WO2022268055A1 - 一种NiO@CoMoO4/NF电容电极的制备方法 - Google Patents

一种NiO@CoMoO4/NF电容电极的制备方法 Download PDF

Info

Publication number
WO2022268055A1
WO2022268055A1 PCT/CN2022/100024 CN2022100024W WO2022268055A1 WO 2022268055 A1 WO2022268055 A1 WO 2022268055A1 CN 2022100024 W CN2022100024 W CN 2022100024W WO 2022268055 A1 WO2022268055 A1 WO 2022268055A1
Authority
WO
WIPO (PCT)
Prior art keywords
nio
comoo
hours
electrode
deionized water
Prior art date
Application number
PCT/CN2022/100024
Other languages
English (en)
French (fr)
Inventor
杨文耀
田亮亮
Original Assignee
重庆文理学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆文理学院 filed Critical 重庆文理学院
Publication of WO2022268055A1 publication Critical patent/WO2022268055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the technical field of energy storage, and in particular relates to a method for preparing a NiO@CoMoO 4 /NF capacitor electrode.
  • the supercapacitor electrode sheet directly affects all aspects of the performance of the supercapacitor.
  • a variety of transition metal oxides have been deeply studied as electrode materials for supercapacitors.
  • transition metal oxide materials with nanostructures have become a research hotspot in the field of supercapacitors.
  • Nanostructures can not only serve as a catalyst for electrochemical reactions It provides more active sites and shortens the ion transmission path, but the nanostructured transition metal oxide material is not ideal as a supercapacitor electrode material.
  • the specific capacitance value is far from the theoretical value and the experimental value.
  • the charging and discharging process of the nanostructured transition metal oxide electrode will destroy its own structure due to the change of the electrode volume, which will eventually lead to the decline of the energy storage performance of the supercapacitor after multiple charging and discharging, and the cycle stability is not ideal.
  • the metal oxide electrode is in the electrolyte for a long time, and the electrolyte is corrosive to a certain extent, which will also cause the structure of the electrode to be damaged, which will eventually lead to a decrease in charge and discharge performance and a greatly shortened service life.
  • the purpose of the present invention is to provide a method for preparing a NiO@CoMoO 4 /NF capacitor electrode.
  • a method for preparing a NiO@CoMoO 4 /NF capacitor electrode is characterized in that it uses NF, COCl 2 .6H 2 O , Na 2 M O O 4 .2H 2 O, glucose, and tough materials as raw materials, Respectively through the preparation of NiO@CoMoO 4 /NF, NiO@CoMoO 4 /NF carbon quantum dot loading, NiO@CoMoO 4 /NF tough material coating with carbon quantum dots, etc.; wherein, the tough material is made of carbon Powder, sodium carboxymethyl cellulose, styrene-butadiene rubber, aluminum powder, deionized water; the NF is nickel foam.
  • the particle size of the aluminum powder is 30-80 ⁇ m
  • the particle size of the carbon powder is 30-80 ⁇ m
  • the mass ratio of the carbon powder, sodium carboxymethyl cellulose, styrene-butadiene rubber, aluminum powder, and deionized water is 1 ⁇ 3: 2 ⁇ 6: 30 ⁇ 35: 2 ⁇ 4: 20 ⁇ 40.
  • the traditional "core-shell material "egg” is used as a model. Such a structure has a big defect, that is, the shell material completely covers the core material so that the core material cannot be used effectively.
  • the NiO sheet@ CoMoO 4 is made into a 2D dendritic core-shell structure, which can make up for the above defects and improve the electrochemical performance of the electrode.
  • the preparation of the NiO@CoMoO 4 /NF electrode is as follows:
  • the CoMoO 4 nanosheets in the NiO@CoMoO 4 /NF electrode are uniformly grown vertically on the surface of the NiO nanosheets, thereby forming a sheet-sheet core-shell structure, that is, a 2D dendritic core-shell structure, which can provide sufficient
  • the contact area between the electrolyte and the electrode is sufficient to provide sufficient electrochemical active sites, and this 2D dendritic core-shell structure can improve electron acceptance efficiency and fast electron transport speed, ensuring the advantages of electron transport kinetics;
  • the formation of diffusion channels through the interaction of CoMoO 4 nanosheets can promote the diffusion of electrolyte, which is more conducive to the utilization of nuclear materials, and the 2D dendritic porous structure can provide stress release space for electrode materials during charge and discharge, ensuring Electrode charge and discharge stability.
  • NiO@CoMoO 4 /NF capacitor electrode In order to further increase the mass specific capacitance value of the NiO@CoMoO 4 /NF capacitor electrode, the above-mentioned NiO@CoMoO 4 /NF needs to be treated with carbon quantum dots, which is prepared according to the following steps:
  • NiO@CoMoO 4 /NF carbon quantum dot loading place the NiO@CoMoO 4 /NF prepared above in an aqueous solution of carbon quantum dots, and stir for 1 to 2 hours at a rotation speed of 10 to 20 rpm for deposition. After the deposition is completed, put it in an electric blast drying oven, set the temperature at 90-100°C, and dry for 10-15 hours to complete NiO@CoMoO 4 /NF carbon quantum dot loading, and the ultrasonic frequency is 10KHZ-20KHZ.
  • Carbon quantum dots can be deposited inside the porous structure of the NiO@CoMoO 4 /NF electrode and on the surface of the electrode, which can make the NiO@CoMoO 4 /NF electrode obtain more specific capacitance value, and can also greatly improve the conductivity of the electrode.
  • NiO@CoMoO 4 /NF electrodes In order to solve the technical problem that the electrode is corroded and damaged due to the volume change of the electrode destroying the structure of the electrode itself or the long-term contact with the electrolyte during the charging and discharging process of the electrode, which eventually leads to a decrease in energy storage performance and a shortened service life, the above-mentioned NiO@CoMoO 4 /NF electrodes also need to be wrapped with tough materials.
  • the 2D dendritic porous structure can provide stress release space for electrode materials during charging and discharging.
  • NiO@CoMoO 4 /NF electrodes can be adapted The volume change during charge and discharge will eventually lead to its 2D dendritic porous structure not being destroyed.
  • the above-mentioned NiO@CoMoO 4 /NF tough material package is prepared according to the following steps:
  • NiO@CoMoO 4 /NF tough material package immerse the NiO@CoMoO 4 /NF electrode into the tough material, keep it at 80-90°C for 1-2 hours, take it out, and place it in a blast drying oven. Set the drying temperature at 40-45°C and dry for 10-12 hours to obtain the product.
  • the unique bonding properties of sodium carboxymethyl cellulose can make the above-mentioned tough materials firmly cover the surface of NiO@CoMoO 4 /NF electrodes, and the combination of styrene-butadiene rubber and sodium carboxymethyl cellulose can make NiO@CoMoO 4 /NF electrodes are more flexible, making them more adaptable to volume changes during charging and discharging, ensuring that the core-shell structure is not damaged.
  • styrene-butadiene rubber and sodium carboxymethyl cellulose can be used in NiO@CoMoO 4 /NF A thin film is formed on the surface of the electrode to prevent the electrolyte from corroding and damaging the electrode, so that the charging and discharging performance will not decline during multiple charging and discharging, and the cycle stability is good.
  • the CoMoO 4 nanosheets are uniformly and vertically grown on the surface of the NiO nanosheets, thereby forming a sheet-sheet core-shell structure, and its 2D dendritic core-shell structure can provide sufficient electrolyte and
  • the contact area between the electrodes in order to provide sufficient electrochemically active sites the 2D characteristics of NiO sheets and CoMoO 4 nanosheets improve the electron acceptance efficiency and fast electron transfer rate, ensuring the advantages of electron transfer kinetics; through CoMoO
  • the interaction of 4 nanosheets to form a diffusion channel can promote the diffusion of the electrolyte, which is more conducive to the utilization of nuclear materials, and the introduction of carbon quantum dots runs through the interior of the 2D dendritic porous structure, making NiO@CoMoO 4 /NF have The higher specific capacitance value can also greatly improve the conductivity of the electrode.
  • the NiO@CoMoO 4 /NF electrode is treated with a tough material, which can make the NiO@CoMoO 4 /NF electrode adapt to the charge and discharge process due to volume changes, and at the same time It can prevent the corrosion of the electrolyte, and ultimately make the product cycle stable.
  • the capacity of the present invention does not attenuate, and still maintains 100% of the maximum capacity.
  • the mass specific capacitance has a large increase.
  • the mass specific capacitance of the electrode can be as high as 1457F/g, and the electrochemical energy storage is excellent, which is worthy of market promotion.
  • Fig. 1 the product quality specific capacitance measurement chart that embodiment 1 makes.
  • Fig. 2 It is the charge-discharge cycle stability diagram of the product prepared in Example 1.
  • FIG. 3 SEM images of the electrodes before and after 10,000 charge-discharge cycles of the product prepared in Example 1. The results show that the structure of the product has not collapsed before and after charge-discharge.
  • Fig. 4 The product quality specific capacitance measurement chart that embodiment 2 makes.
  • Fig. 5 The charge-discharge cycle stability chart of the product prepared in Example 2.
  • Fig. 6 The product quality specific capacitance measurement chart that embodiment 3 makes.
  • Fig. 7 The charge-discharge cycle stability chart of the product prepared in Example 3.
  • Fig. 8 The product quality specific capacitance measurement chart that embodiment 4 makes.
  • Fig. 9 The charge-discharge cycle stability diagram of the product prepared in Example 4.
  • a NiO@CoMoO 4 /NF capacitor electrode is prepared according to the following steps:
  • NiO@CoMoO 4 /NF carbon quantum dot loading
  • NiO@CoMoO 4 /NF carbon quantum dot loading the NiO@CoMoO 4 /NF prepared above was placed in the aqueous solution of carbon quantum dots, and the deposition was carried out by stirring at a speed of 20 rpm for 1 hour. In an electric blast drying oven, set the temperature at 95°C and dry for 12 hours to complete NiO@CoMoO 4 /NF carbon quantum dot loading, and the ultrasonic frequency is 15KHZ.
  • NiO@CoMoO 4 /NF tough material package immerse the NiO@CoMoO 4 /NF electrode into the tough material, keep it at 85°C for 1.5 hours, take it out, put it in a blast drying oven, and set the drying temperature to Dry at 42°C for 11 hours to obtain the product.
  • the electrode material prepared in Example 1 is cut into a square of 1 cm by 1 cm as the working electrode, the platinum plate electrode is the counter electrode, the silver chloride electrode is the reference electrode, and the electrolyte is the KOH solution of 6mol/L. g, 2A/g, 5A/g, 10A/g, 15A/g, 20A/g current density test electrode charge and discharge curves.
  • the electrode was cut to 1cm by 1cm, the electrolyte was 6mol/L KOH solution, charged and discharged for 10,000 cycles at a current density of 10A/g, and the specific capacity was recorded and calculated every 500 cycles.
  • the experimental results are shown in Figure 2.
  • the electron microscope images before and after charging and discharging are shown in Figure 3.
  • the electrode structure of the electrode of the present invention does not collapse before and after charging and discharging, indicating that the electrode of the supercapacitor of the present invention can adapt to the change in volume during the charging and discharging process.
  • a NiO@CoMoO 4 /NF capacitor electrode according to the preparation method of Example 1, except that the electrode material is not treated with a tough material, and the specific steps are as follows:
  • NiO@CoMoO 4 /NF carbon quantum dot loading
  • NiO@CoMoO 4 /NF carbon quantum dot loading the NiO@CoMoO 4 /NF prepared above was placed in the aqueous solution of carbon quantum dots, and the deposition was carried out by stirring at a speed of 20 rpm for 1 hour. In an electric blast drying oven, set the temperature at 95°C and dry for 12 hours to complete NiO@CoMoO 4 /NF carbon quantum dot loading, and the ultrasonic frequency is 15KHZ.
  • the electrode material prepared in Example 2 was cut into a square of 1 cm ⁇ 1 cm as the working electrode, the platinum sheet electrode was used as the counter electrode, the silver chloride electrode was used as the reference electrode, and the electrolyte was 6 mol/L of KOH solution. g, 2A/g, 5A/g, 10A/g, 15A/g, 20A/g current density test electrode charge and discharge curves.
  • Example 2 The product prepared in Example 2 is cut into electrodes of 1 cm by 1 cm, the electrolyte is 6 mol/L KOH solution, charged and discharged for 10,000 cycles at a current density of 10 A/g, and the specific capacity is recorded and calculated every 500 cycles. The results are shown in Figure 5.
  • a NiO@CoMoO 4 /NF capacitor electrode according to the preparation method of Example 1, except that the tough material does not add sodium carboxymethyl cellulose, the specific steps are as follows:
  • NiO@CoMoO 4 /NF carbon quantum dot loading
  • NiO@CoMoO 4 /NF carbon quantum dot loading the NiO@CoMoO 4 /NF prepared above was placed in the aqueous solution of carbon quantum dots, and the deposition was carried out by stirring at a speed of 20 rpm for 1 hour. In an electric blast drying oven, set the temperature at 95°C and dry for 12 hours to complete NiO@CoMoO 4 /NF carbon quantum dot loading, and the ultrasonic frequency is 15KHZ.
  • NiO@CoMoO 4 /NF tough material package immerse the NiO@CoMoO 4 /NF electrode into the tough material, keep it at 85°C for 1.5 hours, take it out, put it in a blast drying oven, and set the drying temperature to Dry at 42°C for 11 hours to obtain the product.
  • the electrode material prepared in Example 3 was cut into a square of 1 cm ⁇ 1 cm as the working electrode, the platinum plate electrode was used as the counter electrode, the silver chloride electrode was used as the reference electrode, and the electrolyte was 6 mol/L of KOH solution. g, 2A/g, 5A/g, 10A/g, 15A/g, 20A/g current density test electrode charge and discharge curves.
  • Example 2 The product prepared in Example 2 is cut into electrodes of 1 cm by 1 cm, the electrolyte is 6 mol/L KOH solution, charged and discharged for 10,000 cycles at a current density of 10 A/g, and the specific capacity is recorded and calculated every 500 cycles. The results are shown in Figure 7.
  • a NiO@CoMoO 4 /NF capacitor electrode according to the preparation method of Example 1, except that styrene-butadiene rubber is not added to the tough material, the specific steps are as follows:
  • NiO@CoMoO 4 /NF carbon quantum dot loading
  • NiO@CoMoO 4 /NF carbon quantum dot loading the NiO@CoMoO 4 /NF prepared above was placed in the aqueous solution of carbon quantum dots, and the deposition was carried out by stirring at a speed of 20 rpm for 1 hour. In an electric blast drying oven, set the temperature at 95°C and dry for 12 hours to complete NiO@CoMoO 4 /NF carbon quantum dot loading, and the ultrasonic frequency is 15KHZ.
  • NiO@CoMoO 4 /NF tough material package immerse the NiO@CoMoO 4 /NF electrode into the tough material, keep it at 85°C for 1.5 hours, take it out, put it in a blast drying oven, and set the drying temperature to Dry at 42°C for 11 hours to obtain the product.
  • the electrode material prepared in Example 4 was cut into a square of 1 cm ⁇ 1 cm as the working electrode, the platinum plate electrode was used as the counter electrode, the silver chloride electrode was used as the reference electrode, and the electrolyte was 6mol/L of KOH solution. g, 2A/g, 5A/g, 10A/g, 15A/g, 20A/g current density test electrode charge and discharge curves.
  • a NiO@CoMoO 4 /NF capacitor electrode is prepared according to the following steps:
  • NiO@CoMoO 4 /NF carbon quantum dot loading
  • NiO@CoMoO 4 /NF carbon quantum dot loading the NiO@CoMoO 4 /NF prepared above was placed in the aqueous solution of carbon quantum dots, and the deposition was carried out by stirring at a speed of 10 rpm for 2 hours. In an electric blast drying oven, set the temperature at 90°C and dry for 15 hours to complete the loading of NiO@CoMoO 4 /NF carbon quantum dots, and the ultrasonic frequency is 10KHZ.
  • NiO@CoMoO 4 /NF tough material package immerse the NiO@CoMoO 4 /NF electrode into the tough material, keep it at 80°C for 1 hour, take it out, put it in a blast drying oven, and set the drying temperature to 40 °C, dry for 10 hours, that is.
  • a NiO@CoMoO 4 /NF capacitor electrode is prepared according to the following steps:
  • NiO@CoMoO 4 /NF carbon quantum dot loading
  • NiO@CoMoO 4 /NF carbon quantum dot loading the NiO@CoMoO 4 /NF prepared above was placed in the aqueous solution of carbon quantum dots, and the deposition was carried out by stirring at a speed of 10 rpm for 2 hours. In an electric blast drying oven, set the temperature at 100°C and dry for 15 hours to complete NiO@CoMoO 4 /NF carbon quantum dot loading, and the ultrasonic frequency is 20KHZ.
  • NiO@CoMoO 4 /NF tough material package immerse the NiO@CoMoO 4 /NF electrode into the tough material, keep it at 90°C for 2 hours, take it out, put it in a blast drying oven, and set the drying temperature to 45 °C, dry for 12 hours, that is.
  • Example 6 The product obtained in Example 6 is subjected to mass specific capacitance measurement and charge-discharge cycle stability measurement according to the experimental method of Example 1.
  • the measurement results show that the specific capacitance of the electrode reaches 1443F/g when the electrode is at 1A/g, and the cycle 10000 After several times, the product capacity has not decayed, and still maintains 100% of the maximum capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种NiO@CoMoO4/NF电容电极的制备方法是以NF、C OCl2.6H2O、Na2MOO4.2H2O、葡萄糖、韧性材料为原材料,分别经过NiO@CoMoO4/NF的制备,NiO@CoMoO4/NF碳量子点负载,负载碳量子点的NiO@CoMoO4/NF韧性材料包裹等步骤制得。本发明NiO@CoMoO4/NF具有更高的比电容值,同时也可大幅提高电极导电性能,另一方面NiO@CoMoO4/NF电极经过韧性材料处理,可使得NiO@CoMoO4/NF电极适应充放电过程由于体积变化,同时还可以防止电解液的腐蚀作用,最终使得产品循环稳定性好,充放电循环10000次后,本发明容量没有衰减,仍然保持最大容量的100%,质量比电容具有大幅度增加,在1 A/g时电极的质量比电容可高达1457F/g,电化学储能优异。

Description

一种NiO@CoMoO 4/NF电容电极的制备方法 技术领域
本发明属于能源存储的技术领域,具体涉及一种NiO@CoMoO 4/NF电容电极的制备方法。
背景技术
超级电容器电极片作为超级电容器的关键组成部分,直接影响着超级电容器的各方面性能。多种过渡金属氧化物已被作为超级电容器电极材料进行了深入研究,为了进一步提高性能,具有纳米结构的过渡金属氧化物材料已成为目前超级电容器领域的研究热点,纳米结构不仅可以为电化学反应提供更多活性位点,同时还可以缩短离子的传输路径,但是纳米结构的过渡金属氧化物材料作为超级电容电极材料比电容值还不太理想,理论值与实验值相差甚远,另一方面,纳米结构的过渡金属氧化物电极充放电过程,由于电极体积变化,会破坏本身结构,最终导致超级电容多次充放电后储能性能下降,循环稳定性不够理想,此外,由于纳米结构的过渡金属氧化物电极长时间处于电解液中,电解液具有一定腐蚀性,也会导致电极结构被破坏,最终导致充放电性能下降,使用寿命大大缩短。
发明内容
本发明目的在于提供一种NiO@CoMoO 4/NF电容电极的制备方法。
本发明是通过以下技术方案实现的:
一种NiO@CoMoO 4/NF电容电极的制备方法,其特征在于,它是以NF、C OCl 2.6H 2O、Na 2M OO 4.2H 2O、葡萄糖、韧性材料为原材料,分别经过NiO@CoMoO 4/NF的制备,NiO@CoMoO 4/NF碳量子点负载,负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹等步骤制得;其中,所述韧性材料是由碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水制得;所述NF为泡沫镍。
进一步,所述铝粉粒径为30~80μm,所述碳粉粒径为30~80μm;所述碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水的质量比为1~3:2~6:30~35:2~4:20~40。
传统的“核壳材料“鸡蛋”为模型,这样的结构有一个很大的缺陷,即壳材料完全包覆了核材料导致核材料不能被有效的利用,在研究过程中发现,将NiO 片@CoMoO 4制成2D枝状核壳结构,可弥补上述缺陷,提升电极电化学性能,所述NiO@CoMoO 4/NF电极的制备是按如下步骤制得:
(1)将NF浸入2.5~3.0mol/L的盐酸溶液中超声处理10~20分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.05~-0.08MPa,干燥温度为40~50℃,干燥10~13小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:700~900,随后恒温在140~150℃条件下保温24~28小时,自然冷却至室温,取出,用去离子水清洗3~5次,然后再置于真空干燥箱中,设置真空度为-0.05~-0.08MPa,温度60~70℃干燥25~28小时,干燥结束,置于石英管式炉中,以升温速率为0.5~0.8℃/min升温至400~450℃保温2~3小时,即得NiO片/NF。
(2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2300~2800份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌60~90min,搅拌结束,转移至不锈钢反应釜中,设定温度为160~170℃在保温6~8h,然后冷却至室温,取出,加入去离子水浸没,超声清洗3~5分钟,然后置于真空干燥箱中,设定真空度为-0.05~-0.08MPa,温度60~70℃干燥8~10小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.5~0.8℃/min升温至400~420℃保温2小时,即为NiO@CoMoO 4/NF电极。
所述NiO@CoMoO 4/NF电极中CoMoO 4纳米片是均匀垂直在生长在NiO纳米片表面,从而形成片-片的核壳结构,即为2D枝状核壳结构,该结构能够提供足够的电解液与电极之间的接触面积,以便提供充足的电化学活性位点,并且这种2D枝状核壳结构可提高电子接收效率和可快速的电子传输速度,保证电子传输动力学的优势;另外,通过CoMoO 4纳米片的相互作用形成扩散通道可以促进电解液的扩散,更加有利于核材料的利用,而2D枝状的多孔结构可以为电极材料在充放电过程中提供应力释放空间,保证电极充放电稳定性。
为了进一步提高NiO@CoMoO 4/NF电容电极的质量比电容值,上述NiO@CoMoO 4/NF还需经过碳量子点负载处理,它是按如下步骤制得:
(1)制备碳量子点水溶液:将葡萄糖按质量比为1:10~15溶于去离子水中得到葡萄糖水溶液,将葡萄糖水溶液置于具有不锈钢外壳和聚四氟乙烯内衬的反 应釜中,然后将反应釜置于干燥箱中,设置温度为200~230℃热处理30~36小时,得到反应液,然后置于离心机中,设施离心转速10000~12000r/min,离心处理20~30分钟,分取上清液即为碳量子点水溶液;
(2)NiO@CoMoO 4/NF碳量子点负载:将上述制得的NiO@CoMoO 4/NF置于碳量子点水溶液中,在转速为10~20转/min搅拌1~2小时进行沉积,沉积结束,置于电热鼓风干燥箱中,设置温度为90~100℃,干燥10~15小时,即完成NiO@CoMoO 4/NF碳量子点负载,所述超声频率为10KHZ~20KHZ。碳量子点可沉积在NiO@CoMoO 4/NF电极的多孔结构内部和电极表面,可使得NiO@CoMoO 4/NF电极获得更多的比电容值,同时也可大幅提高电极导电性能。
为了解决电极多次充放电过程中,由于电极体积变化破坏电极本身结构或长时间电极与电解液接触,电极被腐蚀破坏,最终导致储能性能下降,使用寿命缩短的技术问题,上述NiO@CoMoO 4/NF电极还需经韧性材料包裹处理,2D枝状的多孔结构可以为电极材料在充放电过程中提供应力释放空间,同时配合特定韧性材料包裹,可使得NiO@CoMoO 4/NF电极可适应充放电过程中体积变化,最终导致其2D枝状的多孔结构不被破坏,上述NiO@CoMoO 4/NF韧性材料包裹是按如下步骤制得:
(1)韧性材料制备:将去离子水加热至55~65℃,在搅拌条件下,加入羧甲基纤维素钠,分散均匀后,放置2~3小时,得羧甲基纤维素钠溶液,备用;另取丁苯橡胶,加热至80~90℃,在搅拌条件下,加入羧甲基纤维素钠溶液,继续搅拌40~60分钟,依次加入碳粉,铝粉,再继续搅拌20~30分钟,保温条件下,备用;所述搅拌转速为20~50r/min。
(2)NiO@CoMoO 4/NF韧性材料包裹:将NiO@CoMoO 4/NF电极浸入韧性材料中,保温80~90℃条件下静置1~2小时,取出,置于鼓风干燥箱中,设置干燥温度为40~45℃,干燥10~12小时,即得。羧甲基纤维素钠独特的粘结性能可使得上述韧性材料牢牢的覆盖于NiO@CoMoO 4/NF电极表面,而丁苯橡胶与羧甲基纤维素钠配合,一方面可使得NiO@CoMoO 4/NF电极更加具有韧性,使得其更加适应充放电过程中的体积变化,保证核壳结构不被破坏,另一方面,丁苯橡胶与羧甲基纤维素钠可在NiO@CoMoO 4/NF电极表面形成薄膜,防止电解液对电极的腐蚀破坏,最终使得多次充放电过程中充放电性能不会下降,循环稳定性好。
本发明具以下有益效果:
本发明NiO@CoMoO 4/NF电容电极,CoMoO 4纳米片是均匀垂直在生长在NiO纳米片表面,从而形成片-片的核壳结构,其2D枝状核壳结构能够提供足够的电解液与电极之间的接触面积,以便提供充足的电化学活性位点,NiO片与CoMoO 4纳米片这种2D特性提高了电子接收效率和快速的电子传输速率,保证电子传输动力学的优势;通过CoMoO 4纳米片的相互作用形成扩散通道可以促进电解液的扩散,更加有利于核材料的利用,而碳量子点的引入,贯穿于2D枝状的多孔结构的内部,使得NiO@CoMoO 4/NF具有更高的比电容值,同时也可大幅提高电极导电性能,另一方面NiO@CoMoO 4/NF电极经过韧性材料处理,可使得NiO@CoMoO 4/NF电极适应充放电过程由于体积变化,同时还可以防止电解液的腐蚀作用,最终使得产品循环稳定性好,充放电循环10000次后,本发明容量没有衰减,仍然保持最大容量的100%,质量比电容具有大幅度增加,在1A/g时电极的质量比电容可高达1457F/g,电化学储能优异,值得市场推广。
附图说明
图1:实施例1制得的产品质量比电容测定图。
图2:为实施例1制得的产品充放电循环稳定性图。
图3:为实施例1制得的产品充放电循环10000次前后电极SEM图,结果表明充放电前后本品结构并未垮塌。
图4:实施例2制得的产品质量比电容测定图。
图5:为实施例2制得的产品充放电循环稳定性图。
图6:实施例3制得的产品质量比电容测定图。
图7:为实施例3制得的产品充放电循环稳定性图。
图8:实施例4制得的产品质量比电容测定图。
图9:为实施例4制得的产品充放电循环稳定性图。
具体实施方式
下面通过实施例并结合附图对本发明作进一步具体说明。
实施例1
一种NiO@CoMoO 4/NF电容电极,按如下步骤制得:
1.NiO@CoMoO 4/NF电极的制备:
(1)将NF(泡沫镍)浸入2.8mol/L的盐酸溶液中超声处理15分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.07MPa,干燥温度为45℃,干燥12小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:800,随后恒温在145℃条件下保温26小时,自然冷却至室温,取出,用去离子水清洗4次,然后再置于真空干燥箱中,设置真空度为-0.07MPa,温度65℃干燥26小时,干燥结束,置于石英管式炉中,以升温速率为0.7℃/min升温至420℃保温2.5小时,即得NiO片/NF;
(2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2500份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌80min,搅拌结束,转移至不锈钢反应釜中,设定温度为165℃在保温7h,然后冷却至室温,取出,加入去离子水浸没,超声清洗4分钟,然后置于真空干燥箱中,设定真空度为-0.07MPa,温度65℃干燥9小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.6℃/min升温至410℃保温2小时,即为NiO@CoMoO 4/NF电极。
2.NiO@CoMoO 4/NF碳量子点负载:
(1)制备碳量子点水溶液:将葡萄糖按质量比为1:12溶于去离子水中得到葡萄糖水溶液,将葡萄糖水溶液置于具有不锈钢外壳和聚四氟乙烯内衬的反应釜中,然后将反应釜置于干燥箱中,设置温度为220℃热处理35小时,得到反应液,然后置于离心机中,设施离心转速11000r/min,离心处理25分钟,分取上清液即为碳量子点水溶液;
(2)NiO@CoMoO 4/NF碳量子点负载:将上述制得的NiO@CoMoO 4/NF置于碳量子点水溶液中,在转速为20转/min搅拌1小时进行沉积,沉积结束,置于电热鼓风干燥箱中,设置温度为95℃,干燥12小时,即完成NiO@CoMoO 4/NF碳量子点负载,所述超声频率为15KHZ。
3.负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹:
(1)韧性材料制备:将去离子水加热至60℃,在搅拌条件下,加入羧甲基纤维素钠,分散均匀后,放置2.5小时,得羧甲基纤维素钠溶液,备用;另取丁苯橡胶,加热至85℃,在搅拌条件下,加入羧甲基纤维素钠溶液,继续搅拌50分钟,依次加入碳粉,铝粉,再继续搅拌25分钟,保温条件下,备用;所述搅拌转速为40r/min;所述铝粉粒径为30~80μm,所述碳粉粒径为30~80μm;所述碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水的质量比为2:4:32:3:30。
(2)NiO@CoMoO 4/NF韧性材料包裹:将NiO@CoMoO 4/NF电极浸入韧性材料中,保温85℃条件下静置1.5小时,取出,置于鼓风干燥箱中,设置干燥温度为42℃,干燥11小时,即得。
实验一:质量比电容测定:
将实施例1制备的电极材料裁成1cm乘1cm的正方形作为工作电极,以铂片电极为对电极,以氯化银电极为参比电极,电解液为6mol/L的KOH溶液,在1A/g,2A/g,5A/g,10A/g,15A/g,20A/g电流密度下测试电极的充放电曲线。
实验结果表明:实施例1制备的电极在1A/g时电极的比电容达到1457F/g,具体见图1。
实验二:充放电循环稳定性实验
裁制1cm乘1cm的电极,电解液为6mol/L的KOH溶液,在10A/g的电流密度下充放电10000圈,每500圈记录并计算一次比容量,实验结果见图2。
实验结果表明:循环10000次后,本发明容量没有衰减,仍然保持最大容量的100%。
实验三:充放电循环稳定性实验前后电镜对比图
将本发明电极在充放电循环前进行电镜观察,同时在充放电10000次后,再次进行电镜观察,充放电前后电镜图见图3。
由图可知,本发明电极充放电前后电极结构无垮塌,表明本发明超级电容的电极可适应充放电过程体积的变化。
实施例2
一种NiO@CoMoO 4/NF电容电极,按实施例1的制备方法,只是电极材料不经过韧性材料处理,具体步骤如下:
1.NiO@CoMoO 4/NF电极的制备:
(1)将NF(泡沫镍)浸入2.8mol/L的盐酸溶液中超声处理15分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.07MPa,干燥温度为45℃,干燥12小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:800,随后恒温在145℃条件下保温26小时,自然冷却至室温,取出,用去离子水清洗4次,然后再置于真空干燥箱中,设置真空度为-0.07MPa,温度65℃干燥26小时,干燥结束,置于石英管式炉中,以升温速率为0.7℃/min升温至420℃保温2.5小时,即得NiO片/NF;
(2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2500份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌80min,搅拌结束,转移至不锈钢反应釜中,设定温度为165℃在保温7h,然后冷却至室温,取出,加入去离子水浸没,超声清洗4分钟,然后置于真空干燥箱中,设定真空度为-0.07MPa,温度65℃干燥9小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.6℃/min升温至410℃保温2小时,即为NiO@CoMoO 4/NF电极。
2.NiO@CoMoO 4/NF碳量子点负载:
(1)制备碳量子点水溶液:将葡萄糖按质量比为1:12溶于去离子水中得到葡萄糖水溶液,将葡萄糖水溶液置于具有不锈钢外壳和聚四氟乙烯内衬的反应釜中,然后将反应釜置于干燥箱中,设置温度为220℃热处理35小时,得到反应液,然后置于离心机中,设施离心转速11000r/min,离心处理25分钟,分取上清液即为碳量子点水溶液;
(2)NiO@CoMoO 4/NF碳量子点负载:将上述制得的NiO@CoMoO 4/NF置于碳量子点水溶液中,在转速为20转/min搅拌1小时进行沉积,沉积结束,置于电热鼓风干燥箱中,设置温度为95℃,干燥12小时,即完成NiO@CoMoO 4/NF碳量子点负载,所述超声频率为15KHZ。
实验一:质量比电容测定
将实施例2制备的电极材料裁成1cm×1cm的正方形作为工作电极,以铂片 电极为对电极,以氯化银电极为参比电极,电解液为6mol/L的KOH溶液,在1A/g,2A/g,5A/g,10A/g,15A/g,20A/g电流密度下测试电极的充放电曲线。
实验结果表明:电极在1A/g时电极的比电容达到1202F/g,具体结果见图4。
实验二:充放电循环稳定性实验
将实施例2制得的产品裁制1cm乘1cm的电极,电解液为6mol/L的KOH溶液,在10A/g的电流密度下充放电10000圈,每500圈记录并计算一次比容量,实验结果见图5。
实验结果表明:循环10000次后,衰减为最大值的69.8%。
实施例3
一种NiO@CoMoO 4/NF电容电极,按实施例1的制备方法,只是韧性材料不添加羧甲基纤维素钠,具体步骤如下:
1.NiO@CoMoO 4/NF电极的制备:
(1)将NF(泡沫镍)浸入2.8mol/L的盐酸溶液中超声处理15分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.07MPa,干燥温度为45℃,干燥12小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:800,随后恒温在145℃条件下保温26小时,自然冷却至室温,取出,用去离子水清洗4次,然后再置于真空干燥箱中,设置真空度为-0.07MPa,温度65℃干燥26小时,干燥结束,置于石英管式炉中,以升温速率为0.7℃/min升温至420℃保温2.5小时,即得NiO片/NF;
(2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2500份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌80min,搅拌结束,转移至不锈钢反应釜中,设定温度为165℃在保温7h,然后冷却至室温,取出,加入去离子水浸没,超声清洗4分钟,然后置于真空干燥箱中,设定真空度为-0.07MPa,温度65℃干燥9小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.6℃/min升温至410℃保温2小时,即为NiO@CoMoO 4/NF电极。
2.NiO@CoMoO 4/NF碳量子点负载:
(1)制备碳量子点水溶液:将葡萄糖按质量比为1:12溶于去离子水中得到葡萄糖水溶液,将葡萄糖水溶液置于具有不锈钢外壳和聚四氟乙烯内衬的反应釜中,然后将反应釜置于干燥箱中,设置温度为220℃热处理35小时,得到反应液,然后置于离心机中,设施离心转速11000r/min,离心处理25分钟,分取上清液即为碳量子点水溶液;
(2)NiO@CoMoO 4/NF碳量子点负载:将上述制得的NiO@CoMoO 4/NF置于碳量子点水溶液中,在转速为20转/min搅拌1小时进行沉积,沉积结束,置于电热鼓风干燥箱中,设置温度为95℃,干燥12小时,即完成NiO@CoMoO 4/NF碳量子点负载,所述超声频率为15KHZ。
3.负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹:
(1)韧性材料制备:取丁苯橡胶,加热至85℃,在搅拌条件下,加入去离子水,加入后继续搅拌50分钟,依次加入碳粉,铝粉,再继续搅拌25分钟,保温条件下,备用;所述搅拌转速为40r/min;所述铝粉粒径为30~80μm,所述碳粉粒径为30~80μm;所述碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水的质量比为2:4:32:3:30。
(2)NiO@CoMoO 4/NF韧性材料包裹:将NiO@CoMoO 4/NF电极浸入韧性材料中,保温85℃条件下静置1.5小时,取出,置于鼓风干燥箱中,设置干燥温度为42℃,干燥11小时,即得。
实验一:质量比电容测定
将实施例3制备的电极材料裁成1cm×1cm的正方形作为工作电极,以铂片电极为对电极,以氯化银电极为参比电极,电解液为6mol/L的KOH溶液,在1A/g,2A/g,5A/g,10A/g,15A/g,20A/g电流密度下测试电极的充放电曲线。
实验结果表明:电极在1A/g时电极的比电容达到1282F/g,具体结果见图6。
实验二:充放电循环稳定性实验
将实施例2制得的产品裁制1cm乘1cm的电极,电解液为6mol/L的KOH溶液,在10A/g的电流密度下充放电10000圈,每500圈记录并计算一次比容量,实验结果见图7。
实验结果表明:循环10000次后,衰减为最大值的80.2%。
实施例4
一种NiO@CoMoO 4/NF电容电极,按实施例1的制备方法,只是韧性材料不添加丁苯橡胶,具体步骤如下:
1.NiO@CoMoO 4/NF电极的制备:
(1)将NF(泡沫镍)浸入2.8mol/L的盐酸溶液中超声处理15分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.07MPa,干燥温度为45℃,干燥12小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:800,随后恒温在145℃条件下保温26小时,自然冷却至室温,取出,用去离子水清洗4次,然后再置于真空干燥箱中,设置真空度为-0.07MPa,温度65℃干燥26小时,干燥结束,置于石英管式炉中,以升温速率为0.7℃/min升温至420℃保温2.5小时,即得NiO片/NF;
(2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2500份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌80min,搅拌结束,转移至不锈钢反应釜中,设定温度为165℃在保温7h,然后冷却至室温,取出,加入去离子水浸没,超声清洗4分钟,然后置于真空干燥箱中,设定真空度为-0.07MPa,温度65℃干燥9小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.6℃/min升温至410℃保温2小时,即为NiO@CoMoO 4/NF电极。
2.NiO@CoMoO 4/NF碳量子点负载:
(1)制备碳量子点水溶液:将葡萄糖按质量比为1:12溶于去离子水中得到葡萄糖水溶液,将葡萄糖水溶液置于具有不锈钢外壳和聚四氟乙烯内衬的反应釜中,然后将反应釜置于干燥箱中,设置温度为220℃热处理35小时,得到反应液,然后置于离心机中,设施离心转速11000r/min,离心处理25分钟,分取上清液即为碳量子点水溶液;
(2)NiO@CoMoO 4/NF碳量子点负载:将上述制得的NiO@CoMoO 4/NF置于 碳量子点水溶液中,在转速为20转/min搅拌1小时进行沉积,沉积结束,置于电热鼓风干燥箱中,设置温度为95℃,干燥12小时,即完成NiO@CoMoO 4/NF碳量子点负载,所述超声频率为15KHZ。
3.负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹:
(1)韧性材料制备:将去离子水加热至60℃,在搅拌条件下,加入羧甲基纤维素钠,分散均匀后,放置2.5小时,得羧甲基纤维素钠溶液,依次加入碳粉,铝粉,再继续搅拌25分钟,保温条件下,备用;所述搅拌转速为40r/min;所述铝粉粒径为30~80μm,所述碳粉粒径为30~80μm;所述碳粉、羧甲基纤维素钠、铝粉、去离子水的质量比为2:4:3:30。
(2)NiO@CoMoO 4/NF韧性材料包裹:将NiO@CoMoO 4/NF电极浸入韧性材料中,保温85℃条件下静置1.5小时,取出,置于鼓风干燥箱中,设置干燥温度为42℃,干燥11小时,即得。
实验一:质量比电容测定
将实施例4制备的电极材料裁成1cm×1cm的正方形作为工作电极,以铂片电极为对电极,以氯化银电极为参比电极,电解液为6mol/L的KOH溶液,在1A/g,2A/g,5A/g,10A/g,15A/g,20A/g电流密度下测试电极的充放电曲线。
实验结果表明:电极在1A/g时电极的比电容达到1316.5F/g,具体结果见图8。
实验二:充放电循环稳定性实验
裁制1cm乘1cm的电极,电解液为6mol/L的KOH溶液,在10A/g的电流密度下充放电10000圈,每500圈记录并计算一次比容量,实验结果见图9。
实验结果表明:循环10000次后,本发明容量没有衰减,仍然保持最大容量的85.6%。
实施例5
一种NiO@CoMoO 4/NF电容电极,按如下步骤制得:
1.NiO@CoMoO 4/NF电极的制备:
(1)将NF(泡沫镍)浸入2.5mol/L的盐酸溶液中超声处理20分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.05MPa, 干燥温度为50℃,干燥13小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:900,随后恒温在140℃条件下保温28小时,自然冷却至室温,取出,用去离子水清洗3次,然后再置于真空干燥箱中,设置真空度为-0.05MPa,温度70℃干燥28小时,干燥结束,置于石英管式炉中,以升温速率为0.5℃/min升温至400℃保温3小时,即得NiO片/NF;
(2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2300份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌60min,搅拌结束,转移至不锈钢反应釜中,设定温度为160℃在保温6h,然后冷却至室温,取出,加入去离子水浸没,超声清洗3分钟,然后置于真空干燥箱中,设定真空度为-0.05MPa,温度60℃干燥10小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.5℃/min升温至400℃保温2小时,即为NiO@CoMoO 4/NF电极。
2.NiO@CoMoO 4/NF碳量子点负载:
(1)制备碳量子点水溶液:将葡萄糖按质量比为1:10溶于去离子水中得到葡萄糖水溶液,将葡萄糖水溶液置于具有不锈钢外壳和聚四氟乙烯内衬的反应釜中,然后将反应釜置于干燥箱中,设置温度为200℃热处理30小时,得到反应液,然后置于离心机中,设施离心转速10000r/min,离心处理20分钟,分取上清液即为碳量子点水溶液;
(2)NiO@CoMoO 4/NF碳量子点负载:将上述制得的NiO@CoMoO 4/NF置于碳量子点水溶液中,在转速为10转/min搅拌2小时进行沉积,沉积结束,置于电热鼓风干燥箱中,设置温度为90℃,干燥15小时,即完成NiO@CoMoO 4/NF碳量子点负载,所述超声频率为10KHZ。
3.负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹:
(1)韧性材料制备:将去离子水加热至55℃,在搅拌条件下,加入羧甲基纤维素钠,分散均匀后,放置2小时,得羧甲基纤维素钠溶液,备用;另取丁苯橡胶,加热至80℃,在搅拌条件下,加入羧甲基纤维素钠溶液,继续搅拌40分钟,依次加入碳粉,铝粉,再继续搅拌20分钟,保温条件下,备用;所述搅拌 转速为20r/min;所述铝粉粒径为30~80μm,所述碳粉粒径为30~80μm;所述碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水的质量比为1:2:30:2:20。
(2)NiO@CoMoO 4/NF韧性材料包裹:将NiO@CoMoO 4/NF电极浸入韧性材料中,保温80℃条件下静置1小时,取出,置于鼓风干燥箱中,设置干燥温度为40℃,干燥10小时,即得。
将实施例5制得的产品按实施例1的实验方法分别进行质量比电容测定、充放电循环稳定性测定,测定结果表明,电极在1A/g时电极的比电容达到1438F/g,循环10000次后,产品容量未衰减,仍然保持最大电容的100%。
实施例6
一种NiO@CoMoO 4/NF电容电极,按如下步骤制得:
1.NiO@CoMoO 4/NF电极的制备:
(1)将NF(泡沫镍)浸入3.0mol/L的盐酸溶液中超声处理20分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.08MPa,干燥温度为50℃,干燥13小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:700,随后恒温在150℃条件下保温28小时,自然冷却至室温,取出,用去离子水清洗5次,然后再置于真空干燥箱中,设置真空度为-0.08MPa,温度60℃干燥25小时,干燥结束,置于石英管式炉中,以升温速率为0.8℃/min升温至450℃保温2小时,即得NiO片/NF;
(2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2800份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌90min,搅拌结束,转移至不锈钢反应釜中,设定温度为170℃在保温6h,然后冷却至室温,取出,加入去离子水浸没,超声清洗5分钟,然后置于真空干燥箱中,设定真空度为-0.08MPa,温度60℃干燥10小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.8℃/min升温至420℃保温2小时,即为NiO@CoMoO 4/NF电极。
2.NiO@CoMoO 4/NF碳量子点负载:
(1)制备碳量子点水溶液:将葡萄糖按质量比为1:15溶于去离子水中得到葡萄糖水溶液,将葡萄糖水溶液置于具有不锈钢外壳和聚四氟乙烯内衬的反应釜中,然后将反应釜置于干燥箱中,设置温度为230℃热处理36小时,得到反应液,然后置于离心机中,设施离心转速12000r/min,离心处理30分钟,分取上清液即为碳量子点水溶液;
(2)NiO@CoMoO 4/NF碳量子点负载:将上述制得的NiO@CoMoO 4/NF置于碳量子点水溶液中,在转速为10转/min搅拌2小时进行沉积,沉积结束,置于电热鼓风干燥箱中,设置温度为100℃,干燥15小时,即完成NiO@CoMoO 4/NF碳量子点负载,所述超声频率为20KHZ。
3.负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹:
(1)韧性材料制备:将去离子水加热至65℃,在搅拌条件下,加入羧甲基纤维素钠,分散均匀后,放置3小时,得羧甲基纤维素钠溶液,备用;另取丁苯橡胶,加热至90℃,在搅拌条件下,加入羧甲基纤维素钠溶液,继续搅拌60分钟,依次加入碳粉,铝粉,再继续搅拌30分钟,保温条件下,备用;所述搅拌转速为50r/min;所述铝粉粒径为30~80μm,所述碳粉粒径为30~80μm;所述碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水的质量比为3:6:35:4:40。
(2)NiO@CoMoO 4/NF韧性材料包裹:将NiO@CoMoO 4/NF电极浸入韧性材料中,保温90℃条件下静置2小时,取出,置于鼓风干燥箱中,设置干燥温度为45℃,干燥12小时,即得。
将实施例6制得的产品按实施例1的实验方法分别进行质量比电容测定、充放电循环稳定性测定,测定结果表明,电极在1A/g时电极的比电容达到1443F/g,循环10000次后,产品容量未衰减,仍然保持最大电容的100%。

Claims (3)

  1. 一种NiO@CoMoO 4/NF电容电极的制备方法,其特征在于,它是以NF、C OCl 2.6H 2O、Na 2M OO 4.2H 2O、葡萄糖、韧性材料为原材料,分别经过NiO@CoMoO 4/NF的制备,NiO@CoMoO 4/NF碳量子点负载,负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹步骤制得;其中,所述韧性材料是由碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水制得;
    上述负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹是按如下步骤制得:
    (1)韧性材料制备:将去离子水加热至55~65℃,在搅拌条件下,加入羧甲基纤维素钠,分散均匀后,放置2~3小时,得羧甲基纤维素钠溶液,备用;另取丁苯橡胶,加热至80~90℃,在搅拌条件下,加入羧甲基纤维素钠溶液,继续搅拌40~60分钟,依次加入碳粉,铝粉,再继续搅拌20~30分钟,保温条件下,备用;所述搅拌转速为20~50r/min;
    (2)负载碳量子点的NiO@CoMoO 4/NF韧性材料包裹:将负载碳量子点的NiO@CoMoO 4/NF电极浸入韧性材料中,保温80~90℃条件下静置1~2小时,取出,置于鼓风干燥箱中,设置干燥温度为40~45℃,干燥10~12小时,即得;
    所述NiO@CoMoO 4/NF中的NF为泡沫镍,其中NiO纳米片生长在NF上,CoMoO 4纳米片是均匀垂直生长在NiO纳米片表面,从而形成片-片的核壳结构。
  2. 如权利要求1所述的一种NiO@CoMoO 4/NF电容电极的制备方法,其特征在于,所述铝粉粒径为30~80μm,所述碳粉粒径为30~80μm;所述碳粉、羧甲基纤维素钠、丁苯橡胶、铝粉、去离子水的质量比为1~3:2~6:30~35:2~4:20~40。
  3. 如权利要求2所述的一种NiO@CoMoO 4/NF电容电极的制备方法,其特征在于,所述NiO@CoMoO 4/NF电极的制备是按如下步骤制得:
    (1)将NF浸入2.5~3.0mol/L的盐酸溶液中超声处理10~20分钟,取出,用去离子水清洗除去表面杂质,然后置于真空干燥箱中,设置真空度为-0.05~-0.08MPa,干燥温度为40~50℃,干燥10~13小时,取出,然后将处理后的NF浸入去离子水中并转移至不锈钢高压反应釜中,NF与去离子水的质量比为1:700~900,随后恒温在140~150℃条件下保温24~28小时,自然冷却至室温, 取出,用去离子水清洗3~5次,然后再置于真空干燥箱中,设置真空度为-0.05~-0.08MPa,温度60~70℃干燥25~28小时,干燥结束,置于石英管式炉中,以升温速率为0.5~0.8℃/min升温至400~450℃保温2~3小时,即得NiO片/NF;
    (2)另取质量份为65.1份的C OCl 2.6H 2O和质量份为50.8份的Na 2M OO 4.2H 2O全部溶解在质量份为2300~2800份的去离子水中,然后将步骤(1)中制得的NiO片/NF浸入并搅拌60~90min,搅拌结束,转移至不锈钢反应釜中,设定温度为160~170℃在保温6~8h,然后冷却至室温,取出,加入去离子水浸没,超声清洗3~5分钟,然后置于真空干燥箱中,设定真空度为-0.05~-0.08MPa,温度60~70℃干燥8~10小时,取出即得NiO片@CoMoO 4纳米片/NF前驱体,然后将NiO片@CoMoO 4纳米片/NF前驱体置于石英管式炉中,以升温速率为0.5~0.8℃/min升温至400~420℃保温2小时,即为NiO@CoMoO 4/NF电极。
PCT/CN2022/100024 2021-06-22 2022-06-21 一种NiO@CoMoO4/NF电容电极的制备方法 WO2022268055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110693285.1A CN113421775B (zh) 2021-06-22 2021-06-22 一种NiO@CoMoO4/NF电容电极的制备方法
CN202110693285.1 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022268055A1 true WO2022268055A1 (zh) 2022-12-29

Family

ID=77716148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100024 WO2022268055A1 (zh) 2021-06-22 2022-06-21 一种NiO@CoMoO4/NF电容电极的制备方法

Country Status (3)

Country Link
CN (1) CN113421775B (zh)
LU (1) LU503498B1 (zh)
WO (1) WO2022268055A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421775B (zh) * 2021-06-22 2022-05-13 重庆文理学院 一种NiO@CoMoO4/NF电容电极的制备方法
CN114420462A (zh) * 2021-12-27 2022-04-29 重庆文理学院 一种使用寿命长的超级电容的制备方法
CN114429869A (zh) * 2021-12-27 2022-05-03 重庆文理学院 一种MnO2@Ni(OH)2/NF电容电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282084A (zh) * 1999-07-23 2001-01-31 太阳化学工业株式会社 具有外部端子电极的电子部件及其制造方法
US6423447B1 (en) * 1999-03-15 2002-07-23 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and method of production of the same
CN109449424A (zh) * 2018-11-14 2019-03-08 陕西科技大学 一种钼酸钴复合碳点锂离子电池阳极材料及其制备方法
CN113421775A (zh) * 2021-06-22 2021-09-21 重庆文理学院 一种NiO@CoMoO4/NF电容电极的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548835A (en) * 1981-07-16 1985-10-22 Matsushita Electric Industrial Company, Limited Method for fabricating electrodes for use in lead storage batteries
JP2011175747A (ja) * 2010-02-23 2011-09-08 Furukawa Battery Co Ltd:The 複合キャパシタ負極板の製造法、複合キャパシタ負極板及び鉛蓄電池
JP5828233B2 (ja) * 2011-06-29 2015-12-02 トヨタ自動車株式会社 リチウムイオン二次電池
JP2015084320A (ja) * 2013-09-17 2015-04-30 株式会社東芝 電池用活物質材料、電極、非水電解質電池及び電池パック
CN109545576B (zh) * 2018-11-28 2020-05-19 浙江大学 镍钴磷-碳-氢氧化镍三元复合电极材料的制备方法
CN110364709A (zh) * 2019-06-30 2019-10-22 山东华亿比科新能源股份有限公司 一种锂电池用钛酸锂复合负极材料及其制备方法
CN110828789B (zh) * 2019-10-12 2021-07-16 东莞市创明电池技术有限公司 锂离子电池负极浆料及其制备方法、负极片和锂离子电池
CN111403705A (zh) * 2020-03-19 2020-07-10 风帆有限责任公司 一种高功率锂电池的负极材料、制备方法及锂电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423447B1 (en) * 1999-03-15 2002-07-23 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and method of production of the same
CN1282084A (zh) * 1999-07-23 2001-01-31 太阳化学工业株式会社 具有外部端子电极的电子部件及其制造方法
CN109449424A (zh) * 2018-11-14 2019-03-08 陕西科技大学 一种钼酸钴复合碳点锂离子电池阳极材料及其制备方法
CN113421775A (zh) * 2021-06-22 2021-09-21 重庆文理学院 一种NiO@CoMoO4/NF电容电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU ENMIN, TIAN LIANGLIANG, CHENG ZHENGFU, FU CHUNPING: "Design of NiO Flakes@CoMoO4 Nanosheets Core-Shell Architecture on Ni Foam for High-Performance Supercapacitors", NANOSCALE RESEARCH LETTERS, SPRINGER, US, vol. 14, no. 1, 1 December 2019 (2019-12-01), US , XP093016389, ISSN: 1931-7573, DOI: 10.1186/s11671-019-3054-3 *

Also Published As

Publication number Publication date
CN113421775B (zh) 2022-05-13
CN113421775A (zh) 2021-09-21
LU503498B1 (en) 2023-04-17

Similar Documents

Publication Publication Date Title
WO2022268055A1 (zh) 一种NiO@CoMoO4/NF电容电极的制备方法
WO2018192341A1 (zh) 一种金属二次电池负极用三维集流体及其制备方法和用途
CN105789560B (zh) 一种采用激光熔覆复合扩散焊和脱合金制备锂离子电池硅负极的方法
CN110416507B (zh) 一种原位自组装三维花状二硫化钴/MXene复合材料及其制备方法和应用
WO2022268038A1 (zh) 一种循环稳定性好的超级电容器的制备方法
WO2022062320A1 (zh) 一种含有金属元素梯度掺杂的负极材料及其应用
CN108390042A (zh) 一种碳包SnS2复合材料及其制备方法和应用
CN108807842B (zh) 硅@碳-石墨烯基柔性复合材料及其制备方法、锂电池
CN110931739B (zh) 一种ZnS/SnS/三硫化二锑@C空心纳米立方体结构复合材料及其制备方法和应用
CN110233252A (zh) 一种钠离子电池正极材料表面改性方法
CN110416501B (zh) 一种静电自组装三维花状二硫化钴/rGO复合材料及其制备方法和应用
CN107993855A (zh) 一种高电压钠离子超级电容器的制备方法
CN111477852B (zh) 具有网道结构的复合负极材料及其制备方法和应用
CN112614992A (zh) 一种水系锌镍电池镍复合正极材料及其制备方法
CN109546093A (zh) 还原氧化石墨烯和四氧化三猛改性碳化钛锂离子电池负极材料及其制备方法
CN106784613A (zh) 一种用于锂离子电池的多孔硅镀铜电极及其制备方法
CN106784762B (zh) 一种纳米硅阵列负极材料的制备方法及其应用
CN113659127A (zh) 一种碳纳米纤维/钛酸锂复合电极材料及其制备方法和应用
CN109935804B (zh) 一种长寿命硫化锡负极材料及其制备方法
CN114242981B (zh) 一种TiO2-SnO2复合材料及其制备方法和应用
CN112993246A (zh) 一种高性能钠离子电池负极材料及其制备方法
CN110752363A (zh) 一种复合负极材料的制备方法
WO2018032980A1 (zh) 一种钠离子电池正极材料的制备方法
CN114068869B (zh) 一种核-壳结构硅@氧化亚硅/碳负极材料及其制备方法与应用
CN108682836A (zh) 硅-碳复合物电极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827548

Country of ref document: EP

Kind code of ref document: A1