WO2023011105A1 - 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用 - Google Patents

一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用 Download PDF

Info

Publication number
WO2023011105A1
WO2023011105A1 PCT/CN2022/104493 CN2022104493W WO2023011105A1 WO 2023011105 A1 WO2023011105 A1 WO 2023011105A1 CN 2022104493 W CN2022104493 W CN 2022104493W WO 2023011105 A1 WO2023011105 A1 WO 2023011105A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium disilicate
glass
heat treatment
ceramic
lithium
Prior art date
Application number
PCT/CN2022/104493
Other languages
English (en)
French (fr)
Inventor
张佳新
聂全义
赵丽佳
周生刚
虞勇
王晓俊
Original Assignee
爱迪特(秦皇岛)科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱迪特(秦皇岛)科技股份有限公司 filed Critical 爱迪特(秦皇岛)科技股份有限公司
Priority to EP22746940.0A priority Critical patent/EP4151608A4/en
Publication of WO2023011105A1 publication Critical patent/WO2023011105A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/833Glass-ceramic composites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/836Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • C03C4/0021Compositions for glass with special properties for biologically-compatible glass for dental use
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the invention belongs to the technical field of glass-ceramics, and in particular relates to a glass-ceramic and its preparation method and application, in particular to a high-strength and high-permeability lithium disilicate glass-ceramic and its preparation method and application.
  • Lithium disilicate glass-ceramic is a glass-ceramic with uniform distribution of crystalline phase and glass phase and dense structure. Since the refractive index (1.55) of the lithium disilicate crystal formed by crystallization has a good optical match with the refractive index (1.50) of the glass matrix, it has excellent translucency and can simulate the color of natural teeth to the greatest extent. And light-transmitting properties, so it has excellent aesthetic effects. In addition, due to its good mechanical properties and the inherent characteristics that the glass matrix is easily etched by HF, it can better solve the problems of occlusal and bonding in tooth restoration, and thus becomes the material of choice for aesthetic restoration of anterior teeth.
  • the clinical products that use lithium disilicate glass-ceramic for tooth restoration mainly include the IPS series of Ivoclar-Vivadent Company and the ZLS (zirconia-reinforced lithium silicate) series of Dentsply Sirona.
  • IPS Ivoclar-Vivadent Company
  • ZLS zirconia-reinforced lithium silicate
  • CN109824351A discloses a high-strength ceramic composite material for dental restoration.
  • the composite material is decomposed and ZrO 2 microcrystals are generated in situ in the heat treatment process by adding ZrSiO 4 to the glass ceramic components; due to the ZrO 2 microcrystals During the cooling process, the crystal will undergo a phase transition from the tetragonal phase to the monoclinic phase, resulting in volume expansion, thereby forming an extrusion effect on the surrounding lithium disilicate crystals.
  • CN104108883A discloses a high-strength lithium disilicate glass-ceramic and its preparation method, the method is by adding relatively high content of MgO and Al 2 O 3 in the components, and then performing heat treatment to make MgO fully reacts with Al 2 O 3 and SiO 2 to form a glass-ceramic with lithium disilicate as the main crystal phase and magnesium aluminum silicate and ⁇ -quartz as the impurity phase, and then the strength of the glass ceramic is improved through the internal compressive stress to 705MPa; however, although the above method has improved the bending strength to a certain extent, the strength of the improvement is limited, and the refractive index of the introduced second phase (heterogeneous phase) does not match the glass matrix, which is likely to cause the problem of reduced light transmittance. Therefore, it can only be used for pontic restoration in the posterior position in practical application.
  • CN108069611A discloses a high-permeability lithium silicate glass-ceramic and lithium disilicate glass-ceramic, its preparation method and application.
  • the method controls the mass ratio of SiO 2 and Li 2 O in the components to control the
  • the crystal size of lithium silicate is less than 200nm. Since the crystal size is lower than the range of 380-780nm of visible light, the prepared glass ceramics show high light transmittance, but the fine crystal size cannot form a good three-dimensional interweaving and grain interconnection.
  • the microstructure of the lock, resulting in strength is still maintained at the current level, that is, 360 ⁇ 450MPa.
  • high fracture toughness is also one of the important indicators to evaluate the reliability of glass ceramics and resist the risk of cracking or easy breaking.
  • the fracture toughness of Ivoclar-Vivadent's IPS series is 2.0-2.5MPa ⁇ m 1/2 . According to ISO6872, when the fracture toughness is higher than 3.0MPa ⁇ m 1/2 , it can be effectively used as an anterior three-unit bridge ; When the fracture toughness is higher than 3.5MPa ⁇ m 1/2 , it can be used as a three-unit pontic for posterior teeth, but the fracture toughness of most glass ceramics is difficult to meet this requirement.
  • the purpose of the present invention is to provide a high-strength and high-permeability lithium disilicate glass-ceramic and its preparation method and application.
  • the lithium disilicate glass-ceramic is controlled by optimizing the composition ratio
  • the reaction conditions in the heat treatment process make the grain size of the prepared lithium disilicate controllable, the three-point bending strength reaches 450-750MPa, and the optical transmittance of the 1mm thick sample at 550nm can be adjusted within 10%-80%. , effectively reducing the risk of restoration fracture and better simulating the toughness and light transmission of natural teeth.
  • the present invention provides a high-strength and high-permeability lithium disilicate glass ceramic
  • the raw material composition of the lithium disilicate glass ceramic includes: SiO 2 63-75wt%, such as 63wt%, 65wt%, 67wt%, 69wt%, 71wt%, 73wt% or 75wt%, etc.; Li 2 O 13 ⁇ 18wt%, such as 13wt%, 14wt%, 15wt%, 16wt%, 17wt% or 18wt%, etc.; Al 2 O 3 1 ⁇ 6wt%, such as 1wt%, 2wt%, 3wt%, 4wt%, 5wt% or 6wt% etc.; K 2 O 1 ⁇ 10wt%, such as 1wt%, 3wt%, 5wt%, 7wt% or 10wt% etc.; P 2 O 5 2 ⁇ 6wt%, such as 2wt%, 3wt%, 4wt%
  • the main crystal phase of the lithium disilicate glass ceramic is lithium disilicate crystal, and the impurity phase is any one or a combination of at least two of lithium metasilicate, lithium phosphate or quartz.
  • the combination is typical but not limiting Examples include: the combination of lithium metasilicate and lithium phosphate, the combination of lithium phosphate and quartz, etc.; the size of the lithium disilicate crystal is greater than 700nm, such as 710nm, 800nm, 900nm, 1000nm, 1100nm, 1200nm or 1300nm; The aspect ratio is not less than 3, such as 3, 4, 5 or 6, etc.
  • the selection of the above numerical values is not limited to the listed numerical values, and other unlisted numerical values are also applicable within their respective numerical ranges.
  • the size of the lithium disilicate crystal is greater than 700nm, the aspect ratio is not less than 3, and the morphology of the lithium disilicate crystal is shuttle-like.
  • the "size of lithium disilicate crystal” refers to the length of the long axis of the shuttle crystal, and the aspect ratio refers to the ratio of length to width.
  • the strength, fracture toughness and light transmittance of lithium disilicate glass ceramics are improved by increasing the size of lithium disilicate crystals to make it close to or greater than the maximum wavelength of visible light (380nm ⁇ 780nm).
  • the crystal size is smaller than the minimum wavelength of visible light can it have good light transmission. This is because the larger the size of the crystal, the fewer the number of crystals in a certain space, and the corresponding reduction of the grain boundary between the glass matrix and the lithium disilicate crystal, so that the scattering effect of the grain boundary on light is also smaller. , so that the light transmittance is improved.
  • the raw material composition of the lithium disilicate glass ceramics includes: SiO 2 65-70wt%, such as 65wt%, 67wt%, 69wt% or 70wt%; Li 2 O 14-16wt%, For example 14wt%, 15wt% or 16wt% etc.; Al 2 O 3 2 ⁇ 5wt%, such as 2wt%, 3wt%, 4wt% or 5wt% etc.; K 2 O 2 ⁇ 8wt%, such as 2wt%, 3wt%, 5wt% %, 7wt% or 8wt%, etc.; P 2 O 5 3 ⁇ 5wt%, such as 3wt%, 4wt% or 5wt%, etc.; additives 1 ⁇ 3wt%, such as 1wt%, 2wt% or 3wt%, etc.; colorant 2 ⁇ 5wt%, such as 2wt%, 3wt%, 4wt% or 5wt%;
  • the raw material composition of the lithium disilicate glass ceramics also includes CaO 0-6wt%, such as 1wt%, 2wt%, 3wt%, 4wt%, 5wt% or 6wt%; BaO 0-5wt%, such as 1wt% %, 2wt%, 3wt%, 4wt% or 5wt%, etc.; B 2 O 3 0 ⁇ 10wt%, such as 0.1wt%, 2wt%, 4wt%, 6wt%, 8wt% or 10wt%, etc.; ZrO 2 or HfO 2 0 ⁇ 10wt%, such as 0.1wt%, 2wt%, 4wt%, 6wt%, 8wt% or 10wt%, etc., and the typical but non-limiting examples of the combination are: the combination of CaO and BaO, CaO, BaO and B2 The combination of O 3 , the combination of BaO, B 2 O 3 or ZrO 2 etc
  • the additive includes monovalent metal oxides and divalent metal oxides.
  • the monovalent metal oxide includes any one or a combination of at least two of Na 2 O, Rb 2 O and Cs 2 O.
  • Typical but non-limiting examples of the combination include: Na 2 O and Rb The combination of 2 O, the combination of Rb 2 O and Cs 2 O, the combination of Na 2 O, Rb 2 O and Cs 2 O, etc.
  • the divalent metal oxide includes any one or a combination of at least two of MgO, SrO and ZnO.
  • Typical but non-limiting examples of the combination include: a combination of MgO and SrO, a combination of SrO and ZnO , the combination of MgO, SrO and ZnO, etc.
  • the colorant includes Fe 2 O 3 , TiO 2 , CeO 2 , CuO, Cr 2 O 3 , MnO, SeO 2 , V 2 O 5 , In 2 O 3 and rare earth oxides. Any one or a combination of at least two, the typical but non-limiting examples of the combination are: the combination of TiO 2 , CeO 2 and CuO, the combination of Fe 2 O 3 and TiO 2 , the combination of MnO, SeO 2 , V 2 O 5 and In 2 O 3 combination, V 2 O 5 , In 2 O 3 and rare earth oxide combination, etc.
  • the rare earth oxide includes any one or a combination of at least two of La 2 O 3 , Nd 2 O 3 , Tb 2 O 3 , Pr 6 O 11 and Er 2 O 3 , the combination is typically but Non-limiting examples are: combinations of La 2 O 3 and Nd 2 O 3 , combinations of Nd 2 O 3 , Tb 2 O 3 and Pr 6 O 11 , combinations of Pr 6 O 11 and Er 2 O 3 , etc.
  • the lithium disilicate crystal is in the shape of a shuttle.
  • the lithium disilicate crystal has a microstructure of three-dimensional interweaving and grain interlocking.
  • the light transmittance of a 1mm thick sample of the lithium disilicate glass ceramic at 550nm 10% to 40%, such as 10%, 15%, 20%, 25%, 30%, 35% or 40%, but not limited to the listed values, other unlisted values within this range are also applicable .
  • the light transmittance of a 1 mm thick sample of the lithium disilicate glass ceramic at 550 nm is 40% to 80%, for example 40%, 45%, 50%, 55%, 60%, 65% or, 70% or, 75% or 80%, etc., but not limited to the listed values, other unlisted values within the range of values are also applicable .
  • the present invention provides a method for preparing the above-mentioned lithium disilicate glass-ceramic, the preparation method comprising the following steps:
  • step (2) The basic molten glass obtained in step (1) is subjected to forming annealing treatment and heat treatment in sequence to obtain lithium disilicate glass ceramics.
  • the preparation method fully melts each raw material until the bubbles escape completely to ensure the quality and color uniformity of the subsequently obtained glass block, and then undergoes forming annealing treatment to eliminate the internal stress of the matrix glass and prevent the If it is too large, a large amount of internal stress will be accumulated inside to cause hidden cracks or collapse during processing, and then the nucleation-growth process of the grains will be regulated by heat treatment to obtain a secondary crystal with a size greater than 700nm and an aspect ratio of not less than 3.
  • Lithium silicate crystal with a high aspect ratio, enables it to form a microstructure of three-dimensional interweaving and grain interlocking, thereby improving the three-point bending strength and fracture toughness of glass ceramics.
  • the mixing in step (1) is carried out using a mixer.
  • the mixing time in step (1) is 30 to 300 minutes, such as 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes, 210 minutes, 240 minutes, 270 minutes or 300 minutes, etc., but not limited to the listed values, the values Other unrecited values within the range also apply.
  • the melting temperature in step (1) is 1300-1600°C, such as 1300°C, 1350°C, 1400°C, 1450°C, 1500°C, 1550°C or 1600°C, etc., but not limited to the listed values, Other unrecited values within this value range are also applicable.
  • the melting time in step (1) is 1 to 10 hours, such as 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours, etc., but it is not limited to the listed values. Other unrecited values within the range also apply.
  • the forming and annealing step in step (2) includes: pouring the base molten glass into a mold for annealing to obtain a base glass.
  • the preheating temperature of the mold is 200-500°C, such as 200°C, 300°C, 400°C or 500°C, etc., but it is not limited to the listed values, other unlisted values within this range are also applicable .
  • the annealing time is 0.1-24h, such as 0.1h, 1h, 5h, 10h, 15h, 20h or 24h, etc., but not limited to the listed values, and other unlisted values within this range are also applicable.
  • cooling to room temperature after the forming annealing treatment Preferably, cooling to room temperature after the forming annealing treatment.
  • the heat treatment includes at least the first heat treatment and the last heat treatment.
  • the heat treatment also includes intermediate secondary heat treatment.
  • the number of times of heat treatment is 3 times, it is performed in the order of "first time”, “intermediate time” and "last time”.
  • the temperature of the first heat treatment is 500-600°C, such as 500°C, 520°C, 540°C, 560°C, 580°C or 600°C, etc., but it is not limited to the listed values. Other values not listed also apply.
  • the time for the first heat treatment is 60 to 240 minutes, such as 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes, 210 minutes or 240 minutes, etc., but it is not limited to the listed values, and other unlisted values within this value range The same applies.
  • the temperature of the intermediate secondary heat treatment is 600-700°C, such as 600°C, 620°C, 640°C, 660°C, 680°C or 700°C, etc., but it is not limited to the listed values, other values within this range Values not listed also apply.
  • the time for the intermediate secondary heat treatment is 30 to 240 minutes, such as 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes, 210 minutes or 240 minutes, etc., but it is not limited to the listed values, other unlisted values within the value range Numerical values also apply.
  • the temperature of the last heat treatment is 800-860°C, such as 800°C, 810°C, 820°C, 830°C, 840°C, 850°C or 860°C, etc., but not limited to the listed values, the values Other unrecited values within the range also apply.
  • the time for the last heat treatment is 1 to 30 min, such as 1 min, 5 min, 10 min, 15 min, 20 min, 25 min or 30 min, etc., but it is not limited to the listed values, and other unlisted values within this range are the same Be applicable.
  • the first heat treatment of the base glass can form a large number of crystal nuclei in the glass matrix; the intermediate heat treatment can make it form glass ceramics with lithium metasilicate as the main crystal phase; the last heat treatment makes it Glass ceramics with lithium disilicate as the main crystal phase are formed, so the temperature and time of each heat treatment are very important.
  • the temperature of the first heat treatment is too low, it will cause the glass matrix to be difficult to nucleate or the amount of nucleation is small, and the uniform growth of lithium metasilicate crystals in the middle heat treatment process cannot be effectively controlled; if the temperature of the first heat treatment is too high If the temperature is too high, a large number of crystal nuclei will grow up to form lithium metasilicate crystals, which is not conducive to the control of the size of lithium disilicate crystals; if the temperature of the intermediate heat treatment is too low, it will be difficult to ensure that a large number of crystal nuclei grow up to form easy-to-process Lithium metasilicate crystals, resulting in poor processing performance; if the temperature of the intermediate heat treatment is too high, it is easy to convert lithium metasilicate crystals into difficult-to-process lithium disilicate crystals, resulting in reduced processing performance; if the last If the heat treatment temperature is too low, it is difficult to form lithium disilicate crystals with a high aspect ratio, resulting in low strength values
  • the base glass or the intermediate product before the last heat treatment is subjected to CAD/CAM machining to form the shape of the tooth to be restored.
  • the base glass or the intermediate product before the last heat treatment is molded into the shape of the tooth to be repaired by a hot pressing method or a lost wax method.
  • the preparation method comprises the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 200-500°C for annealing for 0.1-24 hours, and then naturally cool to room temperature to obtain a base glass;
  • the present invention provides the use of the above-mentioned lithium disilicate glass-ceramic, which is used for making oral restorations.
  • the oral restoration includes any one of dental veneers, inlays, onlays, abutments, single crowns, anterior multi-unit bridges and posterior multi-unit bridges.
  • the present invention has the following beneficial effects:
  • Lithium disilicate glass-ceramic of the present invention increases the size of lithium disilicate crystals, on the one hand, it can better form a microstructure of three-dimensional interweaving and grain interlocking, so that lithium disilicate glass
  • the three-point bending strength of ceramics is maintained between 450 and 750 MPa, and the fracture toughness is higher than 3.5 MPa ⁇ m 1/2 ; on the other hand, the increase of the crystal size will weaken the scattering effect of the grain boundary on light, so that the 1mm thick sample is at 550nm
  • the optical transmittance can be adjusted within 10% to 80%, which truly combines the excellent properties of high strength, high permeability and high fracture toughness, effectively reducing the risk of collapse and better simulating the natural toughness and light transmission of teeth;
  • the preparation method of the present invention adjusts the crystal size by optimizing the composition of the formula and controlling the conditions in the heat treatment process.
  • the process flow is simple, the economic benefit is high, and it has a good industrial application prospect.
  • Fig. 1 is the differential scanning calorimetry (DSC) figure of the lithium disilicate glass-ceramic that the embodiment of the present invention 1 provides;
  • Fig. 2 is the microscopic topography diagram of the lithium disilicate glass-ceramic provided by Example 1 of the present invention
  • Fig. 3 is the length size distribution figure of lithium disilicate crystal in the lithium disilicate glass-ceramic that the embodiment of the present invention 1 provides;
  • Figure 4 is a distribution diagram of the width and size of lithium disilicate crystals in the lithium disilicate glass-ceramic provided by Example 1 of the present invention
  • Fig. 5 is the X-ray diffraction pattern (XRD) of the lithium disilicate glass-ceramic that the embodiment of the present invention 1 provides;
  • Fig. 6 is a graph showing the light transmittance curve of the lithium disilicate glass ceramic provided in Example 1 of the present invention in the visible light range of 400-900 nm.
  • the raw material composition of the lithium disilicate glass ceramics prepared in the following examples and comparative examples is shown in Table 1, wherein the contents of each component are all in mass percent.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 SiO 2 67.5 69 70 64.5 72 70 Li 2 O 14.7 16.7 13.4 15.5 13 14 K 2 O 4.2 3.2 6.1 5.7 3 3.4 Al 2 O 3 3.7 3.3 4.8 5.0 4 3.5 P 2 O 5 3.3 4.2 2.9 4.4 5 4.8 Rb 2 O 0.3 0.6 0.5 1.2 0.8 1.0 MgO 1.0 0.4 0.6 0.5 — — CaO 0.4 — — — — 0.2 Fe2O3 _ 1.75 1.2 0.4 0.8 1.6 1.2 Tb 2 O 3 2.7 0.3 0.8 1.0 0.4 1.9 La 2 O 3 0.45 0.3 0.2 0.4 — ZnO2 — 0.8 — 1.0 — —
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass ceramics, the preparation method comprising the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 420°C for annealing for 10 hours, and then naturally cool to room temperature to obtain a matrix glass;
  • the lithium disilicate glass-ceramic obtained above is characterized, and its DSC diagram is shown in Figure 1, the microscopic morphology diagram is shown in Figure 2, and the length and size distribution diagram of lithium disilicate crystals is shown in Figure 3.
  • the width and size distribution diagram of lithium disilicate crystals is shown in Figure 4
  • the XRD diagram of lithium disilicate glass ceramics is shown in Figure 5
  • the light transmittance curve of lithium disilicate glass ceramics in the range of 400nm to 900nm is shown in Figure 6 shown.
  • the glass transition temperature Tg of the sample is 485°C, which means that only when the heat treatment temperature is higher than 485°C can the glass matrix be effectively promoted to form a large number of crystal nuclei.
  • 628°C is the exothermic peak when lithium metasilicate crystals are formed
  • 802°C is the exothermic peak when lithium disilicate crystals are formed
  • 959°C is the softening point of glass ceramics, which shows that the sample is higher than this temperature. , prone to softening and deformation.
  • the microscopic morphology of the sample is shuttle-shaped, and is distributed by the mechanism of three-dimensional interweaving and grain interlocking. Further, it can be concluded from Table 3 that the size of the shuttle-shaped lithium disilicate crystal is 1080nm, and the major diameter is 1080nm. The ratio is 4.7, because the high aspect ratio makes it easier for the grains to interweave, thus effectively increasing the three-point bending of the glass-ceramic to 580MPa.
  • the fracture mode of lithium disilicate glass-ceramics is intergranular fracture, and the high aspect ratio can effectively prolong the path of crack propagation, thus dissipating the driving force of crack propagation and effectively reducing the crack growth of lithium disilicate glass-ceramics.
  • the fracture toughness is increased to 3.62MPa ⁇ m 1/2 , which meets the requirements of the national standard ISO6872 for the use of posterior three-unit pontics.
  • the main crystal phase of the sample is lithium disilicate (Li 2 Si 2 O 5 ), and the impurity phases are lithium metasilicate (Li 2 SiO 3 ) and lithium phosphate (Li 3 PO 4 ).
  • the optical transmittance of the 1mm thick lithium disilicate glass-ceramic sample at 550nm is 20.11%, which well meets the clinical requirement of high transmittance for dental restorative materials (1mm
  • the thick sample has an optical transmittance of 20-55% at a wavelength of 550nm).
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass ceramics, the preparation method comprising the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 400°C for annealing for 3 hours, and then naturally cool to room temperature to obtain a matrix glass;
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass ceramics, the preparation method comprising the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 450°C for annealing for 2 hours, and then naturally cool to room temperature to obtain a matrix glass;
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass ceramics, the preparation method comprising the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 450° C. for annealing for 4 hours, and then naturally cool to room temperature to obtain a matrix glass;
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass ceramics, the preparation method comprising the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 200° C. for annealing for 24 hours, and then naturally cool to room temperature to obtain a matrix glass;
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass ceramics, the preparation method comprising the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 500°C for annealing for 0.1 h, and then naturally cool to room temperature to obtain a base glass;
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass-ceramics, the raw materials used are the same as those in Example 1, and the preparation method comprises the following steps:
  • step (2) pour the basic molten glass obtained in step (1) into a mold at 450° C. for annealing for 5 hours, and then naturally cool to room temperature to obtain a base glass;
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass ceramics, the raw materials used are the same as those in Example 1, and the preparation method refers to the preparation method in Example 1, the only difference is:
  • the temperature for the first heat treatment of the base glass in step (2) is 450°C.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • This embodiment provides a preparation method of high-strength and high-permeability lithium disilicate glass-ceramics, the raw materials used are the same as those in Example 3, and the preparation method refers to the preparation method in Example 3, the only difference is:
  • the temperature for the first heat treatment of the base glass in step (2) is 630°C.
  • This comparative example provides a kind of preparation method of lithium disilicate glass-ceramic
  • the raw material used is identical with the raw material used in Example 1, and described preparation method refers to the preparation method in Example 1, difference is: in step (2) will The matrix glass is heated to 670°C, held for 180 minutes, and then naturally cooled to room temperature; then CAD/CAM machining is used to process the obtained intermediate product into the shape of the tooth to be repaired, and then the surface is ground and polished; finally, the processed The sample was placed in a high-temperature electric furnace and kept at 840°C for 5 minutes to obtain a lithium disilicate glass-ceramic with Li 2 Si 2 O 5 crystal as the main crystal phase and Li 2 SiO 3 as the impurity phase.
  • T g is the glass transition temperature
  • T N and t N are the first heat treatment temperature and time
  • T P1 and t P1 are the middle heat treatment temperature and time
  • T P2 and t P2 are the last heat treatment temperature and time.
  • 2Light transmittance Use a spectrophotometer to test the test sample in the wavelength range of 400-900nm, and the thickness of the test sample is 1mm.
  • the three-point bending strength and fracture toughness of the present invention are characterized by the ISO6872:2008 international standard.
  • ISO6872:2008 international standard For the test of three-point bending strength, 15 samples are tested, and the average value of the obtained three-point bending strength is calculated; for the test of fracture toughness, the V-groove beam method (SEVNB) is used to test 10 samples. The average value of the fracture toughness of the samples was thus obtained.
  • the hardness test of the present invention adopts the ISO14705:2008 international standard, using a Vickers hardness tester, applying a load of 1 kilogram force (1kgf), and testing 15 times to obtain the average value of the Vickers hardness of the sample.
  • 4Chemical solubility The chemical solubility of the present invention is tested and analyzed with the ISO6872:2008 international standard.
  • Examples 1-6 adopt the preparation method of the present invention, optimize the raw material components, and regulate the conditions of each heat treatment, so that the light transmittance of the obtained lithium disilicate glass ceramics at a wavelength of 550nm reaches 20.11-53.08%.
  • the requirement for high light transmittance of dental restorative materials is maintained between 20% and 55% (550nm wavelength), which shows that it fully meets the clinical requirements for high light transmittance dental restorative materials.
  • the obtained lithium disilicate glass-ceramic has good processability, and can significantly reduce problems such as chipping during mechanical processing and relatively large wear on burs.
  • the lithium disilicate crystal size is greater than 1080nm and the aspect ratio is greater than 4.7, it can well form a microstructure of three-dimensional interweaving and grain interlocking, so that the three-point bending strength of glass ceramics can be maintained at 580-750MPa , effectively reducing the risk of tooth decay.
  • the obtained lithium disilicate glass-ceramic has a fracture toughness of 3.58-5.56MPa ⁇ m 1/2 , a hardness of 5.65-6.32Gpa, and a chemical solubility of 29.3-43.6 ⁇ g/cm 2 , which meet the clinical requirements for dental materials. Require.
  • Example 7 Using the preparation method of the present invention, the light transmittance of the obtained lithium disilicate glass ceramics at a wavelength of 550 nm can still reach 26.5% through only two heat treatments, and it has good processability.
  • the point bending strength reaches 560MPa
  • the fracture toughness reaches 4.02MPa ⁇ m 1/2
  • the hardness reaches 5.85GPa
  • the chemical solubility is 44.0 ⁇ g/cm 2 , meeting the clinical requirements for dental materials.
  • Example 8 the temperature during the first heat treatment was reduced during the preparation process, and the uniform growth of crystals in the heat treatment process could not be effectively controlled, resulting in a decrease in the light transmittance of the finally obtained lithium disilicate glass-ceramic at a wavelength of 550 nm.
  • the point bending strength decreases; embodiment 9 increases the temperature during the first heat treatment in the preparation process, which is unfavorable for the control of the lithium disilicate crystal size, and also causes the lithium disilicate glass-ceramics obtained to be transparent at a wavelength of 550nm.
  • the light rate is reduced and the three-point bending strength is reduced.
  • the long-diameter ratio of the lithium disilicate crystal prepared in Comparative Example 1 is relatively small, resulting in the inability to form a microstructure of three-dimensional interweaving and grain interlocking, so that the light transmittance of the obtained lithium disilicate glass ceramic at a wavelength of 550nm Lower, the three-point bending strength is severely reduced.
  • the lithium disilicate glass-ceramic of the present invention can better form a microstructure of three-dimensional interweaving and grain interlocking by increasing the size of lithium disilicate crystals. , so that the three-point bending strength of lithium disilicate glass ceramics can be maintained between 450 and 750 MPa, and the fracture toughness is higher than 3.5 MPa ⁇ m 1/2 ; on the other hand, the increase of crystal size will weaken the scattering of light by grain boundaries
  • the function makes the optical transmittance of the 1mm thick sample at 550nm adjustable from 10% to 80%, which truly combines the excellent properties of high strength, high permeability and high fracture toughness, effectively reducing the risk of chipping Risk and better simulation of the toughness and light transmittance of natural teeth; the preparation method adjusts the crystal size by optimizing the formula composition and controlling the conditions in the heat treatment process, the process is simple, the economic benefit is high, and it has good industrial application prospect.
  • the present invention illustrates the products and detailed methods of the present invention through the above-mentioned examples, but the present invention is not limited to the above-mentioned products and detailed methods, that is, it does not mean that the present invention must rely on the above-mentioned products and detailed methods to implement.
  • Those skilled in the art should understand that any improvement of the present invention, equivalent replacement of the operation of the present invention, addition of auxiliary operations, selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供了一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用,本发明通过优化原料配比、调控热处理条件制备得到以二硅酸锂为主晶相,以偏硅酸锂、磷酸锂或石英为杂相的二硅酸锂玻璃陶瓷,其中二硅酸锂晶体的尺寸大于700nm,长径比不少于3;所述二硅酸锂玻璃陶瓷的三点弯曲强度为450~750MPa,断裂韧性高于3.5MPa·m 1/2,1mm厚样品在550nm处的光学透过率在10%~80%内可调节;所述二硅酸锂玻璃陶瓷兼具了高强度和高透性的优良性能,有效地降低了修复体崩缺的风险,较好地模拟了自然牙齿的坚韧和透光性,具有较好的应用前景。

Description

一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用
本申请要求于2021年8月6日提交中国专利局、申请号为202110901288.X、发明名称为“一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于微晶玻璃技术领域,具体涉及一种玻璃陶瓷及其制备方法和应用,尤其涉及一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用。
背景技术
二硅酸锂玻璃陶瓷是一种结晶相和玻璃相均匀分布、结构致密的微晶玻璃。由于结晶形成的二硅酸锂晶体的折射率(1.55)与玻璃基质的折射率(1.50)具有良好的光学匹配性,使其具有优异的半透光性,能够最大程度地模拟自然牙齿的色泽和透光特性,因而具有优异的美学效果。此外,由于具有良好的力学性能和玻璃基质极易被HF所酸蚀的固有特性,使其能较好地解决在牙齿修复中的咬合和粘接问题,从而成为前牙美学修复的首选材料。
目前,临床上将二硅酸锂玻璃陶瓷用作牙齿修复的产品主要有Ivoclar-Vivadent公司的IPS系列和Dentsply Sirona的ZLS(zirconia-reinforced lithium silicate)系列。但由于其三点弯曲强度普遍在360~440Mpa之间,从而在实际咬合过程中极易因对颌牙的磨损或接触到坚硬的食物而导致崩裂或折断,给患者造成极大的隐患和额外的经济投入。所以大量的研究都致力于提升其强度和改善其可靠性和服役寿命。
如CN109824351A公开了一种高强度齿科修复用陶瓷复合材料,该复合材料通过在玻璃陶瓷组分中加入ZrSiO 4,使其热处理过程中分解并原位生成ZrO 2微晶体;由于ZrO 2微晶在冷却过程中会发生从四方相到单斜相之间的相转变而出现体积膨胀,从而对周围的二硅酸锂晶体形成挤压作用,利用这种挤压作用所形成的压应力将二硅酸锂玻璃陶瓷的弯曲强度提升到420~479MPa;US09676656B2公开了一种含方石英晶体的高强度 美观二硅酸锂微晶玻璃及其制备方法,通过加入高含量的SiO 2,制备出以二硅酸锂为主晶相、石英为第二相的玻璃陶瓷,然后利用热处理过程中石英的热膨胀系数(10.9×10 -6/℃)大于玻璃基质,易于形成压应力的特点将玻璃陶瓷的弯曲强度提升到380~440MPa;CN104108883A公开了一种高强度二硅酸锂玻璃陶瓷及其制备方法,该方法通过在组分中加入较高含量的MgO和Al 2O 3,然后进行热处理使MgO与Al 2O 3、SiO 2充分反应,形成以二硅酸锂为主晶相、镁铝硅酸盐和β-石英为杂相的玻璃陶瓷,进而通过内在的压应力将玻璃陶瓷强度提升到705MPa;但上述方法虽然从一定程度上提高了弯曲强度,但提升的强度有限,且引入的第二相(杂相)的折射率与玻璃基质不匹配,易造成光透性降低的问题,使其在实际应用中只能用于后牙位置的桥体修复。
CN108069611A公开了一种高透性的硅酸锂微晶玻璃和二硅酸锂微晶玻璃、其制备方法及用途,该方法通过调节组分中SiO 2与Li 2O的质量比,从而控制二硅酸锂晶体尺寸小于200nm,由于晶体尺寸低于可见光380~780nm的范围,使制备得到的玻璃陶瓷显示出较高的光透性,但是细小的晶体尺寸无法形成良好的三维交织和晶粒互锁的微观结构,造成强度仍维持在现有水平,即360~450MPa。
此外,高断裂韧性也是评价玻璃陶瓷可靠性和抵抗崩裂或易折断风险的重要指标之一。Ivoclar-Vivadent公司的IPS系列的断裂韧性为2.0~2.5MPa·m 1/2,根据ISO6872可知,当断裂韧性高于3.0MPa·m 1/2时,可以有效地作为前牙三单位桥体使用;当断裂韧性高于3.5MPa·m 1/2时,能用作后牙三单位桥体,而当前大部分玻璃陶瓷的断裂韧性很难达到这一要求。
因此,研发出同时具有高强度、高透性和高断裂韧性的二硅酸锂玻璃陶瓷,有效降低修复体崩缺的风险和较好地模拟自然牙齿的坚韧和透光性,在牙科修复领域具有十分重要的意义。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用,所述二硅酸锂玻璃陶瓷通过优化组成配比,调控热处理过程中的反应条件,使制备得到的二硅酸锂晶粒 尺寸可控,三点弯曲强度达450~750MPa,1mm厚样品在550nm处的光学透过率在10%~80%内可调节,有效地降低修复体崩缺的风险和较好地模拟了自然牙齿的坚韧和透光性。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种高强度和高透性二硅酸锂玻璃陶瓷,所述二硅酸锂玻璃陶瓷的原料组成包括:SiO 263~75wt%,例如63wt%、65wt%、67wt%、69wt%、71wt%、73wt%或75wt%等;Li 2O 13~18wt%,例如13wt%、14wt%、15wt%、16wt%、17wt%或18wt%等;Al 2O 31~6wt%,例如1wt%、2wt%、3wt%、4wt%、5wt%或6wt%等;K 2O 1~10wt%,例如1wt%、3wt%、5wt%、7wt%或10wt%等;P 2O 52~6wt%,例如2wt%、3wt%、4wt%、5wt%或6wt%等;添加剂0~4wt%,例如0、1wt%、2wt%、3wt%或4wt%等;着色剂0~10wt%,例如0、2wt%、4wt%、6wt%、8wt%或10wt%等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
所述二硅酸锂玻璃陶瓷的主晶相为二硅酸锂晶体,杂相为偏硅酸锂、磷酸锂或石英中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:偏硅酸锂和磷酸锂的组合,磷酸锂和石英的组合等;所述二硅酸锂晶体的尺寸大于700nm,例如710nm、800nm、900nm、1000nm、1100nm、1200nm或1300nm等;长径比不小于3,例如3、4、5或6等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
本发明中,二硅酸锂晶体的尺寸大于700nm,长径比不小于3,其中二硅酸锂晶体的形貌呈梭状。所述“二硅酸锂晶体的尺寸”即指梭状晶体长轴的长度,长径比是指长度与宽度的比值。
本发明中,通过增加二硅酸锂晶体的尺寸,使其接近或大于可见光最大波长(380nm~780nm)范围的方法来提高二硅酸锂玻璃陶瓷的强度、断裂韧性和透光性,这有别于现有技术中所认为的只有当晶体尺寸小于可见光最小波长时,才具有良好的透光性。这是由于晶体的尺寸越大,在一定空间内所具有的晶体数就会减少,玻璃基质与二硅酸锂晶体间的晶界相应也会减少,从而晶界对光的散射作用也越小,使得透光性提高。
以下作为本发明优选的技术方案,但不作为本发明提供的技术方案的限制,通过以下技术方案,可以更好地达到和实现本发明的技术目的和有益效果。
作为本发明优选的技术方案,所述二硅酸锂玻璃陶瓷的原料组成包括:SiO 265~70wt%,例如65wt%、67wt%、69wt%或70wt%等;Li 2O 14~16wt%,例如14wt%、15wt%或16wt%等;Al 2O 32~5wt%,例如2wt%、3wt%、4wt%或5wt%等;K 2O 2~8wt%,例如2wt%、3wt%、5wt%、7wt%或8wt%等;P 2O 53~5wt%,例如3wt%、4wt%或5wt%等;添加剂1~3wt%,例如1wt%、2wt%或3wt%等;着色剂2~5wt%,例如2wt%、3wt%、4wt%或5wt%等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
优选地,所述二硅酸锂玻璃陶瓷的原料组成还包括CaO 0~6wt%,例如1wt%、2wt%、3wt%、4wt%、5wt%或6wt%等;BaO 0~5wt%,例如1wt%、2wt%、3wt%、4wt%或5wt%等;B 2O 30~10wt%,例如0.1wt%、2wt%、4wt%、6wt%、8wt%或10wt%等;ZrO 2或HfO 20~10wt%,例如0.1wt%、2wt%、4wt%、6wt%、8wt%或10wt%等,且所述组合典型但非限制性实例有:CaO和BaO的组合,CaO、BaO和B 2O 3的组合,BaO、B 2O 3或ZrO 2的组合等。
作为本发明优选的技术方案,所述添加剂包括一价金属氧化物和二价金属氧化物。
优选地,所述一价金属氧化物包括Na 2O、Rb 2O和Cs 2O中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:Na 2O和Rb 2O的组合,Rb 2O和Cs 2O的组合,Na 2O、Rb 2O和Cs 2O的组合等。
优选地,所述二价金属氧化物包括MgO、SrO和ZnO中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:MgO和SrO的组合,SrO和ZnO的组合,MgO、SrO和ZnO的组合等。
作为本发明优选的技术方案,所述着色剂包括Fe 2O 3、TiO 2、CeO 2、CuO、Cr 2O 3、MnO、SeO 2、V 2O 5、In 2O 3和稀土氧化物中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:TiO 2、CeO 2和CuO的组合,Fe 2O 3和TiO 2的组合,MnO、SeO 2、V 2O 5和In 2O 3的组合,V 2O 5、 In 2O 3和稀土氧化物的组合等。
优选地,所述稀土氧化物包括La 2O 3、Nd 2O 3、Tb 2O 3、Pr 6O 11和Er 2O 3中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:La 2O 3和Nd 2O 3的组合,Nd 2O 3、Tb 2O 3和Pr 6O 11的组合,Pr 6O 11和Er 2O 3的组合等。
作为本发明优选的技术方案,所述二硅酸锂晶体呈梭状。
优选地,所述二硅酸锂晶体具有三维交织和晶粒互锁的微观结构。
作为本发明优选的技术方案,所述二硅酸锂晶体的尺寸大于700nm且小于1200nm,长径比为3~5时,所述二硅酸锂玻璃陶瓷1mm厚样品在550nm处的透光率为10%~40%,例如10%、15%、20%、25%、30%、35%或40%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述二硅酸锂晶体的尺寸不小于1200nm,长径比不小于5时,所述二硅酸锂玻璃陶瓷1mm厚样品在550nm处的透光率为40%~80%,例如40%、45%、50%、55%、60%、65%或、70%或、75%或80%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第二方面,本发明提供了一种上述二硅酸锂玻璃陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例进行混合,混合后熔融,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液依次进行成型退火处理和热处理,得到二硅酸锂玻璃陶瓷。
本发明中,所述制备方法将各原料充分熔融至气泡完全逸出,以保证后续得到的玻璃块的品质和颜色的均匀性,然后经过成型退火处理以消除基体玻璃的内应力,防止由于温差过大,在内部聚集大量的内应力而造成加工过程中的隐裂或崩缺,接着再通过热处理调控晶粒的成核-生长过程,得到尺寸大于700nm,长径比不少于3的二硅酸锂晶体,较高的长径比使其能形成三维交织和晶粒互锁的微观结构,进而提高玻璃陶瓷的三点弯曲强度以及断裂韧性。
作为本发明优选的技术方案,步骤(1)所述混合采用混料机进行。
优选地,步骤(1)所述混合的时间为30~300min,例如30min、60min、90min、120min、150min、180min、210min、240min、270min或300min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述熔融的温度为1300~1600℃,例如1300℃、1350℃、1400℃、1450℃、1500℃、1550℃或1600℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述熔融的时间为1~10h,例如1h、2h、3h、4h、5h、6h、7h、8h、9h或10h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(2)所述成型退火处理的步骤包括:将所述基础玻璃液倒入模具中进行退火,得到基体玻璃。
优选地,所述模具的预热温度为200~500℃,例如200℃、300℃、400℃或500℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述退火时间为0.1~24h,例如0.1h、1h、5h、10h、15h、20h或24h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述成型退火处理后冷却至室温。
优选地,所述热处理至少包括第一次热处理和最后一次热处理。
优选地,所述热处理还包括中间次热处理。
本发明中,若热处理次数为3次,则按照“第一次”、“中间次”以及“最后一次”的顺序进行。
优选地,所述第一次热处理的温度为500~600℃,例如500℃、520℃、540℃、560℃、580℃或600℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述第一次热处理的时间为60~240min,例如60min、90min、120min、150min、180min、210min或240min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述中间次热处理的温度为600~700℃,例如600℃、620℃、640℃、660℃、680℃或700℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述中间次热处理的时间为30~240min,例如30min、60min、90min、120min、150min、180min、210min或240min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述最后一次热处理的温度为800~860℃,例如800℃、810℃、820℃、830℃、840℃、850℃或860℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述最后一次热处理的时间为1~30min,例如1min、5min、10min、15min、20min、25min或30min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本发明中,对基体玻璃进行第一次热处理可使其玻璃基质中形成大量的晶核;中间次热处理后可使其形成以偏硅酸锂为主晶相的玻璃陶瓷;最后一次热处理使其形成以二硅酸锂为主晶相的玻璃陶瓷,因此每次进行热处理时的温度和时间十分重要。若第一次热处理的温度过低,会导致玻璃基质很难形核或形核量较少,无法有效控制中间次热处理过程中偏硅酸锂晶体的均匀生长;若第一次热处理的温度过高,则会使大量晶核长大,形成偏硅酸锂晶体,不利于二硅酸锂晶体尺寸的控制;若中间次热处理的温度过低会很难保证大量的晶核长大形成易于加工的偏硅酸锂晶体,从而导致加工性能变差;若中间次热处理的温度过高,则容易使偏硅酸锂晶体转化成难以加工的二硅酸锂晶体,导致加工性能降低;若最后一次热处理的温度过低很难形成较高长径比的二硅酸锂晶体,造成强度值偏低;若最后一次热处理的温度过高,则会造成二硅酸锂晶体异常生长,导致强度和透光性下降。
优选地,将所述基体玻璃或进行所述最后一次热处理之前的中间产品进行CAD/CAM机械加工,制成待修复牙齿的形状。
优选地,将所述基体玻璃或进行所述最后一次热处理之前的中间产品采用热压成型法或失蜡法制成待修复牙齿的形状。
作为本发明优选的技术方案,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料30~300min,混料后在1300~1600℃的条件下熔融1~10h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入200~500℃的模具中退火0.1~24h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至500~600℃,保温60~240min;然后升温至600~700℃,保温30~240min;接着采用CAD/CAM机械加工、热压成型或失蜡法,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在800~860℃的条件下保温1~30min,得到以二硅酸锂晶体为主晶相的二硅酸锂玻璃陶瓷。
第三方面,本发明提供了上述二硅酸锂玻璃陶瓷的用途,所述二硅酸锂玻璃陶瓷用于制作口腔修复体。
优选地,所述口腔修复体包括牙齿贴面、嵌体、高嵌体、基牙、单冠、前牙多单位桥和后牙多单位桥中的任意一种。
与现有技术相比,本发明具有以下有益效果:
(1)本发明所述二硅酸锂玻璃陶瓷通过增加二硅酸锂晶体的尺寸,一方面使其能较好地形成三维交织和晶粒互锁的微观结构,从而让二硅酸锂玻璃陶瓷的三点弯曲强度维持在450~750MPa之间,且断裂韧性高于3.5MPa·m 1/2;另一方面晶体的尺寸增加会减弱晶界对光的散射作用,使得1mm厚样品在550nm处的光学透过率在10%~80%内可调节,真正地兼具了高强度、高透性和高断裂韧性的优良性能,有效地降低了崩缺的风险和较好地模拟了自然牙齿的坚韧和透光性;
(2)本发明所述制备方法通过优化配方组成、控制热处理过程中的条件来调控晶体尺寸,工艺流程简单,经济效益高,具有较好的工业化应用前景。
说明书附图
图1为本发明实施例1提供的二硅酸锂玻璃陶瓷的差示扫描量热法(DSC)图;
图2为本发明实施例1提供的二硅酸锂玻璃陶瓷的微观形貌图;
图3为本发明实施例1提供的二硅酸锂玻璃陶瓷中二硅酸锂晶体的长 度尺寸分布图;
图4为本发明实施例1提供的二硅酸锂玻璃陶瓷中二硅酸锂晶体的宽度尺寸分布图;
图5为本发明实施例1提供的二硅酸锂玻璃陶瓷的X射线衍射图谱(XRD);
图6为本发明实施例1提供的二硅酸锂玻璃陶瓷在400~900nm范围可见光的透光率曲线图。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,下面对本发明进一步详细说明。但下述的实施例仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明保护范围以权利要求书为准。
以下为本发明典型但非限制性实施例:
以下实施例和对比例制备得到的二硅酸锂玻璃陶瓷的原料组成如表1所示,其中各组分的含量均为质量百分比。
表1实施例1~6的原料配比
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
SiO 2 67.5 69 70 64.5 72 70
Li 2O 14.7 16.7 13.4 15.5 13 14
K 2O 4.2 3.2 6.1 5.7 3 3.4
Al 2O 3 3.7 3.3 4.8 5.0 4 3.5
P 2O 5 3.3 4.2 2.9 4.4 5 4.8
Rb 2O 0.3 0.6 0.5 1.2 0.8 1.0
MgO 1.0 0.4 0.6 0.5
CaO 0.4 0.3 0.2
Fe 2O 3 1.75 1.2 0.4 0.8 1.6 1.2
Tb 2O 3 2.7 0.3 0.8 1.0 0.4 1.9
La 2O 3 0.45 0.3 0.2 0.4 0.2
ZnO 2 0.8 1.0
实施例1:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法, 所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料40min,混料后置于铂金坩埚中,在1450℃的条件下熔融5h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入420℃的模具中退火10h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至520℃,保温130min后,自然冷却至室温;然后升温至660℃,保温150min后,自然冷却至室温;接着采用CAD/CAM机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在840℃的条件下保温2min,得到以Li 2Si 2O 5晶体为主晶相,以Li 2SiO 3和Li 3PO 4为杂相的二硅酸锂玻璃陶瓷。
对上述得到的二硅酸锂玻璃陶瓷进行表征,其DSC图如图1所示,微观形貌图如图2所示,二硅酸锂晶体的长度尺寸分布图如图3所示,二硅酸锂晶体的宽度尺寸分布图如图4所示,二硅酸锂玻璃陶瓷的XRD图如图5所示,二硅酸锂玻璃陶瓷在400nm~900nm范围可见光的透光率曲线图如图6所示。
由图1可知,样品的玻璃化转变温度T g为485℃,这意味着只有当热处理温度高于485℃时,才能有效地促进玻璃基质形成大量的晶核。628℃为偏硅酸锂晶体形成时的放热峰,802℃为二硅酸锂晶体形成时的放热峰,而959℃则为玻璃陶瓷的软化点,这说明样品在高于这个温度时,极易发生软化变形。
由图2可知,所述样品的微观形貌呈梭状,且以三维交织和晶粒互锁的机制分布,进一步由表3可以得出梭状的二硅酸锂晶体尺寸为1080nm,长径比为4.7,由于高的长径比更易于晶粒间相互交织,从而有效地将玻璃陶瓷的三点弯曲提升至580MPa。另外,二硅酸锂玻璃陶瓷的断裂方式为沿晶断裂,高的长径比能有效地延长裂纹扩展的路径,从而耗散了裂纹扩展的驱动力,有效地将二硅酸锂玻璃陶瓷的断裂韧性提升至3.62MPa·m 1/2,满足国标ISO6872对后牙三单位桥体的使用要求。
由图3和图4可知,二硅酸锂晶体的平均长度为1.08μm,平均宽度 为0.23μm。
由图5可知,样品的主晶相为二硅酸锂(Li 2Si 2O 5),杂相为偏硅酸锂(Li 2SiO 3)和磷酸锂(Li 3PO 4)。
由图6可知,所述1mm厚的二硅酸锂玻璃陶瓷样品在550nm处的光学透光率为20.11%,这很好地符合了临床上通常对牙科修复材料高透光率的要求(1mm厚样品在550nm波长处光学透光率为20~55%)。
实施例2:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料30min,混料后置于铂金坩埚中,在1450℃的条件下熔融3h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入400℃的模具中退火3h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至550℃,保温100min后,自然冷却至室温;然后升温至660℃,保温180min后,自然冷却至室温;接着采用CAD/CAM机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在840℃的条件下保温6min,得到以Li 2Si 2O 5晶体为主晶相,以Li 2SiO 3为杂相的二硅酸锂玻璃陶瓷。
实施例3:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料60min,混料后置于铂金坩埚中,在1450℃的条件下熔融5h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入450℃的模具中退火2h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至570℃,保温140min后,自然冷却至室温;然后升温至670℃,保温210min后,自然冷却至室温;接着采用CAD/CAM 机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在830℃的条件下保温10min,得到以Li 2Si 2O 5晶体为主晶相,以Li 2SiO 3为杂相的二硅酸锂玻璃陶瓷。
实施例4:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料100min,混料后置于铂金坩埚中,在1600℃的条件下熔融3h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入450℃的模具中退火4h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至530℃,保温120min后,自然冷却至室温;然后升温至630℃,保温130min后,自然冷却至室温;接着采用CAD/CAM机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在860℃的条件下保温3min,得到以Li 2Si 2O 5晶体为主晶相,以Li 2SiO 3和Li 3PO 4为杂相的二硅酸锂玻璃陶瓷。
实施例5:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料300min,混料后置于铂金坩埚中,在1300℃的条件下熔融10h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入200℃的模具中退火24h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至600℃,保温60min后,自然冷却至室温;然后升温至700℃,保温30min后,自然冷却至室温;接着采用CAD/CAM机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在850℃的条件下保温 1min,得到以Li 2Si 2O 5晶体为主晶相,以Li 2SiO 3为杂相的二硅酸锂玻璃陶瓷。
实施例6:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料200min,混料后置于铂金坩埚中,在1500℃的条件下熔融1h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入500℃的模具中退火0.1h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至500℃,保温240min后,自然冷却至室温;然后升温至600℃,保温240min后,自然冷却至室温;接着采用CAD/CAM机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在800℃的条件下保温30min,得到以Li 2Si 2O 5晶体为主晶相,以Li 2SiO 3和Li 3PO 4为杂相的二硅酸锂玻璃陶瓷。
实施例7:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所用原料与实施例1中的相同,所述制备方法包括以下步骤:
(1)将二硅酸锂玻璃陶瓷的原料按照比例装入混料机中,混料100min,混料后置于铂金坩埚中,在1400℃的条件下熔融4h,待组分分布均匀及气泡完全逸出后,得到基础玻璃液;
(2)将步骤(1)得到的基础玻璃液倒入450℃的模具中退火5h,然后自然冷却至室温,得到基体玻璃;
将基体玻璃加热至550℃,保温240min后,自然冷却至室温;接着采用CAD/CAM机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在810℃的条件下保温30min,得到以Li 2Si 2O 5晶体为主晶相,以偏硅酸锂和石英为杂相的二硅酸锂玻璃陶瓷。
实施例8:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所用原料与实施例1中的相同,所述制备方法参照实施例1中的制备方法,区别仅在于:步骤(2)中所述基体玻璃进行第一次热处理的温度为450℃。
实施例9:
本实施例提供了一种高强度和高透性二硅酸锂玻璃陶瓷的制备方法,所用原料与实施例3中的相同,所述制备方法参照实施例3中的制备方法,区别仅在于:步骤(2)中所述基体玻璃进行第一次热处理的温度为630℃。
对比例1:
本对比例提供了一种二硅酸锂玻璃陶瓷的制备方法,所用原料与实施例1使用的原料相同,所述制备方法参照实施例1中的制备方法,区别在于:步骤(2)中将基体玻璃加热至670℃,保温180min后,自然冷却至室温;然后采用CAD/CAM机械加工,将得到的中间产品加工成待修复牙齿的形状,再进行表面的打磨、抛光;最后,将加工好的样品放入高温电炉中,在840℃的条件下保温5min,得到以Li 2Si 2O 5晶体为主晶相,以Li 2SiO 3为杂相的二硅酸锂玻璃陶瓷。
首先,对实施例1-9和对比例1在制备过程中得到的基体玻璃以及热处理过程中的中间产品进行了相应的物相分析,结果如表2所示。
表2实施例1-9和对比例1的产品的物相分析
Figure PCTCN2022104493-appb-000001
Figure PCTCN2022104493-appb-000002
其中,T g为玻璃转变温度;T N和t N分别为第一次热处理温度和时间;T P1和t P1分别为中间次热处理温度和时间;T P2和t P2分别为最后一次热处理温度和时间。
其次,测定实施例1-9和对比例1制备得到的二硅酸锂玻璃陶瓷的晶体尺寸、长径比、550nm处的透光率、三点弯曲强度、硬度、断裂韧性以及化学溶解性,各测试方法条件如下,测定结果如表3所示。
①晶体尺寸利用Nano Measurer 1.2软件进行测量和统计。
②透光率:采用分光光度计对测试样品在400~900nm波长范围内进行测试,测试样品的厚度在1mm。
③力学性能:本发明的三点弯曲强度和断裂韧性表征均采用ISO6872:2008国际标准。对于三点弯曲强度的测试,测试15个试样,将获得的三点弯曲强度值进行平均值的计算;对于断裂韧性的测试,是采用V槽横梁法(SEVNB),测试10个试样,从而获得样品的断裂韧性平均值。
本发明的硬度测试采用ISO14705:2008国际标准,利用维氏硬度计, 施加载荷为1千克力(1kgf),测试15次,获得样品的维氏硬度平均值。
④化学溶解性:本发明的化学溶解性以ISO6872:2008国际标准进行测试分析。
表3实施例1-9和对比例1制备得到的二硅酸锂玻璃陶瓷的性能数据
Figure PCTCN2022104493-appb-000003
Figure PCTCN2022104493-appb-000004
实施例1-6采用本发明所述制备方法,通过优化原料组分,调控各次热处理的条件,使得到的二硅酸锂玻璃陶瓷在550nm波长处的透光率达20.11~53.08%,临床上通常对牙科修复材料高透光率的要求维持在20~55%(550nm波长)之间,这说明已完全符合临床上对高透光率牙科修复材料的要求。且得到的二硅酸锂玻璃陶瓷具有良好的加工性,能显著降低其在机械加工过程中的崩缺以及对车针造成较大磨损等问题。此外,由于二硅酸锂晶体尺寸大于1080nm且长径比大于4.7,使其能很好地形成三维交织和晶粒互锁的微观结构,从而让玻璃陶瓷的三点弯曲强度维持在580~750MPa,有效降低了牙齿崩缺的风险。另外,得到的二硅酸锂玻璃陶瓷的断裂韧性为3.58~5.56MPa·m 1/2,硬度为5.65~6.32Gpa,化学溶解性为29.3~43.6μg/cm 2,符合临床上对牙科材料的要求。
实施例7采用本发明所述的制备方法,仅通过两次热处理依然可使得到的二硅酸锂玻璃陶瓷在550nm波长处的透光率达26.5%,且具有良好 的加工性,同时使三点弯曲强度达560MPa,断裂韧性达4.02MPa·m 1/2,硬度达5.85GPa,化学溶解性为44.0μg/cm 2,符合临床上对牙科材料的要求。
而实施例8在制备过程中降低了第一次热处理时的温度,无法有效控制热处理过程中晶体的均匀生长,导致最终得到的二硅酸锂玻璃陶瓷在550nm波长处的透光率降低,三点弯曲强度降低;实施例9在制备过程中升高了第一次热处理时的温度,不利于二硅酸锂晶体尺寸的控制,同样导致得到的二硅酸锂玻璃陶瓷在550nm波长处的透光率降低,三点弯曲强度降低。
而对比例1制备得到的二硅酸锂晶体的长径比较小,导致无法形成三维交织和晶粒互锁的微观结构,从而使得到的二硅酸锂玻璃陶瓷在550nm波长处的透光率较低,三点弯曲强度严重下降。
综合上述实施例和对比例可以看出,本发明所述二硅酸锂玻璃陶瓷通过增加二硅酸锂晶体的尺寸,一方面使其能较好地形成三维交织和晶粒互锁的微观结构,从而让二硅酸锂玻璃陶瓷的三点弯曲强度维持在450~750MPa之间,且断裂韧性高于3.5MPa·m 1/2;另一方面晶体的尺寸增加会减弱晶界对光的散射作用,使得1mm厚样品在550nm处的光学透过率在10%~80%内可调节,真正地兼具了高强度、高透性和高断裂韧性的优良性能,有效地降低了崩缺的风险和较好地模拟了自然牙齿的坚韧和透光性;所述制备方法通过优化配方组成、控制热处理过程中的条件来调控晶体尺寸,工艺流程简单,经济效益高,具有较好的工业化应用前景。
申请人声明,本发明通过上述实施例来说明本发明的产品和详细方法,但本发明并不局限于上述产品和详细方法,即不意味着本发明必须依赖上述产品和详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明操作的等效替换及辅助操作的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (18)

  1. 一种高强度和高透性二硅酸锂玻璃陶瓷,其特征在于,所述二硅酸锂玻璃陶瓷的原料组成包括:SiO 263~75wt%、Li 2O 13~18wt%、Al 2O 31~6wt%、K 2O 1~10wt%、P 2O 52~6wt%、添加剂0~4wt%和着色剂0~10wt%;
    所述二硅酸锂玻璃陶瓷的主晶相为二硅酸锂晶体,杂相为偏硅酸锂、磷酸锂和石英中的任意一种或至少两种的组合;所述二硅酸锂晶体的尺寸大于700nm,长径比不小于3。
  2. 根据权利要求1所述的二硅酸锂玻璃陶瓷,其特征在于,所述二硅酸锂玻璃陶瓷的原料组成包括:SiO 265~70wt%、Li 2O 14~16wt%、Al 2O 32~5wt%、K 2O 2~8wt%、P 2O 53~5wt%、添加剂1~3wt%和着色剂2~5wt%。
  3. 根据权利要求1或2所述的二硅酸锂玻璃陶瓷,其特征在于,所述二硅酸锂玻璃陶瓷的原料组成还包括CaO 0~6wt%、BaO 0~5wt%、B 2O 30~10wt%、ZrO 2和HfO 20~10wt%中的任意一种或至少两种的组合,但均不包含0。
  4. 根据权利要求1或2所述的二硅酸锂玻璃陶瓷,其特征在于,所述添加剂包括一价金属氧化物和二价金属氧化物;
    所述一价金属氧化物包括Na 2O、Rb 2O和Cs 2O中的任意一种或至少两种的组合;
    所述二价金属氧化物包括MgO、SrO和ZnO中的任意一种或至少两种的组合。
  5. 根据权利要求1或2所述的二硅酸锂玻璃陶瓷,其特征在于,所述着色剂包括Fe 2O 3、TiO 2、CeO 2、CuO、Cr 2O 3、MnO、SeO 2、V 2O 5、In 2O 3和稀土氧化物中的任意一种或至少两种的组合。
    所述稀土氧化物包括La 2O 3、Nd 2O 3、Tb 2O 3、Pr 6O 11和Er 2O 3中的任意一种或至少两种的组合。
  6. 根据权利要求1或2所述的二硅酸锂玻璃陶瓷,其特征在于,所述二硅酸锂晶体呈梭状;
    所述二硅酸锂晶体具有三维交织和晶粒互锁的微观结构。
  7. 根据权利要求1或2所述的二硅酸锂玻璃陶瓷,其特征在于,所述二硅酸锂晶体的尺寸大于700nm且小于1200nm,长径比为3~5时,所述二硅酸锂玻璃陶瓷1mm厚样品在550nm处的透光率为10%~40%。
  8. 根据权利要求1或2所述的二硅酸锂玻璃陶瓷,其特征在于,所述二硅酸锂晶体的尺寸不小于1200nm,长径比不小于5时,所述二硅酸锂玻璃陶瓷1mm厚样品在550nm处的透光率为40%~80%。
  9. 一种如权利要求1-8任一项所述二硅酸锂玻璃陶瓷的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)将二硅酸锂玻璃陶瓷的原料按照比例进行混合,混合后熔融,得到基础玻璃液;
    (2)将步骤(1)得到的基础玻璃液依次进行成型退火处理和热处理,得到二硅酸锂玻璃陶瓷。
  10. 根据权利要求9所述的制备方法,其特征在于,步骤(1)所述混合采用混料机进行;
    步骤(1)所述混合的时间为30~300min。
  11. 根据权利要求9所述的制备方法,其特征在于,步骤(1)所述熔融的温度为1300~1600℃;步骤(1)所述熔融的时间为1~10h。
  12. 根据权利要求9所述的制备方法,其特征在于,步骤(2)所述成型退火处理包括:将所述基础玻璃液倒入模具中进行退火,得到基体玻璃;
    所述模具的预热温度为200~500℃;
    所述退火的时间为0.1~24h;
    所述成型退火处理后冷却至室温。
  13. 根据权利要求9所述的制备方法,其特征在于,所述热处理至少包括第一次热处理和最后一次热处理;所述第一次热处理的温度为500~600℃;所述第一次热处理的时间为60~240min;所述最后一次热处理的温度为800~860℃;所述最后一次热处理的时间为1~30min。
  14. 根据权利要求13所述的制备方法,其特征在于,所述热处理还包括中间次热处理;所述中间次热处理的温度为600~700℃;所述中间次热处理的时间为30~240min。
  15. 根据权利要求13所述的制备方法,其特征在于,将所述基体玻璃或进行所述最后一次热处理之前的中间产品进行CAD/CAM机械加工,制成待修复牙齿的形状。
  16. 根据权利要求13所述的制备方法,其特征在于,将所述基体玻璃或进行所述最后一次热处理之前的中间产品采用热压成型法或失蜡法制成待修复牙齿的形状。
  17. 根据权利要求1~8任一项所述二硅酸锂玻璃陶瓷或权利要求9~16任一项所述制备方法制备得到的二硅酸锂玻璃陶瓷的用途,其特征在于,所述二硅酸锂玻璃陶瓷用于制作口腔修复体。
  18. 根据权利要求17所述的用途,其特征在于,所述口腔修复体包括牙齿贴面、嵌体、高嵌体、基牙、单冠、前牙多单位桥和后牙多单位桥中的任意一种。
PCT/CN2022/104493 2021-08-06 2022-07-08 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用 WO2023011105A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22746940.0A EP4151608A4 (en) 2021-08-06 2022-07-08 HIGH STRENGTH AND HIGH TRANSMISSION FACTOR LITHIUM DISILICATE GLASS CERAMIC, PREPARATION METHOD THEREFOR AND APPLICATION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110901288.X 2021-08-06
CN202110901288.XA CN113501668B (zh) 2021-08-06 2021-08-06 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023011105A1 true WO2023011105A1 (zh) 2023-02-09

Family

ID=78015745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104493 WO2023011105A1 (zh) 2021-08-06 2022-07-08 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用

Country Status (4)

Country Link
EP (1) EP4151608A4 (zh)
CN (1) CN113501668B (zh)
WO (1) WO2023011105A1 (zh)
ZA (1) ZA202208624B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116409935A (zh) * 2023-04-19 2023-07-11 福州瑞克布朗医药科技有限公司 二硅酸锂玻璃陶瓷及其制备方法和牙科修复体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501668B (zh) * 2021-08-06 2022-11-15 爱迪特(秦皇岛)科技股份有限公司 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用
CN114477772B (zh) * 2022-01-30 2023-07-25 山东国瓷功能材料股份有限公司 高强度、高透性玻璃陶瓷结构体及其制备方法和所得产品
CN114524616B (zh) * 2022-03-01 2024-02-06 山东国瓷功能材料股份有限公司 具有不同透光度的二硅酸锂玻璃陶瓷坯体及其制备方法
CN114671615B (zh) * 2022-03-17 2024-01-16 山东国瓷功能材料股份有限公司 硅酸锂玻璃陶瓷、其制备方法及所得修复体
CN115028364B (zh) * 2022-06-07 2024-01-16 山东国瓷功能材料股份有限公司 玻璃陶瓷、其制备方法及牙齿修复材料
CN114907015B (zh) * 2022-06-07 2023-07-14 山东国瓷功能材料股份有限公司 玻璃陶瓷、其制备方法及修复材料
CN115531605B (zh) * 2022-10-28 2023-09-12 深圳玉汝成口腔材料有限公司 一种牙科玻璃陶瓷修复体及其制备方法
CN115724688B (zh) * 2022-11-29 2024-03-26 爱迪特(秦皇岛)科技股份有限公司 一种氧化锆陶瓷贴面用表面处理剂及其应用
CN116354605A (zh) * 2023-03-01 2023-06-30 深圳玉汝成口腔材料有限公司 牙科玻璃陶瓷及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741186A (zh) 2009-12-23 2012-10-17 弗劳恩霍弗实用研究促进协会 二硅酸锂玻璃陶瓷、其生产方法及其用途
CN104108883A (zh) 2014-08-11 2014-10-22 中国地质大学(北京) 一种高强度二硅酸锂玻璃陶瓷及其制备方法
US9676656B2 (en) 2014-08-29 2017-06-13 Hass Co., Ltd. High strength and aesthetic lithium disilicate crystalline glass-ceramics containing cristobalite crystal and preparation method thereof
CN107555798A (zh) * 2017-09-19 2018-01-09 大连工业大学 齿科铸造用二硅酸锂微晶玻璃及其制备方法
CN107698167A (zh) * 2017-09-19 2018-02-16 大连工业大学 齿科用cad/cam可雕刻的二硅酸锂微晶玻璃及其制备方法
CN108069611A (zh) 2016-11-16 2018-05-25 中国科学院过程工程研究所 高透性的硅酸锂微晶玻璃和二硅酸锂微晶玻璃、其制备方法和用途
CN108328932A (zh) * 2018-04-18 2018-07-27 福州大学 一种Ce、Er、Tb、Y共掺的齿科微晶玻璃及其制备和应用
CN108423996A (zh) * 2018-04-18 2018-08-21 福州大学 一种Ce、V、Tb共掺的齿科微晶玻璃及其制备方法
CN108467205A (zh) * 2018-04-18 2018-08-31 福州大学 一种Ce、V、Er共掺的齿科微晶玻璃及其制备和应用
CN109824351A (zh) 2019-03-29 2019-05-31 景德镇陶瓷大学 一种高强度齿科修复用陶瓷复合材料及其制备方法
CN113501668A (zh) * 2021-08-06 2021-10-15 爱迪特(秦皇岛)科技股份有限公司 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377830B1 (de) * 2010-04-16 2016-04-13 Ivoclar Vivadent AG Lithiumsilikat-Glaskeramik und -Glas mit Übergangsmetalloxid
CN104609730A (zh) * 2014-12-31 2015-05-13 东莞市爱嘉义齿有限公司 牙齿修复材料及其制备方法和应用
EP3135641A1 (de) * 2015-08-25 2017-03-01 Ivoclar Vivadent AG Lithiumsilikat-tiefquarz-glaskeramik
CN106365456B (zh) * 2016-08-31 2019-06-25 东北大学秦皇岛分校 二硅酸锂微晶玻璃、其制备方法及用于牙科材料的应用
US10556819B2 (en) * 2017-03-08 2020-02-11 Hass Co., Ltd Method for preparing glass-ceramics, capable of adjusting machinability or translucency through change in temperature of heat treatment
CN109534680A (zh) * 2018-12-28 2019-03-29 西安交通大学 一种晶种增韧二硅酸锂微晶玻璃复合材料及其制备方法
CN112010562B (zh) * 2020-08-31 2022-10-04 陕西科技大学 一种二硅酸锂微晶玻璃及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741186A (zh) 2009-12-23 2012-10-17 弗劳恩霍弗实用研究促进协会 二硅酸锂玻璃陶瓷、其生产方法及其用途
CN104108883A (zh) 2014-08-11 2014-10-22 中国地质大学(北京) 一种高强度二硅酸锂玻璃陶瓷及其制备方法
US9676656B2 (en) 2014-08-29 2017-06-13 Hass Co., Ltd. High strength and aesthetic lithium disilicate crystalline glass-ceramics containing cristobalite crystal and preparation method thereof
CN108069611A (zh) 2016-11-16 2018-05-25 中国科学院过程工程研究所 高透性的硅酸锂微晶玻璃和二硅酸锂微晶玻璃、其制备方法和用途
CN107555798A (zh) * 2017-09-19 2018-01-09 大连工业大学 齿科铸造用二硅酸锂微晶玻璃及其制备方法
CN107698167A (zh) * 2017-09-19 2018-02-16 大连工业大学 齿科用cad/cam可雕刻的二硅酸锂微晶玻璃及其制备方法
CN108328932A (zh) * 2018-04-18 2018-07-27 福州大学 一种Ce、Er、Tb、Y共掺的齿科微晶玻璃及其制备和应用
CN108423996A (zh) * 2018-04-18 2018-08-21 福州大学 一种Ce、V、Tb共掺的齿科微晶玻璃及其制备方法
CN108467205A (zh) * 2018-04-18 2018-08-31 福州大学 一种Ce、V、Er共掺的齿科微晶玻璃及其制备和应用
CN109824351A (zh) 2019-03-29 2019-05-31 景德镇陶瓷大学 一种高强度齿科修复用陶瓷复合材料及其制备方法
CN113501668A (zh) * 2021-08-06 2021-10-15 爱迪特(秦皇岛)科技股份有限公司 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151608A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116409935A (zh) * 2023-04-19 2023-07-11 福州瑞克布朗医药科技有限公司 二硅酸锂玻璃陶瓷及其制备方法和牙科修复体

Also Published As

Publication number Publication date
EP4151608A4 (en) 2023-12-06
ZA202208624B (en) 2022-12-21
CN113501668A (zh) 2021-10-15
CN113501668B (zh) 2022-11-15
EP4151608A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2023011105A1 (zh) 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用
JP6986285B2 (ja) 歯科切削加工用バルクブロック及びその製造方法
EP1505041B1 (en) Lithium silicate materials
JP6133924B2 (ja) ケイ酸リチウムガラスセラミック
CN104108883B (zh) 一种高强度二硅酸锂玻璃陶瓷及其制备方法
JP2017214286A (ja) 二価の金属酸化物を含むケイ酸リチウムガラスセラミックおよびケイ酸リチウムガラス
JPS6320779B2 (zh)
CN107555798B (zh) 齿科铸造用二硅酸锂微晶玻璃及其制备方法
EP4194415A1 (en) High-transparency fluorescent glass-ceramic, and preparation method therefor and application thereof
US20120241991A1 (en) Process for the Preparation of Dental Restorations
CN108328932A (zh) 一种Ce、Er、Tb、Y共掺的齿科微晶玻璃及其制备和应用
JP2000500730A (ja) 高硬質の透明な雲母−ガラスセラミック
CN113060937B (zh) 一种偏硅酸锂微晶玻璃及其制备方法和应用
EP4375253A1 (en) Glass ceramic composition, preparation method and application thereof
CN107586041B (zh) 一种齿科用微晶玻璃及其制备方法
CN109824351A (zh) 一种高强度齿科修复用陶瓷复合材料及其制备方法
CN106927681B (zh) 一种锂钠钾共掺的齿科微晶玻璃及其制备和应用
US20240199472A1 (en) Lithium disilicate glass-ceramic with high strength and high transparency and preparation method and use thereof
US11583374B2 (en) Process for the preparation of a glass-ceramic blank for dental purposes
CN114031311B (zh) 一种用于增强齿科用二硅酸锂微晶玻璃力学性能的离子交换用熔盐及离子交换增强方法
CN114920459B (zh) 一种二硅酸锂玻璃陶瓷材料的制备方法
TWI838766B (zh) 牙科用塊體及其製造方法
US20240199471A1 (en) Fluorescent glass ceramic with high transparency and preparation method and use thereof
CN108423996A (zh) 一种Ce、V、Tb共掺的齿科微晶玻璃及其制备方法
CN114538780B (zh) 一种前牙饰面瓷材料及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022746940

Country of ref document: EP

Effective date: 20220808

WWE Wipo information: entry into national phase

Ref document number: 17802757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE