WO2022247214A1 - 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用 - Google Patents

基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022247214A1
WO2022247214A1 PCT/CN2021/135746 CN2021135746W WO2022247214A1 WO 2022247214 A1 WO2022247214 A1 WO 2022247214A1 CN 2021135746 W CN2021135746 W CN 2021135746W WO 2022247214 A1 WO2022247214 A1 WO 2022247214A1
Authority
WO
WIPO (PCT)
Prior art keywords
uio
preparation
bpy
catalyst
micro
Prior art date
Application number
PCT/CN2021/135746
Other languages
English (en)
French (fr)
Inventor
牛庆涛
靳满满
刘国栋
Original Assignee
济宁学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济宁学院 filed Critical 济宁学院
Publication of WO2022247214A1 publication Critical patent/WO2022247214A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/285Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with peroxy-compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technical field of nanomaterials and catalysis, in particular a glutaric acid-selective multi-acid catalyst based on micro-mesoporous Zr-MOF materials and its preparation method and application.
  • a series of hydrocarbon derivatives such as epoxides, alcohols, aldehydes, and acids are important organic synthesis intermediates and basic chemical raw materials.
  • the emergence of green catalytic oxidation technology enables people to use cheap and clean air, O 2 , H 2 O 2 and other oxidants to oxidize alkenes to prepare a series of hydrocarbon derivatives.
  • O 2 , H 2 O 2 and other oxidants to oxidize alkenes to prepare a series of hydrocarbon derivatives.
  • H 2 O 2 in addition to being cheap and green, H 2 O 2 also has the characteristics of strong oxidation, normal pressure operation, and adjustable oxidation capacity. Therefore, the green oxidation technology using H 2 O 2 as an oxidant has attracted much research. focus on.
  • Glutaric acid is mainly used as an initiator in the polymerization of synthetic resins and synthetic rubbers, and can also be used to prepare glutaric anhydride, dimethyl glutarate, etc.
  • my country's demand is increasing year by year, but the domestic production capacity is low, the process is cumbersome, and the pollution is heavy.
  • the green and clean route of using cyclopentene and H2O2 as raw materials to produce high value-added glutaric acid technology can not only realize the clean and efficient utilization of cyclopentene, but also realize the clean update of glutaric acid production technology replacement.
  • the core and key of the catalytic oxidation of cyclopentene to glutaric acid is to select and regulate the chemical reaction, and the central goal is to achieve nearly 100% glutaric acid selectivity under mild conditions.
  • the regulation of the catalytic process is catalytic chemistry, and the use of different catalysts will lead to different reaction pathways and reaction effects.
  • catalysts including Co, Fe, V, Ti, etc. have proved the feasibility of green oxidation synthesis of glutaric acid, it is difficult to coordinate and take into account the directional selectivity of target products and the recycling and reuse of catalysts.
  • An effective method realizes the preparation, separation, recovery and recycling of a catalyst for the directional conversion of cyclopentene to glutaric acid.
  • Zr-MOFs assembled from linear dicarboxylic acid ligands and Zr 6 O 4 (OH) 4 (O 2 CR) 12 units have strong thermal/chemical stability, low toxicity of Zr and the introduction of pyridine
  • the strong reducing properties obtained by chelating ligands make it a substrate for the research and development of heterogeneous catalysts for catalytic oxidation systems.
  • the micropores of Zr-MOFs usually cause the diffusion process to become the controlling step of the reaction. Hollow Zr-MOFs can accelerate the effective transport of reactants to the inner surface and the effective desorption of products, but the leaching of active species is inevitable.
  • Micro-mesoporous Zr-MOF multi-acid catalyst is a catalyst with both micro-mesoporous, transition metal Mo/W oxide active species and acidic functions. At present, there is no glutaric acid option based on micro-mesoporous Zr-MOF materials. Published report on the preparation of polyacid catalysts.
  • the present invention provides a glutaric acid selective multi-acid catalyst based on micro-mesoporous Zr-MOF materials and its preparation method and application, which solves the problem of existing catalytic materials.
  • the selective oxidation of cyclopentene to glutaric acid is poor in directional selectivity and the catalyst is difficult to recycle and reuse.
  • the present invention provides a kind of preparation method of glutaric acid selective polyacid catalyst based on micro-mesoporous Zr-MOF material, specifically comprises the following steps:
  • the polyacid salt is (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O, (NH 4 ) 3 PMo 12 O 40 ⁇ xH 2 O, (NH 4 ) 6 W 7 O 24 ⁇ 6H 2 O One of.
  • the mass ratio of ZrCl 4 to 2,2'-bipyridine-5,5'-dicarboxylic acid in the step 2) is 47:49.
  • the mass ratio of precursor to ZrCl4 in step 2) is 1:0.47.
  • the washing and drying conditions are DMF washing, MeOH soaking, and drying at 100-110°C.
  • the present invention also provides a micro-mesoporous Zr-MOF multi-acid catalyst prepared by the above preparation method.
  • the present invention also provides an application of the above-mentioned micro-mesoporous Zr-MOF multi-acid catalyst, which is used for the directional reaction of preparing glutaric acid through catalytic oxidation of cyclopentene without solvent participation.
  • the micro-mesoporous Zr-MOF multi-acid catalyst is a catalyst with both micro-mesoporous, transition metal Mo/W oxide active species and acidic functions, which accelerates the diffusion of reactants and products and inhibits the diffusion of active components. bleed, and enriched with Lewis and acidic sites;
  • micro-mesoporous Zr-MOF multi-acid catalyst When used in the green oxidation reaction of cyclopentene without solvent participation, it shows excellent glutaric acid orientation selectivity and recyclability, and the catalyst is easy to separate from the reaction system, reducing production cost and operational difficulty.
  • Fig. 1 is the XRD pattern of MO x @UiO-66, MO x @UiO-66@UiO-bpy, MO x @UiO-66@MO x @UiO-bpy provided by Example 3 of the present invention;
  • Fig. 2 is the pore size distribution diagram of MO x @UiO-66, MO x @UiO-66@UiO-bpy, MO x @UiO-66@MO x @UiO-bpy provided by Example 3 of the present invention;
  • Fig. 3 is a pyridine infrared spectrum diagram of MO x @UiO-66@MO x @UiO-bpy provided by Example 3 of the present invention.
  • Step 1) The obtained precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 100°C for 24 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.1 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 20 mg ⁇ mL -1 of 8 mL (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O aqueous solution, at 30°C, Fully stirred for 48 hours, filtered, washed with DMF for 3 times, soaked in MeOH for 48 hours, dried at 100°C for 12 hours, heated from room temperature to 300°C at a heating rate of 3°C min -1 and calcined in a muffle furnace for 5 hours to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The resulting precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 130°C for 48 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.5 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 12 mL of (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O aqueous solution of 20 mg ⁇ mL -1 at 50 °C, Stir well for 72h, filter, wash with DMF for 3 times, soak in MeOH for 48h, dry at 100°C for 12h, heat up from room temperature to 300°C at a heating rate of 3°C min -1 and bake in a muffle furnace for 5h to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The resulting precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 120°C for 36 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.3 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 20 mg ⁇ mL -1 of 10 mL (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O aqueous solution, at 40°C, Thoroughly stirred for 60 hours, filtered, washed with DMF for 3 times, soaked in MeOH for 48 hours, dried at 100°C for 12 hours, heated from room temperature to 300°C at a heating rate of 3°C min -1 and calcined in a muffle furnace for 5 hours to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The obtained precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 100°C for 24 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.1 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 20 mg ⁇ mL -1 of 8 mL (NH 4 ) 3 PMo 12 O 40 ⁇ xH 2 O aqueous solution, at 30°C, Fully stirred for 48 hours, filtered, washed with DMF for 3 times, soaked in MeOH for 48 hours, dried at 100°C for 12 hours, heated from room temperature to 300°C at a heating rate of 3°C min -1 and calcined in a muffle furnace for 5 hours to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The resulting precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 130°C for 48 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.5 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 20 mg ⁇ mL -1 of 12 mL (NH 4 ) 3 PMo 12 O 40 ⁇ xH 2 O aqueous solution, at 50°C, Stir well for 72h, filter, wash with DMF for 3 times, soak in MeOH for 48h, dry at 100°C for 12h, heat up from room temperature to 300°C at a heating rate of 3°C min -1 and bake in a muffle furnace for 5h to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The resulting precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 120°C for 36 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.3 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 20 mg ⁇ mL -1 of 10 mL (NH 4 ) 3 PMo 12 O 40 ⁇ xH 2 O aqueous solution, at 40°C, Thoroughly stirred for 60 hours, filtered, washed with DMF for 3 times, soaked in MeOH for 48 hours, dried at 100°C for 12 hours, heated from room temperature to 300°C at a heating rate of 3°C min -1 and calcined in a muffle furnace for 5 hours to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The obtained precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 100°C for 24 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.1 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 20 mg ⁇ mL -1 of 8 mL (NH 4 ) 6 W 7 O 24 ⁇ 6H 2 O aqueous solution, at 30°C, Fully stirred for 48 hours, filtered, washed with DMF for 3 times, soaked in MeOH for 48 hours, dried at 100°C for 12 hours, heated from room temperature to 300°C at a heating rate of 3°C min -1 and calcined in a muffle furnace for 5 hours to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The resulting precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 130°C for 48 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.5 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 12 mL of (NH 4 ) 6 W 7 O 24 ⁇ 6H 2 O aqueous solution of 20 mg ⁇ mL -1 at 50 °C, Stir well for 72h, filter, wash with DMF for 3 times, soak in MeOH for 48h, dry at 100°C for 12h, heat up from room temperature to 300°C at a heating rate of 3°C min -1 and bake in a muffle furnace for 5h to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Step 1) The resulting precursor MO x @UiO-66 was continued to be ultrasonically oscillated for 40 minutes, and the resulting mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, crystallized at 120°C for 36 hours, and cooled to room temperature Filter, wash with DMF for 3 times, soak in MeOH for 48h, and dry at 100°C for 12h to obtain the intermediate MO x @UiO-66@UiO-bpy;
  • step 2 Add 0.3 g of the intermediate MO x @UiO-66@UiO-bpy obtained in step 2) into 20 mg ⁇ mL -1 of 10 mL (NH 4 ) 6 W 7 O 24 ⁇ 6H 2 O aqueous solution, at 40 °C, Thoroughly stirred for 60 hours, filtered, washed with DMF for 3 times, soaked in MeOH for 48 hours, dried at 100°C for 12 hours, heated from room temperature to 300°C at a heating rate of 3°C min -1 and calcined in a muffle furnace for 5 hours to obtain the catalyst MO x @UiO-66@MO x @UiO-bpy.
  • Example 1 90.8
  • Example 6 92.6
  • Example 2 89.7
  • Example 7 90.7
  • Example 3 93.6
  • Example 8 93.1
  • Example 4 92.8
  • micro-mesoporous Zr-MOF multi-acid catalyst of the present invention is used for the green oxidation reaction of cyclopentene without solvent participation, and the selectivity of glutaric acid is high.
  • Example 1 Sample source Glutaric acid selectivity, % Sample source Glutaric acid selectivity, % Example 1 89.9 Example 6 90.7 Example 2 90.1 Example 7 90.0 Example 3 92.8 Example 8 92.3 Example 4 91.5 Example 9 91.5 Example 5 91.3 / /
  • the micro-mesoporous Zr-MOF multi-acid catalyst of the present invention is used in the green oxidation reaction of cyclopentene without solvent participation, not only has high selectivity for glutaric acid, but also has high activity after recycling 10 times. The retention is high, and the decrease in selectivity is very small, indicating that the micro-mesoporous Zr-MOF multi-acid catalyst of the present invention has stable active species and framework, and can be recycled many times.
  • the micro-mesoporous Zr-MOF polyacid catalyst of the present invention contains micro-mesoporous at the same time, which is beneficial to the diffusion of reactants and products, and reduces the diffusion resistance; the rich MO x active species and Lewis/ The acidic site improves the selectivity of glutaric acid; and the epitaxially grown Zr-MOF inhibits the leaching of active species during the reaction, can be recycled, reduces production cost and operation difficulty, and is easy for industrial application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明属于纳米材料、催化技术领域,具体基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用。该制备方法具体包括前驱体MO x@UiO-66制备、中间体MO x@UiO-66@UiO-bpy制备和催化剂MO x@UiO-66@MO x@UiO-bpy制备。本发明还提供了这种微介孔Zr-MOF多酸催化剂在无溶剂参与的环戊烯绿色催化氧化定向制戊二酸反应中的应用。本发明的微介孔Zr-MOF多酸催化剂兼具微介孔、过渡金属Mo/W氧化物活性物种及酸性功能,是一种多功能催化剂,加速了反应物及产物的扩散,抑制了活性物种的浸出,特别是对戊二酸的选择性高达93.6%,且易于反应后分离与回收,在重复使用10次时,其戊二酸选择性仍可达92.8%,具有很好的应用前景。

Description

基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用 技术领域
本发明属于纳米材料、催化技术领域,具体基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用。
背景技术
环氧化物、醇、醛、酸等系列烃类衍生物是一类重要的有机合成中间体及基础化工原料,绿色催化氧化技术的出现使得人们能够利用价廉、清洁的空气、O 2、H 2O 2等氧化剂氧化烯烃制备系列烃类衍生物。其中,H 2O 2除了价廉、绿色的特点外,还具有氧化性强、可常压操作、氧化能力可调等特点,因此,以H 2O 2为氧化剂的绿色氧化技术备受研究者关注。
戊二酸主要用作合成树脂、合成橡胶聚合时的引发剂,也可用于制备戊二酸酐、戊二酸二甲酯等。我国需求逐年增加,但国内产能低、工艺繁琐、污染重。以环戊烯和H 2O 2为原料的绿色清洁路线,生产高附加值的戊二酸技术,不仅可以实现环戊烯的清洁化高效利用,而且可以实现戊二酸生产技术的清洁化更新换代。然而,环戊烯催化氧化制戊二酸过程的核心和关键是对该化学反应进行选择和调控,中心目标是实现温和条件下接近100%的戊二酸选择性。而实现催化过程的调控是催化化学,采用不同的催化剂会导致不同的反应途径及反应效果。尽管包括Co、Fe、V、Ti等催化剂已证明了戊二酸绿色氧化合成的可行性,但目标产物定向选择性及催化剂循环回收再使用之间难以协调和兼顾,尤其是现在还缺乏行之有效的方法实现环戊烯定向转化戊二酸催化剂的制备及分离回收与循环再利用。催化剂定向效果差造成的繁琐分离工序尤为化工行业所不能接受,催化体系难以回收再使用也造成工艺和经济上不可行。因此,开发具备高效定向选择和高效分离回收循环再使用性能的催化剂是一个巨大的挑战。
由线性二羧酸配体和Zr 6O 4(OH) 4(O 2CR) 12单元组装而成的锆基金属有机框架材料Zr-MOFs具有强热/化学稳定性、Zr低毒性及引入吡啶基团螯合配体(如联吡啶、三联吡啶或菲咯啉)而获得的强还原性,这些特点使其成为催化氧化体系多相催化剂研发基材。Zr-MOFs的微孔通常会导致扩散过程成为反应的控制步骤,中空Zr-MOFs可加速反应物向内表面的有效传输及产物的有效脱附,但活性物种的浸出不可避免。因此,制备具备多级孔并可抑制活性组分流失的新型Zr-MOFs材料成为多相催化剂载体研发的难题。微介孔Zr-MOF多酸催化剂是一种兼具微介孔、过渡金属Mo/W氧化物活性物种及酸性功能的催化剂,目前,未有基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂的制备方法的公开报道。
发明内容
根据现有技术上存在的缺陷,结合目前的研究前沿,本发明提供了基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用,解决了现有的催化材料对环戊烯选择氧化制戊二酸定向选择性差和催化剂难以循环回收再使用的难题。
本发明是采用以下的技术方案实现的:
本发明提供了一种基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂的制备方法,具体包括以下步骤:
1)前驱体MO x@UiO-66制备:
将UiO-66加入到15~25mg·mL -1的多酸盐水溶液中,UiO-66:多酸盐水溶液=0.008~0.08g:1mL,在30~50℃下,充分搅拌48~72h,经过滤、洗涤干燥、以3℃·min -1的加热速率从室温升至200~400℃在马弗炉中焙烧3~6h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将ZrCl 4、2,2'-联吡啶-5,5'-二羧酸、0.2~0.6mL冰乙酸、15~40mL DMF混合,配置2,2'-联吡啶-5,5'-二羧酸与液体的质量体积比为0.001~0.004g比1mL,其中,ZrCl 4与2,2'-联吡啶-5,5'-二羧酸的质量比为0.9~1:1,冰乙酸与DMF的体积比为0.005~0.04:1,在25~35℃下,超声振荡,混合均匀后,加入步骤1)所得的前驱体MO x@UiO-66,前驱体与ZrCl 4的质量比为1:0.4~0.5,继续超声振荡混匀,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于100~130℃晶化24~48h,冷却至室温后过滤、洗涤干燥,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到15~25mg·mL -1的多酸盐水溶液中,MO x@UiO-66@UiO-bpy:多酸盐水溶液=0.008~0.08g:1mL,在30~50℃下,充分搅拌48~72h,经过滤、洗涤干燥、以3℃·min -1的加热速率从室温升至200~400℃在马弗炉中焙烧3~6h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
具体的,所述多酸盐为(NH 4) 6Mo 7O 24·4H 2O、(NH 4) 3PMo 12O 40·xH 2O、(NH 4) 6W 7O 24·6H 2O中的一种。
其中,所述步骤1)中UiO-66:多酸盐水溶液=0.008~0.07g:1mL。
进一步地,作为本发明的一个优选方案,所述步骤2)中ZrCl 4与2,2'-联吡啶-5,5'-二羧酸的质量比为47:49。
进一步地,作为本发明的一个优选方案,所述步骤2)中前驱体与ZrCl 4的质量比为1:0.47。
进一步地,作为本发明的一个优选方案,所述洗涤干燥条件为DMF洗涤、MeOH浸泡、 100~110℃干燥。
本发明还提供一种利用上述制备方法制备的微介孔Zr-MOF多酸催化剂。
本发明还提供一种上述微介孔Zr-MOF多酸催化剂的应用,用于无溶剂参与的环戊烯催化氧化定向制戊二酸反应。
与现有技术相比,本发明的有益效果:
1)微介孔Zr-MOF多酸催化剂是一种兼具微介孔、过渡金属Mo/W氧化物活性物种及酸性功能的催化剂,加速了反应物及产物的扩散,抑制了活性组分的流失,并富含Lewis和
Figure PCTCN2021135746-appb-000001
酸性位点;
2)微介孔Zr-MOF多酸催化剂用于无溶剂参与的环戊烯绿色氧化反应时,表现出优异的戊二酸定向选择性和循环使用性,且催化剂易于从反应体系中分离,降低了生产成本和操作难度。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1为本发明实施例3提供的MO x@UiO-66、MO x@UiO-66@UiO-bpy、MO x@UiO-66@MO x@UiO-bpy的XRD图;
图2为本发明实施例3提供的MO x@UiO-66、MO x@UiO-66@UiO-bpy、MO x@UiO-66@MO x@UiO-bpy的孔径分布图;
图3为本发明实施例3提供的MO x@UiO-66@MO x@UiO-bpy的吡啶红外光谱图。
具体实施方式
为了使本发明目的、技术方案更加清楚明白,下面结合附图,对本发明作进一步详细说明。下述实施例中所述实验方法,如无特殊说明,均为常规方法;实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行;所述试剂和材料,如无特殊说明,均可从商业途径获得。
一、制备催化剂MO x@UiO-66@MO x@UiO-bpy:
实施例1
1)前驱体MO x@UiO-66制备:
将0.1g UiO-66加入到20mg·mL -1的8mL(NH 4) 6Mo 7O 24·4H 2O水溶液中,在30℃下,充分搅拌48h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1 的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.2mL冰乙酸、15mL DMF混合,在25℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于100℃晶化24h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.1g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的8mL(NH 4) 6Mo 7O 24·4H 2O水溶液中,在30℃下,充分搅拌48h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例2
1)前驱体MO x@UiO-66制备:
将0.5g UiO-66加入到20mg·mL -1的12mL(NH 4) 6Mo 7O 24·4H 2O水溶液中,在50℃下,充分搅拌72h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.6mL冰乙酸、40mL DMF混合,在35℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于130℃晶化48h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.5g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的12mL(NH 4) 6Mo 7O 24·4H 2O水溶液中,在50℃下,充分搅拌72h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例3
1)前驱体MO x@UiO-66制备:
将0.3g UiO-66加入到20mg·mL -1的10mL(NH 4) 6Mo 7O 24·4H 2O水溶液中,在40℃下, 充分搅拌60h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.4mL冰乙酸、30mL DMF混合,在30℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于120℃晶化36h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.3g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的10mL(NH 4) 6Mo 7O 24·4H 2O水溶液中,在40℃下,充分搅拌60h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例4
1)前驱体MO x@UiO-66制备:
将0.1g UiO-66加入到20mg·mL -1的8mL(NH 4) 3PMo 12O 40·xH 2O水溶液中,在30℃下,充分搅拌48h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.2mL冰乙酸、15mL DMF混合,在25℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于100℃晶化24h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.1g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的8mL(NH 4) 3PMo 12O 40·xH 2O水溶液中,在30℃下,充分搅拌48h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例5
1)前驱体MO x@UiO-66制备:
将0.5g UiO-66加入到20mg·mL -1的12mL(NH 4) 3PMo 12O 40·xH 2O水溶液中,在50℃下,充分搅拌72h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.6mL冰乙酸、40mL DMF混合,在35℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于130℃晶化48h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.5g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的12mL(NH 4) 3PMo 12O 40·xH 2O水溶液中,在50℃下,充分搅拌72h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例6
1)前驱体MO x@UiO-66制备:
将0.3g UiO-66加入到20mg·mL -1的10mL(NH 4) 3PMo 12O 40·xH 2O水溶液中,在40℃下,充分搅拌60h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.4mL冰乙酸、30mL DMF混合,在30℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于120℃晶化36h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.3g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的10mL(NH 4) 3PMo 12O 40·xH 2O水溶液中,在40℃下,充分搅拌60h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例7
1)前驱体MO x@UiO-66制备:
将0.1g UiO-66加入到20mg·mL -1的8mL(NH 4) 6W 7O 24·6H 2O水溶液中,在30℃下,充分搅拌48h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.2mL冰乙酸、15mL DMF混合,在25℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于100℃晶化24h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.1g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的8mL(NH 4) 6W 7O 24·6H 2O水溶液中,在30℃下,充分搅拌48h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例8
1)前驱体MO x@UiO-66制备:
将0.5g UiO-66加入到20mg·mL -1的12mL(NH 4) 6W 7O 24·6H 2O水溶液中,在50℃下,充分搅拌72h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.6mL冰乙酸、40mL DMF混合,在35℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于130℃晶化48h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.5g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的12mL(NH 4) 6W 7O 24·6H 2O水溶液中,在50℃下,充分搅拌72h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
实施例9
1)前驱体MO x@UiO-66制备:
将0.3g UiO-66加入到20mg·mL -1的10mL(NH 4) 6W 7O 24·6H 2O水溶液中,在40℃下,充分搅拌60h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到前驱体MO x@UiO-66;
2)中间体MO x@UiO-66@UiO-bpy制备:
将0.047g ZrCl 4、0.049g 2,2'-联吡啶-5,5'-二羧酸、0.4mL冰乙酸、30mL DMF混合,在30℃下,超声振荡2h,混合均匀后,加入0.1g步骤1)所得的前驱体MO x@UiO-66,继续超声振荡40min,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于120℃晶化36h,冷却至室温后过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h,得到中间体MO x@UiO-66@UiO-bpy;
3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
将0.3g步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到20mg·mL -1的10mL(NH 4) 6W 7O 24·6H 2O水溶液中,在40℃下,充分搅拌60h,经过滤、DMF洗涤3次、MeOH浸泡48h、100℃干燥12h、以3℃·min -1的加热速率从室温升至300℃在马弗炉中焙烧5h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
二、催化剂的戊二酸选择性和循环使用性测试
1、将实施例1-9制备的催化剂和环戊烯加入到密闭反应器中,按照催化剂与环戊烯的重量比为0.1:1,当密闭反应器内温度达到50℃时,开始缓慢滴加浓度为35wt%的H 2O 2,环戊烯与H 2O 2的摩尔比为4.2:1,滴加速率为1d·s -1,滴加完毕后,将温度升至85℃,继续反应6h,反应完毕后,经过滤分离出催化剂,经液相色谱仪确定戊二酸选择性,结果见表1。
表1.催化剂戊二酸选择性测试表
样品来源 戊二酸选择性,% 样品来源 戊二酸选择性,%
实施例1 90.8 实施例6 92.6
实施例2 89.7 实施例7 90.7
实施例3 93.6 实施例8 93.1
实施例4 92.8 实施例9 93.0
实施例5 92.1 / /
从表1的结果可以看出,本发明的微介孔Zr-MOF多酸催化剂用于无溶剂参与的环戊烯绿色氧化反应,戊二酸选择性高。
2、将实施例1-9制备的催化剂按照上述测试方法进行反应后,经过滤分离、干燥后按照 上述反应条件进行环戊烯绿色氧化反应,反复进行反应-分离-反应循环,循环10次后的结果见表2。
表2.循环10次后催化剂戊二酸选择性测试表
样品来源 戊二酸选择性,% 样品来源 戊二酸选择性,%
实施例1 89.9 实施例6 90.7
实施例2 90.1 实施例7 90.0
实施例3 92.8 实施例8 92.3
实施例4 91.5 实施例9 91.5
实施例5 91.3 / /
从表2的结果可以看出,本发明的微介孔Zr-MOF多酸催化剂用于无溶剂参与的环戊烯绿色氧化反应,不但戊二酸的选择性高,且循环利用10次后活性保留度较高,选择性下降幅度很小,说明本发明的微介孔Zr-MOF多酸催化剂活性物种及骨架稳定,可以反复循环利用多次。与现有技术相比,在氧化反应中,本发明的微介孔Zr-MOF多酸催化剂同时含微介孔有利于反应物和产物的扩散,减少了扩散阻力;富含的MO x活性物种及Lewis/
Figure PCTCN2021135746-appb-000002
酸性位提高了戊二酸的选择性;并且外延生长的Zr-MOF抑制了活性物种在反应过程中的浸出,可循环利用,降低了生产成本和操作难度,易于工业化应用。
当然,以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂的制备方法,其特征在于,具体包括以下步骤:
    1)前驱体MO x@UiO-66制备:
    将UiO-66加入到15~25mg·mL -1的多酸盐水溶液中,UiO-66:多酸盐水溶液=0.008~0.08g:1mL,在30~50℃下,充分搅拌48~72h,经过滤、洗涤干燥、以3℃·min -1的加热速率从室温升至200~400℃在马弗炉中焙烧3~6h,得到前驱体MO x@UiO-66;
    2)中间体MO x@UiO-66@UiO-bpy制备:
    将ZrCl 4、2,2'-联吡啶-5,5'-二羧酸、0.2~0.6mL冰乙酸、15~40mL DMF混合,配置2,2'-联吡啶-5,5'-二羧酸与液体的质量体积比为0.001~0.004g比1mL,其中,ZrCl 4与2,2'-联吡啶-5,5'-二羧酸的质量比为0.9~1:1,冰乙酸与DMF的体积比为0.005~0.04:1,在25~35℃下,超声振荡,混合均匀后,加入步骤1)所得的前驱体MO x@UiO-66,前驱体与ZrCl 4的质量比为1:0.4~0.5,继续超声振荡混匀,将得到的混合液移入含聚四氟乙烯内衬的水热反应釜中,于100~130℃晶化24~48h,冷却至室温后过滤、洗涤干燥,得到中间体MO x@UiO-66@UiO-bpy;
    3)催化剂MO x@UiO-66@MO x@UiO-bpy制备:
    将步骤2)所得的中间体MO x@UiO-66@UiO-bpy加入到15~25mg·mL -1的多酸盐水溶液中,MO x@UiO-66@UiO-bpy:多酸盐水溶液=0.008~0.08g:1mL,在30~50℃下,充分搅拌48~72h,经过滤、洗涤干燥、以3℃·min -1的加热速率从室温升至200~400℃在马弗炉中焙烧3~6h,得到催化剂MO x@UiO-66@MO x@UiO-bpy。
  2. 根据权利要求1所述的制备方法,其特征在于,所述多酸盐为(NH 4) 6Mo 7O 24·4H 2O、(NH 4) 3PMo 12O 40·xH 2O、(NH 4) 6W 7O 24·6H 2O中的一种。
  3. 根据权利要求2所述的制备方法,其特征在于,所述步骤1)中UiO-66:多酸盐水溶液=0.008~0.07g:1mL。
  4. 根据权利要求2所述的制备方法,其特征在于,所述步骤2)中ZrCl 4与2,2'-联吡啶-5,5'-二羧酸的质量比为47:49。
  5. 根据权利要求2所述的制备方法,其特征在于,所述步骤2)中前驱体与ZrCl 4的质量比为1:0.47。
  6. 根据权利要求1所述的制备方法,其特征在于,所述洗涤干燥条件为DMF洗涤、MeOH浸泡、100~110℃干燥。
  7. 一种利用权利要求1-6任一项所述制备方法制备的微介孔Zr-MOF多酸催化剂。
  8. 一种权利要求7所述微介孔Zr-MOF多酸催化剂的应用,其特征在于,用于无溶剂参 与的环戊烯催化氧化定向制戊二酸反应。
PCT/CN2021/135746 2021-05-26 2021-12-06 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用 WO2022247214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110575962.XA CN113231102B (zh) 2021-05-26 2021-05-26 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用
CN202110575962.X 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022247214A1 true WO2022247214A1 (zh) 2022-12-01

Family

ID=77138965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135746 WO2022247214A1 (zh) 2021-05-26 2021-12-06 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113231102B (zh)
WO (1) WO2022247214A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231102B (zh) * 2021-05-26 2022-04-26 济宁学院 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用
CN114950563B (zh) * 2022-06-01 2023-05-12 中国科学院海洋研究所 一种可降解有机染料和/或重金属离子的光催化剂及其制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437645A (zh) * 2014-11-19 2015-03-25 河南工业大学 一种用于合成戊二醛的金属-有机骨架固载杂多酸催化剂及其生产方法
CN108262073A (zh) * 2018-01-15 2018-07-10 重庆科技学院 一种金属有机骨架负载磷钨酸催化剂、制备方法及催化合成己二酸的应用
CN110947428A (zh) * 2018-09-26 2020-04-03 国家纳米科学中心 一种UiO@Pd@UiO催化剂及其制备方法和用途
CN113231102A (zh) * 2021-05-26 2021-08-10 济宁学院 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427450C (zh) * 2006-08-03 2008-10-22 复旦大学 环境友好相转移催化剂催化氧化环戊烯合成戊二酸的方法
WO2012144758A2 (ko) * 2011-04-18 2012-10-26 한국화학연구원 다공성 금속-유기 골격 물질의 기능화 방법, 이를 이용한 고체산 촉매 및 이 고체산 촉매를 이용한 알코올의 탈수 방법
CN104857988A (zh) * 2015-05-07 2015-08-26 盐城工学院 一种杂多酸改性Zr-MOF催化剂及其制备方法与应用
CN105289732B (zh) * 2015-10-22 2019-04-09 大连理工大学 Mof固载金属过氧化物催化剂
CN107652170B (zh) * 2017-09-25 2020-09-22 青岛科技大学 一种有机-无机杂多酸盐催化环戊烯氧化制备戊二醛的方法
CN112371191A (zh) * 2020-12-01 2021-02-19 南开大学 一种基于Zr-MOFs复合材料的氧化脱硫催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437645A (zh) * 2014-11-19 2015-03-25 河南工业大学 一种用于合成戊二醛的金属-有机骨架固载杂多酸催化剂及其生产方法
CN108262073A (zh) * 2018-01-15 2018-07-10 重庆科技学院 一种金属有机骨架负载磷钨酸催化剂、制备方法及催化合成己二酸的应用
CN110947428A (zh) * 2018-09-26 2020-04-03 国家纳米科学中心 一种UiO@Pd@UiO催化剂及其制备方法和用途
CN113231102A (zh) * 2021-05-26 2021-08-10 济宁学院 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI LINCHENG; XU YUNLAN; ZHONG DENGJIE; ZHONG NIANBING: "CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(VI) efficient removal from aqueous solution", COLLOIDS AND SURFACES A : PHYSIOCHEMICAL AND ENGINEERINGS ASPECTS, vol. 586, 20 November 2019 (2019-11-20), AMSTERDAM, NL , XP085970808, ISSN: 0927-7757, DOI: 10.1016/j.colsurfa.2019.124255 *

Also Published As

Publication number Publication date
CN113231102B (zh) 2022-04-26
CN113231102A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022247214A1 (zh) 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用
CN109529931B (zh) 一种氧化石墨烯共价固载化金属酞菁催化剂及其制备方法和应用
WO2021088196A1 (zh) 一种双金属MOFs催化剂及其制备方法和用途
CN107362807A (zh) 一种Mn/Co基低温SCO催化剂及其制备方法
CN109569686B (zh) 氮修饰炭载贵金属加氢催化剂的制备和在卤代硝基苯加氢反应中的应用
CN106902879B (zh) 一种Co@C@MOF磁性催化剂的制备方法及其应用
CN108821306B (zh) 一种金属改性多级孔hzsm-5分子筛的制备方法
CN110102290B (zh) 一种K掺杂α-MnO2/Mn3O4高效光热催化剂及制备方法与应用
CN101455976A (zh) 草酸二甲酯加氢合成乙二醇中使用的高效催化剂及其制法
CN108380208B (zh) 2,3,6-三氯吡啶催化加氢制2,3-二氯吡啶用Pd-Mg/C催化剂及制备方法
CN108355690A (zh) 一种磷酸氧钒催化剂、其制备方法及用途
WO2022206673A1 (zh) 低温羰基化分子筛催化剂及其用途
CN111151285B (zh) 一种氮掺杂多孔碳负载ZnS纳米复合材料及其制备方法和应用
CN114381006B (zh) 一种具有酸碱双功能的共价有机框架材料bm-so3h及其制备方法和应用
JP2014506183A (ja) メタン合成触媒の製造方法及び触媒前駆体
CN112808311A (zh) 一种锆基金属有机框架材料及其制备方法和应用
WO2023130745A1 (zh) 一种aei-cha共生分子筛及其催化剂
CN110280245B (zh) 一种ZIF-67/CuBTC复合材料及其衍生物及方法与应用
WO2022156391A1 (zh) 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法
CN104437474A (zh) 有序介孔碳材料负载铂催化剂及其在芳香硝基化合物催化氢化中的应用
CN106391106A (zh) 一种含有金属的核壳结构分子筛的制备方法
WO2024045808A1 (zh) 黑磷改性铜基催化剂及在有机物加氢还原反应上的新用途
CN109701574B (zh) 氮修饰炭载贵金属加氢催化剂的制备和在吡啶环类化合物加氢反应中的应用
CN106513014A (zh) 一种多级孔碳支撑酸性固体催化剂及其制备方法
CN109999826A (zh) 一种用于甲苯催化净化的空心微米管状锰钴基催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942777

Country of ref document: EP

Kind code of ref document: A1