WO2023017858A1 - 組成物、有機エレクトロルミネッセンス素子、及び電子機器 - Google Patents

組成物、有機エレクトロルミネッセンス素子、及び電子機器 Download PDF

Info

Publication number
WO2023017858A1
WO2023017858A1 PCT/JP2022/030736 JP2022030736W WO2023017858A1 WO 2023017858 A1 WO2023017858 A1 WO 2023017858A1 JP 2022030736 W JP2022030736 W JP 2022030736W WO 2023017858 A1 WO2023017858 A1 WO 2023017858A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
compound
group
unsubstituted
ring
Prior art date
Application number
PCT/JP2022/030736
Other languages
English (en)
French (fr)
Inventor
ヨングク リー
哲也 増田
剛 池田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020247004701A priority Critical patent/KR20240048513A/ko
Priority to CN202280054855.5A priority patent/CN117813941A/zh
Publication of WO2023017858A1 publication Critical patent/WO2023017858A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to compositions, organic electroluminescent elements, and electronic devices.
  • organic electroluminescence device When a voltage is applied to an organic electroluminescence device (hereinafter also referred to as an "organic EL device"), holes are injected from the anode and electrons are injected from the cathode into the light-emitting layer. Then, in the light-emitting layer, the injected holes and electrons recombine to form excitons.
  • organic EL devices have not yet had sufficient device performance. Improvements in organic EL devices have been gradually progressing in order to improve device performance, but there is a demand for further improvement in performance.
  • An object of the present invention is to provide a composition with which a higher performance organic EL device can be produced, and to provide a higher performance organic EL device.
  • the present inventors focused on the configuration of the hole transport zone of the organic EL device and conducted extensive studies.
  • the hole-transporting zone of a conventional organic EL device has a configuration as shown in Patent Document 1, for example. By using them in combination, the inventors have found that an organic EL device with higher performance can be produced, and completed the present invention.
  • compositions and the like are provided.
  • L A1 , L A2 , and L A3 are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 111 , Ar 112 and Ar 113 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, or -Si(R C1 )(R C2 )(R C3 ); R C1 , R C2 and R C3 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the plurality of R C1 may be the same or different.
  • the multiple R C2 are present, the multiple R C2 may be the same or different.
  • L C1 , L C2 , L C3 and L C4 are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • n2 is an integer of 1-4.
  • L C5 is It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • n2 is 2, 3, or 4
  • multiple L C5 may be the same or different.
  • n2 is 2, 3, or 4
  • multiple L C5 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring does not form
  • Each of the substituted or unsubstituted L C5 that does not form a saturated or unsaturated ring is independently It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 131 , Ar 132 , Ar 133 and Ar 134 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, or -Si(R C1 )(R C2 )(R C3 ); R C1 , R C2 and R C3 are as defined in formula (A1) above.
  • R 1A to R 8A are each independently hydrogen atom, It is a substituent R or a group represented by the following formula (B1a).
  • Substituent R is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ) (Here, R 901 to R 907 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, It is a substituted or unsubstituted ary
  • each of the two or more R 901 to R 907 may be the same or different.
  • halogen atom cyano group, nitro group
  • It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • substituents R may be the same or different.
  • L 1A are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 1A is each independently It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • -L 1A -Ar 1A (B1a) In formula (B1a), L 1A and Ar 1A are as defined in Formula (B1).
  • each of the two or more groups represented by formula (B1a) may be the same or different.
  • (In formula (B2) At least one pair of the pair of R 1B and R 10B and the pair of R 5B and R 6B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • R 1B and R 2B pair, R 2B and R 3B pair, R 3B and R 4B pair, R 4B and R 5B pair, R 6B and R 7B pair, R 7B and R 8B pair , R 8B and R 9B , and one or more pairs of R 9B and R 10B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or does not form an unsaturated ring.
  • Each of R 1B to R 10B which does not form a substituted or unsubstituted saturated or unsaturated ring is independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • a pair of R 9B and R 10B is a substituted or unsubstituted saturated or unsaturated ring.
  • the pair of R 6B and R 7B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 4B and R 5B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 4B and R 5B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 1B and R 2B is a substituted or unsubstituted saturated or unsaturated ring does not form ) 3.
  • a cathode a cathode; an anode; one or more organic layers disposed between the cathode and the anode; has At least one of the organic layers comprises a first compound having an electron affinity Af 1 of 1.70 eV or less and an ionization potential Ip 1 of 5.80 eV or less; and a second compound having an electron affinity Af2 of 2.00 eV or less and an ionization potential Ip2 of 5.95 eV or less, which is different from the first compound. 4.
  • a cathode a cathode; an anode; one or more organic layers disposed between the cathode and the anode; has At least one of the organic layers comprises a first compound that is a compound represented by the following formula (A1) or a compound represented by the following formula (A2); and a second compound different from the first compound, which is a compound represented by the following formula (B1) or a compound represented by the following formula (B2).
  • In formula (A1), L A1 , L A2 , and L A3 are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 111 , Ar 112 and Ar 113 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, or -Si(R C1 )(R C2 )(R C3 ); R C1 , R C2 and R C3 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the plurality of R C1 may be the same or different.
  • the multiple R C2 are present, the multiple R C2 may be the same or different.
  • L C1 , L C2 , L C3 and L C4 are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • n2 is an integer of 1-4.
  • L C5 is It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • n2 is 2, 3, or 4
  • multiple L C5 may be the same or different.
  • n2 is 2, 3, or 4
  • multiple L C5 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring does not form
  • Each of the substituted or unsubstituted L C5 that does not form a saturated or unsaturated ring is independently It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 131 , Ar 132 , Ar 133 and Ar 134 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, or -Si(R C1 )(R C2 )(R C3 ); R C1 , R C2 and R C3 are as defined in formula (A1) above. ) (In formula (B1), R 1A to R 8A are each independently hydrogen atom, It is a substituent R or a group represented by the following formula (B1a).
  • Substituent R is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ) (Here, R 901 to R 907 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, It is a substituted or unsubstituted ary
  • each of the two or more R 901 to R 907 may be the same or different.
  • halogen atom cyano group, nitro group
  • It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • substituents R may be the same or different.
  • L 1A are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 1A is each independently It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • -L 1A -Ar 1A (B1a) In formula (B1a), L 1A and Ar 1A are as defined in Formula (B1).
  • each of the two or more groups represented by formula (B1a) may be the same or different.
  • (In formula (B2) At least one pair of the pair of R 1B and R 10B and the pair of R 5B and R 6B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • R 1B and R 2B pair, R 2B and R 3B pair, R 3B and R 4B pair, R 4B and R 5B pair, R 6B and R 7B pair, R 7B and R 8B pair , R 8B and R 9B , and one or more pairs of R 9B and R 10B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or does not form an unsaturated ring.
  • Each of R 1B to R 10B which does not form a substituted or unsubstituted saturated or unsaturated ring is independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • a pair of R 9B and R 10B is a substituted or unsubstituted saturated or unsaturated ring.
  • the pair of R 6B and R 7B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 4B and R 5B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 4B and R 5B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 1B and R 2B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • a hydrogen atom includes isotopes with different neutron numbers, ie, protium, deuterium, and tritium.
  • a hydrogen atom that is, a hydrogen atom, a deuterium atom, or Assume that the tritium atoms are bonded.
  • the number of ring-forming carbon atoms refers to the ring itself of a compound having a structure in which atoms are bonded in a ring (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compounds, and heterocyclic compounds). represents the number of carbon atoms among the atoms that When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbon atoms. The same applies to the "number of ring-forming carbon atoms" described below unless otherwise specified.
  • a benzene ring has 6 ring carbon atoms
  • a naphthalene ring has 10 ring carbon atoms
  • a pyridine ring has 5 ring carbon atoms
  • a furan ring has 4 ring carbon atoms.
  • the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms
  • the 9,9′-spirobifluorenyl group has 25 ring-forming carbon atoms.
  • the number of ring-forming carbon atoms in the benzene ring substituted with the alkyl group is 6.
  • the naphthalene ring substituted with an alkyl group has 10 ring-forming carbon atoms.
  • the number of ring-forming atoms refers to compounds (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compound, and heterocyclic compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring (e.g., a hydrogen atom that terminates the bond of an atom that constitutes a ring) and atoms contained in substituents when the ring is substituted by substituents are not included in the number of ring-forming atoms. The same applies to the "number of ring-forming atoms" described below unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • hydrogen atoms bonded to the pyridine ring or atoms constituting substituents are not included in the number of atoms forming the pyridine ring. Therefore, the number of ring-forming atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is 6.
  • the expression "substituted or unsubstituted XX to YY carbon number ZZ group” represents the number of carbon atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of carbon atoms in the substituents.
  • "YY” is larger than “XX”, “XX” means an integer of 1 or more, and “YY” means an integer of 2 or more.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and "YY” means an integer of 2 or more.
  • an unsubstituted ZZ group represents a case where a "substituted or unsubstituted ZZ group" is an "unsubstituted ZZ group", and a substituted ZZ group is a "substituted or unsubstituted ZZ group”. is a "substituted ZZ group”.
  • "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that a hydrogen atom in the ZZ group is not replaced with a substituent.
  • a hydrogen atom in the "unsubstituted ZZ group” is a protium atom, a deuterium atom, or a tritium atom.
  • substituted in the case of “substituted or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with a substituent.
  • substituted in the case of "a BB group substituted with an AA group” similarly means that one or more hydrogen atoms in the BB group are replaced with an AA group.
  • the number of ring-forming carbon atoms in the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise specified. be.
  • the number of carbon atoms in the "unsubstituted alkyl group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • the number of carbon atoms in the "unsubstituted alkenyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of carbon atoms in the "unsubstituted alkynyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of ring-forming carbon atoms in the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise specified. be.
  • the number of ring-forming carbon atoms in the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5, unless otherwise specified herein. ⁇ 18.
  • the number of carbon atoms in the "unsubstituted alkylene group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • unsubstituted aryl group refers to the case where "substituted or unsubstituted aryl group” is “unsubstituted aryl group", and substituted aryl group is “substituted or unsubstituted aryl group” It refers to a "substituted aryl group”.
  • aryl group includes both "unsubstituted aryl group” and “substituted aryl group”.
  • a "substituted aryl group” means a group in which one or more hydrogen atoms of an "unsubstituted aryl group” are replaced with a substituent.
  • substituted aryl group examples include, for example, a group in which one or more hydrogen atoms of the "unsubstituted aryl group” of Specific Example Group G1A below is replaced with a substituent, and a substituted aryl group of Specific Example Group G1B below.
  • Examples include:
  • the examples of the "unsubstituted aryl group” and the examples of the “substituted aryl group” listed here are only examples, and the “substituted aryl group” described herein includes the following specific examples A group in which the hydrogen atom bonded to the carbon atom of the aryl group itself in the "substituted aryl group” of Group G1B is further replaced with a substituent, and the hydrogen atom of the substituent in the "substituted aryl group” of Specific Example Group G1B below Furthermore, groups substituted with substituents are also included.
  • aryl group (specific example group G1A): phenyl group, a p-biphenyl group, m-biphenyl group, an o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, benzoanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a pyrenyl group, a chryseny
  • Substituted aryl group (specific example group G1B): an o-tolyl group, m-tolyl group, p-tolyl group, para-xylyl group, meta-xylyl group, an ortho-xylyl group, para-isopropylphenyl group, meta-isopropylphenyl group, an ortho-isopropylphenyl group, para-t-butylphenyl group, meta-t-butylphenyl group, ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group 9,9-bis(4-methylphenyl)fluorenyl group, 9,9-bis(4-isopropylphenyl)fluorenyl group, 9,9-bis(4-t-butylphenyl) fluorenyl group, a cyanophenyl group, a
  • heterocyclic group is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen, oxygen, sulfur, silicon, phosphorus, and boron atoms.
  • a “heterocyclic group” as described herein is a monocyclic group or a condensed ring group.
  • a “heterocyclic group” as described herein is either an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • specific examples of the "substituted or unsubstituted heterocyclic group" described herein include the following unsubstituted heterocyclic groups (specific example group G2A), and substituted heterocyclic groups ( Specific example group G2B) and the like can be mentioned.
  • unsubstituted heterocyclic group refers to the case where “substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”, and substituted heterocyclic group refers to “substituted or unsubstituted "Heterocyclic group” refers to a "substituted heterocyclic group”.
  • heterocyclic group refers to a "substituted heterocyclic group”.
  • a “substituted heterocyclic group” means a group in which one or more hydrogen atoms of an "unsubstituted heterocyclic group” are replaced with a substituent.
  • Specific examples of the "substituted heterocyclic group” include groups in which the hydrogen atoms of the "unsubstituted heterocyclic group” of the following specific example group G2A are replaced, and examples of the substituted heterocyclic groups of the following specific example group G2B. mentioned.
  • the examples of the "unsubstituted heterocyclic group” and the examples of the “substituted heterocyclic group” listed here are only examples, and the "substituted heterocyclic group” described herein specifically includes A group in which the hydrogen atom bonded to the ring-forming atom of the heterocyclic group itself in the "substituted heterocyclic group" of Example Group G2B is further replaced with a substituent, and a substituent in the "substituted heterocyclic group" of Specific Example Group G2B A group in which a hydrogen atom of is further replaced with a substituent is also included.
  • Specific example group G2A includes, for example, the following nitrogen atom-containing unsubstituted heterocyclic groups (specific example group G2A1), oxygen atom-containing unsubstituted heterocyclic groups (specific example group G2A2), sulfur atom-containing unsubstituted (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • nitrogen atom-containing unsubstituted heterocyclic groups specifically example group G2A1
  • oxygen atom-containing unsubstituted heterocyclic groups specifically example group G2A2
  • sulfur atom-containing unsubstituted specifically example group G2A3
  • a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • Specific example group G2B includes, for example, the following substituted heterocyclic group containing a nitrogen atom (specific example group G2B1), substituted heterocyclic group containing an oxygen atom (specific example group G2B2), substituted heterocyclic ring containing a sulfur atom group (specific example group G2B3), and one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) as a substituent Including substituted groups (example group G2B4).
  • an unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, pyrazinyl group, a triazinyl group, an indolyl group, an isoindolyl group, an indolizinyl group, a quinolidinyl group, quinolyl group, an isoquinolyl group, cinnolyl group, a phthalazinyl group, a quinazolinyl
  • an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): furyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, xanthenyl group, benzofuranyl group, an isobenzofuranyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, a benzoxazolyl group, a benzisoxazolyl group, a phenoxazinyl group, a morpholino group, a dinaphthofuranyl group, an azadibenzofuranyl group, a diazadibenzofuranyl group, azanaphthobenzofuranyl group and diazanaphthobenzofuranyl group;
  • thienyl group an unsubstituted heterocyclic group containing a sulfur atom
  • thienyl group a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, benzothiophenyl group (benzothienyl group), isobenzothiophenyl group (isobenzothienyl group), dibenzothiophenyl group (dibenzothienyl group), naphthobenzothiophenyl group (naphthobenzothienyl group), a benzothiazolyl group, a benzoisothiazolyl group, a phenothiazinyl group, a dinaphthothiophenyl group (dinaphthothienyl group), azadibenzothiophenyl group (azadibenzothienyl group), diazadibenzothiophenyl group (diazadibenzothiopheny
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the monovalent heterocyclic groups derived from the represented ring structures include monovalent groups obtained by removing one hydrogen atom from these NH or CH2 .
  • a substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-phenyl)carbazolyl group, (9-biphenylyl)carbazolyl group, (9-phenyl) phenylcarbazolyl group, (9-naphthyl)carbazolyl group, diphenylcarbazol-9-yl group, a phenylcarbazol-9-yl group, a methylbenzimidazolyl group, ethylbenzimidazolyl group, a phenyltriazinyl group, a biphenylyltriazinyl group, a diphenyltriazinyl group, a phenylquinazolinyl group and a biphenylylquinazolinyl group;
  • a substituted heterocyclic group containing an oxygen atom (specific example group G2B2): phenyldibenzofuranyl group, methyldibenzofuranyl group, A t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9′-[9H]fluorene].
  • a substituted heterocyclic group containing a sulfur atom (specific example group G2B3): phenyldibenzothiophenyl group, a methyldibenzothiophenyl group, A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9′-[9H]fluorene].
  • the "one or more hydrogen atoms of the monovalent heterocyclic group” means that at least one of the hydrogen atoms bonded to the ring-forming carbon atoms of the monovalent heterocyclic group, XA and YA is NH.
  • unsubstituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is “unsubstituted alkyl group”
  • substituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is It refers to a "substituted alkyl group”.
  • alkyl group includes both an "unsubstituted alkyl group” and a "substituted alkyl group”.
  • a “substituted alkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkyl group” (specific example group G3A) are replaced with substituents, and substituted alkyl groups (specific examples Examples of group G3B) and the like can be mentioned.
  • the alkyl group in the "unsubstituted alkyl group” means a chain alkyl group.
  • the "unsubstituted alkyl group” includes a linear “unsubstituted alkyl group” and a branched “unsubstituted alkyl group”.
  • the examples of the "unsubstituted alkyl group” and the examples of the “substituted alkyl group” listed here are only examples, and the "substituted alkyl group” described herein includes specific example group G3B A group in which the hydrogen atom of the alkyl group itself in the "substituted alkyl group” of Specific Example Group G3B is further replaced with a substituent, and a group in which the hydrogen atom of the substituent in the "substituted alkyl group” of Specific Example Group G3B is further replaced by a substituent included.
  • Unsubstituted alkyl group (specific example group G3A): methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group.
  • Substituted alkyl group (specific example group G3B): a heptafluoropropyl group (including isomers), pentafluoroethyl group, 2,2,2-trifluoroethyl group and trifluoromethyl group;
  • Substituted or unsubstituted alkenyl group Specific examples of the "substituted or unsubstituted alkenyl group" described in the specification (specific example group G4) include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B) and the like.
  • unsubstituted alkenyl group refers to the case where "substituted or unsubstituted alkenyl group” is “unsubstituted alkenyl group", and "substituted alkenyl group” means "substituted or unsubstituted alkenyl group ” is a “substituted alkenyl group”.
  • alkenyl group simply referring to an “alkenyl group” includes both an “unsubstituted alkenyl group” and a “substituted alkenyl group”.
  • a “substituted alkenyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include groups in which the following "unsubstituted alkenyl group” (specific example group G4A) has a substituent, and substituted alkenyl groups (specific example group G4B). be done.
  • Unsubstituted alkenyl group (specific example group G4A): a vinyl group, allyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group.
  • Substituted alkenyl group (specific example group G4B): 1,3-butandienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, a 2-methylallyl group and a 1,2-dimethylallyl group;
  • Substituted or unsubstituted alkynyl group Specific examples of the "substituted or unsubstituted alkynyl group" described in the specification (specific example group G5) include the following unsubstituted alkynyl groups (specific example group G5A).
  • the unsubstituted alkynyl group refers to the case where a "substituted or unsubstituted alkynyl group" is an "unsubstituted alkynyl group”.
  • alkynyl group simply referred to as an "alkynyl group” means "unsubstituted includes both "alkynyl group” and "substituted alkynyl group”.
  • a “substituted alkynyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group” (specific example group G5A) are replaced with substituents.
  • Substituted or unsubstituted cycloalkyl group Specific examples of the "substituted or unsubstituted cycloalkyl group” described in the specification (specific example group G6) include the following unsubstituted cycloalkyl groups (specific example group G6A), and substituted cycloalkyl groups ( Specific example group G6B) and the like can be mentioned.
  • unsubstituted cycloalkyl group refers to the case where "substituted or unsubstituted cycloalkyl group” is “unsubstituted cycloalkyl group", and substituted cycloalkyl group refers to "substituted or unsubstituted It refers to the case where "cycloalkyl group” is “substituted cycloalkyl group”.
  • cycloalkyl group means "unsubstituted cycloalkyl group” and “substituted cycloalkyl group”. including both.
  • a “substituted cycloalkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted cycloalkyl group” (specific example group G6A) are replaced with substituents, and substituted cycloalkyl groups (Specific example group G6B) and the like.
  • the examples of the "unsubstituted cycloalkyl group” and the examples of the “substituted cycloalkyl group” listed here are only examples, and the "substituted cycloalkyl group” described herein specifically includes A group in which one or more hydrogen atoms bonded to a carbon atom of the cycloalkyl group itself in the “substituted cycloalkyl group” of Example Group G6B is replaced with a substituent, and in the “substituted cycloalkyl group” of Specific Example Group G6B A group in which a hydrogen atom of a substituent is further replaced with a substituent is also included.
  • cycloalkyl group (specific example group G6A): a cyclopropyl group, cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • cycloalkyl group (specific example group G6B): 4-methylcyclohexyl group;
  • G7 A group represented by -Si (R 901 ) (R 902 ) (R 903 )
  • Specific examples of the group represented by —Si(R 901 )(R 902 )(R 903 ) described in the specification include: -Si(G1)(G1)(G1), - Si (G1) (G2) (G2), - Si (G1) (G1) (G2), -Si(G2)(G2)(G2), -Si(G3)(G3)(G3) and -Si(G6)(G6)(G6) is mentioned.
  • G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -Si(G1)(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -Si (G1) (G2) (G2) are the same or different from each other.
  • a plurality of G1's in -Si(G1)(G1)(G2) are the same or different from each other.
  • a plurality of G2 in -Si(G2)(G2)(G2) are the same or different from each other.
  • a plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -Si(G6)(G6)(G6) are the same or different from each other.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G9 a group represented by -S- (R 905 )
  • Specific examples of the group represented by -S-(R 905 ) described in the specification include: -S (G1), -S(G2), -S (G3) and -S (G6) are mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -N(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -N(G2)(G2) are the same or different from each other.
  • a plurality of G3s in -N(G3)(G3) are the same or different from each other.
  • - the plurality of G6 in N (G6) (G6) are the same or different from each other
  • halogen atom described in this specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • the "substituted or unsubstituted fluoroalkyl group” described in this specification means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group” is replaced with a fluorine atom. Also includes a group (perfluoro group) in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with fluorine atoms.
  • the carbon number of the “unsubstituted fluoroalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of a “fluoroalkyl group” are replaced with a substituent.
  • substituted fluoroalkyl group described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted fluoroalkyl group” are further replaced with a substituent, and A group in which one or more hydrogen atoms of a substituent in a "substituted fluoroalkyl group” is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted fluoroalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with fluorine atoms.
  • Substituted or unsubstituted haloalkyl group "Substituted or unsubstituted haloalkyl group” described herein means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group" is replaced with a halogen atom Also includes a group in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with halogen atoms.
  • the carbon number of the “unsubstituted haloalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted haloalkyl group” means a group in which one or more hydrogen atoms of a “haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted haloalkyl group” is further replaced with a substituent group, and a “substituted A group in which one or more hydrogen atoms of the substituent in the "haloalkyl group of" is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted haloalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with halogen atoms.
  • a haloalkyl group may be referred to as a halogenated alkyl group.
  • Substituted or unsubstituted alkoxy group Specific examples of the “substituted or unsubstituted alkoxy group” described in this specification are groups represented by —O(G3), where G3 is the “substituted or unsubstituted alkyl group”.
  • the carbon number of the "unsubstituted alkoxy group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted alkylthio group A specific example of the "substituted or unsubstituted alkylthio group” described in this specification is a group represented by -S(G3), where G3 is the "substituted or unsubstituted unsubstituted alkyl group".
  • the carbon number of the "unsubstituted alkylthio group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted aryloxy group Specific examples of the “substituted or unsubstituted aryloxy group” described in this specification are groups represented by —O(G1), where G1 is the “substituted or an unsubstituted aryl group”.
  • the number of ring-forming carbon atoms in the "unsubstituted aryloxy group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted arylthio group” described in this specification is a group represented by -S(G1), wherein G1 is the "substituted or unsubstituted unsubstituted aryl group".
  • the number of ring-forming carbon atoms in the "unsubstituted arylthio group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • ⁇ "Substituted or unsubstituted trialkylsilyl group” Specific examples of the "trialkylsilyl group” described in this specification are groups represented by -Si(G3)(G3)(G3), where G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group”. A plurality of G3s in -Si(G3)(G3)(G3) are the same or different from each other. The number of carbon atoms in each alkyl group of the "trialkylsilyl group” is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in this specification is a group represented by -(G3)-(G1), wherein G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • an "aralkyl group” is a group in which a hydrogen atom of an "alkyl group” is replaced with an "aryl group” as a substituent, and is one aspect of a “substituted alkyl group”.
  • An “unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group", and the number of carbon atoms in the "unsubstituted aralkyl group” is unless otherwise specified herein. , 7-50, preferably 7-30, more preferably 7-18.
  • substituted or unsubstituted aralkyl group include a benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • a substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl- 4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl- 2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group , pyrenyl group, chrysenyl group, triphenylenyl group, fluorenyl group, 9,9′-spirobifluorenyl group,
  • substituted or unsubstituted heterocyclic groups described herein are preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, quinazolinyl, benzimidazolyl, phenyl, unless otherwise stated herein.
  • nantholinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl)carbazolyl group ((9-phenyl)carbazol-1-yl group, (9-phenyl)carbazol-2-yl group, (9-phenyl)carbazol-3-yl group, or (9-phenyl)carbazole -4-yl group), (9-
  • a carbazolyl group is specifically any one of the following groups unless otherwise specified in the specification.
  • the (9-phenyl)carbazolyl group is specifically any one of the following groups, unless otherwise stated in the specification.
  • a dibenzofuranyl group and a dibenzothiophenyl group are specifically any of the following groups, unless otherwise specified.
  • substituted or unsubstituted alkyl groups described herein are preferably methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and t- butyl group and the like.
  • the "substituted or unsubstituted arylene group” described herein is derived from the above "substituted or unsubstituted aryl group” by removing one hydrogen atom on the aryl ring. is the base of the valence.
  • Specific examples of the “substituted or unsubstituted arylene group” include the “substituted or unsubstituted aryl group” described in specific example group G1 by removing one hydrogen atom on the aryl ring. Induced divalent groups and the like can be mentioned.
  • Substituted or unsubstituted divalent heterocyclic group Unless otherwise specified, the "substituted or unsubstituted divalent heterocyclic group” described herein is the above “substituted or unsubstituted heterocyclic group” except that one hydrogen atom on the heterocyclic ring is removed. is a divalent group derived from Specific examples of the "substituted or unsubstituted divalent heterocyclic group" (specific example group G13) include one hydrogen on the heterocyclic ring from the "substituted or unsubstituted heterocyclic group” described in specific example group G2. Examples include divalent groups derived by removing atoms.
  • Substituted or unsubstituted alkylene group Unless otherwise specified, the "substituted or unsubstituted alkylene group” described herein is derived from the above “substituted or unsubstituted alkyl group” by removing one hydrogen atom on the alkyl chain. is the base of the valence. Specific examples of the "substituted or unsubstituted alkylene group” (specific example group G14) include the "substituted or unsubstituted alkyl group” described in specific example group G3 by removing one hydrogen atom on the alkyl chain. Induced divalent groups and the like can be mentioned.
  • the substituted or unsubstituted arylene group described in this specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68), unless otherwise specified in this specification.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • * represents a binding site.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • Formulas Q9 and Q10 may be linked together through a single bond to form a ring.
  • * represents a binding site.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • * represents a binding site.
  • the substituted or unsubstituted divalent heterocyclic group described herein is preferably any group of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise specified herein. is.
  • Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • R 921 and R 922 when “one or more pairs of two or more adjacent pairs of R 921 to R 930 are combined to form a ring", is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , R 925 and R 926 , R 926 and R 927 , R 927 and R 928 , R 928 and R 929 , and R 929 and R 921 .
  • one or more pairs means that two or more of the groups consisting of two or more adjacent groups may form a ring at the same time.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 925 and R 926 are bonded together to form ring Q B
  • the general formula (TEMP-103) The represented anthracene compound is represented by the following general formula (TEMP-104).
  • a group consisting of two or more adjacent pairs forms a ring is not limited to the case where a group consisting of two adjacent "two” bonds as in the above example, but It also includes the case where a pair is combined.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 922 and R 923 are bonded together to form ring Q C
  • the adjacent three R 921 , R 922 and R 923
  • the anthracene compound represented by the above general formula (TEMP-103) has It is represented by the general formula (TEMP-105).
  • ring Q A and ring Q C share R 922 .
  • the "monocyclic ring” or “condensed ring” to be formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when “one pair of adjacent pairs" forms a “single ring” or a “fused ring", the “single ring” or “fused ring” is a saturated ring, or Unsaturated rings can be formed.
  • ring Q A and ring Q B formed in the general formula (TEMP-104) are each a “monocyclic ring” or a "fused ring”.
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “fused rings”.
  • the ring Q A and the ring Q C in the general formula (TEMP-105) form a condensed ring by condensing the ring Q A and the ring Q C. If the ring Q A of the general formula (TMEP-104) is a benzene ring, the ring Q A is monocyclic. When the ring Q A of the general formula (TMEP-104) is a naphthalene ring, the ring Q A is a condensed ring.
  • the "unsaturated ring” includes an aromatic hydrocarbon ring, an aromatic heterocyclic ring, and an aliphatic hydrocarbon ring having an unsaturated bond in the ring structure, that is, a double bond and/or a triple bond (e.g., cyclohexene, cyclohexadiene, etc.), and non-aromatic heterocycles having unsaturated bonds (eg, dihydropyran, imidazoline, pyrazoline, quinolidine, indoline, isoindoline, etc.).
  • the "saturated ring” includes an aliphatic hydrocarbon ring having no unsaturated bonds or a non-aromatic heterocyclic ring having no unsaturated bonds.
  • aromatic hydrocarbon ring examples include structures in which the groups listed as specific examples in the specific example group G1 are terminated with a hydrogen atom.
  • aromatic heterocyclic ring examples include structures in which the aromatic heterocyclic groups listed as specific examples in the specific example group G2 are terminated with a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G6 are terminated with a hydrogen atom.
  • the ring Q A formed by combining R 921 and R 922 shown in the general formula (TEMP-104) has the carbon atom of the anthracene skeleton to which R 921 is bonded and the anthracene skeleton to which R 922 is bonded. It means a ring formed by a skeleton carbon atom and one or more arbitrary atoms.
  • R 921 and R 922 form a ring Q A , the carbon atom of the anthracene skeleton to which R 921 is bound, the carbon atom of the anthracene skeleton to which R 922 is bound, and four carbon atoms and form a monocyclic unsaturated ring, the ring formed by R 921 and R 922 is a benzene ring.
  • the "arbitrary atom” is preferably at least one atom selected from the group consisting of carbon, nitrogen, oxygen, and sulfur atoms, unless otherwise specified herein.
  • a bond that does not form a ring at any atom may be terminated with a hydrogen atom or the like, or may be substituted with an "optional substituent” described later. If it contains any atoms other than carbon atoms, then the ring formed is a heterocyclic ring.
  • “One or more arbitrary atoms" constituting a monocyclic or condensed ring are preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, unless otherwise specified in the specification.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above “monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section “Substituents described herein” above.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above "monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section "Substituents described herein" above. The above is the case where “one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring", and “one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted condensed ring"("bonded to form a ring").
  • the substituent in the case of “substituted or unsubstituted” is, for example, an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted alkenyl group having 2 to 50 carbon atoms, an unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, a group selected from the group consisting of an unsubstituted aryl group
  • the two or more R 901 are the same or different from each other, when two or more R 902 are present, the two or more R 902 are the same or different from each other; when two or more R 903 are present, the two or more R 903 are the same or different from each other, when two or more R 904 are present, the two or more R 904 are the same or different from each other; when two or more R 905 are present, the two or more R 905 are the same or different from each other, when two or more R 906 are present, the two or more R 906 are the same or different from each other; When two or more R 907 are present, the two or more R 907 are the same or different from each other.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • any adjacent substituents may form a “saturated ring” or an “unsaturated ring”, preferably a substituted or unsubstituted saturated 5 forming a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring do.
  • any substituent may have further substituents. Substituents further possessed by the optional substituents are the same as the above optional substituents.
  • the numerical range represented using “AA to BB” has the numerical value AA described before “AA to BB” as the lower limit, and the numerical value BB described after “AA to BB” as the upper limit.
  • a composition according to an aspect of the present invention (hereinafter also referred to as a “first composition”) has an electron affinity Af 1 of 1.70 eV or less and an ionization potential Ip 1 of 5.80 eV or less. 1 and a second compound having an electron affinity Af2 of 2.00 eV or less and an ionization potential Ip2 of 5.95 eV or less.
  • the first compound and the second compound are different compounds.
  • the first composition contains the first compound and the second compound each having an electron affinity and an ionization potential in the specific ranges shown above, so that when used in an organic EL device, the device performance is improved. can be improved. Specifically, a longer-life organic EL device can be realized without substantially impairing the driving voltage and the external quantum efficiency. Electron affinity (Af) and ionization potential (Ip) are measured by the method described in Examples. Each compound used in the first composition is described below.
  • the first compound has an electron affinity Af 1 of 1.70 eV or less and an ionization potential Ip 1 of 5.80 eV or less.
  • the electron affinity Af 1 of the first compound is 1.60 eV or less.
  • the electron affinity Af 1 of the first compound may be, for example, 1.55 eV or less, or 1.50 eV or less.
  • Af 1 may be, for example, 0.95 eV or more, or 1.00 eV or more.
  • the ionization potential Ip 1 of said first compound is 5.75 eV or less. In one embodiment, the ionization potential Ip 1 of said first compound is 5.60 eV or higher, for example 5.65 eV or higher, or 5.70 eV or higher.
  • the electron affinity Af 1 of the first compound is less than the electron affinity Af 2 of the second compound described below, e.g., the electron affinity Af 1 of the first compound is the electron affinity Af 2 of the second compound less than 2 by 0.2 eV or more.
  • the upper limit of the difference (Af 2 ⁇ Af 1 ) between the electron affinity Af 1 of the first compound and the electron affinity Af 2 of the second compound is not particularly limited, but is, for example, 0.6 or less, or 0.5 It is below.
  • the ionization potential Ip 1 of the first compound is less than the ionization potential Ip 2 of the second compound described below.
  • the ionization potential Ip 1 of the first compound and the ionization potential Ip 2 of the second compound described later satisfy the following formula (1).
  • the above formula (1) is represented by the following formula (1-1) or (1-2).
  • the ionization potential Ip1 of the first compound may be equal to or higher than the ionization potential Ip2 of the second compound.
  • the first compound the first compound described in the later-described second composition can be used.
  • the second compound has an electron affinity Af2 of 2.00 eV or less and an ionization potential Ip2 of 5.95 eV or less.
  • the second compound is a different compound than the first compound.
  • the second compound "different from the first compound” means that the chemical structural formula (skeleton) is different from each other, or that the chemical structural formula (skeleton) is the same but contains different isotopes. ,including. Isotopes refer to atoms having the same atomic number and different numbers of neutrons. For example, benzene ( C6H6 ) and deuterated benzene ( C6D6 ) are different compounds .
  • the chemical structural formula (skeleton) is the same but different isotopes are included, the compounds are also different when the number or arrangement of the isotopes is different.
  • C 6 H 5 D 1 and C 6 D 6 are different compounds.
  • a compound having deuterium at the 1- and 2-positions of the benzene ring and a compound having deuterium at the 1- and 3-positions of the benzene ring Compounds are compounds that differ from each other due to their different isotopic arrangements.
  • the electron affinity Af 2 of said second compound is no greater than 1.95 eV, and may be no greater than 1.90 eV.
  • Af2 may be, for example, 1.45 eV or more, or 1.50 eV or more.
  • the ionization potential Ip2 of the second compound is 5.90 eV or less, and may be 5.80 eV or less. Also, Ip2 may be, for example, 5.55 eV or more, or 5.60 eV or more.
  • the triplet energy T 1 of the second compound is 2.40 eV or less, and may be, for example, 2.35 eV or less, or 2.30 eV or less. Also, the triplet energy T1 of the second compound may be, for example, 1.80 eV or more, or 1.85 eV or more. Triplet energy (T 1 ) is measured by the method described in Examples.
  • the second compound described in the later-described second composition can be used.
  • the mass ratio of the first compound to said second compound (first compound:second compound) in the first composition is in the range of 50:50 to 99:1, and 65 :35 to 99:1. Also, the mass ratio (first compound:second compound) may be, for example, within the range of 65:35 to 90:10, or within the range of 75:25 to 90:10.
  • the first composition may or may not contain components other than the first compound and the second compound.
  • the composition consists essentially of the first compound and the second compound.
  • Consisting essentially of the first compound and the second compound means that the first composition contains no other compounds at all, or the other compounds do not impair the effects of the present invention.
  • a state in which trace amounts are included in the range For example, when it is mixed as an unavoidable impurity, it is in this state.
  • the first composition is at least 80% by weight, at least 90% by weight, at least 95% by weight, at least 99% by weight, at least 99.5% by weight, at least 99.9% by weight, at least 99.99% by weight. % or more or 100% by mass are the first compound and the second compound.
  • the first composition is 80 mol% or more, 90 mol% or more, 95 mol% or more, 99 mol% or more, 99.5 mol% or more, 99.9 mol% or more, 99.99 mol % or more or 100 mol % are the first compound and the second compound.
  • the first composition consists only of the first compound and the second compound.
  • the combination of the first compound and the second compound is not particularly limited, and for example, a combination of the first compound and the second compound exemplified in the second composition described later can be used.
  • a composition according to one embodiment of the present invention (hereinafter also referred to as a “second composition”) includes a first compound that is a compound represented by formula (A1) or a compound represented by formula (A2); , a compound represented by formula (B1) or a compound represented by formula (B2).
  • the first compound and the second compound are different compounds.
  • the second composition contains the first compound and the second compound having specific structures, the device performance can be improved when used in an organic EL device. Specifically, a longer-life organic EL device can be realized without substantially impairing the driving voltage and the external quantum efficiency.
  • Each compound used in the second composition is described below.
  • the first compound is a compound represented by the following formula (A1) or a compound represented by the following formula (A2).
  • (A1), L A1 , L A2 , and L A3 are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 111 , Ar 112 and Ar 113 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, or -Si(R C1 )(R C2 )(R C3 ); R C1 , R C2 and R C3 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the plurality of R C1 may be the same or different.
  • the multiple R C2 are present, the multiple R C2 may be the same or different.
  • L C1 , L C2 , L C3 and L C4 are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • n2 is an integer of 1-4.
  • L C5 is It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • n2 is 2, 3, or 4
  • multiple L C5 may be the same or different.
  • n2 is 2, 3, or 4
  • multiple L C5 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring does not form
  • Each of the substituted or unsubstituted L C5 that does not form a saturated or unsaturated ring is independently It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 131 , Ar 132 , Ar 133 and Ar 134 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, or -Si(R C1 )(R C2 )(R C3 ); R C1 , R C2 and R C3 are as defined in formula (A1) above. )
  • the substituent in the case of "substituted or unsubstituted" in the compound represented by Formula (A1) is not a group represented by -N(R C6 )(R C7 ).
  • R C6 and R C7 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted It is an aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • a first amino group represented by formula (A2-1) below and a second amino group represented by formula (A2-2) below are the same group
  • the substituent in the case of “substituted or unsubstituted” in the compound represented by formula (A2) is not a group represented by —N(R C6 )(R C7 ).
  • R C6 and R C7 are as defined in formula (A1) above.
  • * is the binding position with L C5 , respectively.
  • Ar 131 , Ar 132 , Ar 133 , Ar 134 , L C1 , L C2 , L C3 and L C4 are as defined in formula (A1) above. )
  • the first compound is the compound represented by formula (A1) above.
  • the first compound is a compound represented by formula (A11) below.
  • L A1 , L A2 , L A3 , Ar 111 , and Ar 112 are as defined in Formula (A1) above.
  • X 101 is O, S, N(R 109 ), or C(R 110 )(R 111 ). Any one of R 101 to R 109 represents a bond with L A3 .
  • R 101 to R 109 and R 110 and R 111 that do not represent a bond to L A3 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated It forms a saturated ring or does not form a substituted or unsubstituted saturated or unsaturated ring.
  • Each R 109 is independently a hydrogen atom or a substituent R.
  • Substituent R is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ) (Here, R 901 to R 907 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, It is a substituted or unsubstituted ary
  • each of the two or more R 901 to R 907 may be the same or different.
  • halogen atom cyano group, nitro group
  • It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • substituents R may be the same or different.
  • At least two of L A1 , L A2 , and L A3 each independently It is a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • the first compound is a compound represented by formula (A12) below.
  • Ar 111 and Ar 112 are as defined in Formula (A1) above.
  • L A11 , L A12 and L A13 are each independently a substituted or unsubstituted phenylene group, It is a substituted or unsubstituted biphenylene group or a substituted or unsubstituted naphthylene group.
  • R 111 to R 118 are each independently a hydrogen atom or a substituent R; Substituent R is as defined in formula (A11) above.
  • Ar 111 and Ar 112 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • hydrogen atom includes protium, deuterium, and tritium atoms.
  • the first compound described above may contain naturally occurring deuterium atoms.
  • deuterium atoms may be intentionally introduced into the first compound by using a deuterated compound as part or all of the raw material compound.
  • the first compound contains at least one deuterium atom. That is, the compound of the present embodiment is a compound represented by formula (A1) or a compound represented by formula (A2), wherein at least one hydrogen atom contained in the compound is a deuterium atom. There may be.
  • the deuteration rate of the first compound is, for example, 1% or more, 3% or more, 5% or more, 10% or more, or 50% or more.
  • each of the two or more R 41 to R 53 may be the same or different), a hydroxy group, It is selected from the group consisting of a halogen atom, a cyano group, a nitro group, an aryl group having 6 to 50 ring carbon atoms, and a monovalent heterocyclic group having 5 to 50 ring atoms.
  • the substituents for "substituted or unsubstituted" in the first compound, and said substituents R are an alkyl group having 1 to 50 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms,
  • a substituent when referred to as "substituted or unsubstituted" and said substituent R are an alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • the first compound can be synthesized by using known alternative reactions and raw materials that match the desired product.
  • first compound in the first composition are described below, but these are only examples, and the first compound is not limited to the following specific examples.
  • first compound in the second composition are described below, but these are only examples, and the first compound is not limited to the following specific examples.
  • the second compound in the second composition is a compound represented by the following formula (B1) or a compound represented by the following formula (B2).
  • R 1A to R 8A are each independently hydrogen atom, It is a substituent R or a group represented by the following formula (B1a).
  • Substituent R is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ) (Here, R 901 to R 907 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, It is a substituted or unsubstituted ary
  • each of the two or more R 901 to R 907 may be the same or different.
  • halogen atom cyano group, nitro group
  • It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • substituents R may be the same or different.
  • L 1A are each independently single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 1A is each independently It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • -L 1A -Ar 1A (B1a) In formula (B1a), L 1A and Ar 1A are as defined in Formula (B1).
  • each of the two or more groups represented by formula (B1a) may be the same or different.
  • (In formula (B2) At least one pair of the pair of R 1B and R 10B and the pair of R 5B and R 6B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • R 1B and R 2B pair, R 2B and R 3B pair, R 3B and R 4B pair, R 4B and R 5B pair, R 6B and R 7B pair, R 7B and R 8B pair , R 8B and R 9B , and one or more pairs of R 9B and R 10B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or does not form an unsaturated ring.
  • Each of R 1B to R 10B which does not form a substituted or unsubstituted saturated or unsaturated ring is independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • a pair of R 9B and R 10B is a substituted or unsubstituted saturated or unsaturated ring.
  • the pair of R 6B and R 7B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 4B and R 5B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 4B and R 5B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 1B and R 2B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • each L 1A in formula (B1) is independently a single bond or a substituted or unsubstituted arylene group having 6 to 14 ring carbon atoms.
  • each L 1A in formula (B1) is independently a single bond, a substituted or unsubstituted phenylene group, or a substituted or unsubstituted naphthylene group.
  • the compound represented by formula (B1) is a compound represented by formula (B1-1) below.
  • R 1A to R 8A , L 1A and Ar 1A are as defined in formula (B1) above.
  • X 11A is C(R 21A )(R 22A ), N(R 23A ), O, or S; Adjacent two of R 11A to R 18A are bonded to form a substituted or unsubstituted benzene ring or do not form a substituted or unsubstituted benzene ring.
  • R 11A to R 18A One of the carbon atoms in the R 11A to R 18A that do not form the substituted or unsubstituted benzene ring and the substituted or unsubstituted benzene ring is bonded to L 1A through a single bond.
  • R 11A to R 18A and R 21A to R 23A that do not form a substituted or unsubstituted benzene ring and do not bond to L 1A are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above. )
  • X 11A in formula (B1-1) above is O.
  • the compound represented by formula (B1) is a compound represented by any one of formulas (B1-11) to (B1-17) below.
  • R 1A to R 8A , L 1A , and Ar 1A are as defined in formula (B1) above.
  • R 112A to R 120A are each independently a hydrogen atom or a substituent R.
  • R 122A to R 130A are each independently a hydrogen atom or a substituent R.
  • R 132A to R 140A are each independently a hydrogen atom or a substituent R.
  • R 141A and R 143A to R 150A each independently represent a hydrogen atom or a substituent R.
  • R 151A and R 153A to R 160A each independently represent a hydrogen atom or a substituent R.
  • R 161A and R 163A to R 170A each independently represent a hydrogen atom or a substituent R.
  • R 171A and R 173A to R 178A each independently represent a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above. )
  • Ar 1A in the formulas (B1-11) to (B1-17) is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Ar 1A in the above formulas (B1-11) to (B1-17) is selected from groups represented by any of the following formulas (a1) to (a4).
  • * is a single bond that binds to L1A .
  • R21 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, It is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 901 to R 907 are as defined in formula (B1) above.
  • m1 is an integer of 0-4.
  • m2 is an integer from 0 to 5;
  • m3 is an integer from 0 to 7;
  • R 21 may be the same or different.
  • a plurality of adjacent R 21 are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring does not form )
  • the compound represented by formula (B2) is a compound represented by formula (B21) below.
  • L 11B is single bond, It is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms.
  • Ar 11B and Ar 12B are each independently a group containing a structure represented by the following formula (B22).
  • At least one pair of the pair of R 11B and R 20B and the pair of R 15B and R 16B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • R 11B and R 12B pair, R 12B and R 13B pair, R 13B and R 14B pair, R 14B and R 15B pair, R 16B and R 17B pair, R 17B and R 18B pair, R 18B and R 19B , and one or more pairs of R 19B and R 20B are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or does not form an unsaturated ring.
  • Each of R 11B to R 20B which does not form a substituted or unsubstituted saturated or unsaturated ring is independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • the pair of R 16B and R 17B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 14B and R 15B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 14B and R 15B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the pair of R 11B and R 12B is a substituted or unsubstituted saturated or unsaturated ring does not form
  • the two structures represented by formula (B22) may be the same or different.
  • L 11B binds at a bondable position of the structure represented by formula (B22).
  • Ar 11B in formula (B21) is a group comprising a structure selected from the group consisting of benzoxanthene, pyrene, benzanthracene, benzfluoranthene, benztriphenylene, and chrysene.
  • a group containing a structure selected from the group consisting of pyrene, benzanthracene, benzfluoranthene, benztriphenylene, and chrysene will be explained.
  • Ar 11B has a pyrene structure. be a containing group.
  • the structure represented by formula (B22) is a structure represented by formula (B22-1) below.
  • R 111B to R 120B is a single bond that bonds to L 11B .
  • R 111B to R 120B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • R 121B to R 132B is a single bond that bonds to L 11B .
  • R 121B to R 132B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • the group containing a benzanthracene structure is not limited to a group containing a benz[a]anthracene structure represented by formula (B22-2), and may be a group containing a benz[b]anthracene (tetracene) structure.
  • R 141B to R 152B is a single bond that bonds to L 11B .
  • R 141B to R 152B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • the group containing a benzfluoranthene structure is not limited to the group containing a benz[k]fluoranthene structure represented by Formula (B22-3), and may be benz[a]fluoranthene, benz[b]fluoranthene, or benz[j]. Groups containing other benzfluoranthene structures, such as fluoranthene, may also be used.
  • Ar 11B is a group containing a benztriphenylene (benz[a]triphenylene) structure.
  • the pair of R 11B and R 20B are bonded together to form a substituted or unsubstituted naphthalene ring, and the pair of R 14B and R 15B are bonded together to form a substituted or unsubstituted
  • the structure represented by formula (B22) is a structure represented by the following formula (B22-4).
  • R 161B to R 174B is a single bond that bonds to L 11B .
  • R 161B to R 174B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • the group containing a benztriphenylene structure is not limited to the group containing a benz[a]triphenylene structure represented by formula (B22-4), and may be a group containing a benz[b]triphenylene structure.
  • R 181B to R 192B is a single bond that bonds to L 11B .
  • R 181B to R 192B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • Ar 11B in formula (B21) above is a group comprising a structure selected from the group consisting of benzoxanthene, pyrene, benzanthracene, and benzfluoranthene.
  • Ar 11B in formula (B21) is a group containing a structure selected from the group consisting of pyrene and benzanthracene.
  • Ar 12B in the above formula (B21) is a substituted or unsubstituted aryl group having 6 to 50 ring atoms.
  • Ar 12B in the formula (B21) is a group containing a structure represented by the following formula (B23).
  • R 21B and R 22B pair, R 22B and R 23B pair, R 23B and R 24B pair, R 24B and R 25B pair, R 25B and R 26B pair, R 26B and R 27B pair, R 27B and R 28B , R 28B and R 29B , R 29B and R 30B , and R 30B and R 21B are bonded together to form a substituted or unsubstituted saturated or unsaturated or does not form a substituted or unsubstituted saturated or unsaturated ring.
  • Each of R 21B to R 30B which does not form a substituted or unsubstituted saturated or unsaturated ring is independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above. provided, however, that when a pair of R 23B and R 24B combine with each other to form a substituted or unsubstituted saturated or unsaturated ring, a pair of R 30B and R 21B is a substituted or unsubstituted saturated or unsaturated ring.
  • Ar 12B in formula (B21) above is a substituted or unsubstituted 9,9′-spirobifluorenyl group.
  • Ar 12B in the above formula (B21) is a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • Ar 12B in formula (B21) above is a group containing one or more atoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom.
  • a group containing one or more atoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom will be explained.
  • R 201B to R 208B is a single bond that bonds to L 11B .
  • R 201B to R 208B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • R 211B to R 220B is a single bond that bonds to L 11B .
  • R 211B to R 220B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • R 221B to R 230B is a single bond that bonds to L 11B .
  • R 221B to R 230B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • R 231B to R 240B is a single bond that bonds to L 11B .
  • R 231B to R 240B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • R 241B to R 250B is a single bond that bonds to L 11B .
  • R 241B to R 250B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • Ar 12B is a group containing a nitrogen atom.
  • the structure represented by formula (B22) is a structure represented by the following formula (B22-16).
  • R 251B to R 259B is a single bond that bonds to L 11B .
  • R 251B to R 259B which are not single bonds bonded to L 11B are each independently a hydrogen atom or a substituent R.
  • Substituent R is as defined in formula (B1) above.
  • Ar 12B in formula (B21) above is a group containing an oxygen atom.
  • Ar 12B in formula (B21) above is a substituted or unsubstituted benzoxanthenyl group.
  • each of the two or more R 41 to R 53 may be the same or different), a hydroxy group, It is selected from the group consisting of a halogen atom, a cyano group, a nitro group, an aryl group having 6 to 50 ring carbon atoms, and a monovalent heterocyclic group having 5 to 50 ring atoms.
  • the substituents for "substituted or unsubstituted" in the second compound, and said substituents R are an alkyl group having 1 to 50 carbon atoms, A group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms,
  • the substituents for "substituted or unsubstituted" in the second compound, and said substituents R are an alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • the second compound can be synthesized by using known alternative reactions and raw materials that match the desired product.
  • the combination of the first compound and the second compound contained in the composition is shown more specifically.
  • ⁇ Combination 80 The first compound is 1-8 and the second compound is 2-3.
  • ⁇ Combination 110 The first compound is 1-10 and the second compound is 2-11.
  • ⁇ Combination 120 The first compound is 1-11 and the second compound is 2-10.
  • ⁇ Combination 130 The first compound is 1-12 and the second compound is 2-9.
  • ⁇ Combination 140 The first compound is 1-13 and the second compound is 2-8.
  • ⁇ Combination 150 The first compound is 1-14 and the second compound is 2-7.
  • the first compound is 1-15 and the second compound is 2-6.
  • Each condition described for the first composition described above is also applicable to the second composition. That is, from conditions such as physical property values such as electron affinity and ionization potential, the quantitative ratio of the first compound and the second compound, the presence or absence of other components, the content ratio of the first compound and the second compound in the composition, etc.
  • One or more selected features are applicable to the second composition as appropriate.
  • composition according to one aspect of the present invention is not particularly limited, and examples thereof include solid, powder, solution, film (layer), and the like.
  • film (layer) include an organic layer (for example, one layer in the hole transport zone) that constitutes the organic EL element. When it is solid or powder, it may be formed into pellets.
  • the composition according to one aspect of the present invention includes the first composition and the second composition described above, and hereinafter, when referring to the "composition according to one aspect of the present invention” is similar.
  • composition when it is a powder (mixed powder), it may be a mixed powder containing the first compound and the second compound in one particle, or a particle composed of the first compound. and particles of the second compound may be mixed powder.
  • the first compound and the second compound may be pulverized and mixed using a mortar or the like, or the first compound and the second compound are placed in a container or the like.
  • the powder may be obtained by heating and melting in a chemically inert environment, cooling to ambient temperature, and pulverizing the resulting mixture with a mixer or the like.
  • the first compound and the second compound can be mixed at the molecular level, which makes it easier to control the ratio of the sublimation areas of the two to within a desired range, enabling more uniform vapor deposition. Become.
  • the mixed powder may be compression-molded into pellets.
  • composition according to one aspect of the present invention is useful as a material for organic electroluminescence devices, for example, as a material for hole transport zone of organic electroluminescence devices.
  • Organic EL element An organic EL element containing the composition according to one embodiment of the present invention will be described.
  • one or more organic thin film layers including at least a light-emitting layer are sandwiched between a cathode and an anode, and at least one of the organic thin film layers has the composition according to one aspect of the present invention. Including things.
  • the organic EL device preferably includes an anode, a hole-transporting zone, a light-emitting layer, and a cathode in this order, and at least one layer in the hole-transporting zone has the composition according to one aspect of the present invention. Including things.
  • the organic EL element according to one aspect of the present invention can also be expressed as follows (hereinafter also referred to as "first organic EL element"). That is, it has a cathode, an anode, and one or more organic layers disposed between the cathode and the anode, wherein at least one of the organic layers has an electron affinity Af 1 of 1. .70 eV or less and an ionization potential Ip 1 of 5.80 eV or less, and an electron affinity Af 2 of 2.00 eV or less and an ionization potential Ip 2 of 5.95 eV or less and a second compound different from the first compound.
  • the first compound and the second compound in the first organic EL element are as explained in the first composition above.
  • the ratio of the first compound and the second compound in the layer containing the first compound and the second compound is not particularly limited, but in one embodiment, the layer A is in the range of 50:50 to 99:1, and may be in the range of 65:35 to 99:1. Also, the mass ratio (first compound:second compound) may be, for example, within the range of 65:35 to 90:10, or within the range of 75:25 to 90:10.
  • Layer A may or may not contain compounds other than the first compound and the second compound.
  • Layer A consists essentially of the first compound and the second compound. "Consist substantially only of the first compound and the second compound” means that the layer A does not contain any other compounds at all, or the other compounds are trace amounts to the extent that they do not impair the effects of the present invention Say the states involved. For example, this state occurs when other compounds are mixed as unavoidable impurities.
  • Layer A is 80% or more, 90% or more, 95% or more, 99% or more, 99.5% or more, 99.9% or more, 99.99% or more by weight or 100% by weight are the first compound and the second compound.
  • Layer A comprises 80 mol% or more, 90 mol% or more, 95 mol% or more, 99 mol% or more, 99.5 mol% or more, 99.9 mol% or more, 99.99 mol% or more, or 100 mol % are the first compound and the second compound. In one embodiment, Layer A consists only of the first compound and the second compound.
  • anode/hole-transporting zone/light-emitting layer/cathode As a representative element configuration of the organic EL element, a structure in which the following structures are laminated on a substrate is exemplified. (1) anode/hole-transporting zone/light-emitting layer/cathode (2) anode/hole-transporting zone/light-emitting layer/electron-transporting zone/cathode (“/” indicates that each layer is laminated adjacently. )
  • the hole-transport zone usually consists of one or more layers selected from hole-injection layers and hole-transport layers.
  • the region between the anode and the light-emitting layer is usually this hole-transporting zone.
  • at least one layer in the hole transport zone comprises said first compound and said second compound.
  • the electron transport zone usually consists of one or more layers selected from an electron injection layer and an electron transport layer.
  • An organic EL device 1 includes a substrate 2, an anode 3, a light-emitting layer 5, a cathode 10, a hole transport zone 4 between the anode 3 and the light-emitting layer 5, and a light-emitting layer 5 and an electron transport zone 6 between the cathode 10 .
  • the substrate is used as a support for the light emitting device.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • a flexible substrate is a (flexible) substrate that can be bent, and examples thereof include plastic substrates made of polycarbonate and polyvinyl chloride.
  • anode It is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more) for the anode formed on the substrate.
  • ITO Indium Tin Oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide
  • tungsten oxide indium oxide containing zinc oxide
  • graphene graphene
  • Other examples include gold (Au), platinum (Pt), and nitrides of metal materials (eg, titanium nitride).
  • a hole injection layer is a layer containing a substance having a high hole injection property.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxides, manganese oxides, aromatic amine compounds, polymer compounds (oligomers, dendrimers, polymers, etc.) and the like can also be used.
  • a hole-transport layer is a layer containing a substance having a high hole-transport property.
  • Various materials other than the first compound and the second compound can be used for the hole transport layer.
  • aromatic amine compounds, carbazole derivatives, anthracene derivatives and the like can be used.
  • Polymer compounds such as poly(N-vinylcarbazole) (abbreviation: PVK) and poly(4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly(N-vinylcarbazole)
  • PVTPA poly(4-vinyltriphenylamine)
  • other substances may be used as long as they have a higher hole-transport property than electron-transport property.
  • the layer containing a substance having a high hole-transport property is not limited to a single layer, and may be a laminate of two or more layers containing the above substances.
  • the first organic EL element comprises a first layer (also referred to as a “second hole transport layer” or “electron blocking layer”) and a second layer (also referred to as a “first hole-transport layer”) in this order, and the first layer contains a first compound and a second compound.
  • the first organic EL element comprises a first layer (also referred to as a “third hole transport layer” or “electron blocking layer”) and a second layer from the light emitting layer side toward the anode.
  • a layer also referred to as a “second hole-transport layer” and a third layer (also referred to as a “first hole-transport layer”) are provided in this order, and the first layer contains the first compound and A second compound is included.
  • Examples of materials that can be included in layers other than the first layer of the hole-transporting zone in the organic EL device according to one aspect of the present invention include the above compounds that can be used in the hole-transporting layer.
  • examples of materials that the first layer may contain include the compounds that can be used in the hole transport layer.
  • the first organic EL element does not contain other layers between the first layer and the light-emitting layer. In one embodiment, the first organic EL element does not include layers other than the first layer and the second layer in the hole transport zone. In one embodiment, the first organic EL element does not include layers other than the first, second, and third layers in the hole-transporting zone.
  • the light-emitting layer is a layer containing a highly light-emitting substance, and various materials can be used.
  • a fluorescent compound that emits fluorescence or a phosphorescent compound that emits phosphorescence can be used as the highly luminescent substance.
  • a fluorescent compound is a compound capable of emitting light from a singlet excited state
  • a phosphorescent compound is a compound capable of emitting light from a triplet excited state.
  • a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, a triarylamine derivative, or the like can be used as a blue fluorescent light-emitting material that can be used in the light-emitting layer.
  • An aromatic amine derivative or the like can be used as a greenish fluorescent light-emitting material that can be used in the light-emitting layer.
  • a tetracene derivative, a diamine derivative, or the like can be used as a red fluorescent light-emitting material that can be used in the light-emitting layer.
  • Metal complexes such as iridium complexes, osmium complexes, and platinum complexes are used as blue phosphorescent materials that can be used in the light-emitting layer.
  • An iridium complex or the like is used as a greenish phosphorescent light-emitting material that can be used in the light-emitting layer.
  • Metal complexes such as iridium complexes, platinum complexes, terbium complexes, and europium complexes are used as reddish phosphorescent materials that can be used in the light-emitting layer.
  • the host compound of the light-emitting layer in addition to the anthracene derivative described above, various compounds can be used, and the lowest unoccupied molecular orbital level (LUMO level) is higher than the above dopant material, and the highest occupied molecular orbital level ( A compound with a low HOMO level) is preferred.
  • the host compound usually means a material for dispersing the dopant material.
  • Host compounds other than the anthracene derivatives described above include, for example, 1) metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes; 2) heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, and phenanthroline derivatives; ) condensed aromatic compounds such as carbazole derivatives, phenanthrene derivatives, pyrene derivatives or chrysene derivatives; and 4) aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives.
  • metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes
  • heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, and phenanthroline derivatives
  • condensed aromatic compounds such as carbazole derivatives, phenanthrene derivatives, pyrene derivatives or chrysene derivatives
  • aromatic amine compounds such as
  • the light-emitting layer of the organic EL device may be a fluorescent light-emitting layer, a phosphorescent light-emitting layer, or a light-emitting layer using a thermally activated delayed fluorescence mechanism.
  • the above organic EL device may be a monochromatic light emitting device using a fluorescence emission type, a phosphorescence emission type, or a thermally activated delayed fluorescence mechanism, or may be the above hybrid type white light emitting device. It may be a simple type having a light emitting unit or a tandem type having a plurality of light emitting units.
  • the term “light-emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light-emitting layer, and that can emit light by recombination of injected holes and electrons.
  • the “light-emitting layer” described in this specification is an organic layer having a light-emitting function.
  • the light-emitting layer is, for example, a phosphorescent light-emitting layer, a fluorescent light-emitting layer, or the like, and may be one layer or multiple layers.
  • the electron affinity Af EMH of the host compound contained in the emissive layer is greater than the electron affinity Af 2 of the second compound contained in the first layer, eg, Af EMH is 0.0 . Larger than 1 eV.
  • Af EMH and Af 2 are not particularly limited, it is, for example, 0.5 or less, or 0.4 or less.
  • the ionization potential Ip EMH of the host compound contained in the emissive layer is greater than the ionization potential Ip2 of the second compound contained in the first layer, and in one embodiment Ip EMH and Ip2 satisfies the following formula (2). Ip EMH ⁇ Ip 2 ⁇ 0.3 eV (2)
  • the host materials contained in the light-emitting layers adjacent to the first layer among the light-emitting layers are the above-described Af EMH and Ip EMH . satisfy the conditions of
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • the electron transport layer contains 1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes, 2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives, and 3) polymer compounds. can be used.
  • the electron injection layer is a layer containing a substance with high electron injection properties.
  • a substance with high electron injection properties lithium (Li), ytterbium (Yb), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), 8-hydroxyquinolinolato-lithium (Liq), etc. metal complex compounds, alkali metals such as lithium oxide (LiO x ), alkaline earth metals, or compounds thereof.
  • cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a small work function (specifically, 3.8 eV or less).
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium ( Ca), alkaline earth metals such as strontium (Sr), and alloys containing these (e.g., MgAg, AlLi), europium (Eu), rare earth metals such as ytterbium (Yb), and alloys containing these.
  • a cathode is usually formed by a vacuum deposition method or a sputtering method.
  • a coating method, an inkjet method, or the like can be used.
  • various conductive materials such as aluminum, silver, ITO, graphene, silicon or indium oxide-tin oxide containing silicon oxide are used to form the cathode. can be formed.
  • the film thickness of each layer is not particularly limited, but in order to suppress defects such as pinholes, to keep the applied voltage low, and to improve the luminous efficiency, the thickness is usually in the range of several nanometers to 1 ⁇ m. preferable.
  • the organic EL element according to one aspect of the present invention can also be expressed as follows (hereinafter also referred to as "second organic EL element"). That is, it has a cathode, an anode, and one or more organic layers disposed between the cathode and the anode, and at least one of the organic layers is represented by formula (A1).
  • the first compound and the second compound in the second organic EL device are as described in the second composition above.
  • the items described in the first organic EL element can be appropriately applied.
  • each layer is not particularly limited. Formation methods such as a conventionally known vacuum vapor deposition method and spin coating method can be used. Each layer such as the light-emitting layer is formed by a vacuum deposition method, a molecular beam deposition method (MBE method), or a known coating method such as a dipping method of a solution dissolved in a solvent, a spin coating method, a casting method, a bar coating method, a roll coating method, or the like.
  • MBE method molecular beam deposition method
  • the organic EL element according to one aspect of the present invention includes the first organic EL element and the second organic EL element described above, and is hereinafter referred to as the "organic EL element according to one aspect of the present invention.” The same is true when saying
  • the layer A or the first layer may be formed using the composition (for example, mixed powder) according to one aspect of the present invention described above.
  • the composition for example, mixed powder
  • a method of this embodiment for example, a method of pre-mixing a first compound and a second compound and then vapor-depositing them from the same vapor deposition source to form the layer A or the first layer is exemplified. This method has the advantage of simplifying manufacturing equipment and manufacturing processes.
  • An electronic device includes the organic EL element according to one aspect of the present invention.
  • Specific examples of electronic devices include display components such as organic EL panel modules, display devices such as televisions, mobile phones, and personal computers, and light-emitting devices such as lighting fixtures and vehicle lamps.
  • Electron affinities (Af) and ionization potentials (Ip) of the first compound, the second compound, and the host compound used in the light-emitting layer described below were measured by the following measurement methods. Also, the triplet energy (T 1 ) of the second compound was measured by the following measuring method. Table 1 shows the results.
  • each code means the following.
  • Ere first reduction potential (DPV, negative scan)
  • Efc first oxidation potential of ferrocene (DPV, positive scan), (ca. +0.55 V vs Ag/AgCl)
  • the oxidation-reduction potential was measured by differential pulse voltammetry (DPV) using an electrochemical analyzer (manufactured by ALS: CHI630B). N,N-dimethylformamide (DMF) was used as a solvent, and the sample concentration was 1.0 mmol/L.
  • Tetrabutylammmonium hexafluorophosphate (100 mmol/L) was used as the supporting electrolyte. Glassy carbon and Pt were used as the working electrode and the counter electrode, respectively.
  • the ionization potential was measured using a photoelectron spectrometer (“AC-3” manufactured by Riken Keiki Co., Ltd.) in the atmosphere. Specifically, it was measured by irradiating the compound to be measured with light and measuring the amount of electrons generated by charge separation at that time.
  • AC-3 photoelectron spectrometer
  • T 1 Triplet energy (T 1 )
  • the energy amount calculated from the following conversion formula (F1) based on the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is defined as the triplet energy T1 .
  • Conversion formula (F1): T 1 [eV] 1239.85/ ⁇ edge
  • a tangent line to the rise on the short wavelength side of the phosphorescence spectrum is drawn as follows.
  • This tangent line increases in slope as the curve rises (ie as the vertical axis increases).
  • the tangent line drawn at the point where the value of this slope takes the maximum value is taken as the tangent line to the rise on the short wavelength side of the phosphorescent spectrum.
  • the maximum point with a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • F-4500 type spectrofluorophotometer body manufactured by Hitachi High Technology Co., Ltd. can be used for measurement of phosphorescence.
  • the measuring device is not limited to this, and measurement may be performed by combining a cooling device, a cryogenic container, an excitation light source, and a light receiving device.
  • An organic EL device was produced as follows. (Example 1) A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with an ITO transparent electrode (anode) (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes. The film thickness of ITO was set to 130 nm. After washing, the glass substrate with the transparent electrode was mounted on a substrate holder of a vacuum vapor deposition apparatus. Co-evaporation was carried out so as to make the mass %, and a first hole transport layer having a film thickness of 10 nm was formed.
  • Compound HT was deposited on the first hole transport layer to form a second hole transport layer with a thickness of 80 nm.
  • the compound 1-1 and the compound 2-1 are co-deposited so that the ratio of the compound 2-1 is 25% by mass, and the third hole transport layer ("electron (also referred to as "barrier layer") was deposited.
  • Compound BH1 (host material) and compound BD (dopant material) were co-deposited on the third hole-transporting layer so that the proportion of compound BD was 1% by mass to form a light-emitting layer with a thickness of 20 nm.
  • Compound ET1 was vapor-deposited on the light-emitting layer to form a first electron-transporting layer with a thickness of 5 nm.
  • Compound ET2 and 8-hydroxyquinolinolato-lithium (Liq) were co-deposited on the first electron-transporting layer so that the ratio of Liq was 50% by mass to form a second electron-transporting layer with a thickness of 20 nm. bottom.
  • Metal Yb was deposited on the second electron transport layer to form an electron injection layer with a thickness of 1 nm.
  • Metal Al was vapor-deposited on the electron injection layer to form a cathode with a film thickness of 80 nm.
  • the element configuration of the organic EL element of Example 1 is schematically shown as follows. ITO(130)/HT:HA(10:3%)/HT(80)/1-1:2-1(5:25%)/BH1:BD(20:1%)/ET1(5)/ET2 :Liq(20:50%)/Yb(1)/Al(80)
  • the numbers in parentheses represent the film thickness (unit: nm). Also, the numbers in parentheses in percent indicate the ratio (% by mass) of the latter compound in the layer.
  • Examples 2-3 An organic EL device was manufactured in the same manner as in Example 1, except that the configuration shown in Table 2 was used in the formation of the third hole transport layer.
  • the drive voltage, external quantum efficiency, and element life were evaluated as follows. Table 2 shows the results.
  • the drive voltage shows a difference from Comparative Example 1.
  • the external quantum efficiency and the device lifetime are relative values when Comparative Example 1 is taken as 100%.
  • the numbers in parentheses in the composition of the third hole transport layer indicate the ratio (% by mass) of the latter in the layer.
  • Example 4 Each of the first compound (compound 1-1) and the second compound (compound 2-1) was weighed to a total of 2 g in a solid state while satisfying the desired molar ratio shown in Table 3, and was used in a mortar. A mixed powder was produced by mixing while pulverizing.
  • a continuous vapor deposition test was performed as follows.
  • a crucible containing a total of 0.6 g of the mixed powder was heated in a vacuum deposition machine under a vacuum of 1 ⁇ 10 -4 Pa or less, and the temperature was adjusted so that the film formation rate was 2 ⁇ / sec.
  • a film was formed by vapor deposition.
  • the glass substrate was appropriately exchanged, and film formation was continued.
  • a substrate on which a film is formed first is referred to as substrate "No. 1", and hereinafter referred to as "No. 2", “No. 3", and so on.
  • the film thickness deposited on 5 was a total of 491 nm.
  • Table 3 shows the results.
  • - Component Ratio in Vapor-Deposited Film For each vapor-deposited film formed on each substrate, the molar mixing ratio of the first compound and the second compound was measured as follows. The mass when the specific gravity is assumed to be 1 is calculated from the film area and film thickness of the deposited film formed on the glass substrate, and the total concentration of the mixture of the first compound and the second compound is 100 ppm. A solution was prepared with a tetrahydrofuran (THF) solvent, and the resulting solution was subjected to HPLC measurement using a high-performance liquid chromatography (HPLC) device (device name: "LC-2040C Plus” manufactured by Shimadzu Corporation).
  • HPLC high-performance liquid chromatography
  • the HPLC area of each of the compound of and the second compound was calculated.
  • a standard solution prepared with a THF solvent was prepared so that the concentration of the first compound was 100 ppm and the concentration of the second compound was 100 ppm, and the respective peak areas were calculated by HPLC measurement. From the peak area value of the standard solution, the mass concentrations of the first compound and the second compound in the solution of the mixed film were calculated, and the mass mixing ratio contained in the film was calculated therefrom. By converting the mass mixing ratio from the molecular weight of each component, the molar mixing ratio of each component in the mixed film was calculated.
  • Example 5 A mixed powder was produced and evaluated in the same manner as in Example 4, except that compound 2-2 was used as the second compound. Substrate No. 1 to No. The film thickness deposited on 5 was a total of 415 nm. Table 4 shows the results.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である第1の化合物と、電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下であり、前記第1の化合物とは異なる第2の化合物とを含む組成物。

Description

組成物、有機エレクトロルミネッセンス素子、及び電子機器
 本発明は、組成物、有機エレクトロルミネッセンス素子、及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。
 従来の有機EL素子は素子性能が未だ十分ではなかった。素子性能を高めるべく有機EL素子の改良は徐々に進められているが、さらなる高性能化が求められている。
国際公開第2016/003225号
 本発明の目的は、より高性能な有機EL素子を製造することができる組成物を提供すること、及びより高性能な有機EL素子を提供することである。
 本発明者らは、有機EL素子の正孔輸送帯域の構成に注目して鋭意検討した。従来の有機EL素子の正孔輸送帯域は例えば特許文献1に示されるような構成であるが、本発明者らの検討の結果、正孔輸送帯域における一の層に、特定の二つの化合物を組合せて用いることで、より高性能な有機EL素子を製造することができることを見出し、本発明を完成した。
 本発明によれば、以下の組成物等が提供される。
1.電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である第1の化合物と、
 電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下であり、前記第1の化合物とは異なる第2の化合物と
 を含む組成物。
2.下記式(A1)で表される化合物又は下記式(A2)で表される化合物である第1の化合物と、
 下記式(B1)で表される化合物又は下記式(B2)で表される化合物であり、前記第1の化合物とは異なる第2の化合物と
 を含む組成物。
Figure JPOXMLDOC01-appb-C000019
(式(A1)中、
 LA1、LA2、及びLA3は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar111、Ar112、及びAr113は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の複素環基、又は
-Si(RC1)(RC2)(RC3)である。
 RC1、RC2、及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 RC1が複数存在する場合、複数のRC1は、互いに同一であってもよいし、異なってもよい。
 RC2が複数存在する場合、複数のRC2は、互いに同一であってもよいし、異なってもよい。
 RC3が複数存在する場合、複数のRC3は、互いに同一であってもよいし、異なってもよい。
Figure JPOXMLDOC01-appb-C000020
(式(A2)中、
 LC1、LC2、LC3、及びLC4は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n2は、1~4の整数である。
 n2が1の場合、LC5は、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n2が2、3、又は4の場合、複数のLC5は、互いに同一であってもよいし、異なってもよい。
 n2が2、3、又は4の場合、複数のLC5は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないLC5は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar131、Ar132、Ar133、及びAr134は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の複素環基、又は
-Si(RC1)(RC2)(RC3)である。
 RC1、RC2、及びRC3は、前記式(A1)で定義した通りである。
Figure JPOXMLDOC01-appb-C000021
(式(B1)中、
 R1A~R8Aは、それぞれ独立に、
水素原子、
置換基R、又は
下記式(B1a)で表される基である。
 置換基Rは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907
(ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 置換基Rが2個以上存在する場合、2個以上の置換基Rは同一であってもよいし、異なってもよい。
 L1Aは、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar1Aは、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
-L1A-Ar1A (B1a)
(式(B1a)中、
 L1A及びAr1Aは、式(B1)で定義した通りである。)
 前記式(B1a)で表される基が2以上存在する場合、2以上の前記式(B1a)で表される基のそれぞれは、同一であってもよいし、異なってもよい。)
Figure JPOXMLDOC01-appb-C000022
(式(B2)中、
 R1BとR10Bの組、及びR5BとR6Bの組のうちの少なくとも1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 R1BとR2Bの組、R2BとR3Bの組、R3BとR4Bの組、R4BとR5Bの組、R6BとR7Bの組、R7BとR8Bの組、R8BとR9Bの組、及びR9BとR10Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR1B~R10Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ただし、R1BとR2Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R9BとR10Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R4BとR5Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R6BとR7Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R6BとR7Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R4BとR5Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R9BとR10Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R1BとR2Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
3.陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された1又は2以上の有機層と、
を有し、
 前記有機層のうちの少なくとも1層が、
 電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である第1の化合物と、
 電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下であり、前記第1の化合物とは異なる第2の化合物と
 を含む有機エレクトロルミネッセンス素子。
4.陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された1又は2以上の有機層と、
を有し、
 前記有機層のうちの少なくとも1層が、
下記式(A1)で表される化合物又は下記式(A2)で表される化合物である第1の化合物と、
 下記式(B1)で表される化合物又は下記式(B2)で表される化合物であり、前記第1の化合物とは異なる第2の化合物と
 を含む有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000023
(式(A1)中、
 LA1、LA2、及びLA3は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar111、Ar112、及びAr113は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の複素環基、又は
-Si(RC1)(RC2)(RC3)である。
 RC1、RC2、及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 RC1が複数存在する場合、複数のRC1は、互いに同一であってもよいし、異なってもよい。
 RC2が複数存在する場合、複数のRC2は、互いに同一であってもよいし、異なってもよい。
 RC3が複数存在する場合、複数のRC3は、互いに同一であってもよいし、異なってもよい。)
Figure JPOXMLDOC01-appb-C000024
(式(A2)中、
 LC1、LC2、LC3、及びLC4は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n2は、1~4の整数である。
 n2が1の場合、LC5は、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n2が2、3、又は4の場合、複数のLC5は、互いに同一であってもよいし、異なってもよい。
 n2が2、3、又は4の場合、複数のLC5は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないLC5は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar131、Ar132、Ar133、及びAr134は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の複素環基、又は
-Si(RC1)(RC2)(RC3)である。
 RC1、RC2、及びRC3は、前記式(A1)で定義した通りである。)
Figure JPOXMLDOC01-appb-C000025
(式(B1)中、
 R1A~R8Aは、それぞれ独立に、
水素原子、
置換基R、又は
下記式(B1a)で表される基である。
 置換基Rは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907
(ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 置換基Rが2個以上存在する場合、2個以上の置換基Rは同一であってもよいし、異なってもよい。
 L1Aは、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar1Aは、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
-L1A-Ar1A (B1a)
(式(B1a)中、
 L1A及びAr1Aは、式(B1)で定義した通りである。)
 前記式(B1a)で表される基が2以上存在する場合、2以上の前記式(B1a)で表される基のそれぞれは、同一であってもよいし、異なってもよい。)
Figure JPOXMLDOC01-appb-C000026
(式(B2)中、
 R1BとR10Bの組、及びR5BとR6Bの組のうちの少なくとも1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 R1BとR2Bの組、R2BとR3Bの組、R3BとR4Bの組、R4BとR5Bの組、R6BとR7Bの組、R7BとR8Bの組、R8BとR9Bの組、及びR9BとR10Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR1B~R10Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ただし、R1BとR2Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R9BとR10Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R4BとR5Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R6BとR7Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R6BとR7Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R4BとR5Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R9BとR10Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R1BとR2Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
 本発明によれば、より高性能な有機EL素子を製造することができる組成物、及びより高性能な有機EL素子が提供できる。
本発明の一態様に係る有機EL素子の概略構成を示す図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び
下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び
前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及び
ジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及び
ジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及び
ビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及び
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及び
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、XA及びYAの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びXA及びYAの一方がCH2である場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及び
t-ブチル基。
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及び
トリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び
3-ブテニル基。
・置換のアルケニル基(具体例群G4B):
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び
1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):
エチニル基
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び
2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):
4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び
-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び
-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び
-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000031
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000032
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合部位を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000033
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合部位を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合部位を表す。
Figure JPOXMLDOC01-appb-C000036
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合部位を表す。
Figure JPOXMLDOC01-appb-C000037
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合部位を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
Figure JPOXMLDOC01-appb-C000045
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
Figure JPOXMLDOC01-appb-C000046
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
Figure JPOXMLDOC01-appb-C000047
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」には、芳香族炭化水素環、芳香族複素環の他、環構造中に不飽和結合、即ち、二重結合及び/又は三重結合を有する脂肪族炭化水素環(例えば、シクロヘキセン、シクロヘキサジエン等)、及び不飽和結合を有する非芳香族複素環(例えば、ジヒドロピラン、イミダゾリン、ピラゾリン、キノリジン、インドリン、イソインドリン等)が含まれる。「飽和の環」には、不飽和結合を有しない脂肪族炭化水素環、又は不飽和結合を有しない非芳香族複素環が含まれる。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の原子で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の原子とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の原子」は、本明細書に別途記載のない限り、好ましくは、炭素原子、窒素原子、酸素原子、及び硫黄原子からなる群から選択される少なくとも1種の原子である。任意の原子において(例えば、炭素原子、又は窒素原子の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素原子以外の任意の原子を含む場合、形成される環は複素環である。
 単環又は縮合環を構成する「1以上の任意の原子」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素原子、窒素原子、酸素原子、及び硫黄原子からなる群から選択される少なくとも1種の原子とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の複素環基
からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基
からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基
からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
[第1の組成物]
 本発明の一態様に係る組成物(以下、「第1の組成物」ともいう)は、電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である第1の化合物と、電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下である第2の化合物とを含む。第1の化合物と第2の化合物とは異なる化合物である。
 第1の組成物は、上記に示される特定範囲の電子親和力とイオン化ポテンシャルをそれぞれ有する第1の化合物と第2の化合物とを含むことで、有機EL素子に用いた場合に、その素子性能を向上することができる。具体的には、駆動電圧及び外部量子効率を実質的に損なうことなく、より長寿命の有機EL素子を実現することができる。
 電子親和力(Af)及びイオン化ポテンシャル(Ip)は実施例に記載の方法により測定する。
 以下、第1の組成物に用いる各化合物について説明する。
(第1の化合物)
 第1の化合物は、電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である。
 一実施形態において、第1の化合物の電子親和力Afは1.60eV以下である。
 第1の化合物の電子親和力Afは、例えば、1.55eV以下、又は1.50eV以下であってもよい。また、Afは、例えば、0.95eV以上、又は1.00eV以上であってもよい。
 一実施形態において、前記第1の化合物のイオン化ポテンシャルIpは5.75eV以下である。
 一実施形態において、前記第1の化合物のイオン化ポテンシャルIpは5.60eV以上であり、例えば、5.65eV以上、又は5.70eV以上であってもよい。
 一実施形態において、第1の化合物の電子親和力Afは後述する第2の化合物の電子親和力Afよりも小さく、例えば、第1の化合物の電子親和力Afは第2の化合物の電子親和力Afよりも0.2eV以上小さい。第1の化合物の電子親和力Afと第2の化合物の電子親和力Afとの差(Af-Af)の上限値は特に制限はないが、例えば、0.6以下、又は0.5以下である。
 一実施形態において、第1の化合物のイオン化ポテンシャルIpは後述する第2の化合物のイオン化ポテンシャルIpよりも小さい。
 一実施形態において、第1の化合物のイオン化ポテンシャルIpと後述する第2の化合物のイオン化ポテンシャルIpとは、下記式(1)を満たす。
Ip-Ip<0.2eV  (1)
 一実施形態において、上記式(1)は下記式(1-1)又は(1-2)で表される。
Ip-Ip<0.15eV  (1-1)
Ip-Ip<0.10eV  (1-2)
 尚、上記式からも分かる通り、第1の化合物のイオン化ポテンシャルIpは第2の化合物のイオン化ポテンシャルIp以上の値であってもよい。
 第1の化合物としては、後述する第2の組成物で説明する第1の化合物を用いることができる。
(第2の化合物)
 第2の化合物は、電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下である。
 第2の化合物は第1の化合物とは異なる化合物である。ここで、第2の化合物が「第1の化合物とは異なる」とは、化学構造式(骨格)が互いに異なる場合と、化学構造式(骨格)は同一であるが異なる同位体を含む場合と、を含む。同位体とは、原子番号が等しく、中性子数が異なる原子を意味する。例えば、ベンゼン(C)と重水素化ベンゼン(C)とは互いに異なる化合物である。
 また、化学構造式(骨格)は同一であるが異なる同位体を含む場合において、同位体の数又は配置が互いに異なる場合も化合物が異なるものとする。例えば、重水素化ベンゼンであってもCとCとは互いに異なる化合物である。また、例えば、Cで表される化合物同士であっても、ベンゼン環の1位及び2位に重水素を有する化合物と、ベンゼン環の1位及び3位に重水素を有する化合物とは、同位体の配置が相違するため、互いに異なる化合物である。
 一実施形態において、前記第2の化合物の電子親和力Afは1.95eV以下であり、1.90eV以下であってもよい。また、Afは、例えば、1.45eV以上、又は1.50eV以上であってもよい。
 一実施形態において、前記第2の化合物のイオン化ポテンシャルIpは5.90eV以下であり、5.80eV以下であってもよい。また、Ipは、例えば、5.55eV以上、又は5.60eV以上であってもよい。
 一実施形態において、第2の化合物の三重項エネルギーTは2.40eV以下であり、例えば、2.35eV以下、又は2.30eV以下であってもよい。また、第2の化合物の三重項エネルギーTは、例えば、1.80eV以上、又は1.85eV以上であってもよい。
 三重項エネルギー(T)は実施例に記載の方法により測定する。
 第2の化合物としては、後述する第2の組成物で説明する第2の化合物を用いることができる。
(質量比、他の成分等)
 一実施形態において、第1の組成物における第1の化合物と前記第2の化合物の質量比(第1の化合物:第2の化合物)は50:50~99:1の範囲内であり、65:35~99:1の範囲内であってもよい。また、当該質量比(第1の化合物:第2の化合物)は、例えば、65:35~90:10の範囲内、又は75:25~90:10の範囲内であってもよい。
 第1の組成物は、第1の化合物と第2の化合物以外の成分を含んでもよいし含まなくてもよい。
 一実施形態において、組成物は、実質的に第1の化合物と第2の化合物のみからなる。
 「実質的に第1の化合物と第2の化合物のみからなる」とは、第1の組成物中に他の化合物が全く含まれないか、又は、他の化合物が本発明の効果を損なわない範囲で微量含まれる状態を言う。例えば、不可避不純物として混入している場合は本状態である。
 一実施形態において、第1の組成物は、80質量%以上、90質量%以上、95質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上、99.99質量%以上又は100質量%が、第1の化合物及び第2の化合物である。
 一実施形態において、第1の組成物は、80モル%以上、90モル%以上、95モル%以上、99モル%以上、99.5モル%以上、99.9モル%以上、99.99モル%以上又は100モル%が、第1の化合物及び第2の化合物である。
 一実施形態において、第1の組成物は、第1の化合物と第2の化合物のみからなる。
 第1の化合物と第2の化合物の組み合わせとしては、特に制限はなく、例えば、後述する第2の組成物で例示する第1の化合物と第2の化合物の組み合わせを用いることができる。
[第2の組成物]
 本発明の一態様に係る組成物(以下、「第2の組成物」ともいう)は、式(A1)で表される化合物又は式(A2)で表される化合物である第1の化合物と、式(B1)で表される化合物又は式(B2)で表される化合物とを含む。第1の化合物と第2の化合物とは異なる化合物である。
 第2の組成物は、特定の構造を有する第1の化合物と第2の化合物とを含むことで、有機EL素子に用いた場合に、その素子性能を向上することができる。具体的には、駆動電圧及び外部量子効率を実質的に損なうことなく、より長寿命の有機EL素子を実現することができる。
 以下、第2の組成物に用いる各化合物について説明する。
(第1の化合物)
 第1の化合物は、下記式(A1)で表される化合物又は下記式(A2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000048
(式(A1)中、
 LA1、LA2、及びLA3は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar111、Ar112、及びAr113は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の複素環基、又は
-Si(RC1)(RC2)(RC3)である。
 RC1、RC2、及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 RC1が複数存在する場合、複数のRC1は、互いに同一であってもよいし、異なってもよい。
 RC2が複数存在する場合、複数のRC2は、互いに同一であってもよいし、異なってもよい。
 RC3が複数存在する場合、複数のRC3は、互いに同一であってもよいし、異なってもよい。)
Figure JPOXMLDOC01-appb-C000049
(式(A2)中、
 LC1、LC2、LC3、及びLC4は、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n2は、1~4の整数である。
 n2が1の場合、LC5は、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 n2が2、3、又は4の場合、複数のLC5は、互いに同一であってもよいし、異なってもよい。
 n2が2、3、又は4の場合、複数のLC5は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないLC5は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar131、Ar132、Ar133、及びAr134は、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、
置換もしくは無置換の環形成原子数5~50の複素環基、又は
-Si(RC1)(RC2)(RC3)である。
 RC1、RC2、及びRC3は、前記式(A1)で定義した通りである。)
 一実施形態において、式(A1)で表される化合物における、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではない。
 RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態において、式(A2)で表される化合物における、下記式(A2-1)で表される第一のアミノ基と、下記式(A2-2)で表される第二のアミノ基とは、同じ基であり、
 式(A2)で表される化合物における、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではない。
 RC6及びRC7は、前記式(A1)で定義した通りである。
Figure JPOXMLDOC01-appb-C000050
(式(A2-1)及び(A2-2)中、
 *は、それぞれ、LC5との結合位置である。
 Ar131、Ar132、Ar133、Ar134、LC1、LC2、LC3、及びLC4は、前記式(A1)で定義した通りである。)
 一実施形態において、第1の化合物は、前記式(A1)で表される化合物である。
 一実施形態において、第1の化合物は、下記式(A11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000051
(式(A11)中、LA1、LA2、LA3、Ar111、及びAr112は、前記式(A1)で定義した通りである。
 X101は、O、S、N(R109)、又はC(R110)(R111)である。
 R101~R109のうちいずれか1つはLA3との結合を表す。
 LA3との結合を表さないR101~R109、並びにR110及びR111のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR110及びR111、並びにLA3との結合を表さず、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R109は、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907
(ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 置換基Rが2個以上存在する場合、2個以上の置換基Rは同一であってもよいし、異なってもよい。)
 一実施形態において、LA1、LA2、及びLA3のうち、少なくとも2つは、それぞれ独立に、
単結合、又は
置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
 一実施形態において、前記第1の化合物は、下記式(A12)で表される化合物である。
Figure JPOXMLDOC01-appb-C000052
(式(A12)中、Ar111及びAr112は、前記式(A1)で定義した通りである。
 LA11、LA12、及びLA13は、それぞれ独立に、
置換もしくは無置換のフェニレン基、
置換もしくは無置換のビフェニレン基、又は
置換もしくは無置換のナフチレン基である。
 R111~R118は、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(A11)で定義した通りである。)
 一実施形態において、Ar111及びAr112は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 [定義]に記載したように、本明細書において使用する「水素原子」は軽水素原子、重水素原子、及び三重水素原子を包含する。従って、上述した第1の化合物は天然由来の重水素原子を含んでいてもよい。
 また、原料化合物の一部又はすべてに重水素化した化合物を使用することにより、第1の化合物に重水素原子を意図的に導入してもよい。従って、一実施形態において、第1の化合物は、少なくとも1個の重水素原子を含む。即ち、本実施形態の化合物は、式(A1)で表される化合物又は式(A2)で表される化合物であって、該化合物に含まれる水素原子の少なくとも一つが重水素原子である化合物であってもよい。
 一実施形態において、第1の化合物の重水素化率は、例えば、1%以上、3%以上、5%以上、10%以上、又は50%以上である。
 一実施形態において、第1の化合物における「置換もしくは無置換の」という場合における置換基、及び前記置換基Rは、炭素数1~50のアルキル基、炭素数1~50のハロアルキル基、炭素数2~50のアルケニル基、炭素数2~50のアルキニル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールオキシ基、環形成炭素数6~50のアリールチオ基、炭素数7~50のアラルキル基、-Si(R41)(R42)(R43)、-C(=O)R44、-COOR45、-S(=O)46、-P(=O)(R47)(R48)、-Ge(R49)(R50)(R51)、-N(R52)(R53)(ここで、R41~R53は、それぞれ独立に、水素原子、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、又は環形成原子数5~50の1価の複素環基である。R41~R53が2以上存在する場合、2以上のR41~R53のそれぞれは同一でもよく、異なっていてもよい。)、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される。
 一実施形態において、第1の化合物における「置換もしくは無置換の」という場合の置換基、及び前記置換基Rは、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基
からなる群から選択される基である、
 一実施形態において、「置換もしくは無置換の」という場合の置換基、及び前記置換基Rは、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基
からなる群から選択される基である。
 第1の化合物は、目的物に合わせた既知の代替反応や原料を用いることで合成することができる。
 以下に、第1の組成物における第1の化合物の具体例を記載するが、これらは例示に過ぎず、第1の化合物は下記具体例に限定されるものではない。
 以下に、第2の組成物における第1の化合物の具体例を記載するが、これらは例示に過ぎず、第1の化合物は下記具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000053
 第2の組成物における第2の化合物は、下記式(B1)で表される化合物又は下記式(B2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000054
(式(B1)中、
 R1A~R8Aは、それぞれ独立に、
水素原子、
置換基R、又は
下記式(B1a)で表される基である。
 置換基Rは、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907
(ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 置換基Rが2個以上存在する場合、2個以上の置換基Rは同一であってもよいし、異なってもよい。
 L1Aは、それぞれ独立に、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar1Aは、それぞれ独立に、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
-L1A-Ar1A (B1a)
(式(B1a)中、
 L1A及びAr1Aは、式(B1)で定義した通りである。)
 前記式(B1a)で表される基が2以上存在する場合、2以上の前記式(B1a)で表される基のそれぞれは、同一であってもよいし、異なってもよい。)
Figure JPOXMLDOC01-appb-C000055
(式(B2)中、
 R1BとR10Bの組、及びR5BとR6Bの組のうちの少なくとも1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 R1BとR2Bの組、R2BとR3Bの組、R3BとR4Bの組、R4BとR5Bの組、R6BとR7Bの組、R7BとR8Bの組、R8BとR9Bの組、及びR9BとR10Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR1B~R10Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ただし、R1BとR2Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R9BとR10Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R4BとR5Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R6BとR7Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R6BとR7Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R4BとR5Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R9BとR10Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R1BとR2Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
 式(B1)及び式(B1a)において、L1Aが単結合である場合、Ar1Aは、アントラセン骨格に直接結合する。
 一実施形態において、式(B1)におけるL1Aは、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~14のアリーレン基である。
 一実施形態において、式(B1)におけるL1Aは、それぞれ独立に、単結合、置換もしくは無置換のフェニレン基、又は置換もしくは無置換のナフチレン基である。
 一実施形態において、前記式(B1)で表される化合物は、下記式(B1-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000056
(式(B1-1)中、R1A~R8A、L1A、及びAr1Aは、前記式(B1)で定義した通りである。
 X11Aは、C(R21A)(R22A)、N(R23A)、O、又はSである。
 R11A~R18Aのうち隣接する2つは、互いに結合して、置換もしくは無置換のベンゼン環を形成するか、又は置換もしくは無置換のベンゼン環を形成しない。
 前記置換もしくは無置換のベンゼン環を形成しないR11A~R18A、及び前記置換もしくは無置換のベンゼン環における炭素原子のうちの1つは、単結合によりL1Aと結合する。
 前記置換もしくは無置換のベンゼン環を形成せず、かつL1Aと結合しないR11A~R18A、並びにR21A~R23Aは、それぞれ独立に、水素原子、又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。)
 一実施形態において、前記式(B1-1)におけるX11AはOである。
 一実施形態において、前記式(B1)で表される化合物は、下記式(B1-11)~(B1-17)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
(式(B1-11)~(B1-17)中、R1A~R8A、L1A、及びAr1Aは、前記式(B1)で定義した通りである。
 式(B1-11)中、R112A~R120Aは、それぞれ独立に、水素原子、又は置換基Rである。
 式(B1-12)中、R122A~R130Aは、それぞれ独立に、水素原子、又は置換基Rである。
 式(B1-13)中、R132A~R140Aは、それぞれ独立に、水素原子、又は置換基Rである。
 式(B1-14)中、R141A及びR143A~R150Aは、それぞれ独立に、水素原子、又は置換基Rである。
 式(B1-15)中、R151A及びR153A~R160Aは、それぞれ独立に、水素原子、又は置換基Rである。
 式(B1-16)中、R161A及びR163A~R170Aは、それぞれ独立に、水素原子、又は置換基Rである。
 式(B1-17)中、R171A及びR173A~R178Aは、それぞれ独立に、水素原子、又は置換基Rである。
 置換基Rは前記式(B1)で定義した通りである。)
 一実施形態において、前記式(B1-11)~(B1-17)におけるAr1Aは、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記式(B1-11)~(B1-17)におけるAr1Aは、下記式(a1)~(a4)のいずれかで表される基から選択される。
Figure JPOXMLDOC01-appb-C000060
(式(a1)~(a4)中、*は、L1Aと結合する単結合である。
 R21は、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記式(B1)で定義した通りである。
 m1は、0~4の整数である。
 m2は、0~5の整数である。
 m3は、0~7の整数である。
 m1~m3が、それぞれ2以上のとき、複数のR21は互いに同一であってもよいし、異なっていてもよい。
 m1~m3が、それぞれ2以上のとき、隣接する複数のR21は互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。)
 一実施形態において、前記式(B2)で表される化合物は、下記式(B21)で表される化合物である。
Figure JPOXMLDOC01-appb-C000061
(式(B21)中、
 L11Bは、
単結合、
置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar11B及びAr12Bは、それぞれ独立に、下記式(B22)で表される構造を含む基である。
Figure JPOXMLDOC01-appb-C000062
(式(B22)中、
 R11BとR20Bの組、及びR15BとR16Bの組のうちの少なくとも1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 R11BとR12Bの組、R12BとR13Bの組、R13BとR14Bの組、R14BとR15Bの組、R16BとR17Bの組、R17BとR18Bの組、R18BとR19Bの組、及びR19BとR20Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR11B~R20Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ただし、R11BとR12Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R19BとR20Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R14BとR15Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R16BとR17Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R16BとR17Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R14BとR15Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R19BとR20Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R11BとR12Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
 2つの前記式(B22)で表される構造は、同一であってもよいし、異なってもよい。
 L11Bは、前記式(B22)で表される構造の結合可能な位置において、結合する。
 n11Bは、1~3の整数である。)
 式(B21)において、L11Bが単結合である場合、Ar11BとAr12Bとは、直接結合する。
 Ar11BとAr12Bとが直接結合する場合、2つの前記式(B22)で表される構造は、互いに結合可能な位置同士で直接結合する。
 一実施形態において、前記式(B21)におけるAr11Bは、ベンゾキサンテン、ピレン、ベンズアントラセン、ベンズフルオランテン、ベンズトリフェニレン、及びクリセンからなる群から選択される構造を含む基である。
「ピレン、ベンズアントラセン、ベンズフルオランテン、ベンズトリフェニレン、及びクリセンからなる群から選択される構造を含む基」について説明する。
 例えば、式(B22)中、R11BとR20Bの組及びR15BとR16Bの組が、それぞれ互いに結合して、置換もしくは無置換のベンゼン環を形成した場合、Ar11Bは、ピレン構造を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-1)で表される構造である。
Figure JPOXMLDOC01-appb-C000063
 式(B22-1)中、
 R111B~R120Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR111B~R120Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 式(B22)中、R11BとR20Bの組及びR17BとR18Bの組が、それぞれ互いに結合して、置換もしくは無置換のベンゼン環を形成した場合、Ar11Bは、ベンズアントラセン(ベンズ[a]アントラセン)構造を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-2)で表される構造である。
Figure JPOXMLDOC01-appb-C000064
 式(B22-2)中、
 R121B~R132Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR121B~R132Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ベンズアントラセン構造を含む基は、式(B22-2)で表されるベンズ[a]アントラセン構造を含む基に限られず、ベンズ[b]アントラセン(テトラセン)構造を含む基であってもよい。
 式(B22)中、R11BとR20Bの組及びR11BとR12Bの組が、互いに結合して、置換もしくは無置換のインデン環を形成し、R17BとR18Bの組が、互いに結合して、置換もしくは無置換のベンゼン環を形成した場合、Ar11Bは、ベンズフルオランテン(ベンズ[k]フルオランテン)構造を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-3)で表される構造である。
Figure JPOXMLDOC01-appb-C000065
 式(B22-3)中、
 R141B~R152Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR141B~R152Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ベンズフルオランテン構造を含む基は、式(B22-3)で表されるベンズ[k]フルオランテン構造を含む基に限られず、ベンズ[a]フルオランテン、ベンズ[b]フルオランテン、又はベンズ[j]フルオランテン等、他のベンズフルオランテン構造を含む基であってもよい。
 式(B22)中、R11BとR20Bの組が、互いに結合して、置換もしくは無置換のフェナントレン環を形成した場合、Ar11Bは、ベンズトリフェニレン(ベンズ[a]トリフェニレン)構造を含む基となる。式(B22)中、R11BとR20Bの組が、互いに結合して、置換もしくは無置換のナフタレン環を形成し、R14BとR15Bの組が、互いに結合して、置換もしくは無置換のベンゼン環を形成した場合も、同様である。この場合、式(B22)で表される構造は、下記式(B22-4)で表される構造である。
Figure JPOXMLDOC01-appb-C000066
 式(B22-4)中、
 R161B~R174Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR161B~R174Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ベンズトリフェニレン構造を含む基は、式(B22-4)で表されるベンズ[a]トリフェニレン構造を含む基に限られず、ベンズ[b]トリフェニレン構造を含む基であってもよい。
 式(B22)中、R11BとR20Bの組及びR18BとR19Bの組が、それぞれ互いに結合して、置換もしくは無置換のベンゼン環を形成した場合、Ar11Bは、クリセン構造を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-5)で表される構造である。
Figure JPOXMLDOC01-appb-C000067
 式(B22-5)中、
 R181B~R192Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR181B~R192Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 一実施形態において、前記式(B21)におけるAr11Bは、ベンゾキサンテン、ピレン、ベンズアントラセン、及びベンズフルオランテンからなる群から選択される構造を含む基である。
 一実施形態において、前記式(B21)におけるAr11Bは、ピレン及びベンズアントラセンからなる群から選択される構造を含む基である。
 一実施形態において、前記式(B21)におけるAr12Bは、置換もしくは無置換の環形成原子数6~50のアリール基である。
 一実施形態において、前記式(B21)におけるAr12Bは、下記式(B23)で表される構造を含む基である。
Figure JPOXMLDOC01-appb-C000068
(式(B23)中、
 R21BとR22Bの組、R22BとR23Bの組、R23BとR24Bの組、R24BとR25Bの組、R25BとR26Bの組、R26BとR27Bの組、R27BとR28Bの組、R28BとR29Bの組、R29BとR30B、及びR30BとR21Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR21B~R30Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 ただし、R23BとR24Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R30BとR21Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R25BとR26Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R28BとR29Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R28BとR29Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R25BとR26Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
 R30BとR21Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R23BとR24Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
 一実施形態において、前記式(B21)におけるAr12Bは、置換もしくは無置換の9,9’-スピロビフルオレニル基である。
 一実施形態において、前記式(B21)におけるAr12Bは、置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 一実施形態において、前記式(B21)におけるAr12Bは、酸素原子、硫黄原子、及び窒素原子から選択される1以上の原子を含む基である。
 「酸素原子、硫黄原子、及び窒素原子から選択される1以上の原子を含む基」について説明する。
 例えば、式(B22)中、R11BとR20Bの組が、互いに結合して、フラン環を形成した場合、Ar12Bは、酸素原子を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-11)で表される構造である。
Figure JPOXMLDOC01-appb-C000069
 式(B22-11)中、
 R201B~R208Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR201B~R208Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 式(B22)中、R11BとR20Bの組が、互いに結合して、フラン環を形成し、R17BとR18Bの組が、互いに結合して、置換もしくは無置換のベンゼン環を形成した場合、Ar12Bは、酸素原子を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-12)で表される構造である。
Figure JPOXMLDOC01-appb-C000070
 式(B22-12)中、
 R211B~R220Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR211B~R220Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 式(B22)中、R11BとR20Bの組及びR11BとR12Bの組が、互いに結合して、置換もしくは無置換の1-ベンゾピラン環を形成した場合、Ar12Bは、酸素原子を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-13)で表される構造である。
Figure JPOXMLDOC01-appb-C000071
 式(B22-13)中、
 R221B~R230Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR221B~R230Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 式(B22)中、R11BとR20Bの組が、互いに結合して、チオフェン環を形成し、R17BとR18Bの組が、互いに結合して、置換もしくは無置換のベンゼン環を形成した場合、Ar12Bは、硫黄原子を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-14)で表される構造である。
Figure JPOXMLDOC01-appb-C000072
 式(B22-14)中、
 R231B~R240Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR231B~R240Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 式(B22)中、R11BとR20Bの組及びR11BとR12Bの組が、互いに結合して、置換もしくは無置換の1-ベンゾチオピラン環を形成した場合、Ar12Bは、硫黄原子を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-15)で表される構造である。
Figure JPOXMLDOC01-appb-C000073
 式(B22-15)中、
 R241B~R250Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR241B~R250Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 式(B22)中、R11BとR20Bの組が、互いに結合して、置換もしくは無置換のピロール環を形成した場合、Ar12Bは、窒素原子を含む基となる。この場合、式(B22)で表される構造は、下記式(B22-16)で表される構造である。
Figure JPOXMLDOC01-appb-C000074
 式(B22-16)中、
 R251B~R259Bのうちいずれか1つは、L11Bと結合する単結合である。
 L11Bと結合する単結合ではないR251B~R259Bは、それぞれ独立に、水素原子又は置換基Rである。
 置換基Rは、前記式(B1)で定義した通りである。
 一実施形態において、前記式(B21)におけるAr12Bは、酸素原子を含む基である。
 一実施形態において、前記式(B21)におけるAr12Bは、置換もしくは無置換のベンゾキサンテニル基である。
 一実施形態において、第2の化合物における「置換もしくは無置換の」という場合における置換基、及び前記置換基Rは、炭素数1~50のアルキル基、炭素数1~50のハロアルキル基、炭素数2~50のアルケニル基、炭素数2~50のアルキニル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールオキシ基、環形成炭素数6~50のアリールチオ基、炭素数7~50のアラルキル基、-Si(R41)(R42)(R43)、-C(=O)R44、-COOR45、-S(=O)46、-P(=O)(R47)(R48)、-Ge(R49)(R50)(R51)、-N(R52)(R53)(ここで、R41~R53は、それぞれ独立に、水素原子、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、又は環形成原子数5~50の1価の複素環基である。R41~R53が2以上存在する場合、2以上のR41~R53のそれぞれは同一でもよく、異なっていてもよい。)、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される。
 一実施形態において、第2の化合物における「置換もしくは無置換の」という場合の置換基、及び前記置換基Rは、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基
からなる群から選択される基である、
 一実施形態において、第2の化合物における「置換もしくは無置換の」という場合の置換基、及び前記置換基Rは、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基
からなる群から選択される基である。
 第2の化合物は、目的物に合わせた既知の代替反応や原料を用いることで合成することができる。
 以下に、第1の組成物における第2の化合物の具体例を記載するが、これらは例示に過ぎず、第2の化合物は下記具体例に限定されるものではない。
 以下に、第2の組成物における第2の化合物の具体例を記載するが、これらは例示に過ぎず、第2の化合物は下記具体例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000075
 組成物に含まれる第1の化合物と、第2の化合物との組合せをより具体的に示す。
・組合せ1
 第1の化合物が1-1であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000076
・組合せ2
 第1の化合物が1-1であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000077
・組合せ3
 第1の化合物が1-1であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000078
・組合せ4
 第1の化合物が1-1であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000079
・組合せ5
 第1の化合物が1-1であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000080
・組合せ6
 第1の化合物が1-1であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000081
・組合せ7
 第1の化合物が1-1であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000082
・組合せ8
 第1の化合物が1-1であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000083
・組合せ9
 第1の化合物が1-1であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000084
・組合せ10
 第1の化合物が1-1であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000085
・組合せ11
 第1の化合物が1-1であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000086
・組合せ12
 第1の化合物が1-2であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000087
・組合せ13
 第1の化合物が1-2であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000088
・組合せ14
 第1の化合物が1-2であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000089
・組合せ15
 第1の化合物が1-2であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000090
・組合せ16
 第1の化合物が1-2であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000091
・組合せ17
 第1の化合物が1-2であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000092
・組合せ18
 第1の化合物が1-2であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000093
・組合せ19
 第1の化合物が1-2であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000094
・組合せ20
 第1の化合物が1-2であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000095
・組合せ21
 第1の化合物が1-2であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000096
・組合せ22
 第1の化合物が1-2であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000097
・組合せ23
 第1の化合物が1-3であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000098
・組合せ24
 第1の化合物が1-3であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000099
・組合せ25
 第1の化合物が1-3であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000100
・組合せ26
 第1の化合物が1-3であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000101
・組合せ27
 第1の化合物が1-3であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000102
・組合せ28
 第1の化合物が1-3であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000103
・組合せ29
 第1の化合物が1-3であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000104
・組合せ30
 第1の化合物が1-3であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000105
・組合せ31
 第1の化合物が1-3であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000106
・組合せ32
 第1の化合物が1-3であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000107
・組合せ33
 第1の化合物が1-3であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000108
・組合せ34
 第1の化合物が1-4であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000109
・組合せ35
 第1の化合物が1-4であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000110
・組合せ36
 第1の化合物が1-4であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000111
・組合せ37
 第1の化合物が1-4であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000112
・組合せ38
 第1の化合物が1-4であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000113
・組合せ39
 第1の化合物が1-4であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000114
・組合せ40
 第1の化合物が1-4であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000115
・組合せ41
 第1の化合物が1-4であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000116
・組合せ42
 第1の化合物が1-4であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000117
・組合せ43
 第1の化合物が1-4であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000118
・組合せ44
 第1の化合物が1-4であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000119
・組合せ45
 第1の化合物が1-5であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000120
・組合せ46
 第1の化合物が1-5であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000121
・組合せ47
 第1の化合物が1-5であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000122
・組合せ48
 第1の化合物が1-5であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000123
・組合せ49
 第1の化合物が1-5であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000124
・組合せ50
 第1の化合物が1-5であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000125
・組合せ51
 第1の化合物が1-5であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000126
・組合せ52
 第1の化合物が1-5であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000127
・組合せ53
 第1の化合物が1-5であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000128
・組合せ54
 第1の化合物が1-5であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000129
・組合せ55
 第1の化合物が1-5であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000130
・組合せ56
 第1の化合物が1-6であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000131
・組合せ57
 第1の化合物が1-6であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000132
・組合せ58
 第1の化合物が1-6であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000133
・組合せ59
 第1の化合物が1-6であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000134
・組合せ60
 第1の化合物が1-6であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000135
・組合せ61
 第1の化合物が1-6であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000136
・組合せ62
 第1の化合物が1-6であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000137
・組合せ63
 第1の化合物が1-6であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000138
・組合せ64
 第1の化合物が1-6であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000139
・組合せ65
 第1の化合物が1-6であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000140
・組合せ66
 第1の化合物が1-6であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000141
・組合せ67
 第1の化合物が1-7であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000142
・組合せ68
 第1の化合物が1-7であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000143
・組合せ69
 第1の化合物が1-7であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000144
・組合せ70
 第1の化合物が1-7であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000145
・組合せ71
 第1の化合物が1-7であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000146
・組合せ72
 第1の化合物が1-7であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000147
・組合せ73
 第1の化合物が1-7であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000148
・組合せ74
 第1の化合物が1-7であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000149
・組合せ75
 第1の化合物が1-7であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000150
・組合せ76
 第1の化合物が1-7であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000151
・組合せ77
 第1の化合物が1-7であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000152
・組合せ78
 第1の化合物が1-8であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000153
・組合せ79
 第1の化合物が1-8であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000154
・組合せ80
 第1の化合物が1-8であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000155
・組合せ81
 第1の化合物が1-8であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000156
・組合せ82
 第1の化合物が1-8であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000157
・組合せ83
 第1の化合物が1-8であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000158
・組合せ84
 第1の化合物が1-8であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000159
・組合せ85
 第1の化合物が1-8であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000160
・組合せ86
 第1の化合物が1-8であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000161
・組合せ87
 第1の化合物が1-8であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000162
・組合せ88
 第1の化合物が1-8であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000163
・組合せ89
 第1の化合物が1-9であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000164
・組合せ90
 第1の化合物が1-9であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000165
・組合せ91
 第1の化合物が1-9であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000166
・組合せ92
 第1の化合物が1-9であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000167
・組合せ93
 第1の化合物が1-9であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000168
・組合せ94
 第1の化合物が1-9であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000169
・組合せ95
 第1の化合物が1-9であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000170
・組合せ96
 第1の化合物が1-9であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000171
・組合せ97
 第1の化合物が1-9であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000172
・組合せ98
 第1の化合物が1-9であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000173
・組合せ99
 第1の化合物が1-9であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000174
・組合せ100
 第1の化合物が1-10であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000175
・組合せ101
 第1の化合物が1-10であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000176
・組合せ102
 第1の化合物が1-10であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000177
・組合せ103
 第1の化合物が1-10であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000178
・組合せ104
 第1の化合物が1-10であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000179
・組合せ105
 第1の化合物が1-10であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000180
・組合せ106
 第1の化合物が1-10であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000181
・組合せ107
 第1の化合物が1-10であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000182
・組合せ108
 第1の化合物が1-10であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000183
・組合せ109
 第1の化合物が1-10であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000184
・組合せ110
 第1の化合物が1-10であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000185
・組合せ111
 第1の化合物が1-11であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000186
・組合せ112
 第1の化合物が1-11であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000187
・組合せ113
 第1の化合物が1-11であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000188
・組合せ114
 第1の化合物が1-11であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000189
・組合せ115
 第1の化合物が1-11であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000190
・組合せ116
 第1の化合物が1-11であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000191
・組合せ117
 第1の化合物が1-11であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000192
・組合せ118
 第1の化合物が1-11であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000193
・組合せ119
 第1の化合物が1-11であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000194
・組合せ120
 第1の化合物が1-11であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000195
・組合せ121
 第1の化合物が1-11であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000196
・組合せ122
 第1の化合物が1-12であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000197
・組合せ123
 第1の化合物が1-12であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000198
・組合せ124
 第1の化合物が1-12であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000199
・組合せ125
 第1の化合物が1-12であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000200
・組合せ126
 第1の化合物が1-12であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000201
・組合せ127
 第1の化合物が1-12であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000202
・組合せ128
 第1の化合物が1-12であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000203
・組合せ129
 第1の化合物が1-12であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000204
・組合せ130
 第1の化合物が1-12であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000205
・組合せ131
 第1の化合物が1-12であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000206
・組合せ132
 第1の化合物が1-12であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000207
・組合せ133
 第1の化合物が1-13であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000208
・組合せ134
 第1の化合物が1-13であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000209
・組合せ135
 第1の化合物が1-13であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000210
・組合せ136
 第1の化合物が1-13であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000211
・組合せ137
 第1の化合物が1-13であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000212
・組合せ138
 第1の化合物が1-13であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000213
・組合せ139
 第1の化合物が1-13であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000214
・組合せ140
 第1の化合物が1-13であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000215
・組合せ141
 第1の化合物が1-13であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000216
・組合せ142
 第1の化合物が1-13であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000217
・組合せ143
 第1の化合物が1-13であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000218
・組合せ144
 第1の化合物が1-14であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000219
・組合せ145
 第1の化合物が1-14であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000220
・組合せ146
 第1の化合物が1-14であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000221
・組合せ147
 第1の化合物が1-14であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000222
・組合せ148
 第1の化合物が1-14であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000223
・組合せ149
 第1の化合物が1-14であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000224
・組合せ150
 第1の化合物が1-14であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000225
・組合せ151
 第1の化合物が1-14であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000226
・組合せ152
 第1の化合物が1-14であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000227
・組合せ153
 第1の化合物が1-14であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000228
・組合せ154
 第1の化合物が1-14であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000229
・組合せ155
 第1の化合物が1-15であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000230
・組合せ156
 第1の化合物が1-15であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000231
・組合せ157
 第1の化合物が1-15であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000232
・組合せ158
 第1の化合物が1-15であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000233
・組合せ159
 第1の化合物が1-15であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000234
・組合せ160
 第1の化合物が1-15であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000235
・組合せ161
 第1の化合物が1-15であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000236
・組合せ162
 第1の化合物が1-15であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000237
・組合せ163
 第1の化合物が1-15であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000238
・組合せ164
 第1の化合物が1-15であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000239
・組合せ165
 第1の化合物が1-15であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000240
・組合せ166
 第1の化合物が1-16であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000241
・組合せ167
 第1の化合物が1-16であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000242
・組合せ168
 第1の化合物が1-16であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000243
・組合せ169
 第1の化合物が1-16であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000244
・組合せ170
 第1の化合物が1-16であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000245
・組合せ171
 第1の化合物が1-16であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000246
・組合せ172
 第1の化合物が1-16であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000247
・組合せ173
 第1の化合物が1-16であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000248
・組合せ174
 第1の化合物が1-16であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000249
・組合せ175
 第1の化合物が1-16であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000250
・組合せ176
 第1の化合物が1-16であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000251
・組合せ177
 第1の化合物が1-17であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000252
・組合せ178
 第1の化合物が1-17であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000253
・組合せ179
 第1の化合物が1-17であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000254
・組合せ180
 第1の化合物が1-17であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000255
・組合せ181
 第1の化合物が1-17であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000256
・組合せ182
 第1の化合物が1-17であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000257
・組合せ183
 第1の化合物が1-17であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000258
・組合せ184
 第1の化合物が1-17であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000259
・組合せ185
 第1の化合物が1-17であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000260
・組合せ186
 第1の化合物が1-17であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000261
・組合せ187
 第1の化合物が1-17であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000262
・組合せ188
 第1の化合物が1-18であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000263
・組合せ189
 第1の化合物が1-18であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000264
・組合せ190
 第1の化合物が1-18であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000265
・組合せ191
 第1の化合物が1-18であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000266
・組合せ192
 第1の化合物が1-18であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000267
・組合せ193
 第1の化合物が1-18であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000268
・組合せ194
 第1の化合物が1-18であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000269
・組合せ195
 第1の化合物が1-18であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000270
・組合せ196
 第1の化合物が1-18であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000271
・組合せ197
 第1の化合物が1-18であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000272
・組合せ198
 第1の化合物が1-18であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000273
・組合せ199
 第1の化合物が1-19であり、第2の化合物が2-1である。
Figure JPOXMLDOC01-appb-C000274
・組合せ200
 第1の化合物が1-19であり、第2の化合物が2-2である。
Figure JPOXMLDOC01-appb-C000275
・組合せ201
 第1の化合物が1-19であり、第2の化合物が2-3である。
Figure JPOXMLDOC01-appb-C000276
・組合せ202
 第1の化合物が1-19であり、第2の化合物が2-4である。
Figure JPOXMLDOC01-appb-C000277
・組合せ203
 第1の化合物が1-19であり、第2の化合物が2-5である。
Figure JPOXMLDOC01-appb-C000278
・組合せ204
 第1の化合物が1-19であり、第2の化合物が2-6である。
Figure JPOXMLDOC01-appb-C000279
・組合せ205
 第1の化合物が1-19であり、第2の化合物が2-7である。
Figure JPOXMLDOC01-appb-C000280
・組合せ206
 第1の化合物が1-19であり、第2の化合物が2-8である。
Figure JPOXMLDOC01-appb-C000281
・組合せ207
 第1の化合物が1-19であり、第2の化合物が2-9である。
Figure JPOXMLDOC01-appb-C000282
・組合せ208
 第1の化合物が1-19であり、第2の化合物が2-10である。
Figure JPOXMLDOC01-appb-C000283
・組合せ209
 第1の化合物が1-19であり、第2の化合物が2-11である。
Figure JPOXMLDOC01-appb-C000284
(第2の組成物の他の条件)
 上述した第1の組成物で説明した各条件は、第2の組成物にも適用可能である。即ち、電子親和力とイオン化ポテンシャル等の物性値、第1の化合物と第2の化合物の量比、他の成分の有無、組成物における第1の化合物と第2の化合物の含有割合等の条件から選択される一以上の特徴は、第2の組成物に適宜適用可能である。
[組成物の形態等]
 本発明の一態様に係る組成物の形態は特に限定されず、例えば、固体、粉体、溶液、及び膜(層)等が挙げられる。膜(層)としては、例えば、有機EL素子を構成する有機層(例えば正孔輸送帯域における一の層)が挙げられる。固体又は粉体である場合、ペレット状に成形されていてもよい。
 尚、本発明の一態様に係る組成物とは、上述した第1の組成物と第2の組成物を含むものであり、以下、「本発明の一態様に係る組成物」と言う場合には同様である。
 上記の組成物が粉体(混合粉体)である場合、一の粒子中に第1の化合物と第2の化合物が含まれる混合粉体であってもよいし、第1の化合物からなる粒子と、第2の化合物からなる粒子とを混合した混合粉体であってもよい。
 混合粉体の製造方法としては、例えば、第1の化合物と第2の化合物とを乳鉢等を用いて粉砕混合してもよいし、第1の化合物と第2の化合物とを容器等に入れ、化学的に不活性な環境で加熱溶融した後、周囲温度まで冷却し、得られた混合物をミキサー等で粉砕して粉体を得てもよい。後者の方法であれば、第1の化合物と第2の化合物とを分子レベルで混合でき、これにより、両者の昇華面積の比率を所望の範囲に制御しやすくなり、より均一な蒸着が可能となる。また、混合粉体の搬送中に生じうる混合の片寄り等の不具合を防止できる。
 混合粉体は圧縮成形してペレット状にしてもよい。
[有機エレクトロルミネッセンス素子用材料]
 本発明の一態様に係る組成物は、有機エレクトロルミネッセンス素子用材料として有用であり、例えば、有機エレクトロルミネッセンス素子の正孔輸送帯域用材料として有用である。
[有機EL素子]
 本発明の一態様における組成物を含む有機EL素子について説明する。
 本発明の一態様に係る有機EL素子は、陰極と陽極の間に少なくとも発光層を含む1以上の有機薄膜層が挟持され、当該有機薄膜層の少なくとも1層が、本発明の一態様における組成物を含む。
 本発明の一態様に係る有機EL素子は、好ましくは、陽極、正孔輸送帯域、発光層、及び陰極をこの順に含み、前記正孔輸送帯域における少なくとも一の層が本発明の一態様における組成物を含む。
[第1の有機EL素子]
 本発明の一態様に係る有機EL素子は、以下のように表現することもできる(以下、「第1の有機EL素子」とも言う)。
 即ち、陰極と、陽極と、前記陰極と前記陽極との間に配置された1又は2以上の有機層と、を有し、前記有機層のうちの少なくとも1層が、電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である第1の化合物と、電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下であり、前記第1の化合物とは異なる第2の化合物とを含む有機エレクトロルミネッセンス素子。
 第1の有機EL素子における第1の化合物と第2の化合物は、上述した第1の組成物で説明した通りである。
 第1の化合物と第2の化合物とを含む層(以下、「層A」とも言う)における第1の化合物と第2の化合物との割合は特に制限はないが、一実施形態において、層Aにおける質量比(第1の化合物:第2の化合物)は、50:50~99:1の範囲内であり、65:35~99:1の範囲内であってもよい。また、当該質量比(第1の化合物:第2の化合物)は、例えば、65:35~90:10の範囲内、又は75:25~90:10の範囲内であってもよい。
 層Aは、第1の化合物と第2の化合物以外の他の化合物を含んでもよいし、含まなくてもよい。
 一実施形態において、層Aは実質的に第1の化合物と第2の化合物のみからなる。
 「実質的に第1の化合物と第2の化合物のみからなる」とは、層A中に他の化合物が全く含まれないか、又は、他の化合物が本発明の効果を損なわない範囲で微量含まれる状態を言う。例えば、他の化合物が不可避不純物として混入している場合は本状態である。
 一実施形態において、層Aは、80質量%以上、90質量%以上、95質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上、99.99質量%以上又は100質量%が、第1の化合物及び第2の化合物である。
 一実施形態において、層Aは、80モル%以上、90モル%以上、95モル%以上、99モル%以上、99.5モル%以上、99.9モル%以上、99.99モル%以上又は100モル%が、第1の化合物及び第2の化合物である。
 一実施形態において、層Aは、第1の化合物と第2の化合物のみからなる。
 当該有機EL素子の代表的な素子構成としては、基板上に、以下の構造を積層した構造が例示される。
(1)陽極/正孔輸送帯域/発光層/陰極
(2)陽極/正孔輸送帯域/発光層/電子輸送帯域/陰極
(「/」は各層が隣接して積層されていることを示す。)
 正孔輸送帯域は、通常、正孔注入層及び正孔輸送層から選択される1以上の層からなる。陽極と発光層との間の領域は、通常、この正孔輸送帯域である。
 一実施形態において、正孔輸送帯域における少なくとも一の層が前記第1の化合物及び前記第2の化合物を含む。
 電子輸送帯域は、通常、電子注入層及び電子輸送層から選択される1以上の層からなる。
 本発明の一態様の有機EL素子の概略構成を、図1を参照して説明する。
 本発明の一態様に係る有機EL素子1は、基板2と、陽極3と、発光層5と、陰極10と、陽極3と発光層5との間にある正孔輸送帯域4と、発光層5と陰極10との間にある電子輸送帯域6とを有する。
 以下第1の有機EL素子で用いることができる部材、及び各層を構成する上記化合物以外の材料等について説明する。
(基板)
 基板は、発光素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、酸化亜鉛を含有した酸化インジウム、及びグラフェン等が挙げられる。この他、金(Au)、白金(Pt)、又は金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、又は高分子化合物(オリゴマー、デンドリマー、ポリマー等)等も使用できる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、前記第1の化合物及び前記第2の化合物のほか、種々の材料を用いることができる。例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。尚、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
 一実施形態において、第1の有機EL素子は、発光層側から、陽極に向けて、第1の層(「第2の正孔輸送層」又は「電子障壁層」ともいう)と第2の層(「第1の正孔輸送層」ともいう)とをこの順に有し、当該第1の層が第1の化合物及び第2の化合物を含む。
 一実施形態において、第1の有機EL素子は、発光層側から、陽極に向けて、第1の層(「第3の正孔輸送層」又は「電子障壁層」ともいう)と第2の層(「第2の正孔輸送層」ともいう)と第3の層(「第1の正孔輸送層」ともいう)とをこの順に有し、当該第1の層が第1の化合物及び第2の化合物を含む。
 本発明の一態様に係る有機EL素子における、正孔輸送帯域の第1の層以外の層が含みうる材料として、上記の正孔輸送層に用いることができる化合物等が挙げられる。また、第1の層が前記第1の化合物及び前記第2の化合物以外の化合物を含む場合の含みうる材料として、上記の正孔輸送層に用いることができる化合物等が挙げられる。
 一実施形態において、第1の有機EL素子は、第1の層と発光層との間に他の層を含まない。
 一実施形態において、第1の有機EL素子は、正孔輸送帯域において第1の層と第2の層以外の層を含まない。
 一実施形態において、第1の有機EL素子は、正孔輸送帯域において第1の層と第2の層と第3の層以外の層を含まない。
(発光層のゲスト(ドーパント)材料)
 発光層は、発光性の高い物質を含む層であり、種々の材料を用いることができる。例えば、発光性の高い物質としては、蛍光を発光する蛍光性化合物や燐光を発光する燐光性化合物を用いることができる。蛍光性化合物は一重項励起状態から発光可能な化合物であり、燐光性化合物は三重項励起状態から発光可能な化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。発光層に用いることができる緑色系の燐光発光材料としてイリジウム錯体等が使用される。発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。
(発光層のホスト材料)
 発光層のホスト化合物としては、上述したアントラセン誘導体の他、各種のものを用いることができ、上記のドーパント材料よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い化合物が好ましい。尚、ホスト化合物とは、通常、上記のドーパント材料を分散させるための材料を意味する。
 上述したアントラセン誘導体以外のホスト化合物としては、例えば、1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、3)カルバゾール誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、4)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
 上記の有機EL素子の発光層は、蛍光発光型の発光層、燐光発光型の発光層又は熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence)機構を用いる発光層のいずれであってもよい。
 また、上記の有機EL素子は、蛍光発光型、燐光発光型又は熱活性化遅延蛍光機構を用いる単色発光素子であっても、上記のハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
 また、本明細書に記載の「発光層」とは、発光機能を有する有機層である。発光層は、例えば、燐光発光層、蛍光発光層等であり、また、1層でも複数層でもよい。
 一実施形態において、発光層に含まれるホスト化合物の電子親和力AfEMHが、第1の層に含まれる第2の化合物の電子親和力Afよりも大きく、例えば、AfEMHはAfよりも0.1eV以上大きい。AfEMHとAfとの差(AfEMH-Af)の上限値は特に制限はないが、例えば、0.5以下、又は0.4以下である。
 一実施形態において、発光層に含まれるホスト化合物のイオン化ポテンシャルIpEMHが、第1の層に含まれる第2の化合物のイオン化ポテンシャルIpよりも大きく、一実施形態において、IpEMHとIpとが、下記式(2)を満たす。
IpEMH-Ip<0.3eV  (2)
 一実施形態において、第1の有機EL素子が2以上の発光層を含む場合、当該発光層のうち、第1の層に隣接する発光層に含まれるホスト材料が、上述したAfEMHとIpEMHの条件を満たす。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8-ヒドロキシキノリノラト-リチウム(Liq)等の金属錯体化合物、リチウム酸化物(LiO)等のアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、即ち、リチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。
 陰極は、通常、真空蒸着法やスパッタリング法で形成される。また、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。
 また、電子注入層が設けられる場合、仕事関数の大小に関わらず、アルミニウム、銀、ITO、グラフェン、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ等、種々の導電性材料を用いて陰極を形成することができる。
 第1の有機EL素子において、各層の膜厚は特に制限されないが、一般にピンホール等の欠陥を抑制し、印加電圧を低く抑え、発光効率をよくするため、通常は数nmから1μmの範囲が好ましい。
[第2の有機EL素子]
 本発明の一態様に係る有機EL素子は、以下のように表現することもできる(以下、「第2の有機EL素子」とも言う)。
 即ち、陰極と、陽極と、前記陰極と前記陽極との間に配置された1又は2以上の有機層と、を有し、前記有機層のうちの少なくとも1層が、式(A1)で表される化合物又は式(A2)で表される化合物である第1の化合物と、式(B1)で表される化合物又は式(B2)で表される化合物であり、前記第1の化合物とは異なる第2の化合物とを含む有機エレクトロルミネッセンス素子。
 第2の有機EL素子における第1の化合物と第2の化合物は、上述した第2の組成物で説明した通りである。第2の有機EL素子における他の条件は、上述した第1の有機EL素子で説明した事項を適宜適用可能である。
[有機EL素子の製造方法]
 本発明の一態様に係る有機EL素子において、各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。発光層等の各層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に溶かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 尚、本発明の一態様に係る有機EL素子とは、上述した第1の有機EL素子と第2の有機EL素子を含むものであり、以下、「本発明の一態様に係る有機EL素子」と言う場合には同様である。
 本発明の一態様に係る有機EL素子において、上記層A又は第1の層は、上述した本発明の一態様に係る組成物(例えば混合粉体)を用いて形成してもよい。本実施形態の方法として、例えば、第1の化合物と第2の化合物を予め混合した後、同一蒸着源から蒸着して層A又は第1の層を成膜する方法が挙げられる。当該方法は、製造装置や製造工程を簡易化できるという利点がある。
[電子機器]
 本発明の一態様に係る電子機器は、本発明の一態様に係る有機EL素子を備えることを特徴とする。
 電子機器の具体例としては、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、又はパーソナルコンピュータ等の表示装置、及び、照明、又は車両用灯具等の発光装置等が挙げられる。
<化合物>
 実施例1~3及び比較例1の有機EL素子の製造に用いた、第1の化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000285
              1-1
 実施例1~3の有機EL素子の製造に用いた、第2の化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000286
               2-1                          2-2
Figure JPOXMLDOC01-appb-I000287
              2-3
 実施例及び比較例の有機EL素子の製造に用いた他の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000288
             HT                             HA
Figure JPOXMLDOC01-appb-I000289
              BH1                           BD
Figure JPOXMLDOC01-appb-I000290
              ET1                                ET2
 
<化合物の物性評価>
 第1の化合物、第2の化合物、及び後述する発光層に用いたホスト化合物について、下記の測定方法により、電子親和力(Af)及びイオン化ポテンシャル(Ip)を測定した。また、第2の化合物について、下記の測定方法により、三重項エネルギー(T)を測定した。結果を表1に示す。
・電子親和力(Af)
 電子親和力Afは次式及び以下の式により算出した。
Af=-1.19×(Ere-Efc)-4.78eV
 ここで、各符号は以下を意味する。
Ere:第一還元電位(DPV,Negative scan)
Efc:フェロセンの第一酸化電位(DPV,Positive scan),(ca.+0.55V vs Ag/AgCl)
 酸化還元電位は、電気化学アナライザー(ALS社製:CHI630B)を用いて微分パルスボルタンメトリー(DPV)法で測定した。
 溶媒としてN,N-dimethylformamide(DMF)を用い、サンプル濃度は1.0mmol/Lとした。支持電解質はtetrabuthylammmonium hexafluorophosphate(TBHP)(100mmol/L)を用いた。作用電極、対抗電極としては、それぞれglassy carbon,Ptを用いた。
(参考文献)M. E. Thompson,et.al.,Organic Electronics,6(2005),p.11-20,Organic Electronics,10(2009),p.515-520
・イオン化ポテンシャル(Ip)
 イオン化ポテンシャルは、大気下で光電子分光装置(理研計器株式会社製「AC-3」)を用いて測定した。具体的には、測定対象となる化合物に光を照射し、その際に電荷分離によって生じる電子量を測定することにより測定した。
・三重項エネルギー(T
 三重項エネルギーTの測定方法は下記の通りである。
 測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、10-5mol/L以上10-4mol/L以下となるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を三重項エネルギーTとする。
換算式(F1):T[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(即ち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 尚、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。尚、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
Figure JPOXMLDOC01-appb-T000291
<有機EL素子の作製と評価>
 有機EL素子を以下のように作製した。
(実施例1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
 洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に透明電極を覆うようにして化合物HT及びHAを化合物HAの割合が3質量%となるように共蒸着し、膜厚10nmの第1正孔輸送層を成膜した。
 第1正孔輸送層上に、化合物HTを蒸着し、膜厚80nmの第2正孔輸送層を成膜した。
 第2正孔輸送層上に、化合物1-1及び化合物2-1を化合物2-1の割合が25質量%となるように共蒸着し、膜厚5nmの第3正孔輸送層(「電子障壁層」ともいう)を成膜した。
 第3正孔輸送層上に化合物BH1(ホスト材料)及び化合物BD(ドーパント材料)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚20nmの発光層を成膜した。
 発光層上に、化合物ET1を蒸着し、膜厚5nmの第1電子輸送層を形成した。
 第1電子輸送層上に、化合物ET2及び8-ヒドロキシキノリノラト-リチウム(Liq)を、Liqの割合が50質量%となるように共蒸着し、膜厚20nmの第2電子輸送層を形成した。
 第2電子輸送層上に、金属Ybを蒸着して、膜厚1nmの電子注入層を形成した。
 電子注入層上に、金属Alを蒸着し、膜厚80nmの陰極を成膜した。
 実施例1の有機EL素子の素子構成を略式的に示すと、次の通りである。
ITO(130)/HT:HA(10:3%)/HT(80)/1-1:2-1(5:25%)/BH1:BD(20:1%)/ET1(5)/ET2:Liq(20:50%)/Yb(1)/Al(80)
 括弧内の数字は膜厚(単位:nm)を表す。また、括弧内においてパーセント表示された数字は、当該層における後者の化合物の割合(質量%)を示す。
(実施例2~3)
 第3正孔輸送層の形成において、表2に記載の構成を用いたこと以外は実施例1と同じ方法で有機EL素子を製造した。
(比較例1)
 第3正孔輸送層の形成において、化合物1-1のみを用いたこと以外は実施例1と同じ方法で有機EL素子を製造した。
 実施例1~3及び比較例1で作製した有機EL素子について、以下の通り、駆動電圧、外部量子効率、及び素子寿命の評価を行った。結果を表2に示す。駆動電圧は比較例1との差を示す。外部量子効率と素子寿命は、それぞれ比較例1を100%とした場合の相対値を示す。表2中、第3正孔輸送層の組成におけるかっこ内の数値は層中の後者の割合(質量%)を示す。
・駆動電圧
 有機EL素子の初期特性を、室温下、DC(直流)定電流10mA/cm駆動で測定した。
・外部量子効率(EQE)
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加し、EL発光スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)にて計測した。得られた分光放射輝度スペクトルから、外部量子効率EQE(%)を算出した。
・素子寿命
 得られた有機EL素子について、室温下、電流密度が50mA/cmとなるように有機EL素子に電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:h))を測定した。
Figure JPOXMLDOC01-appb-T000292
<混合粉体の製造と評価>
(実施例4)
 第1の化合物(化合物1-1)及び第2の化合物(化合物2-1)それぞれを、表3に示す所望のモル比率を満たしつつ、固体状態で合計2gになるように計量し、乳鉢で粉砕しながら混合することで混合粉体を製造した。
 得られた混合粉体を用いて、以下のように連続蒸着試験を行った。
 合計0.6gの混合粉体を入れたるつぼを真空蒸着機内で1×10-4Pa以下の真空下で加熱し、成膜レートが2Å/secになるよう温度を調節し、ガラス基板上に蒸着成膜した。適宜ガラス基板を交換し、成膜を続けた。最初に成膜した基板を基板「No.1」と呼称し、以下「No.2」、「No.3」・・・のように呼称する。基板No.1からNo.5に蒸着された膜厚は合計491nmであった。
 下記事項について評価を行った。結果を表3に示す。
・蒸着膜中の成分比率
 各基板に成膜された蒸着膜それぞれについて、第1の化合物と第2の化合物のモル混合比率を次のようにして測定した。ガラス基板上に成膜された蒸着膜の膜面積、膜厚から比重を1と仮定した時の質量を算出し、第1の化合物と第2の化合物の混合物合計の濃度が100ppmとなるようにテトラヒドロフラン(THF)溶媒で溶液を調製し、得られた溶液について高速液体クロマトグラフィー(HPLC)装置(装置名:株式会社島津製作所製「LC-2040C Plus」)を用いてHPLC測定を行い、第1の化合物と第2の化合物それぞれのHPLC面積を算出した。
 別途、第1の化合物が100ppm、第2の化合物が100ppmの濃度となるようにTHF溶媒で調製した標準溶液を作成し、HPLC測定によりそれぞれのピーク面積を算出した。標準溶液のピーク面積値から混合膜における第1の化合物と第2の化合物の溶液中における質量濃度を算出し、そこから膜中に含まれる質量混合比率を算出した。各成分の分子量から質量混合比率を換算して、混合膜中における各成分のモル混合比率を算出した。
Figure JPOXMLDOC01-appb-T000293
(実施例5)
 第2の化合物として化合物2-2を用いた以外は、実施例4と同じ方法で混合粉体を製造し、評価を行った。基板No.1からNo.5に蒸着された膜厚は合計415nmであった。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000294
 表3及び4より、実施例4及び5の混合粉体を用いて連続蒸着を行った場合、各基板における蒸着膜中の成分比率が大きく変動せず、長時間にわたって成分比率の安定した蒸着ができたことが分かる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (57)

  1.  電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である第1の化合物と、
     電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下であり、前記第1の化合物とは異なる第2の化合物と
     を含む組成物。
  2.  前記第2の化合物の電子親和力Afが1.95eV以下である、請求項1に記載の組成物。
  3.  前記第2の化合物の電子親和力Afが1.90eV以下である、請求項1又は2に記載の組成物。
  4.  前記第2の化合物のイオン化ポテンシャルIpが5.90eV以下である、請求項1~3のいずれかに記載の組成物。
  5.  前記第2の化合物のイオン化ポテンシャルIpが5.80eV以下である、請求項1~4のいずれかに記載の組成物。
  6.  前記第1の化合物の電子親和力Afが1.60eV以下である、請求項1~5のいずれかに記載の組成物。
  7.  前記第1の化合物のイオン化ポテンシャルIpが5.75eV以下である、請求項1~6のいずれかに記載の組成物。
  8.  前記第1の化合物のイオン化ポテンシャルIpが5.60eV以上である、請求項1~7のいずれかに記載の組成物。
  9.  前記第1の化合物の電子親和力Afが前記第2の化合物の電子親和力Afよりも小さい、請求項1~8のいずれかに記載の組成物。
  10.  前記第1の化合物の電子親和力Afが前記第2の化合物の電子親和力Afよりも0.2eV以上小さい、請求項1~9のいずれかに記載の組成物。
  11.  前記第1の化合物のイオン化ポテンシャルIpが前記第2の化合物のイオン化ポテンシャルIpよりも小さい、請求項1~10のいずれかに記載の組成物。
  12.  前記第1の化合物のイオン化ポテンシャルIpと前記第2の化合物のイオン化ポテンシャルIpとが、下記式(1)を満たす、請求項11に記載の組成物。
    Ip-Ip<0.2eV  (1)
  13.  前記第2の化合物の三重項エネルギーTが2.40eV以下である、請求項1~12のいずれかに記載の組成物。
  14.  前記第1の化合物と前記第2の化合物の質量比(第1の化合物:第2の化合物)が50:50~99:1の範囲内である、請求項1~13のいずれかに記載の組成物。
  15.  前記第1の化合物と前記第2の化合物の質量比(第1の化合物:第2の化合物)が65:35~99:1の範囲内である、請求項1~14のいずれかに記載の組成物。
  16.  実質的に前記第1の化合物と前記第2の化合物のみからなる、請求項1~15のいずれかに記載の組成物。
  17.  下記式(A1)で表される化合物又は下記式(A2)で表される化合物である第1の化合物と、
     下記式(B1)で表される化合物又は下記式(B2)で表される化合物であり、前記第1の化合物とは異なる第2の化合物と
     を含む組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(A1)中、
     LA1、LA2、及びLA3は、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar111、Ar112、及びAr113は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、
    置換もしくは無置換の環形成原子数5~50の複素環基、又は
    -Si(RC1)(RC2)(RC3)である。
     RC1、RC2、及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     RC1が複数存在する場合、複数のRC1は、互いに同一であってもよいし、異なってもよい。
     RC2が複数存在する場合、複数のRC2は、互いに同一であってもよいし、異なってもよい。
     RC3が複数存在する場合、複数のRC3は、互いに同一であってもよいし、異なってもよい。
    Figure JPOXMLDOC01-appb-C000002
    (式(A2)中、
     LC1、LC2、LC3、及びLC4は、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     n2は、1~4の整数である。
     n2が1の場合、LC5は、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     n2が2、3、又は4の場合、複数のLC5は、互いに同一であってもよいし、異なってもよい。
     n2が2、3、又は4の場合、複数のLC5は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないLC5は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar131、Ar132、Ar133、及びAr134は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、
    置換もしくは無置換の環形成原子数5~50の複素環基、又は
    -Si(RC1)(RC2)(RC3)である。
     RC1、RC2、及びRC3は、前記式(A1)で定義した通りである。
    Figure JPOXMLDOC01-appb-C000003
    (式(B1)中、
     R1A~R8Aは、それぞれ独立に、
    水素原子、
    置換基R、又は
    下記式(B1a)で表される基である。
     置換基Rは、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907
    (ここで、R901~R907は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     置換基Rが2個以上存在する場合、2個以上の置換基Rは同一であってもよいし、異なってもよい。
     L1Aは、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar1Aは、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
    -L1A-Ar1A (B1a)
    (式(B1a)中、
     L1A及びAr1Aは、式(B1)で定義した通りである。)
     前記式(B1a)で表される基が2以上存在する場合、2以上の前記式(B1a)で表される基のそれぞれは、同一であってもよいし、異なってもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (式(B2)中、
     R1BとR10Bの組、及びR5BとR6Bの組のうちの少なくとも1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
     R1BとR2Bの組、R2BとR3Bの組、R3BとR4Bの組、R4BとR5Bの組、R6BとR7Bの組、R7BとR8Bの組、R8BとR9Bの組、及びR9BとR10Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR1B~R10Bは、それぞれ独立に、水素原子又は置換基Rである。
     置換基Rは、前記式(B1)で定義した通りである。
     ただし、R1BとR2Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R9BとR10Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R4BとR5Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R6BとR7Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R6BとR7Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R4BとR5Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R9BとR10Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R1BとR2Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
  18.  前記第1の化合物が、前記式(A1)で表される化合物である、請求項17に記載の組成物。
  19.  前記第1の化合物が、下記式(A11)で表される化合物である、請求項17又は18に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(A11)中、LA1、LA2、LA3、Ar111、及びAr112は、前記式(A1)で定義した通りである。
     X101は、O、S、N(R109)、又はC(R110)(R111)である。
     R101~R109のうちいずれか1つはLA3との結合を表す。
     LA3との結合を表さないR101~R109、並びにR110及びR111のうち隣接する2つ以上からなる組の1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR110及びR111、並びにLA3との結合を表さず、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R109は、それぞれ独立に、水素原子又は置換基Rである。
     置換基Rは、前記式(B1)で定義した通りである。)
  20.  LA1、LA2、及びLA3のうち、少なくとも2つが、それぞれ独立に、
    単結合、又は
    置換もしくは無置換の環形成炭素数6~50のアリーレン基である、請求項17~19のいずれかに記載の組成物。
  21.  前記第1の化合物が、下記式(A12)で表される化合物である、請求項17~20のいずれかに記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(A12)中、Ar111及びAr112は、前記式(A1)で定義した通りである。
     LA11、LA12、及びLA13は、それぞれ独立に、
    置換もしくは無置換のフェニレン基、
    置換もしくは無置換のビフェニレン基、又は
    置換もしくは無置換のナフチレン基である。
     R111~R118は、それぞれ独立に、水素原子又は置換基Rである。
     置換基Rは、前記式(B1)で定義した通りである。)
  22.  Ar111及びAr112が、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である、請求項21に記載の組成物。
  23.  前記第1の化合物が、少なくとも1個の重水素原子を含む、請求項17~22のいずれかに記載の組成物。
  24.  式(B1)において、L1Aが、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~14のアリーレン基である、請求項17~23のいずれかに記載の組成物。
  25.  式(B1)において、L1Aが、それぞれ独立に、単結合、置換もしくは無置換のフェニレン基、又は置換もしくは無置換のナフチレン基である、請求項17~24のいずれかに記載の組成物。
  26.  前記式(B1)で表される化合物が、下記式(B1-1)で表される化合物である、請求項17~25のいずれかに記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(B1-1)中、R1A~R8A、L1A、及びAr1Aは、前記式(B1)で定義した通りである。
     X11Aは、C(R21A)(R22A)、N(R23A)、O、又はSである。
     R11A~R18Aのうち隣接する2つは、互いに結合して、置換もしくは無置換のベンゼン環を形成するか、又は置換もしくは無置換のベンゼン環を形成しない。
     前記置換もしくは無置換のベンゼン環を形成しないR11A~R18A、及び前記置換もしくは無置換のベンゼン環における炭素原子のうちの1つは、単結合によりL1Aと結合する。
     前記置換もしくは無置換のベンゼン環を形成せず、かつL1Aと結合しないR11A~R18A、並びにR21A~R23Aは、それぞれ独立に、水素原子、又は置換基Rである。
     置換基Rは、前記式(B1)で定義した通りである。)
  27.  前記式(B1-1)において、X11AがOである、請求項26に記載の組成物。
  28.  前記式(B1)で表される化合物が、下記式(B1-11)~(B1-17)のいずれかで表される化合物である、請求項17~27のいずれかに記載の組成物。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    (式(B1-11)~(B1-17)中、R1A~R8A、L1A、及びAr1Aは、前記式(B1)で定義した通りである。
     式(B1-11)中、R112A~R120Aは、それぞれ独立に、水素原子、又は置換基Rである。
     式(B1-12)中、R122A~R130Aは、それぞれ独立に、水素原子、又は置換基Rである。
     式(B1-13)中、R132A~R140Aは、それぞれ独立に、水素原子、又は置換基Rである。
     式(B1-14)中、R141A及びR143A~R150Aは、それぞれ独立に、水素原子、又は置換基Rである。
     式(B1-15)中、R151A及びR153A~R160Aは、それぞれ独立に、水素原子、又は置換基Rである。
     式(B1-16)中、R161A及びR163A~R170Aは、それぞれ独立に、水素原子、又は置換基Rである。
     式(B1-17)中、R171A及びR173A~R178Aは、それぞれ独立に、水素原子、又は置換基Rである。
     置換基Rは前記式(B1)で定義した通りである。)
  29.  前記式(B1-11)~(B1-17)において、Ar1Aが、置換もしくは無置換の環形成炭素数6~50のアリール基である、請求項28に記載の組成物。
  30.  前記式(B1-11)~(B1-17)において、Ar1Aが、下記式(a1)~(a4)のいずれかで表される基から選択される、請求項28又は29に記載の組成物。
    Figure JPOXMLDOC01-appb-C000011
    (式(a1)~(a4)中、*は、L1Aと結合する単結合である。
     R21は、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R901~R907は、前記式(B1)で定義した通りである。
     m1は、0~4の整数である。
     m2は、0~5の整数である。
     m3は、0~7の整数である。
     m1~m3が、それぞれ2以上のとき、複数のR21は互いに同一であってもよいし、異なっていてもよい。
     m1~m3が、それぞれ2以上のとき、隣接する複数のR21は互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。)
  31.  前記式(B2)で表される化合物が、下記式(B21)で表される化合物である、請求項17に記載の組成物。
    Figure JPOXMLDOC01-appb-C000012
    (式(B21)中、
     L11Bは、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar11B及びAr12Bは、それぞれ独立に、下記式(B22)で表される構造を含む基である。
    Figure JPOXMLDOC01-appb-C000013
    (式(B22)中、
     R11BとR20Bの組、及びR15BとR16Bの組のうちの少なくとも1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
     R11BとR12Bの組、R12BとR13Bの組、R13BとR14Bの組、R14BとR15Bの組、R16BとR17Bの組、R17BとR18Bの組、R18BとR19Bの組、及びR19BとR20Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR11B~R20Bは、それぞれ独立に、水素原子又は置換基Rである。
     置換基Rは、前記式(B1)で定義した通りである。
     ただし、R11BとR12Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R19BとR20Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R14BとR15Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R16BとR17Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R16BとR17Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R14BとR15Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R19BとR20Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R11BとR12Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
     2つの前記式(B22)で表される構造は、同一であってもよいし、異なってもよい。
     L11Bは、前記式(B22)で表される構造の結合可能な位置において、結合する。
     n11Bは、1~3の整数である。)
  32.  前記式(B21)において、Ar11Bが、ベンゾキサンテン、ピレン、ベンズアントラセン、ベンズフルオランテン、ベンズトリフェニレン、及びクリセンからなる群から選択される構造を含む基である、請求項31に記載の組成物。
  33.  前記式(B21)において、Ar11Bが、ベンゾキサンテン、ピレン、ベンズアントラセン、及びベンズフルオランテンからなる群から選択される構造を含む基である、請求項31又は32に記載の組成物。
  34.  前記式(B21)において、Ar11Bが、ピレン及びベンズアントラセンからなる群から選択される構造を含む基である、請求項31~33のいずれかに記載の組成物。
  35.  前記式(B21)において、Ar12Bが、置換もしくは無置換の環形成原子数6~50のアリール基である、請求項31~34のいずれかに記載の組成物。
  36.  前記式(B21)において、Ar12Bが、下記式(B23)で表される構造を含む基である、請求項31~35のいずれかに記載の組成物。
    Figure JPOXMLDOC01-appb-C000014
    (式(B23)中、
     R21BとR22Bの組、R22BとR23Bの組、R23BとR24Bの組、R24BとR25Bの組、R25BとR26Bの組、R26BとR27Bの組、R27BとR28Bの組、R28BとR29Bの組、R29BとR30B、及びR30BとR21Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR21B~R30Bは、それぞれ独立に、水素原子又は置換基Rである。
     置換基Rは、前記式(B1)で定義した通りである。
     ただし、R23BとR24Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R30BとR21Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R25BとR26Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R28BとR29Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R28BとR29Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R25BとR26Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R30BとR21Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R23BとR24Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
  37.  前記式(B21)において、Ar12Bが、置換もしくは無置換の9,9’-スピロビフルオレニル基である、請求項31~36のいずれかに記載の組成物。
  38.  前記式(B21)において、Ar12Bが、置換もしくは無置換の環形成原子数5~50の1価の複素環基である、請求項31~34のいずれかに記載の組成物。
  39.  前記式(B21)において、Ar12Bが、酸素原子、硫黄原子、及び窒素原子から選択される1以上の原子を含む基である、請求項38に記載の組成物。
  40.  前記式(B21)において、Ar12Bが、酸素原子を含む基である、請求項38に記載の組成物。
  41.  前記式(B21)において、Ar12Bが、置換もしくは無置換のベンゾキサンテニル基である、請求項38に記載の組成物。
  42.  前記第1の化合物と前記第2の化合物の質量比(第1の化合物:第2の化合物)が50:50~99:1の範囲内である、請求項17~41のいずれかに記載の組成物。
  43.  前記第1の化合物と前記第2の化合物の質量比(第1の化合物:第2の化合物)が65:35~99:1の範囲内である、請求項17~42のいずれかに記載の組成物。
  44.  実質的に前記第1の化合物と前記第2の化合物のみからなる、請求項17~43のいずれかに記載の組成物。
  45.  有機エレクトロルミネッセンス素子用材料である、請求項1~44のいずれかに記載の組成物。
  46.  有機エレクトロルミネッセンス素子の正孔輸送帯域用材料である、請求項1~45のいずれかに記載の組成物。
  47.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に配置された1又は2以上の有機層と、
    を有し、
     前記有機層のうちの少なくとも1層が、
     電子親和力Afが1.70eV以下であり、かつ、イオン化ポテンシャルIpが5.80eV以下である第1の化合物と、
     電子親和力Afが2.00eV以下であり、かつ、イオン化ポテンシャルIpが5.95eV以下であり、前記第1の化合物とは異なる第2の化合物と
     を含む有機エレクトロルミネッセンス素子。
  48.  前記陽極、正孔輸送帯域、発光層、及び前記陰極をこの順に含み、前記正孔輸送帯域における少なくとも一の層が前記第1の化合物及び前記第2の化合物を含む、請求項47に記載の有機エレクトロルミネッセンス素子。
  49.  前記正孔輸送帯域が、前記発光層側から少なくとも第1の層と第2の層とをこの順に有し、前記第1の層が、前記第1の化合物及び前記第2の化合物を含み、前記発光層と前記第1の層との間に他の層を含まない、請求項48に記載の有機エレクトロルミネッセンス素子。
  50.  前記発光層がホスト化合物を含み、前記発光層のホスト化合物の電子親和力AfEMHが、前記第1の層に含まれる前記第2の化合物の電子親和力Afよりも大きい、請求項48又は49に記載の有機エレクトロルミネッセンス素子。
  51.  前記発光層のホスト化合物の電子親和力AfEMHが前記第1の層に含まれる前記第2の化合物の電子親和力Afよりも0.1eV以上大きい、請求項50に記載の有機エレクトロルミネッセンス素子。
  52.  前記発光層がホスト化合物を含み、前記発光層のホスト化合物のイオン化ポテンシャルIpEMHが、前記第1の層に含まれる前記第2の化合物のイオン化ポテンシャルIpよりも大きい、請求項50又は51に記載の有機エレクトロルミネッセンス素子。
  53.  前記発光層のホスト化合物のイオン化ポテンシャルIpEMHと、前記第1の層に含まれる第2の化合物のイオン化ポテンシャルIpとが、下記式(2)を満たす、請求項52に記載の有機エレクトロルミネッセンス素子。
    IpEMH-Ip<0.3eV  (2)
  54.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に配置された1又は2以上の有機層と、
    を有し、
     前記有機層のうちの少なくとも1層が、
    下記式(A1)で表される化合物又は下記式(A2)で表される化合物である第1の化合物と、
     下記式(B1)で表される化合物又は下記式(B2)で表される化合物であり、前記第1の化合物とは異なる第2の化合物と
     を含む有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015
    (式(A1)中、
     LA1、LA2、及びLA3は、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar111、Ar112、及びAr113は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、
    置換もしくは無置換の環形成原子数5~50の複素環基、又は
    -Si(RC1)(RC2)(RC3)である。
     RC1、RC2、及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     RC1が複数存在する場合、複数のRC1は、互いに同一であってもよいし、異なってもよい。
     RC2が複数存在する場合、複数のRC2は、互いに同一であってもよいし、異なってもよい。
     RC3が複数存在する場合、複数のRC3は、互いに同一であってもよいし、異なってもよい。)
    Figure JPOXMLDOC01-appb-C000016
    (式(A2)中、
     LC1、LC2、LC3、及びLC4は、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     n2は、1~4の整数である。
     n2が1の場合、LC5は、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     n2が2、3、又は4の場合、複数のLC5は、互いに同一であってもよいし、異なってもよい。
     n2が2、3、又は4の場合、複数のLC5は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないLC5は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar131、Ar132、Ar133、及びAr134は、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、
    置換もしくは無置換の環形成原子数5~50の複素環基、又は
    -Si(RC1)(RC2)(RC3)である。
     RC1、RC2、及びRC3は、前記式(A1)で定義した通りである。)
    Figure JPOXMLDOC01-appb-C000017
    (式(B1)中、
     R1A~R8Aは、それぞれ独立に、
    水素原子、
    置換基R、又は
    下記式(B1a)で表される基である。
     置換基Rは、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の炭素数2~50のアルケニル基、
    置換もしくは無置換の炭素数2~50のアルキニル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    -Si(R901)(R902)(R903)、
    -O-(R904)、
    -S-(R905)、
    -N(R906)(R907
    (ここで、R901~R907は、それぞれ独立に、
    水素原子、
    置換もしくは無置換の炭素数1~50のアルキル基、
    置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R901~R907が2個以上存在する場合、2個以上のR901~R907のそれぞれは同一でもよく、異なっていてもよい。)、
    ハロゲン原子、シアノ基、ニトロ基、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     置換基Rが2個以上存在する場合、2個以上の置換基Rは同一であってもよいし、異なってもよい。
     L1Aは、それぞれ独立に、
    単結合、
    置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
    置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar1Aは、それぞれ独立に、
    置換もしくは無置換の環形成炭素数6~50のアリール基、又は
    置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
    -L1A-Ar1A (B1a)
    (式(B1a)中、
     L1A及びAr1Aは、式(B1)で定義した通りである。)
     前記式(B1a)で表される基が2以上存在する場合、2以上の前記式(B1a)で表される基のそれぞれは、同一であってもよいし、異なってもよい。)
    Figure JPOXMLDOC01-appb-C000018
    (式(B2)中、
     R1BとR10Bの組、及びR5BとR6Bの組のうちの少なくとも1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
     R1BとR2Bの組、R2BとR3Bの組、R3BとR4Bの組、R4BとR5Bの組、R6BとR7Bの組、R7BとR8Bの組、R8BとR9Bの組、及びR9BとR10Bの組のうちの1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR1B~R10Bは、それぞれ独立に、水素原子又は置換基Rである。
     置換基Rは、前記式(B1)で定義した通りである。
     ただし、R1BとR2Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R9BとR10Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R4BとR5Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R6BとR7Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R6BとR7Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R4BとR5Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成せず、
     R9BとR10Bの組が、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する場合、R1BとR2Bの組は、置換もしくは無置換の飽和又は不飽和の環を形成しない。)
  55.  前記陽極、正孔輸送帯域、発光層、及び前記陰極をこの順に含み、
     前記正孔輸送帯域における少なくとも一の層が前記第1の化合物及び前記第2の化合物を含む、請求項54に記載の有機エレクトロルミネッセンス素子。
  56.  前記正孔輸送帯域が、前記発光層側から少なくとも第1の層と第2の層とをこの順に有し、前記第1の層が、前記第1の化合物及び前記第2の化合物を含み、前記発光層と前記第1の層との間に他の層を含まない、請求項55に記載の有機エレクトロルミネッセンス素子。
  57.  請求項47~56のいずれかに記載の有機エレクトロルミネッセンス素子を備える電子機器。

     
PCT/JP2022/030736 2021-08-13 2022-08-12 組成物、有機エレクトロルミネッセンス素子、及び電子機器 WO2023017858A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247004701A KR20240048513A (ko) 2021-08-13 2022-08-12 조성물, 유기 일렉트로루미네센스 소자, 및 전자 기기
CN202280054855.5A CN117813941A (zh) 2021-08-13 2022-08-12 组合物、有机电致发光元件、和电子设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-132015 2021-08-13
JP2021132015 2021-08-13
JP2022-087272 2022-05-27
JP2022087272 2022-05-27
JP2022-111808 2022-07-12
JP2022111808 2022-07-12

Publications (1)

Publication Number Publication Date
WO2023017858A1 true WO2023017858A1 (ja) 2023-02-16

Family

ID=85200714

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2022/030723 WO2023017856A1 (ja) 2021-08-13 2022-08-12 混合粉体、当該混合粉体を用いた有機エレクトロルミネッセンス素子の製造方法、及び蒸着用組成物
PCT/JP2022/030736 WO2023017858A1 (ja) 2021-08-13 2022-08-12 組成物、有機エレクトロルミネッセンス素子、及び電子機器
PCT/JP2022/030773 WO2023017861A1 (ja) 2021-08-13 2022-08-12 組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030723 WO2023017856A1 (ja) 2021-08-13 2022-08-12 混合粉体、当該混合粉体を用いた有機エレクトロルミネッセンス素子の製造方法、及び蒸着用組成物

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030773 WO2023017861A1 (ja) 2021-08-13 2022-08-12 組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器

Country Status (2)

Country Link
KR (3) KR20240048513A (ja)
WO (3) WO2023017856A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219101A (ja) * 2012-04-05 2013-10-24 Canon Inc 有機発光素子
JP2014212315A (ja) * 2013-04-03 2014-11-13 キヤノン株式会社 有機化合物及び有機発光素子
KR20160059602A (ko) * 2014-11-19 2016-05-27 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20160059609A (ko) * 2014-11-19 2016-05-27 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
JP2017022378A (ja) * 2015-07-08 2017-01-26 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP2017123352A (ja) * 2014-03-31 2017-07-13 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US20200111986A1 (en) * 2018-10-04 2020-04-09 Samsung Display Co., Ltd. Organic light-emitting device and display apparatus including the same
WO2021065774A1 (ja) * 2019-10-04 2021-04-08 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021090933A1 (ja) * 2019-11-08 2021-05-14 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142011A (ja) * 2005-11-16 2007-06-07 Tosoh Corp フルオレン化合物およびベンジジン化合物を用いた有機el素子
DE102010010481A1 (de) 2010-03-06 2011-09-08 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
KR101324784B1 (ko) * 2011-04-13 2013-10-31 (주)씨에스엘쏠라 유기발광 화합물 및 이를 이용한 유기 광소자
KR102269131B1 (ko) * 2013-07-01 2021-06-25 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
KR102191990B1 (ko) * 2013-09-10 2020-12-17 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
JP2016003225A (ja) 2014-06-19 2016-01-12 日本サプリメント株式会社 ジペプチジルペプチダーゼ−4阻害剤
CN107251258B (zh) * 2014-10-24 2019-04-26 德山新勒克斯有限公司 利用有机电子元件用组成物的显示器及有机电子元件
KR102292572B1 (ko) * 2014-11-07 2021-08-24 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR102603864B1 (ko) * 2016-05-13 2023-11-21 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
KR102577003B1 (ko) * 2016-06-03 2023-09-12 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
WO2020111277A1 (ja) * 2018-11-30 2020-06-04 株式会社Kyulux 膜の製造方法、有機半導体素子の製造方法および有機半導体素子
US20220289704A1 (en) * 2019-08-08 2022-09-15 Idemitsu Kosan Co.,Ltd. Organic electroluminescent element and electronic device using same
JPWO2021049651A1 (ja) * 2019-09-13 2021-03-18
JP2023011953A (ja) * 2019-11-08 2023-01-25 出光興産株式会社 有機el表示装置及び電子機器
JP2023015412A (ja) * 2019-11-08 2023-02-01 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
JP2023040310A (ja) * 2019-12-27 2023-03-23 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219101A (ja) * 2012-04-05 2013-10-24 Canon Inc 有機発光素子
JP2014212315A (ja) * 2013-04-03 2014-11-13 キヤノン株式会社 有機化合物及び有機発光素子
JP2017123352A (ja) * 2014-03-31 2017-07-13 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
KR20160059602A (ko) * 2014-11-19 2016-05-27 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20160059609A (ko) * 2014-11-19 2016-05-27 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
JP2017022378A (ja) * 2015-07-08 2017-01-26 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
US20200111986A1 (en) * 2018-10-04 2020-04-09 Samsung Display Co., Ltd. Organic light-emitting device and display apparatus including the same
WO2021065774A1 (ja) * 2019-10-04 2021-04-08 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021090933A1 (ja) * 2019-11-08 2021-05-14 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
KR20240047974A (ko) 2024-04-12
KR20240048513A (ko) 2024-04-15
WO2023017856A1 (ja) 2023-02-16
KR20240045229A (ko) 2024-04-05
WO2023017861A1 (ja) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2019194298A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
WO2019163824A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021065774A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2021172603A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022230844A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
JP2021061305A (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP6014053B2 (ja) 有機発光素子及び該有機発光素子に使用されるための材料
WO2021215446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP7328358B2 (ja) 有機エレクトロルミネッセンス素子、組成物、粉体、電子機器、及び新規化合物
WO2021210304A1 (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2021065772A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2023093080A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021065773A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
CN116568776A (zh) 有机电致发光元件及电子设备
WO2023017858A1 (ja) 組成物、有機エレクトロルミネッセンス素子、及び電子機器
CN116998242A (zh) 有机电致发光元件及电子设备
WO2022230843A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022186390A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022270427A1 (ja) 混合粉体、及び当該混合粉体を用いた有機エレクトロルミネッセンス素子の製造方法
WO2021065775A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022191234A1 (ja) 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子の製造方法
WO2022230842A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2023112915A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2024024726A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280054855.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE