가제는상기 리튬이차전지용전해질 0중량부에 대하여 0.02중량부내지 1.0중량부로포함되는것인리튬이차전지용전해질.
[청구항 6] 제 1항에 있어서,
상기 제 1첨가제는상기 리튬이차전지용전해질 0중량부에 대하여 0.3 중량부내지 1.0중량부로포함되는것인리튬이차전지용전해질.
[청구항 7] 제 1항에 있어서,
상기 제 2첨가제는상기 리튬이차전지용전해질 0중량부에 대하여 0.02중량부내지 1.0중량부로포함되는것인리튬이차전지용전해질.
[청구항 8] 제 1항에 있어서,
상기 제 2첨가제는상기 리튬이차전지용전해질 0중량부에 대하여 0.3 중량부내지 1.0중량부로포함되는것인리튬이차전지용전해질.
[청구항 9] 제 1항에 있어서,
상기 리튬염은 :니모므6및 民로이루어진군으로부터선택된적어도 하나이상을포함하는것인리튬이차전지용전해질.
[청구항 ] 양극;음극;및제 1항에 따른리튬이차전지용전해질;을포함하는리튬 이차전지.
PCT/KR2020/002732 2019-02-28 2020-02-26 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 WO2020175907A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080013584.XA CN113678298A (zh) 2019-02-28 2020-02-26 锂二次电池用电解质以及包含其的锂二次电池
JP2021548615A JP7233801B2 (ja) 2019-02-28 2020-02-26 リチウム二次電池用電解質及びこれを含むリチウム二次電池
US17/431,890 US20220140391A1 (en) 2019-02-28 2020-02-26 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
EP20762755.5A EP3913719A4 (en) 2019-02-28 2020-02-26 ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0024104 2019-02-28
KR1020190024104A KR102447200B1 (ko) 2019-02-28 2019-02-28 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2020175907A1 true WO2020175907A1 (ko) 2020-09-03

Family

ID=72238986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002732 WO2020175907A1 (ko) 2019-02-28 2020-02-26 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20220140391A1 (ko)
EP (1) EP3913719A4 (ko)
JP (1) JP7233801B2 (ko)
KR (1) KR102447200B1 (ko)
CN (1) CN113678298A (ko)
WO (1) WO2020175907A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855549A4 (en) * 2018-11-09 2021-11-24 Lg Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR SECONDARY LITHIUM BATTERY, AND SECONDARY LITHIUM BATTERY CONTAINING IT
CN115703741A (zh) * 2021-08-16 2023-02-17 张家港市国泰华荣化工新材料有限公司 一种咪唑羧酸酯的制备方法及其应用
EP4080636A4 (en) * 2020-09-09 2023-12-20 LG Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING SAME
JP7408223B2 (ja) 2021-03-31 2024-01-05 エルジー エナジー ソリューション リミテッド 二次電池用電解液添加剤、それを含むリチウム二次電池用非水電解液およびリチウム二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223911A1 (en) * 2019-08-21 2022-07-14 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Including The Same
KR20220048354A (ko) * 2020-10-12 2022-04-19 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20220055725A (ko) * 2020-10-27 2022-05-04 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022103112A1 (ko) 2020-11-10 2022-05-19 주식회사 엘지에너지솔루션 리튬 이차전지용 비수 전해액과 이를 포함하는 리튬 이차전지
KR20220136119A (ko) 2021-03-31 2022-10-07 주식회사 엘지에너지솔루션 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
US20230088739A1 (en) * 2021-07-29 2023-03-23 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte, and Lithium Secondary Battery Comprising the Same
KR102633532B1 (ko) * 2021-08-26 2024-02-06 주식회사 엘지에너지솔루션 비수전해액 및 이를 포함하는 리튬 이차전지
KR102555746B1 (ko) * 2021-09-14 2023-07-17 주식회사 엘지에너지솔루션 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083086A (ko) * 2006-02-20 2007-08-23 주식회사 엘지화학 전극 첨가제 및 이를 포함하는 리튬 이차 전지
KR20160052658A (ko) * 2013-09-05 2016-05-12 아르끄마 프랑스 리튬-이온 배터리 전극의 이온 전도성 개선을 위한 첨가제
WO2016158986A1 (ja) * 2015-03-31 2016-10-06 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
CN108232296A (zh) * 2016-12-14 2018-06-29 宁德时代新能源科技股份有限公司 电解液及锂二次电池
KR20190008100A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911870B2 (ja) * 1998-09-29 2007-05-09 宇部興産株式会社 リチウム二次電池用電解液及びそれを用いたリチウム二次電池
JP3623391B2 (ja) * 1999-03-15 2005-02-23 株式会社東芝 電池
FR2935382B1 (fr) 2008-08-29 2010-10-08 Centre Nat Rech Scient Sel d'anion pentacylique et son utilisation comme electrolyte
JP2011198508A (ja) 2010-03-17 2011-10-06 Sony Corp リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
CN103000942A (zh) 2011-09-15 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 促进石墨负极生成固体电解质界面膜的添加剂及应用
FR2983466B1 (fr) * 2011-12-06 2014-08-08 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
FR3059835B1 (fr) 2016-12-02 2020-01-24 Arkema France Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
EP3593397A1 (fr) * 2017-03-10 2020-01-15 Hydro-Québec Composition d'électrolyte et son utilisation dans des batteries lithium-ion
KR102383162B1 (ko) * 2017-03-17 2022-04-06 주식회사 엘지에너지솔루션 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 전해질
WO2019013501A1 (ko) 2017-07-14 2019-01-17 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR102167592B1 (ko) 2017-11-22 2020-10-19 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083086A (ko) * 2006-02-20 2007-08-23 주식회사 엘지화학 전극 첨가제 및 이를 포함하는 리튬 이차 전지
KR20160052658A (ko) * 2013-09-05 2016-05-12 아르끄마 프랑스 리튬-이온 배터리 전극의 이온 전도성 개선을 위한 첨가제
WO2016158986A1 (ja) * 2015-03-31 2016-10-06 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
KR20170132239A (ko) 2015-03-31 2017-12-01 스미토모 세이카 가부시키가이샤 비수전해액용 첨가제, 비수전해액 및 축전 디바이스
CN108232296A (zh) * 2016-12-14 2018-06-29 宁德时代新能源科技股份有限公司 电解液及锂二次电池
KR20190008100A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913719A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855549A4 (en) * 2018-11-09 2021-11-24 Lg Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR SECONDARY LITHIUM BATTERY, AND SECONDARY LITHIUM BATTERY CONTAINING IT
EP4080636A4 (en) * 2020-09-09 2023-12-20 LG Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING SAME
JP7408223B2 (ja) 2021-03-31 2024-01-05 エルジー エナジー ソリューション リミテッド 二次電池用電解液添加剤、それを含むリチウム二次電池用非水電解液およびリチウム二次電池
CN115703741A (zh) * 2021-08-16 2023-02-17 张家港市国泰华荣化工新材料有限公司 一种咪唑羧酸酯的制备方法及其应用
WO2023020319A1 (zh) * 2021-08-16 2023-02-23 张家港市国泰华荣化工新材料有限公司 一种咪唑羧酸酯的制备方法及其应用
CN115703741B (zh) * 2021-08-16 2024-04-26 张家港市国泰华荣化工新材料有限公司 一种咪唑羧酸酯的制备方法及其应用

Also Published As

Publication number Publication date
KR102447200B1 (ko) 2022-09-26
JP2022521585A (ja) 2022-04-11
CN113678298A (zh) 2021-11-19
US20220140391A1 (en) 2022-05-05
KR20200105227A (ko) 2020-09-07
JP7233801B2 (ja) 2023-03-07
EP3913719A4 (en) 2022-03-23
EP3913719A1 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2020175907A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
US10454138B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including non-aqueous electrolyte
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
EP3742537A2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
US11682794B2 (en) Additive, non-aqueous electrolyte for lithium secondary battery including the same, and lithium secondary battery including the non-aqueous electrolyte
US20180261885A1 (en) Nonaqueous electrolyte and lithium secondary battery including the same
US10541445B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
CN113692668A (zh) 锂二次电池用电解质溶液和包含所述电解质溶液的锂二次电池
US20180198157A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery comprising the same and lithium secondary battery
US10026992B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
JP7134555B2 (ja) 非水電解液添加剤、これを含むリチウム二次電池用非水電解液及びリチウム二次電池
JP2022523945A (ja) リチウム二次電池用非水電解質及びこれを含むリチウム二次電池
JP7171124B2 (ja) リチウム二次電池用電解質及びこれを含むリチウム二次電池
JP7301447B2 (ja) リチウム二次電池用電解質及びこれを含むリチウム二次電池
JP7286198B2 (ja) リチウム二次電池用電解質及びこれを含むリチウム二次電池
EP4329037A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
EP4191729A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548615

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020762755

Country of ref document: EP

Effective date: 20210816

NENP Non-entry into the national phase

Ref country code: DE