WO2022257962A1 - 耐摩擦高抗剪复合橡胶密封材料 - Google Patents

耐摩擦高抗剪复合橡胶密封材料 Download PDF

Info

Publication number
WO2022257962A1
WO2022257962A1 PCT/CN2022/097616 CN2022097616W WO2022257962A1 WO 2022257962 A1 WO2022257962 A1 WO 2022257962A1 CN 2022097616 W CN2022097616 W CN 2022097616W WO 2022257962 A1 WO2022257962 A1 WO 2022257962A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
friction
resistant
sodium
active surface
Prior art date
Application number
PCT/CN2022/097616
Other languages
English (en)
French (fr)
Inventor
张刚
邓萧
李洪春
李东升
雷征
毛其泽
严光明
杨杰
严永刚
Original Assignee
四川大学
西安航天动力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学, 西安航天动力研究所 filed Critical 四川大学
Publication of WO2022257962A1 publication Critical patent/WO2022257962A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4006(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones

Definitions

  • the invention relates to a friction-resistant and high-shear-resistant composite rubber sealing material, which belongs to the field of friction-resistant materials.
  • the application number is 200710074525X, which discloses an environment-friendly SEBS thermoplastic elastomer sealing strip material and its preparation method, including 100 parts by weight of SEBS resin and its modified products, 75-125 parts of rubber filler oil, and 20-40 parts of polypropylene , 10-30 parts of polyolefin elastomer, 150-250 parts of mineral filler, 0.4-0.8 part of lubricant and 0.45-0.6 part of anti-aging agent.
  • the application number is 2011103242653, which discloses a dimensionally stable rubber and plastic sealing material at high and low temperatures and its preparation method.
  • the raw materials include: matrix resin, filler oil, thermoplastic elastomer, mineral filler, coupling agent, processing aid and stabilizer .
  • the invention provides a friction-resistant and high-shear-resistant composite rubber sealing material.
  • soft segments of different carbon chain lengths containing polyetheramine into the main molecular chain of semi-aromatic polyamide plastics, it can maintain excellent friction performance and endow traditional
  • the semi-aromatic polyetheramide has excellent flexibility and stress-deformation recoverability, so as to achieve deformation parameters matching with traditional rubber materials; in addition, the present invention introduces active carboxyl groups into the main chain of polymer molecules through copolymerization, and through molecular Interfacial hydrogen bond and van der Waals force greatly improve the interfacial bonding force between materials and rubber products, thereby overcoming the problems of poor interfacial bonding force and shear resistance of traditional rubber-plastic composite materials.
  • the first technical problem to be solved by the present invention is to provide a friction-resistant and high-shear composite rubber sealing material, the raw material of which is composed of the following components:
  • Anti-friction active surface modification resin 0.1-10 parts by weight
  • anti-friction active surface modified resin is prepared by the following method:
  • the ether-containing diamine is the following substance:
  • step 2) the structural formula of the aromatic diphenol is HO-Ar 2 -OH, wherein,
  • step 2) the structural formula of the carboxyl-containing diphenol is
  • the surfactant is sodium dodecylbenzenesulfonate, sodium benzenesulfonate, sodium alginate, Tween 80, OP-10, Span80, PEG-200, PEG-400, PEG -800, PEG-1000 or sodium lauryl sulfate.
  • the organic solvent is: acetone, ethanol, methanol, methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane Any of alkanes, carbon disulfide, chlorobenzene, m-dichlorobenzene, and 1,2,4-trichlorobenzene.
  • the alkali is sodium hydroxide, potassium hydroxide, lithium hydroxide, triethylamine, trimethylamine or tripropylamine, etc.
  • step 1) the viscous crude product is washed with deionized water and separated for 4 times to remove water-soluble impurities to obtain a colorless high-viscosity fluid product, which is dried at 80-110° C. for 6-24 hours.
  • the catalyst is sodium formate, sodium acetate, sodium propionate, sodium butyrate, sodium isovalerate, sodium hexanoate, sodium terephthalate, sodium oxalate, 15-crown-5, 18 - Crown-6, sodium edetate, sodium tartrate, sodium lactate, sodium sorbate, potassium sorbate, ammonium polyphosphate, sodium lysine, potassium lysine, sodium cystine, sodium 6-aminocaproate or at least one of sodium sulfanilate.
  • the dehydrating agent is any one of toluene or xylene.
  • the alkali is lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate or barium bicarbonate of any kind.
  • the polar solvent is N-methylpyrrolidone, N-cyclohexylpyrrolidone, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolinone, N-methyl Caprolactam, N,N-dimethylacrylurea, N,N,N',N'-tetramethylurea, dimethylsulfoxide, dimethylsulfone, N,N-dimethylformamide, N,N-Dimethylacetamide, Isoquinoline, Diphenylsulfone, Benzophenone, Sulfolane, 1-Methyl-3-Propylimidazolium Bromide, 1-Methyl-3-Isopropylimidazole Either of bromide salt or 1,3-dipropylimidazolium bromide salt.
  • step 2) the dihalogenated diphenyl sulfone is:
  • step 2) the dihalogenated benzophenone monomer is:
  • the carboxylating agent is any one of formic acid, glacial acetic acid, propionic acid, concentrated hydrochloric acid, phosphoric acid or dilute sulfuric acid.
  • the purification method of the anti-friction active surface modified resin in step 3) is as follows: after the crude polymer product is crushed, boiled and filtered, then 50-200 parts of carboxylation reagent and 1500 parts of deionized water are added in turn for reflux reaction After 1-6 hours, filter and collect the filter cake, wash with deionized water and ethanol respectively, filter, collect the filter cake and dry at a temperature of 70-110° C. for 1-12 hours to obtain a purified anti-friction active surface modified resin.
  • the second technical problem to be solved by the present invention is to provide a method for preparing a friction-resistant high-shear composite rubber sealing material.
  • the preparation method is as follows: firstly, the friction-resistant active surface modified resin solution is evenly coated on the surface of the semi-vulcanized rubber , then remove the solvent and dry to obtain a rubber composite coating, and finally mold the rubber composite coating to obtain a friction-resistant and high-shear-resistant composite rubber sealing material.
  • the molding temperature is 100-300° C.
  • the molding pressure is 1-10 MPa
  • the molding time is 10-300 s.
  • Improper molding temperature may lead to poor plasticization or pyrolysis of the coating; too much molding pressure will lead to excessive residual stress of the coating, which is easy to crack; too low pressure will result in weak bonding between the coating and rubber; too much molding time , The plasticizing combination is not good, and the time is too long, which will cause the rubber product to be over-vulcanized and harden to lose elasticity.
  • the mass concentration of the anti-friction active surface modification resin solution is 3-20%.
  • the semi-vulcanized rubber is treated with low-temperature plasma before use, the treatment time is 2-60s, the treatment power is 50-500w, and the treatment temperature is room temperature to 100°C.
  • the friction-resistant active surface modification resin solution is evenly coated on the surface of the semi-vulcanized rubber by means of solution coating, electrostatic adsorption or spray coating; preferably, spin coating in solution coating.
  • the coating thickness is controlled to be 10-100 ⁇ m.
  • the method for evenly coating the anti-friction active surface modification resin solution on the surface of the semi-vulcanized rubber is: the semi-vulcanized rubber after plasma treatment is coated with the anti-friction active surface modification resin by the method of solution coating (spin coating).
  • solution coating spin coating
  • the solution is evenly swirled and dip-coated, and undergoes gel inversion.
  • the gel conversion gel bath is any one of deionized water, water+ethanol, water+methanol, water+acetone, water+NMP, water+DMF, water+DMAc or water+DMI.
  • the third technical problem to be solved in the present invention is to provide a preparation method of the anti-friction active surface modified resin, the preparation method is:
  • the fourth technical problem to be solved by the present invention is to provide a friction-resistant active surface-modified resin, which is prepared by the above-mentioned method. Because its main chain is a semi-aromatic polyarylether structure, it maintains excellent thermal properties, processability, mechanical properties, corrosion resistance and aging resistance; at the same time, due to the presence of active carboxyl groups, the prepared resin makes its It is very suitable as a high-performance interface modifier to improve the interfacial bonding strength of composite materials.
  • the resin prepared by the present invention is a semi-aromatic polyaryl ether amide resin, which has excellent thermal properties, processability, mechanical properties, corrosion resistance and aging resistance, etc., and has excellent friction resistance;
  • the present invention introduces soft segments of different carbon chain lengths containing polyetheramine into the main molecular chain of semi-aromatic polyamide plastics, so as to maintain excellent friction performance and endow traditional semi-aromatic polyetheramides with excellent flexibility and stress Deformation recoverability, so as to achieve deformation parameters matching traditional rubber materials;
  • the present invention introduces active carboxyl groups into the main chain of polymer molecules through copolymerization, and through the effects of intermolecular hydrogen bonds and van der Waals forces, greatly improves the interfacial bonding force between materials and rubber products, thereby overcoming the traditional rubber-plastic composite interface.
  • the present invention is introduced through the copolymerization of dihalogenated diphenyl sulfone or dihalogenated benzophenone monomers, and at the same time endows the flame retardant properties that traditional polyetheramides do not have, making it capable of high heat resistance and flame retardant for special needs application scenarios.
  • the present invention introduces soft segments of different carbon chain lengths containing polyetheramine into semi-aromatic polyamide In the main chain of plastic molecules, while maintaining excellent friction properties, traditional semi-aromatic polyetheramides are endowed with excellent flexibility and stress-deformation recoverability, so as to achieve deformation parameters matching traditional rubber materials; at the same time, the active carboxyl groups are copolymerized Introduced into the main chain of polymer molecules, through the effects of intermolecular hydrogen bonds and van der Waals forces, the interface bonding force between materials and rubber products is greatly improved, thereby overcoming the problems of poor interface bonding force and shear resistance of traditional rubber-plastic composite materials; It provides a new technical solution for the development of high-performance friction-resistant and shear-resistant composite materials.
  • Figure 1 is the NMR image of the purified anti-friction active surface-modified resin obtained in Example 1.
  • FIG. 2 is an infrared image of the purified anti-friction active surface-modified resin obtained in Example 1.
  • Fig. 3 is the NMR image of the purified anti-friction active surface modified resin obtained in Example 2.
  • FIG. 4 is an infrared image of the purified anti-friction active surface-modified resin obtained in Example 2.
  • Figure 5 is the NMR image of the purified anti-friction active surface-modified resin obtained in Example 3.
  • FIG. 6 is an infrared image of the purified anti-friction active surface-modified resin obtained in Example 3.
  • the present invention utilizes its excellent comprehensive properties (good flexibility, elongation at break, chemical corrosion resistance, Excellent wear resistance, aging resistance, high and low temperature performance stability and excellent interfacial activity, etc.) Coating it with traditional rubber can improve the friction performance of rubber seals. At the same time, compared with traditional rubber and plastic modification, through The active carboxyl group and the plasma-treated rubber polar interface greatly improve its interfacial adhesion, and finally obtain a composite rubber and plastic product that is resistant to friction and shear and is suitable for high-performance seals.
  • the specific implementation of the present invention will be further described below in conjunction with the examples, and the present invention is not limited to the scope of the examples.
  • the anti-friction active surface modified resin was made into a solution with a mass concentration of 8%, and the semi-vulcanized rubber was treated with low-temperature plasma before use, the treatment time was 30s, the treatment power was 500w, and the treatment temperature was 60°C; A good anti-friction active surface modification resin solution is coated on the treated rubber surface, and the thickness of the coating film is controlled to be 45-55 ⁇ m, and the gel conversion is carried out in water, and the solvent is removed, and then molded after drying.
  • the molding temperature is 200°C
  • molding pressure is 3MPa
  • molding time is 300s
  • the friction coefficient measured by universal friction and wear testing machine is 0.5, compared with pure nitrile
  • the rubber 0.75-0.8 is reduced by about 0.25-0.3
  • the anti-friction active surface modified resin was made into a solution with a mass concentration of 10%, and at the same time, the semi-vulcanized rubber was treated with low-temperature plasma before use.
  • the treatment time was 60s, the treatment power was 200w, and the treatment temperature was 40°C;
  • a good anti-friction active surface modification resin solution is coated on the treated rubber surface, and the thickness of the coating film is controlled to be 60-65 ⁇ m, and the gel conversion is carried out in a mixed coagulation bath of water and ethanol, and the solvent is removed, and after drying Molding is carried out again, the molding temperature is 240°C, the molding pressure is 5MPa, and the molding time is 200s.
  • the anti-friction active surface modified resin was made into a solution with a mass concentration of 8%, and the semi-vulcanized rubber was treated with low-temperature plasma before use, the treatment time was 50s, the treatment power was 200w, and the treatment temperature was 70°C; A good anti-friction active surface modification resin solution is coated on the treated rubber surface, the thickness of the coating film is controlled to be 50-55 ⁇ m, and the gel conversion is carried out in water, and the solvent is removed, and then molded after drying.
  • the molding temperature is 260°C, molding pressure 5MPa, molding time 240s, and finally obtain a friction-resistant high-shear-resistant composite rubber sealing material.
  • the friction coefficient measured by a universal friction and wear testing machine is 0.48, compared to pure nitrile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)

Abstract

本发明涉及一种耐摩擦高抗剪复合橡胶密封材料,属于耐摩擦材料领域。本发明提供一种耐摩擦高抗剪复合橡胶密封材料,原料包括:耐摩擦活性表面改性树脂0.1~10重量份,半硫化橡胶50~90重量份;所述耐摩擦活性表面改性树脂的结构式如式I所示,其中,0<m≤200,0<n≤200。本发明通过将含聚醚胺的不同碳链长度软段引入到半芳族聚酰胺塑料分子主链中,保持优良摩擦性能的同时赋予传统半芳族聚醚酰胺优异的柔韧性及应力变形可回复性;本发明将活性羧基通过共聚的方式引入到聚合物分子主链中,通过分子间氢键及范德华力等作用,大幅改善材料与橡胶制品的界面结合力,从而克服传统橡塑复合材料界面结合力、抗剪切力差的问题。

Description

耐摩擦高抗剪复合橡胶密封材料 技术领域
本发明涉及一种耐摩擦高抗剪复合橡胶密封材料,属于耐摩擦材料领域。
背景技术
对运动密封而言,摩擦力是一个与运动质量有关的重要因素。而密封和摩擦总是互相制约。一般来说提高密封性会带来摩擦力的增加,摩擦力增加直接导致运动能力与质量的降低;并且摩擦力会加速密封的磨损。
目前通用的发动机密封件大部分采用乙丙橡胶或丁腈橡胶等,但作为密封件材料的一种,其摩擦性能仍需进一步提高;与橡胶相比,塑料一般具有更低的摩擦系数,更优异的阻隔性和更高的强度和硬度,在摩擦过程中,由于塑料具有更高的硬度,因而塑料的磨粒磨损更小。为提高橡胶密封件的密封性能,提出结合高性能特种塑料和橡胶的优势,在保证橡胶基体韧性、弹性不减弱的同时,大幅提高橡胶的摩擦和密封性能。申请号为200710074525X公开了一种环保型SEBS热塑性弹性体密封条材料及其制备方法,包括重量份100份的SEBS树脂及其改性物,75-125份橡胶填充油,20-40份聚丙烯、10-30份聚烯烃弹性体、150-250份矿物填料、0.4-0.8份润滑剂和0.45-0.6份的防老化剂。申请号为2011103242653公开了一种高低温下尺寸稳定的橡塑密封材料及其制备方法,原料包括:基体树脂、填充油、热塑性弹性体、矿物填充剂、偶联剂、加工助剂和稳定剂。
但是现有技术中尚未发现有合成类的耐摩擦高抗剪复合橡胶密封材料的相关报道。
发明内容
本发明提供一种耐摩擦高抗剪复合橡胶密封材料,由于通过将含聚醚胺的不同碳链长度软段引入到半芳族聚酰胺塑料分子主链中,保持优良摩擦性能的同时赋予传统半芳族聚醚酰胺优异的柔韧性及应力变形可回复性,从而达到与传统橡胶材料匹配的形变参数;另外,本发明将活性羧基通过共聚的方式引入到聚合物分子主链中,通过分子间氢键及范德华力等作用,大幅改善材料与橡胶制品的界面结合力,从而克服传统橡塑复合材料界面结合力、抗剪切力差的问题。
本发明的技术方案:
本发明要解决的第一个技术问题是提供一种耐摩擦高抗剪复合橡胶密封材料,其原料由以下组分组成:
耐摩擦活性表面改性树脂    0.1~10重量份
半硫化橡胶                50~90重量份
所述耐摩擦活性表面改性树脂的结构式如式I所示:
Figure PCTCN2022097616-appb-000001
其中,0<m≤200,0<n≤200,
Figure PCTCN2022097616-appb-000002
Figure PCTCN2022097616-appb-000003
中的任一种。。
进一步,所述耐摩擦活性表面改性树脂采用下述方法制备得到:
1)含不同软段长度的二卤代单体的制备及纯化:
先将含不同链段长度含醚二胺230~2000份,碱80~120份,表面活性剂0.5~40份依次加入到500~5000份的去离子水中,于室温下溶解得含醚二胺溶液;再将对氯苯甲酰氯348份或对氟苯甲酰氯317份与500~5000份有机溶剂混合均匀后加入到容器中;然后将含醚二胺溶液滴加入到容器中,待二胺溶液滴加完后,在室温下继续反应2~5h,生成含不同软段长度的二卤代单体;将上述单体中的有机溶剂蒸馏回收,收集粘状粗产品,经洗涤、去除溶剂、干燥得纯化的含不同软段长度的二卤代单体,结构式如下:
Figure PCTCN2022097616-appb-000004
其中:X=F或Cl;
2)耐摩擦活性表面改性树脂粗品的制备:
将含不同软段长度的二卤代单体47.4~225份,催化剂0.5~10份,脱水剂5~40份,芳族二酚90~276份,含羧基二酚16~32份,碱80~300份和极性溶剂400~2000份加入反应釜中,在氮气保护下,于温度130~190℃下脱水反应0.5~3h;再加入二卤代二苯砜或二卤代二苯甲酮单体205~275份,在190~230℃继续反应1~8h,得到粘稠的聚合物溶液;再将 聚合物溶液降温至25~150℃,边搅拌边倒入水中,析出线条状聚合物粗品;
3)耐摩擦活性表面改性树脂的纯化:
将聚合物粗品经粉碎、过滤后;再依次加入羧基化试剂50~200份,去离子水进行回流反应1~6h,过滤、收集滤饼;再分别用去离子水、醇洗涤、过滤,收集滤饼并干燥得纯化的耐摩擦活性表面改性树脂。
进一步,步骤1)中,所述含醚二胺为下述物质:
Figure PCTCN2022097616-appb-000005
进一步,步骤2)中,所述芳族二酚的结构式为HO-Ar 2-OH,其中,
Figure PCTCN2022097616-appb-000006
Figure PCTCN2022097616-appb-000007
中的任一种。
进一步,步骤2)中,所述含羧基二酚的结构式为
Figure PCTCN2022097616-appb-000008
进一步,步骤1)中,所述表面活性剂为十二烷基苯磺酸钠、苯磺酸钠、海藻酸钠、吐温80、OP-10、Span80、PEG-200、PEG-400、PEG-800、PEG-1000或十二烷基磺酸钠中的任一种。
进一步,步骤1)中,所述有机溶剂为:丙酮、乙醇、甲醇、二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、1,1,2,2-四氯乙烷、二硫化碳、氯苯、间二氯苯、1,2,4-三氯苯中的任一种。
进一步,步骤1)中,所述碱为氢氧化钠、氢氧化钾、氢氧化锂、三乙胺、三甲胺或三丙胺等。
进一步,步骤1)中,粘状粗产品用去离子水分别洗涤、分水4次,除去水溶性杂质,得到无色高粘度流体产品,80-110℃干燥6-24h。
进一步,步骤2)中,所述催化剂为甲酸钠、醋酸钠、丙酸钠、丁酸钠、异戊酸钠、己酸钠、对苯二甲酸钠、乙二酸钠、15-冠-5、18-冠-6、乙二胺四乙酸钠、酒石酸钠、乳酸钠、山梨酸钠、山梨酸钾、聚磷酸铵、赖氨酸钠、赖氨酸钾、胱氨酸钠、6-氨基己酸钠或对氨基苯磺酸钠中的至少一种。
进一步,步骤2)中,所述脱水剂为甲苯或二甲苯中的任一种。
进一步,步骤2)中,碱为氢氧化锂、氢氧化钠、氢氧化钾、氢氧化钙、氢氧化钡、碳酸锂、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾或碳酸氢钡中的任一种。
进一步,步骤2)中,所述极性溶剂为N-甲基吡咯烷酮、N-环己基吡咯烷酮、六甲基磷酰三胺、1,3-二甲基-2-咪唑啉酮、N-甲基己内酰胺、N,N-二甲基丙烯基脲、N,N,N’,N’-四甲基脲、二甲基亚砜、二甲基砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、异喹啉、二苯砜、二苯甲酮、环丁砜、1-甲基-3-丙基咪唑溴代盐、1-甲基-3-异丙基咪唑溴代盐或1,3-二丙基咪唑溴代盐中的任一种。
进一步,步骤2)中,所述二卤代二苯砜为:
Figure PCTCN2022097616-appb-000009
进一步,步骤2)中,所述二卤代二苯甲酮单体为:
Figure PCTCN2022097616-appb-000010
进一步,步骤3)中,所述羧基化试剂为甲酸、冰乙酸、丙酸、浓盐酸、磷酸或稀硫酸中的任一种。
进一步,步骤3)所述耐摩擦活性表面改性树脂的纯化方法为:将聚合物粗品经粉碎、水煮过滤后,再依次加入羧基化试剂50~200份,去离子水1500份进行回流反应1-6h,过滤、收集滤饼,再分别用去离子水、乙醇洗涤、过滤,收集滤饼并于温度70~110℃下干燥1~12h,获得纯化的耐摩擦活性表面改性树脂。
本发明要解决的第二个技术问题是提供一种耐摩擦高抗剪复合橡胶密封材料的制备方法,所述制备方法为:先将耐摩擦活性表面改性树脂溶液均匀涂覆在半硫化橡胶表面,然后去除溶剂并干燥得橡胶复合涂层,最后将橡胶复合涂层通过模压制得耐摩擦高抗剪复合橡胶密封材料。
进一步,模压温度为100~300℃,模压压力为1~10MPa,模压时间为10~300s。模压温度不合适可能导致涂层塑化不好或高温分解;模压压力太大会导致涂层残余应力过大,易开裂,压力太小,涂层与橡胶复合粘结力较弱;模压时间太多,塑化结合不好,时间太长,会导致橡胶制品过硫化而产生硬化失去弹性。
进一步,所述耐摩擦活性表面改性树脂溶液得质量浓度为3~20%。
进一步,半硫化橡胶使用前先进行低温等离子体处理,处理时间:2~60s,处理功率50~500w,处理温度室温~100℃。
进一步,将耐摩擦活性表面改性树脂溶液均匀涂覆在半硫化橡胶表面采用溶液涂覆、静电吸附或喷涂的方式;优选为溶液涂覆中的旋转涂覆。
进一步,控制涂层厚度为10~100μm。
优选的,将耐摩擦活性表面改性树脂溶液均匀涂覆在半硫化橡胶表面的方法为:将等离子体处理后的半硫化橡胶通过溶液涂覆(旋转涂膜)的方法将耐摩擦活性表面改性树脂溶液均匀旋转浸渍涂覆,并进行凝胶转化。
进一步,所述凝胶转化凝胶浴为去离子水、水+乙醇、水+甲醇、水+丙酮、水+NMP、水+DMF、水+DMAc或水+DMI中的任一种。
本发明要解决的第三个技术问题是提供一种所述耐摩擦活性表面改性树脂的制备方法,所述制备方法为:
1)含不同软段长度的二卤代单体的制备及纯化:
先将含不同链段长度含醚二胺230~2000份,碱80~120份,表面活性剂0.5~40份依次加入到500~5000份的去离子水中,于室温下溶解得含醚二胺溶液;再将对氯苯甲酰氯348份或对氟苯甲酰氯317份与500~5000份有机溶剂混合均匀后加入到容器中;然后将含醚二胺溶液滴加入到容器中,待二胺溶液滴加完后,在室温下继续反应2~5h,生成含不同软段长度的二卤代单体;将上述单体中的有机溶剂蒸馏回收,收集粘状粗产品,经洗涤、去除溶剂、干燥得纯化的含不同软段长度的二卤代单体,结构式如下:
Figure PCTCN2022097616-appb-000011
其中:X=F或Cl;
2)耐摩擦活性表面改性树脂粗品的制备:
将含不同软段长度的二卤代单体47.4~225份,催化剂0.5~10份,脱水剂5~40份,芳族二酚90~276份,含羧基二酚16~32份,碱80~300份和极性溶剂400~2000份加入反应釜中,在氮气保护下,于温度130~190℃下脱水反应0.5~3h;再加入二卤代二苯砜或二卤代二苯甲酮单体205~275份,在190~230℃继续反应1~8h,得到粘稠的聚合物溶液;再将聚合物溶液降温至25~150℃,边搅拌边倒入水中,析出线条状聚合物粗品;
3)耐摩擦活性表面改性树脂的纯化:
将聚合物粗品经粉碎、过滤后;再依次加入羧基化试剂50~200份,去离子水进行回流反应1~6h,过滤、收集滤饼;再分别用去离子水、醇洗涤、过滤,收集滤饼并干燥得纯化的耐摩擦活性表面改性树脂。
本发明要解决的第四个技术问题是提供一种耐摩擦活性表面改性树脂,其采用上述方法制得。由于其主链为半芳族聚芳醚结构,使得其保持了优异的热性能、可加工性、机械性能、耐腐蚀耐老化等性能;同时所制得树脂由于其活性羧基的存在,使得其非常适合作为高性能界面改性剂,提高复合材料的界面结合强度。
本发明的有益效果:
1、本发明所制备的树脂属半芳族聚芳醚酰胺树脂,具有优异的热性能、可加工性、机械性能、耐腐蚀耐老化性能等,同时具有优异的耐摩擦性能;
2、本发明通过将含聚醚胺的不同碳链长度软段引入到半芳族聚酰胺塑料分子主链中,保持优良摩擦性能的同时赋予传统半芳族聚醚酰胺优异的柔韧性及应力变形可回复性,从而达到与传统橡胶材料匹配的形变参数;
3、本发明将活性羧基通过共聚的方式引入到聚合物分子主链中,通过分子间氢键及范德华力等作用,大幅改善材料与橡胶制品的界面结合力,从而克服传统橡塑复合材料界面结合力、抗剪切力差的问题;
4、本发明通过二卤代二苯砜或二卤代二苯甲酮单体的共聚引入,同时赋予了传统聚醚酰胺不具备的阻燃性能,使其能够胜任特殊需要高耐热阻燃的应用场景。
塑料制品由于其分子结构及相对刚性的特点,相较与橡胶材料通常具有较低的摩擦系数和磨损磨耗,本发明通过将含聚醚胺的不同碳链长度软段引入到半芳族聚酰胺塑料分子主链中,保持优良摩擦性能的同时赋予传统半芳族聚醚酰胺优异的柔韧性及应力变形可回复性,从而达到与传统橡胶材料匹配的形变参数;同时将活性羧基通过共聚的方式引入到聚合物分子主链中,通过分子间氢键及范德华力等作用,大幅改善材料与橡胶制品的界面结合力,从而克服传统橡塑复合材料界面结合力、抗剪切力差的问题;为高性能耐摩擦抗剪切复合材料的开发提供了一条全新的技术方案。
附图说明:
图1为实施例1所得纯化的耐摩擦活性表面改性树脂的核磁图。
图2为实施例1所得纯化的耐摩擦活性表面改性树脂的红外图。
图3为实施例2所得纯化的耐摩擦活性表面改性树脂的核磁图。
图4为实施例2所得纯化的耐摩擦活性表面改性树脂的红外图。
图5为实施例3所得纯化的耐摩擦活性表面改性树脂的核磁图。
图6为实施例3所得纯化的耐摩擦活性表面改性树脂的红外图。
具体实施方式
本发明从分子结构构建的角度出发,通过制备高性能含羧基接枝基团的半芳族聚醚酰胺,利用其优异的综合性能(良好的柔韧性、断裂伸长率、耐化学腐蚀性、优异的耐磨性、耐老化性能、高低温性能稳定及优异的界面活性等)将其与传统橡胶进行涂层复合,改善橡胶密封件的摩擦性能,同时相对于传统的橡塑改性,通过其活性羧基与等离子体处理后的橡胶极性界面,大幅改善其界面粘合力,最终获得耐摩擦抗剪 切适合高性能密封件的复合橡塑制品。下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实例范围之中。
实施例1
(1)含不同软段长度的二卤代单体的制备及纯化:
将含33个烷基碳的含醚二胺2000g,氢氧化钠80g,十二烷基苯磺酸钠3g依次加入到5000g的去离子水中,于室温下溶解得含醚二胺溶液;将对氟苯甲酰氯317g与5000g二氯甲烷混合均匀后加入到容器中,然后将上述配置好的含醚二胺溶液滴加入到容器中,待二胺溶液滴加完后,在室温下继续反应5h,生成含33个烷基碳二酰胺二氟代单体;将上述单体中的有机溶剂蒸馏回收,收集粘状粗产品,经水洗涤4次、去除溶剂、110℃干燥6h得纯化的含33个烷基碳二酰胺二氟代单体,结构式如下:
Figure PCTCN2022097616-appb-000012
(2)耐摩擦活性表面改性树脂粗品的制备:
将含33个烷基碳二酰胺二氟代单体225g,醋酸钠0.5g,甲苯40g,联苯二酚257.4g,含羧基二酚32g,碳酸钠126g和N-环己基吡咯烷酮2000g加入反应釜中,在氮气保护下,于温度190℃下脱水反应0.5h;再加入4,4’-二氯二苯砜258.3g,在210℃继续反应4h,得到粘稠的聚合物溶液;再将聚合物溶液降温至50℃,边搅拌边倒入水中,析出线条状聚合物粗品;
(3)耐摩擦活性表面改性树脂的纯化:
将聚合物粗品经粉碎、水煮过滤后,再依次加入浓盐酸50g,去离子水1500份进行回流反应1h,过滤、收集滤饼,再分别用去离子水、乙醇洗涤、过滤,收集滤饼并于温度70℃下干燥12h,获得纯化的耐摩擦活性表面改性树脂,聚合物红外、核磁如图1、图2所示;聚合物的结构式为
Figure PCTCN2022097616-appb-000013
(4)耐摩擦活性表面改性树脂与橡胶的复合:
将所述耐摩擦活性表面改性树脂配成质量浓度为8%的溶液,同时将半硫化橡胶使用前先进行低温等离子体处理,处理时间:30s,处理功率500w,处理温度60℃;再将配置好的耐摩擦活性表面改性树脂溶液涂覆在处理后的橡胶表面,控制其涂膜厚度为45-55μm,并在水中进行凝胶转化,并去除溶剂,干燥后再进行模压,模压温度为200℃,模压压力为3MPa,模压时间为300s,最后得到耐摩擦高抗剪复合橡胶密封材料,采用万能摩擦磨 损试验机(往复次数5400次)测得其摩擦系数为0.5,相对于纯丁腈橡胶0.75-0.8减小了约0.25-0.3,磨损量为Mv=1.000x10 6μm 3,大幅度改善了橡胶的摩擦性能。
实施例2
(1)含不同软段长度的二卤代单体的制备及纯化:
将含5个烷基碳的含醚二胺400g,氢氧化锂90g,PEG-1000 10g依次加入到4000g的去离子水中,于室温下溶解得含醚二胺溶液;将对氟苯甲酰氯317g与4000g氯仿混合均匀后加入到容器中,然后将上述配置好的含醚二胺溶液滴加入到容器中,待二胺溶液滴加完后,在室温下继续反应3h,生成含5个烷基碳二酰胺二氟代单体;将上述单体中的有机溶剂蒸馏回收,收集粘状粗产品,经水洗涤4次、去除溶剂、100℃干燥24h得纯化的含5个烷基碳二酰胺二氟代单体,结构式如下:
Figure PCTCN2022097616-appb-000014
(2)耐摩擦活性表面改性树脂粗品的制备:
将含5个烷基碳二酰胺二氟代单体65g,15-冠-5 5g,二甲苯30g,联苯二酚257.4g,含羧基二酚32g,碳酸钾156g和N-甲基吡咯烷酮1800g加入反应釜中,在氮气保护下,于温度180℃下脱水反应3h;再加入4,4’-二氯二苯砜258.3g,在200℃继续反应4h,得到粘稠的聚合物溶液;再将聚合物溶液降温至60℃,边搅拌边倒入水中,析出线条状聚合物粗品;
(3)耐摩擦活性表面改性树脂的纯化:
将聚合物粗品经粉碎、水煮过滤后,再依次加入磷酸60g,去离子水1500份进行回流反应1h,过滤、收集滤饼,再分别用去离子水、乙醇洗涤、过滤,收集滤饼并于温度80℃下干燥10h,获得纯化的耐摩擦活性表面改性树脂,聚合物红外、核磁如图3和图4所示;聚合物的结构式为
Figure PCTCN2022097616-appb-000015
(4)耐摩擦活性表面改性树脂与橡胶的复合:
将所述耐摩擦活性表面改性树脂配成质量浓度为10%的溶液,同时将半硫化橡胶使用前先进行低温等离子体处理,处理时间:60s,处理功率200w,处理温度40℃;再将配置好的耐摩擦活性表面改性树脂溶液涂覆在处理后的橡胶表面,控制其涂膜厚度为60-65μm,并在水和乙醇的混合凝固浴中进行凝胶转化,并去除溶剂,干燥后再进行模压,模压温度为240℃,模压压力为5MPa,模压时间为200s,最后得到耐摩擦高抗剪复合橡胶密封材 料,采用万能摩擦磨损试验机(往复次数5400次)测得其摩擦系数为0.52,相对于纯丁腈橡胶0.75-0.8减小了约0.23-0.28,磨损量为Mv=1.100x10 6μm 3,大幅度改善了橡胶的摩擦性能。
实施例3
(1)含不同软段长度的二卤代单体的制备及纯化:
将含2个烷基碳的含醚二胺230g,三乙胺100g,吐温80 20g依次加入到4500g的去离子水中,于室温下溶解得含醚二胺溶液;将对氯苯甲酰氯348g与3500g氯苯混合均匀后加入到容器中,然后将上述配置好的含醚二胺溶液滴加入到容器中,待二胺溶液滴加完后,在室温下继续反应5h,生成含2个烷基碳二酰胺二卤代单体;将上述单体中的有机溶剂蒸馏回收,收集粘状粗产品,经水洗涤4次、去除溶剂、100℃干燥12h得纯化的含2个烷基碳二酰胺二氯代单体,结构式如下:
Figure PCTCN2022097616-appb-000016
(2)耐摩擦活性表面改性树脂粗品的制备:
将含2个烷基碳二酰胺二氯代单体47.4g,乙二胺四乙酸钠10g,甲苯20g,联苯二酚257.4g,含羧基二酚32g,氢氧化锂96g和1,3-二甲基-2-咪唑啉酮2000g加入反应釜中,在氮气保护下,于温度175℃下脱水反应2h;再加入4,4’-二氯二苯砜258.3g,在220℃继续反应6h,得到粘稠的聚合物溶液;再将聚合物溶液降温至80℃,边搅拌边倒入水中,析出线条状聚合物粗品;
(3)耐摩擦活性表面改性树脂的纯化:
将聚合物粗品经粉碎、水煮过滤后,再依次加入甲酸100g,去离子水1500份进行回流反应3h,过滤、收集滤饼,再分别用去离子水、乙醇洗涤、过滤,收集滤饼并于温度90℃下干燥16h,获得纯化的耐摩擦活性表面改性树脂,聚合物红外、核磁如图5和图6所示;聚合物的结构式为:
Figure PCTCN2022097616-appb-000017
(4)耐摩擦活性表面改性树脂与橡胶的复合:
将所述耐摩擦活性表面改性树脂配成质量浓度为8%的溶液,同时将半硫化橡胶使用前先进行低温等离子体处理,处理时间:50s,处理功率200w,处理温度70℃;再将配置好的耐摩擦活性表面改性树脂溶液涂覆在处理后的橡胶表面,控制其涂膜厚度为50-55μm,并在水中进行凝胶转化,并去除溶剂,干燥后再进行模压,模压温度为260℃,模压压力 为5MPa,模压时间为240s,最后得到耐摩擦高抗剪复合橡胶密封材料,采用万能摩擦磨损试验机(往复次数5400次)测得其摩擦系数为0.48,相对于纯丁腈橡胶0.75-0.8减小了约0.27-0.32,磨损量为Mv=0.95x10 6μm 3,大幅度改善了橡胶的摩擦性能。

Claims (11)

  1. 一种耐摩擦高抗剪复合橡胶密封材料,其特征在于,其原料包括:
    耐摩擦活性表面改性树脂    0.1~10重量份
    半硫化橡胶                50~90重量份
    所述耐摩擦活性表面改性树脂的结构式如式I所示:
    Figure PCTCN2022097616-appb-100001
    其中,0<m≤200,0<n≤200,
    Figure PCTCN2022097616-appb-100002
    Figure PCTCN2022097616-appb-100003
    中的任一种。
  2. 根据权利要求1所述的耐摩擦高抗剪复合橡胶密封材料,其特征在于,所述耐摩擦活性表面改性树脂采用下述方法制备得到:
    1)含不同软段长度的二卤代单体的制备及纯化:
    先将含不同链段长度含醚二胺230~2000份,碱80~120份,表面活性剂0.5~40份依次加入到500~5000份的去离子水中,于室温下溶解得含醚二胺溶液;再将对氯苯甲酰氯348份或对氟苯甲酰氯317份与500~5000份有机溶剂混合均匀后加入到容器中;然后将含醚二胺溶液滴加入到容器中,待二胺溶液滴加完后,在室温下继续反应2~5h,生成含不同软段长度的二卤代单体;将上述单体中的有机溶剂蒸馏回收,收集粘状粗产品,经洗涤、去除溶剂、干燥得纯化的含不同软段长度的二卤代单体,结构式如下:
    Figure PCTCN2022097616-appb-100004
    其中:X=F或Cl;
    2)耐摩擦活性表面改性树脂粗品的制备:
    将含不同软段长度的二卤代单体47.4~225份,催化剂0.5~10份,脱水剂5~40份,芳族二酚90~276份,含羧基二酚16~32份,碱80~300份和极性溶剂400~2000份加入反应釜中, 在氮气保护下,于温度130~190℃下脱水反应0.5~3h;再加入二卤代二苯砜或二卤代二苯甲酮单体205~275份,在190~230℃继续反应1~8h,得到粘稠的聚合物溶液;再将聚合物溶液降温至25~150℃,边搅拌边倒入水中,析出线条状聚合物粗品;
    3)耐摩擦活性表面改性树脂的纯化:
    将聚合物粗品经粉碎、过滤后;再依次加入羧基化试剂50~200份,去离子水进行回流反应1~6h,过滤、收集滤饼;再分别用去离子水、醇洗涤、过滤,收集滤饼并干燥得纯化的耐摩擦活性表面改性树脂。
  3. 根据权利要求2所述的耐摩擦高抗剪复合橡胶密封材料,其特征在于,步骤1)中,所述含醚二胺为下述物质:
    Figure PCTCN2022097616-appb-100005
    进一步,步骤2)中,所述芳族二酚的结构式为HO-Ar 2-OH,其中,
    Figure PCTCN2022097616-appb-100006
    Figure PCTCN2022097616-appb-100007
    中的任一种;
    进一步,步骤1)中,所述有机溶剂为:丙酮、乙醇、甲醇、二氯甲烷、氯仿、四氯化碳、1,2-二氯乙烷、1,1,2,2-四氯乙烷、二硫化碳、氯苯、间二氯苯、1,2,4-三氯苯中的任一种;所述碱为氢氧化钠、氢氧化钾、氢氧化锂、三乙胺、三甲胺或三丙胺;所述表面活性剂为十二烷基苯磺酸钠、苯磺酸钠、海藻酸钠、吐温80、OP-10、Span80、PEG-200、PEG-400、PEG-800、PEG-1000或十二烷基磺酸钠中的任一种;
    进一步,步骤1)中,粘状粗产品用去离子水分别洗涤、分水4次,除去水溶性杂质,得到无色高粘度流体产品,80-110℃干燥6-24h。
  4. [根据细则91更正 29.06.2022] 
    根据权利要求2所述的耐摩擦高抗剪复合橡胶密封材料,其特征在于,步骤2)中,所述含羧基二酚的结构式为
    Figure PCTCN2022097616-appb-100008
    进一步,步骤2)中,所述催化剂为甲酸钠、醋酸钠、丙酸钠、丁酸钠、异戊酸钠、己酸钠、对苯二甲酸钠、乙二酸钠、15-冠-5、18-冠-6、乙二胺四乙酸钠、酒石酸钠、乳酸钠、山梨酸钠、山梨酸钾、聚磷酸铵、赖氨酸钠、赖氨酸钾、胱氨酸钠、6-氨基己酸钠或对氨基苯磺酸钠中的至少一种;所述脱水剂为甲苯或二甲苯中的任一种;所述碱为氢氧化锂、氢氧 化钠、氢氧化钾、氢氧化钙、氢氧化钡、碳酸锂、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾或碳酸氢钡中的任一种;所述极性溶剂为N-甲基吡咯烷酮、N-环己基吡咯烷酮、六甲基磷酰三胺、1,3-二甲基-2-咪唑啉酮、N-甲基己内酰胺、N,N-二甲基丙烯基脲、N,N,N’,N’-四甲基脲、二甲基亚砜、二甲基砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、异喹啉、二苯砜、二苯甲酮、环丁砜、1-甲基-3-丙基咪唑溴代盐、1-甲基-3-异丙基咪唑溴代盐或1,3-二丙基咪唑溴代盐中的任一种;
    进一步,步骤2)中,所述二卤代二苯砜为:
    Figure PCTCN2022097616-appb-100009
    进一步,步骤2)中,所述二卤代二苯甲酮单体为:
    Figure PCTCN2022097616-appb-100010
  5. [根据细则91更正 29.06.2022] 
    根据权利要求2或3所述的耐摩擦高抗剪复合橡胶密封材料,其特征在于,步骤3)中,所述羧基化试剂为甲酸、冰乙酸、丙酸、浓盐酸、磷酸或稀硫酸中的任一种;
    进一步,步骤3)所述耐摩擦活性表面改性树脂的纯化方法为:将聚合物粗品经粉碎、水煮过滤后,再依次加入羧基化试剂50~200份,去离子水1500份进行回流反应1-6h,过滤、收集滤饼,再分别用去离子水、乙醇洗涤、过滤,收集滤饼并于温度70~110℃下干燥1~12h,获得纯化的耐摩擦活性表面改性树脂。
  6. [根据细则91更正 29.06.2022] 
    权利要求1~5任一项所述耐摩擦高抗剪复合橡胶密封材料的制备方法,其特征在于,所述制备方法为:先将耐摩擦活性表面改性树脂溶液均匀涂覆在半硫化橡胶表面,然后去除溶剂并干燥得橡胶复合涂层,最后将橡胶复合涂层通过模压制得耐摩擦高抗剪复合橡胶密封材料。
  7. [根据细则91更正 29.06.2022]
    根据权利要求6所述耐摩擦高抗剪复合橡胶密封材料的制备方法,其特征在于,模压温度为100~300℃,模压压力为1~10MPa,模压时间为10~300s;
    进一步,所述耐摩擦活性表面改性树脂溶液得质量浓度为3~20%。
  8. [根据细则91更正 29.06.2022] 
    根据权利要求6或7所述耐摩擦高抗剪复合橡胶密封材料的制备方法,其特征在于,半硫化橡胶使用前先进行低温等离子体处理,处理时间:2~60s,处理功率50~500w,处理温度室温~100℃;
    进一步,控制涂层厚度为10~100μm。
  9. [根据细则91更正 29.06.2022] 
    根据权利要求6~8任一项所述耐摩擦高抗剪复合橡胶密封材料的制备方法,其特征在于,将耐摩擦活性表面改性树脂溶液均匀涂覆在半硫化橡胶表面采用溶液涂覆、静电吸附或喷涂的方式;
    优选的,将耐摩擦活性表面改性树脂溶液均匀涂覆在半硫化橡胶表面的方法为:将等离子体处理后的半硫化橡胶通过溶液涂覆的方法将耐摩擦活性表面改性树脂溶液均匀浸渍涂 覆,并进行凝胶转化;
    进一步,所述凝胶转化凝胶浴为去离子水、水+乙醇、水+甲醇、水+丙酮、水+NMP、水+DMF、水+DMAc或水+DMI中的任一种。
  10. [根据细则91更正 29.06.2022] 
    一种耐摩擦活性表面改性树脂的制备方法,其特征在于,所述制备方法为:
    1)含不同软段长度的二卤代单体的制备及纯化:
    先将含不同链段长度含醚二胺230~2000份,碱80~120份,表面活性剂0.5~40份依次加入到500~5000份的去离子水中,于室温下溶解得含醚二胺溶液;再将对氯苯甲酰氯348份或对氟苯甲酰氯317份与500~5000份有机溶剂混合均匀后加入到容器中;然后将含醚二胺溶液滴加入到容器中,待二胺溶液滴加完后,在室温下继续反应2~5h,生成含不同软段长度的二卤代单体;将上述单体中的有机溶剂蒸馏回收,收集粘状粗产品,经洗涤、去除溶剂、干燥得纯化的含不同软段长度的二卤代单体,结构式如下:
    Figure PCTCN2022097616-appb-100011
    其中:X=F或Cl;
    2)耐摩擦活性表面改性树脂粗品的制备:
    将含不同软段长度的二卤代单体47.4~225份,催化剂0.5~10份,脱水剂5~40份,芳族二酚90~276份,含羧基二酚16~32份,碱80~300份和极性溶剂400~2000份加入反应釜中,在氮气保护下,于温度130~190℃下脱水反应0.5~3h;再加入二卤代二苯砜或二卤代二苯甲酮单体205~275份,在190~230℃继续反应1~8h,得到粘稠的聚合物溶液;再将聚合物溶液降温至25~150℃,边搅拌边倒入水中,析出线条状聚合物粗品;
    3)耐摩擦活性表面改性树脂的纯化:
    将聚合物粗品经粉碎、过滤后;再依次加入羧基化试剂50~200份,去离子水进行回流反应1~6h,过滤、收集滤饼;再分别用去离子水、醇洗涤、过滤,收集滤饼并干燥得纯化的耐摩擦活性表面改性树脂。
  11. [根据细则91更正 29.06.2022] 
    一种耐摩擦活性表面改性树脂,其特征在于,所述改性树脂采用权利要求9所述方法制得。
PCT/CN2022/097616 2021-06-11 2022-06-08 耐摩擦高抗剪复合橡胶密封材料 WO2022257962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110653074.5 2021-06-11
CN202110653074.5A CN113214524B (zh) 2021-06-11 2021-06-11 耐摩擦高抗剪复合橡胶密封材料

Publications (1)

Publication Number Publication Date
WO2022257962A1 true WO2022257962A1 (zh) 2022-12-15

Family

ID=77081342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097616 WO2022257962A1 (zh) 2021-06-11 2022-06-08 耐摩擦高抗剪复合橡胶密封材料

Country Status (2)

Country Link
CN (1) CN113214524B (zh)
WO (1) WO2022257962A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462912A (zh) * 2023-04-28 2023-07-21 江苏菱盛汽配科技有限公司 一种汽车外饰用材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214524B (zh) * 2021-06-11 2022-06-07 四川大学 耐摩擦高抗剪复合橡胶密封材料
CN113930077A (zh) * 2021-09-30 2022-01-14 西安航天动力研究所 一种高强度宽温域低压变硅橡胶复合材料及其制备方法
CN114349953B (zh) * 2021-11-29 2023-05-05 四川大学 一种环保含醚弹性体及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056504A (ja) * 1998-08-03 2000-02-25 Toyo Ink Mfg Co Ltd 電子写真用トナー
CN101945915A (zh) * 2008-12-12 2011-01-12 陶氏环球技术公司 充油橡胶组合物
CN102276980A (zh) * 2011-08-04 2011-12-14 金发科技股份有限公司 一种高流动性半芳香族聚酰胺组合物及其制备方法
JP2013113321A (ja) * 2011-11-25 2013-06-10 Nsk Ltd 転がり軸受のシール構造
CN107551825A (zh) * 2017-10-30 2018-01-09 四川大学 耐高温耐有机溶剂型分离膜材料、分离膜及其制备方法
CN108150569A (zh) * 2017-11-25 2018-06-12 杨彦红 一种耐磨抗冲击抗剪切刹车片制备方法
CN110102192A (zh) * 2019-05-22 2019-08-09 吉林大学 一种聚芳醚羧酸盐-羧基聚芳醚共混紧致超滤膜及其制备方法和应用
CN113214524A (zh) * 2021-06-11 2021-08-06 四川大学 耐摩擦高抗剪复合橡胶密封材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2574415B1 (fr) * 1984-12-11 1987-05-29 Rhone Poulenc Spec Chim Copolyetheramides techniques souples a basse temperature
JP2004042486A (ja) * 2002-07-12 2004-02-12 Daicel Degussa Ltd 複合体及びその製造方法
EP2550332B1 (en) * 2010-03-23 2018-05-16 Solvay SA Polymer compositions comprising semi-aromatic polyamides and graphene materials
CN103739839B (zh) * 2013-12-31 2015-10-21 四川大学 半芳族聚芳醚酰胺及其制备方法
CN105860179B (zh) * 2016-06-16 2017-12-12 上海如实密封科技有限公司 橡胶密封制品及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056504A (ja) * 1998-08-03 2000-02-25 Toyo Ink Mfg Co Ltd 電子写真用トナー
CN101945915A (zh) * 2008-12-12 2011-01-12 陶氏环球技术公司 充油橡胶组合物
CN102276980A (zh) * 2011-08-04 2011-12-14 金发科技股份有限公司 一种高流动性半芳香族聚酰胺组合物及其制备方法
JP2013113321A (ja) * 2011-11-25 2013-06-10 Nsk Ltd 転がり軸受のシール構造
CN107551825A (zh) * 2017-10-30 2018-01-09 四川大学 耐高温耐有机溶剂型分离膜材料、分离膜及其制备方法
CN108150569A (zh) * 2017-11-25 2018-06-12 杨彦红 一种耐磨抗冲击抗剪切刹车片制备方法
CN110102192A (zh) * 2019-05-22 2019-08-09 吉林大学 一种聚芳醚羧酸盐-羧基聚芳醚共混紧致超滤膜及其制备方法和应用
CN113214524A (zh) * 2021-06-11 2021-08-06 四川大学 耐摩擦高抗剪复合橡胶密封材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462912A (zh) * 2023-04-28 2023-07-21 江苏菱盛汽配科技有限公司 一种汽车外饰用材料及其制备方法
CN116462912B (zh) * 2023-04-28 2024-01-05 江苏菱盛汽配科技有限公司 一种汽车外饰用材料及其制备方法

Also Published As

Publication number Publication date
CN113214524A (zh) 2021-08-06
CN113214524B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022257962A1 (zh) 耐摩擦高抗剪复合橡胶密封材料
CN103897187B (zh) 一种纤维级聚苯硫醚树脂的合成方法
CN107459816B (zh) 一种耐高温增强型热塑性复合材料及其制备方法
CN104744698A (zh) 一种线性高分子量聚苯硫醚的合成方法
CN102108124A (zh) 一种可熔性聚酰亚胺模塑料的制备方法
CN103739839A (zh) 半芳族聚芳醚酰胺及其制备方法
CN114891217A (zh) 一种高性能聚苯砜树脂及其制备方法和应用
CN113416336B (zh) 含氟端基活性羟基耐摩擦高抗剪复合橡胶材料
WO2020125048A1 (zh) 高分子量聚苯硫醚树脂及其制备方法和用途
WO2019151288A1 (ja) ポリアリーレンスルフィド共重合体およびその製造方法
CN105295225A (zh) 一种插秧机塑料外壳材料及其制备方法
CN114249894B (zh) 一种含活性基团的含醚聚合物及其制备方法和应用
CN114149586B (zh) 一种扩链聚硫酸酯及其制备方法
CN112110839B (zh) 一种高含氟界面增容剂及其制备方法和应用
CN102558558A (zh) 聚芳醚砜-腈树脂及其工业化合成方法
CN109880098B (zh) 一种以氨基作为交联基团的聚芳醚砜树脂及其交联产物
EP3677617A1 (en) Preparation method for polyphenylene sulfide and polyphenylene sulfide prepared by means of same
JP2707118B2 (ja) 高分子量ポリフェニレンサルファイド樹脂の製造方法
CN103965468A (zh) 高含硫自阻燃半芳族聚酰胺及其制备方法和用途
JP2924202B2 (ja) ポリアリーレンスルフィドの製造方法
JPH0745574B2 (ja) 炭素繊維強化樹脂組成物
CN106243356A (zh) 一种高分子量聚苯硫醚砜酮的制造方法
CN110527092B (zh) 一种制备高分子量聚芳硫醚砜的方法
JPH0629319B2 (ja) ブロツク共重合体
CN116496486A (zh) 一种聚芳醚材料、聚芳醚复合橡胶密封件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE