WO2022237577A1 - 颗粒物清洁度检测方法 - Google Patents

颗粒物清洁度检测方法 Download PDF

Info

Publication number
WO2022237577A1
WO2022237577A1 PCT/CN2022/090185 CN2022090185W WO2022237577A1 WO 2022237577 A1 WO2022237577 A1 WO 2022237577A1 CN 2022090185 W CN2022090185 W CN 2022090185W WO 2022237577 A1 WO2022237577 A1 WO 2022237577A1
Authority
WO
WIPO (PCT)
Prior art keywords
soaking
preset
particles
tested
liquid
Prior art date
Application number
PCT/CN2022/090185
Other languages
English (en)
French (fr)
Inventor
贺斌
符雅丽
郑友山
王宏伟
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2022237577A1 publication Critical patent/WO2022237577A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0096Investigating consistence of powders, dustability, dustiness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1024Counting particles by non-optical means

Definitions

  • the invention relates to the technical field of semiconductors, in particular to a method for detecting the cleanliness of particulate matter.
  • the carrier part used to carry the wafer in the electrostatic chuck (ESC) is a ceramic part. If there are particles on these ceramic parts, the wafer will be produced. A series of problems such as poor adsorption and excessive particulate matter in process results. Therefore, after the ceramic parts are manufactured, the ceramic parts need to be cleaned to remove the particles on the ceramic parts, and the particle cleanliness of the ceramic parts needs to be tested to avoid the use of ceramic parts whose particle cleanliness is not up to standard.
  • the existing detection methods for particle cleanliness of ceramic parts are usually to immerse the cleaned ceramic parts in the soaking solution, and then use a liquid particle counter (Liquid Particle Counter, referred to as LPC) to detect the number of particles in the soaking solution, so as to help detect
  • LPC liquid particle counter
  • the amount of particulate matter received can be used to judge whether the particle cleanliness of ceramic parts is up to standard.
  • the existing particle cleanliness detection methods for ceramic parts have many subjective factors, resulting in large errors and low accuracy in the detection results of particle cleanliness detection, which affects the reliability and stability of the detection results. , which in turn has an impact on the semiconductor process results.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a particle cleanliness detection method, which can reduce the error of the detection result and improve the accuracy of the detection result, thereby improving the reliability and accuracy of the detection result. Stability, thereby reducing the impact of semiconductor equipment components on semiconductor process results.
  • a method for detecting particle cleanliness comprising the following steps:
  • the soaking solution is used to detect particulate matter on the piece to be tested that has been cleaned.
  • the use of the soaking solution to detect particulate matter on the cleaned piece to be tested includes the following steps:
  • Ultrasonic vibration is performed on the soaking liquid soaked with the object to be tested until it reaches a first preset time period, wherein the first preset time length is that all the particles on the surface of the object to be tested can fall off after being oscillated the time required;
  • the obtaining of the first preset duration includes the following steps:
  • the first preset time length is set as the sum of the time spent from the 1st to the tth ultrasonic vibration, wherein, N is a positive integer greater than or equal to 2, and t is A positive integer greater than or equal to 1, and (t+1) is less than or equal to N.
  • the use of the immersion solution to perform particle detection on the cleaned piece to be detected further includes the following steps:
  • the evaluation parameter value is the hydrogen ion concentration index of the soaking solution
  • the first evaluation parameter value is the first hydrogen ion concentration index
  • the second evaluation parameter value is the second hydrogen ion concentration index
  • the evaluation parameter value is the resistance value of the soaking solution
  • the first evaluation parameter value is a first resistance value
  • the second evaluation parameter value is a second resistance value
  • the soaking solution is deionized water
  • the first standard is that the number of particles with a diameter greater than or equal to 0.3 ⁇ m (micrometer) in the soaking solution is less than or equal to 400 P/ml (pieces per milliliter).
  • the top of the part to be tested is separated from the top surface of the immersion liquid by a first preset distance, and the a second preset distance from the bottom of the piece to be tested to the bottom of the immersion liquid;
  • a sample is taken at a third preset distance above the top of the object to be tested.
  • the use of the soaking solution to perform particle detection on the piece to be detected that has been cleaned may further include the following steps:
  • the immersion liquid Before immersing the part to be inspected in the immersion liquid, the immersion liquid is ultrasonically vibrated until the third predetermined time is reached and left standing for a fourth preset time;
  • the number of particles in the soaking liquid is detected, and the detected number of particles in the soaking liquid is used as the first detection value.
  • the number of particles detected in the step of detecting the number of particles in the soaking liquid in the preset container is used as the first detected value.
  • said taking said soaking liquid into said preset container comprises the following steps:
  • the first preset container is placed in the second preset container; wherein, the first preset container is made of polyethylene material.
  • the present invention has the following beneficial effects:
  • the particle cleanliness detection method provided by the present invention first detects the particle quantity of the soaking liquid before detecting the particle of the object to be detected, and judges whether the detected particle quantity of the soaking liquid satisfies the preset first standard.
  • the number of particles in the liquid meets the preset first standard, and then use the soaking liquid to detect the particles of the parts to be tested that have been cleaned, so that the particles in the soaking liquid can be avoided when the particles in the test parts do not meet the above-mentioned first standard
  • Interference caused by cleanliness can reduce the error of test results and improve the accuracy of test results, thereby improving the reliability and stability of test results, thereby reducing the impact of semiconductor equipment components on semiconductor process results.
  • the number of particles in the soaking liquid can have a uniform technical standard, thereby avoiding the impact of human subjective factors on the test results.
  • Fig. 1 is a flow chart of the method for detecting the cleanliness of particulate matter provided by an embodiment of the present invention
  • Fig. 2 is another flow chart of the particle cleanliness detection method provided by the embodiment of the present invention.
  • Fig. 3 is another flow chart of the particle cleanliness detection method provided by the embodiment of the present invention.
  • Fig. 4 is another flow chart of the particle cleanliness detection method provided by the embodiment of the present invention.
  • Fig. 5 is another flow chart of the particle cleanliness detection method provided by the embodiment of the present invention.
  • Fig. 6 is another flow chart of the particle cleanliness detection method provided by the embodiment of the present invention.
  • Fig. 7 is a schematic diagram of taking the soaking liquid into the first preset container in the particle cleanliness detection method provided by the embodiment of the present invention.
  • Fig. 8 is a schematic diagram of detecting the number of particles in soaking liquid by the particle cleanliness detection method provided by the embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the method for detecting the cleanliness of particulate matter provided by the embodiment of the present invention when ultrasonically vibrating the soaking solution and standing still;
  • Fig. 10 is a schematic diagram of obtaining the first detected value by detecting the number of particles in the soaking liquid in the particle cleanliness detection method provided by the embodiment of the present invention
  • Fig. 11 is a schematic diagram of immersing the object to be inspected in the immersion liquid in the particle cleanliness detection method provided by the embodiment of the present invention, and ultrasonically vibrating the immersion liquid immersed in the object to be inspected and standing still;
  • Fig. 12 is a schematic diagram of obtaining a second detection value by detecting the number of particles in the soaking liquid in the particle cleanliness detection method provided by the embodiment of the present invention.
  • the prior art cleaning method and particle cleanliness detection method are first introduced.
  • the cleaning method of the piece to be tested can be to first immerse the piece to be tested in a degreasing agent to remove the lipids on the piece to be tested and avoid The lipids on the test piece will cover the particles on the test piece, so that the particles on the test piece cannot be cleaned in the subsequent cleaning process.
  • the piece to be tested can be immersed in deionized water (Deionized water) for rinsing to remove the lipids and residual degreasing agent on the piece to be tested, which are separated from the piece to be tested by the degreasing agent.
  • deionized water deionized water
  • Deionized water is sprayed under pressure on the blind holes, folds and other areas on the test piece to clean the particles in the blind holes, folds and other areas on the test piece, and then the test piece can be immersed in acid solution
  • the piece to be tested can be immersed in deionized water for rinsing to remove the particle pollutants corroded by the acid solution and the residual acid solution on the piece to be tested
  • deionized water can be used to pressurize the blind holes, folds and other areas on the test piece to clean the particles and acid solution in the blind holes, folds and other areas on the test piece, after that,
  • the piece to be tested can be immersed in deionized water for ultrasonic vibration cleaning to remove the particles on the piece to be tested.
  • the cleanliness of the particles to be tested can be tested. If the cleanliness of the particles to be tested is qualified, the cycle above In the cleaning step, if the cleanliness of the particles to be tested is unqualified, the piece to be tested can be immersed in deionized water for rinsing, so as to remove the immersion residue remaining on the piece to be tested during the process of testing the cleanliness of the particles to be tested. After that, the piece to be tested can be blown dry with filtered dry gas to remove visible moisture on the piece to be tested, and then the piece to be tested can be baked in a clean room to remove the After that, nitrogen gas can be used to comprehensively purge the parts to be tested to remove particulate matter and moisture on the parts to be tested.
  • the method for detecting the cleanliness of particles to be tested can be to put a clean soaking tank into the ultrasonic tank first, then add deionized water to the soaking tank, and then put the test piece into the soaking tank , and immersed in deionized water, after that, the number of particles in the deionized water can be detected by using a liquid particle counter, and then ultrasonic vibration can be performed on the deionized water immersed in the piece to be tested, and then, the deionized water can be detected by using a liquid particle counter
  • the number of particles in deionized water is detected by calculating the difference between the number of particles in deionized water before ultrasonic shock and the number of particles in deionized water after ultrasonic shock, and judging whether the difference meets the preset standard, if the difference If the difference value satisfies the preset standard, the particle cleanliness of the piece to be tested is qualified, and if the difference does not meet the preset standard, the particle cleanliness of the piece to be tested is
  • the method of detecting the cleanliness of the particles to be inspected can also be to wipe the object to be inspected with a wiping cloth first, and visually check whether there are obvious stains on the wiping cloth. If there are obvious stains on the wiping cloth, put the wiping cloth into the Soak in deionized water, and ultrasonically vibrate the deionized water soaked with wiping cloth, and then use a liquid particle counter to detect the number of particles in the deionized water after ultrasonic vibration, so as to pass the detected deionized water after ultrasonic vibration The number of particles to be tested is judged whether the particle cleanliness is qualified or not.
  • an embodiment of the present invention provides a particle cleanliness detection method, including the following steps:
  • step S2 detecting the number of particles in the soaking solution 1 in the preset container 2, and judging whether the detected number of particles in the soaking solution 1 meets the preset first standard; if so, go to step S3;
  • the particle cleanliness detection method first detects the particle quantity of the soaking liquid 1 before detecting the particle particle of the object 3 to be detected, and judges whether the detected particle quantity of the soaking liquid 1 satisfies the preset first One standard, if the number of particles in the soaking liquid 1 meets the first standard, then use the soaking liquid 1 to detect the particles of the piece 3 that has been cleaned, so that the particles in the soaking liquid 1 can be avoided when the first standard is not met.
  • the standard is used to interfere with the cleanliness of the particles of the test piece 3
  • the error of the test result can be reduced, the accuracy of the test result can be improved, and the reliability and stability of the test result can be improved, thereby reducing the impact of semiconductor equipment components on the semiconductor process result. influences.
  • the number of particles in the soaking liquid can have a uniform technical standard, thereby avoiding the impact of human subjective factors on the test results.
  • the soaking liquid 1 may be filtered until the count of the particulate matter in the soaking liquid 1 meets the preset first standard.
  • the embodiment of the present invention is not limited thereto.
  • the soaking solution 1 can also be replaced, and the soaking solution 1 after replacement It is enough that the amount of particulate matter meets the preset first standard.
  • the object to be cleaned 3 involved in the embodiment of the present invention can be an electrostatic chuck (ESC for short), and the particle cleanliness detection method provided in the embodiment of the present invention can be used to detect particles on the surface of the electrostatic chuck.
  • the particle cleanliness detection method provided in the embodiment of the present invention can also be applied to other components that need to detect the cleanliness of the particles, which is not particularly limited in the embodiment of the present invention.
  • the particle cleanliness detection method provided by the embodiment of the present invention can not only detect the particle cleanliness of the object 3 to be inspected after being cleaned by the above-mentioned cleaning method, but also can detect the particle cleanliness of the object to be inspected after being cleaned by any other cleaning method. detection, which is not particularly limited in the embodiments of the present invention.
  • soaking solution 1 may be deionized water.
  • the above-mentioned first standard may be that the number of particles with a diameter greater than or equal to 0.3 ⁇ m (micrometer) in the soaking solution 1 is less than or equal to 400 P/ml (pieces per milliliter). That is, if the detected number of particles with a diameter greater than or equal to 0.3 ⁇ m in the soaking solution 1 is less than or equal to 400P/ml, the detected number of particles in the soaking solution 1 meets the preset first standard, and this soaking solution can be used. Liquid 1 is used to detect the cleanliness of particles in the test piece 3.
  • the first standard set is that the immersion solution 1 cannot be used to detect the cleanliness of the particles of the test piece 3 .
  • the above-mentioned first standard is not limited thereto. In practical applications, the setting of the first standard is related to the selected immersion liquid, and the immersion liquid does not affect the particle cleanliness of the object to be inspected as a benchmark.
  • the immersion solution 1 whose number of particles meets the preset first standard to detect the particles 3 of the object 3 to be tested, not only can avoid the interference of the particle cleanliness of the object 3 to be tested due to the excessive amount of particles in the immersion solution 1, but also It is also possible to set a unified technical standard for whether the soaking solution 1 can be used for detection, so as to avoid the influence of human subjective factors on the detection results, thereby reducing the error of the detection results, improving the accuracy of the detection results, and improving the detection results. The reliability and stability of the semiconductor equipment, thereby reducing the impact of the components of the semiconductor equipment on the results of the semiconductor process.
  • step S3 may include the following steps:
  • the number of particulate matter detected and obtained in the above step S2 is recorded in advance.
  • the above-mentioned first preset duration can be set as the duration required for all particles on the surface of the object 3 to be detected to fall off after being shaken.
  • the longer the vibration time of the object 3 to be detected the more completely the particles on the surface of the object 3 to be detected fall off, that is, the longer the first preset time length, the higher the detection accuracy.
  • the first preset duration may be the same or may be different.
  • the total shedding mentioned here is to basically ensure that the particles fall off to the soaking solution 1, and the number of particles in the soaking solution 1 is basically unchanged in the end.
  • the soaking solution 1 soaked with the test piece 3 By ultrasonically vibrating the soaking solution 1 soaked with the test piece 3 until it reaches the first preset duration, it can basically ensure that all the particles on the surface of the test piece 3 fall off, so that it can be largely avoided after ultrasonic vibration. , After standing still, particles are still attached to the surface of the test piece 3, so that the number of particles on the surface of the test piece 3 can be accurately detected, so that the second detection value is more accurate, and then the error of the test result can be reduced, and the detection rate can be improved. The accuracy of the results can improve the reliability and stability of the test results, thereby reducing the impact of semiconductor equipment components on the semiconductor process results.
  • the above-mentioned second standard may be that the number of particles with a diameter greater than or equal to 0.2 ⁇ m in the soaking solution 1 is less than or equal to 150000 ea/ml (pieces per milliliter).
  • the first detection value and the second detection value can be the number of particles with a diameter greater than or equal to 0.2 ⁇ m in the soaking liquid 1, if the difference between the second detection value and the first detection value is less than or equal to 150000ea/ml, then The difference meets the preset second standard, and the particle cleanliness of the object 3 to be tested is qualified. If the difference between the second detected value and the first detected value is greater than 150000ea/ml, the difference does not meet the preset second standard. Standard, the particle cleanliness of the test piece 3 is unqualified.
  • the second standard is not limited thereto, and the second standard can be adaptively changed according to the material of the part 3 to be tested.
  • the second standard is It may be that the number of particles with a diameter greater than or equal to 0.2 ⁇ m in the soaking solution 1 is less than or equal to 150,000 ea/ml.
  • the second standard may be that the diameter in the soaking solution 1 is greater than or equal to 0.2 ⁇ m.
  • the number of micron particles is less than or equal to 50000ea/ml.
  • the duration of the ultrasonic vibration can have a uniform standard, avoiding the need to Because different people set different durations of ultrasonic vibrations, it will interfere with the detection results of the particle cleanliness of the same kind of parts 3 to be tested, further reducing human subjective factors, thereby further reducing the error of the detection results, and there is no need for each detection. In addition, the operation is more convenient.
  • obtaining the above-mentioned first preset duration may include the following steps:
  • the first preset time length is set as the sum of the time spent from the 1st to the tth ultrasonic vibration, wherein, N is greater than or equal to 2 , t is a positive integer greater than or equal to 1, and (t+1) is less than or equal to N.
  • the hydrogen ions of the soaking solution 1 after the tth ultrasonic vibration and standing still are detected
  • the concentration index and the resistance value are not equal, it means that the duration of the ultrasonic vibration is not enough to fully shake the particles on the object 3 to be tested, and the duration of the ultrasonic vibration needs to be extended.
  • the hydrogen ion concentration index and resistance value of the soaking solution 1 are equal to the detected hydrogen ion concentration index and resistance value of the soaking solution 1 after the tth ultrasonic vibration and standing still, it means that the tth time has the same effect on the soaking solution.
  • the particulate matter on the object 3 to be detected has been sufficiently shaken, that is to say, the sum of the time spent from the 1st to the tth ultrasonic oscillation can be compared to the particles on the object 3 to be detected.
  • the particles are sufficiently shaken down, therefore, the sum of the durations of the 1st to tth ultrasonic vibrations can be used as the first preset duration. Since the detection of the hydrogen ion concentration index and the resistance value of the immersion solution 1 is relatively simple, this makes it easier to obtain the first preset duration.
  • the method of obtaining the first preset duration is not limited to this.
  • the number of particles in the soaking solution 1 can also be detected after each ultrasonic vibration and standing, if the detected t+1th If the number of particles is equal to the number of particles detected for the tth time, the sum of the durations of the first to tth ultrasonic vibrations is used as the first preset duration.
  • the immersion solution 1 immersed in the test piece 3 is ultrasonically oscillated for 0 min for the first time and left to stand for 5 minutes, and then the hydrogen ion concentration index and resistance value of the immersion solution 1 are detected.
  • the hydrogen ion concentration index and resistance value of the immersion solution 1 after ultrasonic oscillation and standing still were 6.35 and 4M ⁇ respectively.
  • the second ultrasonic oscillation was performed on the immersion solution 1 soaked with the piece 3 to be tested for 5 minutes and left to stand for 5 minutes.
  • the hydrogen ion concentration index and resistance value of liquid 1 are detected, and the detected hydrogen ion concentration index and resistance value of soaking liquid 1 after ultrasonic vibration and standing are 6.50 and 4.31M ⁇ respectively, because 6.50 and 4.31M ⁇ and 6.35 and 4M ⁇ Not equal, that is, the detected hydrogen ion concentration index and resistance value of soaking solution 1 after the second ultrasonic vibration and standing still, and the detected hydrogen ion of soaking solution 1 after the first ultrasonic vibration and standing still The concentration index and the resistance value are not equal. Therefore, the soaking solution 1 immersed in the test piece 3 is ultrasonically oscillated for 2 minutes for the third time and left for 5 minutes, and then the hydrogen ion concentration index and resistance value of the soaking solution 1 are detected.
  • the hydrogen ion concentration index and resistance value of the immersion solution 1 after ultrasonic oscillation and standing were 6.59 and 4.42M ⁇ , respectively. Since 6.59 and 4.42M ⁇ are not equal to 6.50 and 4.31M ⁇ , that is, the third ultrasonic oscillation detected and The hydrogen ion concentration index and resistance value of soaking solution 1 after standing still are not equal to the hydrogen ion concentration index and resistance value of soaking solution 1 detected after the second ultrasonic vibration and standing still.
  • the soaking solution 1 of piece 3 was ultrasonically oscillated for 2 minutes for the fourth time and stood still for 5 minutes. After that, the hydrogen ion concentration index and resistance value of the soaking solution 1 were detected.
  • the concentration index and resistance value are 6.64 and 4.45M ⁇ respectively, because 6.64 and 4.45M ⁇ are not equal to 6.59 and 4.42M ⁇ , that is, the detected hydrogen ion concentration index and resistance of soaking solution 1 after the fourth ultrasonic vibration and standing still
  • the value is not equal to the hydrogen ion concentration index and resistance value of the soaking solution 1 detected after the third ultrasonic vibration and standing still.
  • the fifth ultrasonic vibration is performed on the soaking solution 1 soaked with the object 3 to be tested for 1 min and After standing still for 5 minutes, the hydrogen ion concentration index and resistance value of the soaking solution 1 were detected, and the hydrogen ion concentration index and resistance value of the soaking solution 1 detected after ultrasonic vibration and standing were 6.65 and 4.49 M ⁇ , respectively, because 6.65 and 4.49M ⁇ are not equal to 6.64 and 4.45M ⁇ , that is, the hydrogen ion concentration index and resistance value of the soaking solution 1 detected after the fifth ultrasonic vibration and standing still are the same as the detected fourth ultrasonic vibration and standing still
  • the hydrogen ion concentration index and the resistance value of the soaking solution 1 are not equal, therefore, the soaking solution 1 soaked with the object 3 to be tested is subjected to ultrasonic vibration for the sixth time for 1 min and left to stand for 5 minutes, and then the hydrogen ion concentration index of the soaking solution 1 and resistance values are detected, the detected The hydrogen ion concentration index and resistance value of soaking solution 1
  • the sum of the durations of the first to fifth ultrasonic vibrations of the immersion liquid 1 immersed in the object 3 to be tested is taken as the first preset duration, that is, the duration of the first ultrasonic vibration is 0 min, and the second ultrasonic vibration is 0 min.
  • the duration of 5 minutes for the first ultrasonic vibration, the duration of the third ultrasonic vibration for 2 minutes, the duration of the fourth ultrasonic vibration for 2 minutes, and the duration of the fifth ultrasonic vibration for 1 min are added together to obtain the first preset duration of 10 minutes.
  • the soaking liquid soaked with the object to be tested can be ultrasonically vibrated until the first preset time period is reached, and then left to stand until the second preset time period is reached. . That is, ultrasonic vibration is performed on the immersion liquid 1 immersed in the object 3 to be inspected for a first preset time length, and then the immersion liquid 1 immersed in the object 3 to be inspected is left standing for a second preset time length.
  • the first preset duration may be any value from 9 minutes (minutes) to 11 minutes.
  • the first preset duration may be 10 minutes.
  • the second preset duration may be any value greater than or equal to 5 minutes.
  • the second preset duration may be 5 minutes.
  • the selected first preset duration and the selected first duration are used. 2. Preset duration. For example, if the first preset time length is selected as 10min, and the second preset time length is selected as 5min, then each time the particle cleanliness of the piece to be tested 3 is detected, the immersion of the piece to be tested 3 is firstly performed. Liquid 1 was ultrasonically oscillated for 10 minutes, and then the soaking liquid 1 immersed in the object 3 to be tested was left to stand for 5 minutes.
  • step S31 the number of particles detected in step S2 above is used as the first detection value, but the embodiment of the present invention is not limited thereto, for example, as shown in Fig. 5 and Fig. 9
  • step S3 before performing step S32, the above step S3 further includes the following steps:
  • the soaking solution 1 is ultrasonically oscillated and left to stand.
  • the particles in the soaking solution 1 can be evenly dispersed, and on the other hand, the bubbles generated by the ultrasonic vibration can be prevented from clearing the particles in the soaking solution 1. interference caused by object detection, so as to improve the accuracy of the first detection value.
  • step S31' replaces the above step S31, and after the above step S107 and step S31' are performed in sequence, step S32 is performed.
  • ultrasonic vibration may be performed on the soaking liquid until the third preset time period is reached and then left to stand for a fourth preset time period.
  • the third preset duration may be any value from 9 minutes to 11 minutes.
  • the third preset duration may be 10 minutes.
  • the fourth preset duration may be any value greater than or equal to 5 minutes.
  • the fourth preset duration may be 5 minutes.
  • the selected third preset duration and the selected first preset duration are used.
  • Four preset durations For example, if the third preset duration is selected as 10 minutes, and the fourth preset duration is selected as 5 minutes, then each time the particle cleanliness of the soaking solution 1 is detected, the soaking solution 1 is ultrasonically oscillated for 10 minutes After that, the soaking solution 1 was left to stand for 5 minutes.
  • step S3 includes the above steps S31 to S35, the following steps may also be included:
  • the evaluation parameter value of the soaking liquid 1 is detected, and the detected evaluation parameter value of the soaking liquid 1 is used as the first evaluation parameter value;
  • the evaluation parameter value of the soaking liquid 1 after standing is detected, and the detected evaluation parameter value of the soaking liquid 1 is used as the second evaluation parameter value;
  • the above evaluation parameter value may include the hydrogen ion concentration index of the soaking solution 1, the above first evaluation parameter value is the first hydrogen ion concentration index, and the above second evaluation parameter value is the second hydrogen ion concentration index; and/or, the above evaluation parameter
  • the values include the resistance value of the soaking liquid 1, the first evaluation parameter value is the first resistance value, and the second evaluation parameter value is the second resistance value.
  • the above evaluation parameter values can include both the hydrogen ion concentration index of the soaking solution and the resistance value of the soaking solution 1, or only the hydrogen ion concentration index of the soaking solution, or only the resistance value of the soaking solution 1 . That is to say, the resistance value and the hydrogen ion concentration index of the soaking solution 1 can be evaluated at the same time, or only one of them can be evaluated.
  • step S3 also includes:
  • the particles on the object to be tested 3 will be ultrasonically vibrated into the soaking solution 1, therefore, the hydrogen ion concentration of the soaking solution 1 immersed in the piece to be tested 3 before and after ultrasonic vibration
  • the index that is, the pH value
  • the more particles are ultrasonically oscillated into the immersion solution 1 the greater the change of the hydrogen ion concentration index of the immersion solution 1 soaked with the object 3 to be tested is before and after ultrasonic oscillation.
  • the above step S33 that is, ultrasonically vibrate the soaking liquid 1 immersed in the object 3 to be tested until the first preset time period is reached) Standstill
  • the above step S34 that is, Detect the number of particles in the soaking liquid 1
  • the above step S33 that is, ultrasonic vibration is performed on the soaking liquid 1 soaked with the object 3 to be tested, until it reaches the first preset time length and then stands still
  • the hydrogen ion concentration index before and after the step S33 If the change value is too large, when the cleanliness of the particulate matter in the test piece 3 must be unqualified, there is no need to detect the amount of particulate matter in the soaking solution 1, that
  • the test piece 3 Only when the change value of the hydrogen ion concentration index before and after the above step S33 (that is, the soaking liquid 1 soaked with the test piece 3 is ultrasonically oscillated until it reaches the first preset time length) is small, the test piece 3 When the cleanliness of the particles may be qualified, the number of particles in the soaking solution 1 is detected, which can reduce the number of times of detecting the number of particles in the soaking solution 1, thereby improving the detection efficiency, and, because the hydrogen ion concentration of the soaking solution 1 The detection of the index is relatively simple, so this can make the detection relatively simple.
  • the above-mentioned first preset range may be less than or equal to 0.5. That is, if the difference between the second hydrogen ion concentration index and the first hydrogen ion concentration index is less than or equal to 0.5, then the difference satisfies the preset third standard, and the above step S34 (that is, detecting the number of particles), if the difference between the second hydrogen ion concentration index and the first hydrogen ion concentration index is greater than 0.5, then the difference does not meet the preset third standard, and it is not necessary to perform the above step S34 (that is, detect the amount of particulate matter).
  • the detected first hydrogen ion concentration index of the soaking solution 1 is 6.35
  • the detected second hydrogen ion concentration index of the soaking solution 1 is 6.65
  • the difference between the second hydrogen ion concentration index and the first hydrogen ion concentration index is 0.3 and less than 0.5, then the difference is within the first preset range and meets the preset third standard, and the above step S34 can be performed (that is, Detect the number of particulate matter in soaking solution 1).
  • step S3 also includes:
  • the particles on the object to be tested 3 will be ultrasonically vibrated into the immersion liquid 1, therefore, the resistance value of the immersion liquid 1 immersed in the object to be inspected 3 before and after ultrasonic vibration will be different. change, and the more particles are ultrasonically oscillated into the immersion solution 1 , the greater the change in the resistance value of the immersion solution 1 soaked with the object 3 to be tested before and after ultrasonic oscillation is.
  • step S34 that is, detect the particle quantity
  • the change value of the resistance value before and after the above-mentioned step S33 that is, ultrasonic vibration is performed on the soaking liquid 1 soaked with the piece to be tested 3 until it reaches the first preset time length
  • the particle cleanliness of 3 must be unqualified, there is no need to detect the number of particles in the soaking solution 1, that is, if the above-mentioned difference is not within the first preset range, the soaking solution can be filtered or replaced. Then return to step S104.
  • the change value of the resistance value before and after the above step S33 that is, ultrasonically vibrate the immersion liquid 1 soaked with the piece to be tested 3 until it reaches the first preset time length
  • the particulate matter of the piece to be tested 3 is clean
  • the number of particles in the soaking solution 1 is detected only when the degree may be qualified, which can reduce the number of times of detecting the number of particles in the soaking solution 1, thereby improving the detection efficiency, and, because the detection of the resistance value of the soaking solution 1 is relatively Simple, therefore, this can make the detection easier.
  • the above-mentioned second preset range may be less than or equal to 0.5 M ⁇ (megohm). That is, if the difference between the second resistance value and the first resistance value is less than or equal to 0.5 M ⁇ , then the difference satisfies the preset third standard (that is, within the above-mentioned second preset range), and the soaking solution 1 can be detected. If the difference between the second resistance value and the first resistance value is greater than 0.5 M ⁇ , the difference is not within the second preset range, and there is no need to detect the number of particles in the soaking solution 1 .
  • the first resistance value of the detected soaking solution 1 is 4M ⁇
  • the detected second resistance value of the immersion liquid 1 is 4.49 M ⁇
  • the difference between the second resistance value and the first resistance value is 0.49M ⁇ and less than 0.5M ⁇
  • the difference meets the preset third standard
  • the above step S34 that is, detecting the number of particles in the soaking solution 1
  • ultrasonic vibration can be performed on the immersion liquid 1 immersed in the object 3 to be inspected at a preset ultrasonic intensity.
  • the ultrasonic intensity can be any value of 8-10W/inch2 (watts per square inch), that is, after selecting an ultrasonic intensity, when the particle cleanliness of the object 3 to be tested is detected each time, the Use a selected ultrasound intensity. For example, if the ultrasonic intensity is selected as 9W/inch2, then each time the particle cleanliness of the object 3 to be inspected is detected, the soaking liquid 1 immersed in the object to be inspected 3 is ultrasonically oscillated at an ultrasonic intensity of 9W/inch2 .
  • the top of the object to be inspected 3 when the object to be inspected 3 is immersed in the soaking liquid 1, the top of the object to be inspected 3 can be separated from the top surface of the soaking liquid 1 by a first preset distance ( As shown in the distance A in Figure 11), and make the bottom of the part 3 to be tested be separated from the second preset distance from the bottom surface of the soaking liquid 1 (as shown in the distance B in Figure 11), after the detection through the above-mentioned step S33 (that is, to The soaking liquid soaked with the piece to be tested is ultrasonically vibrated until the number of particles in the soaking liquid 1 after the first preset time period is reached), a third preset time can be placed above the top of the piece to be tested 3 Sampling at a given distance.
  • a first preset distance As shown in the distance A in Figure 11
  • the bottom of the part 3 to be tested be separated from the second preset distance from the bottom surface of the soaking liquid 1 (as shown in the distance B in Figure 11)
  • the particulate matter on the top of the part to be tested 3 and the particles at the bottom of the piece to be tested 3 can be soaked from the piece to be tested 3 into the soaking liquid 1, and the distance between the top of the piece to be tested 3 and the top surface of the soaking liquid 1 is preset, and the The distance between the bottom of the test piece 3 and the bottom surface of the soaking solution 1 is preset, which can avoid the gap between the top of the test piece 3 and the top surface of the soaking solution 1 every time the particle cleanliness of the test piece 3 is detected.
  • the different distances between them, as well as the different distances between the bottom of the test piece 3 and the bottom surface of the immersion solution 1 will interfere with the cleanliness of the particles of the test piece 3, further reducing human subjective factors, thereby further reducing the error of the test results and improving
  • the accuracy of the test results improves the reliability and stability of the test results, thereby reducing the impact of semiconductor equipment components on the semiconductor process results.
  • the obtained particulate matter in the soaking liquid 1 can best reflect the cleanliness of the particles to be tested 3, and by presetting the sampling position, it can avoid the different sampling positions of the particles to be tested 3 each time the cleanliness of the particles to be tested 3 is detected. Interference caused by cleanliness can further reduce human subjective factors, thereby further reducing the error of test results, improving the accuracy of test results, and then improving the reliability and stability of test results, thereby reducing the impact of semiconductor equipment components on semiconductor process results. influences.
  • the first preset distance may be 85mm (millimeter)-115mm.
  • the first preset distance may be 100mm.
  • the second preset distance may be 25mm-35mm.
  • the second preset distance may be 30mm.
  • the top of the part to be tested 3 can be a first preset distance away from the top surface of the soaking liquid 1, And the top of the object to be tested 3 can be separated from the bottom surface of the immersion liquid 1 by a second preset distance.
  • the support frame can be made of Teflon.
  • the third preset distance may be 25mm-35mm.
  • the third preset distance may be 30mm.
  • multiple samples may be taken at a third preset distance above the top of the part 3 to be tested, and the number of particles in the soaking liquid 1 obtained by multiple samplings shall be used as multiple second detection values, And calculate the average value of a plurality of second detection values, and calculate the difference between the average value and the first detection value, and judge whether the difference satisfies the preset second standard, if so, the particulate matter of the test piece 3 is cleaned degree qualified.
  • 15 samples are taken at the third preset distance above the top of the part 3 to be tested, and the number of particles with a diameter greater than or equal to 0.1 ⁇ m is 32000ea/ml, 43000ea/ml, 57000ea/ml, 73000ea/ml, 76000ea/ml, respectively.
  • the number of particles in liquid 1 is used as 15 second detection values, and the average value of the 15 second detection values is calculated, which is 54000ea/ml, and then the difference between 54000ea/ml and the first detection value is calculated, and the difference is judged Whether the value satisfies the preset second standard, if yes, the particle cleanliness of the part 3 to be tested is qualified.
  • the second standard above is the number of particles with a diameter greater than or equal to 0.2 ⁇ m in the soaking liquid 1
  • the sampling here is the number of particles with a diameter greater than or equal to 0.1 ⁇ m in the soaking liquid 1 , therefore, the sampling here cannot be compared with the second standard above. It is necessary to establish another standard based on the number of particles with a diameter greater than or equal to 0.1 ⁇ m in the soaking liquid 1.
  • the number of particles with a diameter greater than or equal to 0.1 ⁇ m since particles with a diameter greater than or equal to 0.1 ⁇ m include particles with a diameter greater than or equal to 0.2 ⁇ m, the number of particles with a diameter greater than or equal to 0.1 ⁇ m is more than that with a diameter greater than or equal to 0.2 The number of ⁇ m particles can further improve the accuracy of the detection results.
  • the diameter of the particulate matter in the sampled soaking liquid 1 is not limited thereto, for example, the diameter of the particulate matter in the sampled soaking liquid 1 may also be greater than or equal to 0.3 ⁇ m.
  • step S1 taking the soaking liquid 1 into the preset container 2 may include the following steps:
  • the duration i.e., the fifth preset duration
  • the soaking liquid 1 By presetting the duration (i.e., the fifth preset duration) of taking the soaking liquid 1 into the first preset container 21, it can be avoided that the soaking liquid 1
  • the different lengths of time taken into the first preset container 21 will interfere with the cleanliness of the particles in the soaking liquid 1, and further reduce human subjective factors, thereby further reducing the error of the detection result, improving the accuracy of the detection result, and then improving the accuracy of the detection result. Reliability and stability, thereby reducing the impact of semiconductor equipment components on semiconductor process results.
  • the polyethylene material has the characteristics of moisture resistance, acid and alkali resistance, and oxidation resistance, it can further reduce the error of the detection result, further improve the accuracy of the detection result, thereby further improving the reliability and stability of the detection result, and further reducing the semiconductor The impact of equipment components on semiconductor process results.
  • the fifth preset duration may be 135s (seconds)-155s.
  • the fifth preset duration may be 150s.
  • the second preset container 22 may include an oscillation groove capable of generating ultrasonic oscillation.
  • the particle cleanliness detection method provided by the present invention can reduce the error of the detection result, improve the accuracy of the detection result, thereby improving the reliability and stability of the detection result, and further reducing the impact of semiconductor equipment components on the semiconductor process. impact on the outcome.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

提供一种颗粒物清洁度检测方法,包括以下步骤:将浸泡液(1)取至预设容器(2)内(S1);对预设容器(2)内的浸泡液(1)的颗粒物数量进行检测(S2),并判断检测到的浸泡液(1)的颗粒物数量是否满足预设的第一标准;若是,则采用浸泡液(1)对已进行清洁处理的待检测件(3)进行颗粒物检测(S3),其中,待检测件(3)为已进行清洁处理的机械加工件。颗粒物清洁度检测方法能够降低检测结果的误差,提高检测结果的准确度,从而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。

Description

颗粒物清洁度检测方法 技术领域
本发明涉及半导体技术领域,具体地,涉及一种颗粒物清洁度检测方法。
背景技术
陶瓷在机械加工过程中容易因静电效应或者微裂而产生陶瓷小颗粒,并且容易沾染灰尘等杂质。而在半导体设备中,一些零部件需要使用陶瓷制作,例如静电吸盘(Electrostatic Chuck,简称ESC)中用于承载晶圆的承载件为陶瓷件,若这些陶瓷件上存在颗粒物,则会产生晶圆吸附不良、工艺结果颗粒物超标等一系列问题。因此,在陶瓷件制作完成后,需要对陶瓷件进行清洗,以去除陶瓷件上颗粒物,并需要对陶瓷件的颗粒物清洁度进行检测,避免颗粒物清洁度未达标的陶瓷件投入使用。
现有的陶瓷件的颗粒物清洁度检测方式,通常是将清洗后的陶瓷件浸入浸泡液,再使用液体颗粒计数器(Liquid Particle Counter,简称LPC)对浸泡液中的颗粒物数量进行检测,以借助检测到的颗粒物数量来判断陶瓷件的颗粒物清洁度是否达标。但是,现有的陶瓷件的颗粒物清洁度检测方式具有较多的人为主观因素,造成颗粒物清洁度检测的检测结果误差较大,准确度较低,从而对检测结果的可靠性和稳定性产生影响,进而对半导体工艺结果产生影响。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种颗粒物清洁度检测方法,其能够降低检测结果的误差,提高检测结果的准确度,从而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导 体工艺结果的影响。
为实现本发明的目的而提供一种颗粒物清洁度检测方法,包括以下步骤:
将浸泡液取至预设容器内;
对所述预设容器内的所述浸泡液的颗粒物数量进行检测,并判断检测到的所述浸泡液的颗粒物数量是否满足预设的第一标准;
若是,则采用所述浸泡液对已进行清洁处理的待检测件进行颗粒物检测。
可选的,所述采用所述浸泡液对已进行清洁处理的待检测件进行颗粒物检测,包括以下步骤:
将所述待检测件浸没在所述浸泡液中;
对浸有所述待检测件的所述浸泡液进行超声震荡,直至达到第一预设时长之后静置,其中,所述第一预设时长为所述待检测件表面颗粒经震荡可全部脱落所需的时间;
检测静置后的所述浸泡液中的颗粒物数量,并将检测到的所述浸泡液中的颗粒物数量作为第二检测值;
计算所述第二检测值与对未浸泡所述待检测件的所述浸泡液检测颗粒物数量获得的第一检测值的差值,并判断所述差值是否满足预设的第二标准,若是,则所述待检测件的颗粒物清洁度合格。
可选的,所述第一预设时长的获得包括以下步骤:
在进行所述颗粒物清洁度检测之前,对浸有所述待检测件的所述浸泡液进行N次超声震荡,并在每次超声震荡之后静置,且在每次超声震荡并静置之后,对所述浸泡液的氢离子浓度指数和电阻值进行检测,
若检测到的第t+1次超声震荡并静置后的所述浸泡液的氢离子浓度指数和电阻值,与检测到的第t次超声震荡并静置后的所述浸泡液的氢离子浓度 指数和电阻值相等,则将所述第一预设时长设定为从第1次到第t次超声震荡所花费的时长之和,其中,N为大于或等于2的正整数,t为大于或等于1的正整数,且(t+1)小于或等于N。
可选的,所述采用所述浸泡液对已进行清洁处理的待检测件进行颗粒物检测,还包括以下步骤:
在所述将所述待检测件浸没在所述浸泡液中之后,且在所述对浸有所述待检测件的所述浸泡液进行超声震荡,直至达到第一预设时长之后静置之前,
对所述浸泡液的评估参数值进行检测,并将检测到的所述浸泡液的评估参数值作为第一评估参数值;
在所述静置之后,且在所述检测静置后的所述浸泡液中的颗粒物数量之前,
对静置后的所述浸泡液的评估参数值进行检测,并将检测到的所述浸泡液的评估参数值作为第二评估参数值;
计算所述第二评估参数值与所述第一评估参数值的差值,并判断所述差值是否满足预设的第三标准,若满足,则进行所述检测静置后的所述浸泡液中的颗粒物数量。
可选的,所述评估参数值为所述浸泡液的氢离子浓度指数,所述第一评估参数值为第一氢离子浓度指数,所述第二评估参数值为第二氢离子浓度指数;
所述判断所述差值是否满足预设的第三标准,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量,包括:
判断所述第二氢离子浓度指数与所述第一氢离子浓度指数的差值是否在第一预设范围内,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量;
和/或,所述评估参数值为所述浸泡液的电阻值,所述第一评估参数值为 第一电阻值,所述第二评估参数值为第二电阻值;
所述判断所述差值是否满足预设的第三标准,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量,包括:
判断所述第二电阻值与所述第一电阻值的差值是否在第二预设范围内,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量。
可选的,所述浸泡液为去离子水,所述第一标准为在所述浸泡液中直径大于或等于0.3μm(微米)的颗粒物的数量小于或等于400P/ml(个每毫升)。
可选的,在所述将所述待检测件浸没在所述浸泡液中的步骤中,使所述待检测件的顶部距离所述浸泡液的顶面第一预设距离,并使所述待检测件的底部距离所述浸泡液的底面第二预设距离;
在所述检测静置后的所述浸泡液中的颗粒物数量的步骤中,在所述待检测件的顶部上方第三预设距离处取样。
可选的,所述采用所述浸泡液对已进行清洁处理的所述待检测件进行颗粒物检测,还包括以下步骤:
在所述将所述待检测件浸没在所述浸泡液中之前,对所述浸泡液进行超声震荡,直至达到第三预设时长之后静置第四预设时长;
对所述浸泡液中的颗粒物数量进行检测,并将检测到的所述浸泡液中的颗粒物数量作为所述第一检测值。
可选的,将所述对所述预设容器内的所述浸泡液的颗粒物数量进行检测的步骤中检测获得的颗粒物数量作为所述第一检测值。
可选的,所述将所述浸泡液取至所述预设容器内,包括以下步骤:
将所述浸泡液取至第一预设容器内,同时进行计时,并在达到第五预设时长时停止取液;
将所述第一预设容器放置在第二预设容器内;其中,所述第一预设容器采用聚乙烯材料制作。本发明具有以下有益效果:
本发明提供的颗粒物清洁度检测方法,在对待检测件进行颗粒物检测之前,先对浸泡液的颗粒物数量进行检测,并判断检测到的浸泡液的颗粒物数量是否满足预设的第一标准,若浸泡液的颗粒物数量满足预设的第一标准,再采用浸泡液对已进行清洁处理的待检测件进行颗粒物检测,这样就可以避免浸泡液中的颗粒物在不满足上述第一标准时对待检测件的颗粒物清洁度造成干扰,以能够降低检测结果的误差,提高检测结果的准确度,从而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。另外,通过在对待检测件进行颗粒物检测之前,先判断浸泡液的颗粒物数量是否满足第一标准,可以使浸泡液的颗粒物数量具有统一的技术标准,从而可以避免人为主观因素对检测结果产生影响。
附图说明
图1为本发明实施例提供的颗粒物清洁度检测方法的一种流程图;
图2为本发明实施例提供的颗粒物清洁度检测方法的另一种流程图;
图3为本发明实施例提供的颗粒物清洁度检测方法的另一种流程图;
图4为本发明实施例提供的颗粒物清洁度检测方法的另一种流程图;
图5为本发明实施例提供的颗粒物清洁度检测方法的另一种流程图;
图6为本发明实施例提供的颗粒物清洁度检测方法的另一种流程图;
图7为本发明实施例提供的颗粒物清洁度检测方法在将浸泡液取至第一预设容器内的示意图;
图8为本发明实施例提供的颗粒物清洁度检测方法在对浸泡液的颗粒物数量进行检测的示意图;
图9为本发明实施例提供的颗粒物清洁度检测方法在对浸泡液进行超声震荡并静置的示意图;
图10为本发明实施例提供的颗粒物清洁度检测方法在对浸泡液中的颗粒物数量进行检测获得第一检测值的示意图;
图11为本发明实施例提供的颗粒物清洁度检测方法在将待检测件浸没在浸泡液中,并对浸有待检测件的浸泡液进行超声震荡并静置的示意图;
图12为本发明实施例提供的颗粒物清洁度检测方法在对浸泡液中的颗粒物数量进行检测获得第二检测值的示意图;
附图标记说明:
1-浸泡液;2-预设容器;21-第一预设容器;22-第二预设容器;3-待检测件;4-液体颗粒计数器。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的颗粒物清洁度检测方法进行详细描述。
为了便于对本发明实施例提供的颗粒物清洁度检测方法进行说明,首先对现有技术中的待检测件的清洗方法以及颗粒物清洁度检测方法进行介绍。以待检测件的材质为陶瓷为例,在现有技术中,待检测件的清洗方法可以是先将待检测件浸入脱脂剂中,以去除待检测件上的脂类物质,避免待检测件上的脂类物质将待检测件上的颗粒物覆盖,导致在后续的清洗过程中待检测件上的颗粒物无法被清洗下来。之后,可以再将待检测件浸入去离子水(Deionized water)中漂洗,以去除待检测件上被脱脂剂从待检测件上分离出来的脂类物质以及残留的脱脂剂,之后,可以再使用去离子水对待检测件上的盲孔、褶皱等区域进行加压喷淋,以将待检测件上位于盲孔、褶皱等区域中的颗粒物清洗下来,之后,可以再将待检测件浸入酸溶液中,以借助酸溶液将待检测件上的颗粒物腐蚀下来,之后,可以再将待检测件浸入去离子水中漂洗,以去除待检测件上被酸溶液腐蚀下来的颗粒污染物以及残留的酸溶液,之后,可以再使用去离子水对待检测件上的盲孔、褶皱等区域进行加压喷淋,以将待检测件上位于盲孔、褶皱等区域中的颗粒物以及酸溶液清洗下来,之后,可以再将待检测件浸入去离子水中进行超声震荡清洗,以去除 待检测件上的颗粒物,之后,可以对待检测件的颗粒物清洁度进行检测,若待检测件的颗粒物清洁度合格,则循环上述清洗步骤,若待检测件的颗粒物清洁度不合格,则可以将待检测件浸入去离子水中浸洗,以去除在对待检测件的颗粒物清洁度进行检测过程中,残留在待检测件上的浸泡液,之后,可以使用过滤后的干燥气体将待检测件吹干,以去除待检测件上可见的水分,之后,可以再将待检测件放入无尘室中烘烤,以去除待检测件上的水分,之后,可以使用氮气对待检测件进行全面吹扫,以去除待检测件上颗粒物以及水分。
在现有技术中,待检测件的颗粒物清洁度检测方法可以是先将洁净的浸泡槽放入超声波槽内,再向浸泡槽中加入去离子水,再将待检测件放入至浸泡槽中,并浸没在去离子水中,之后,可以使用液体颗粒计数器对去离子水的颗粒物数量进行检测,之后,可以对浸有待检测件的去离子水进行超声震荡,之后,再使用液体颗粒计数器对去离子水的颗粒物数量进行检测,通过计算超声震荡之前的去离子水的颗粒物数量与超声震荡之后的去离子水的颗粒物数量的差值,并判断该差值是否满足预设的标准,若该差值满足预设的标准,则待检测件的颗粒物清洁度合格,若该差值不满足预设的标准,则待检测件的颗粒物清洁度不合格。另外,待检测件的颗粒物清洁度检测方式也可以是先用擦拭布对待检测件进行擦拭,并目测擦拭布上是否有明显污迹,若擦拭布上有明显污迹,则将擦拭布放入去离子水中浸泡,并对浸泡有擦拭布的去离子水进行超声震荡,再利用液体颗粒计数器对超声震荡之后的去离子水的颗粒物数量进行检测,以通过检测到的超声震荡之后的去离子水的颗粒物数量对待检测件的颗粒物清洁度是否合格进行判断。
但是,本申请发明人在采用上述的两种待检测件的颗粒物清洁度检测方法对待检测件的颗粒物清洁度进行检测的过程中,发现上述的两种待检测件的颗粒物清洁度检测方法都存在较多的人为主观因素,容易造成颗粒物清洁 度检测的检测结果误差较大,准确度较低,从而对检测结果的可靠性和稳定性产生影响,进而对半导体工艺结果产生影响。例如,在将待检测件浸没在去离子水中,并通过计算超声震荡之前的去离子水的颗粒物数量与超声震荡之后的去离子水的颗粒物数量的差值,对待检测件的颗粒物清洁度是否合格进行判断时,去离子水的标准、待检测件的浸泡时长、浸泡程度以及超声震荡的超声波强度和时长等均没有统一的标准,这就导致不同人对这些参数的取值不同,存在较多的人为主观因素,又例如,在采用擦拭布对待检测件进行擦拭,并目测擦拭布上是否有明显污迹,再通过将擦拭布放入去离子水中浸泡,以通过检测到的超声震荡之后的去离子水的颗粒物数量对待检测件的颗粒物清洁度是否合格进行判断时,擦拭布存在污迹的程度、擦拭布本身的材质、擦拭力度、擦拭位置和擦拭面积等均没有统一的标准,这也会导致不同人对这些参数的取值不同,同样存在较多的人为主观因素,这些人为主观因素均会对检测结果产生影响,从而造成颗粒物清洁度检测的检测结果误差较大。
为了解决上述问题,如图1和图8所示,本发明实施例提供一种颗粒物清洁度检测方法,包括以下步骤:
S1,将浸泡液1取至预设容器2内;
S2,对预设容器2内的浸泡液1的颗粒物数量进行检测,并判断检测到的浸泡液1的颗粒物数量是否满足预设的第一标准;若是,则进行步骤S3;
S3,采用浸泡液1对已进行清洁处理的待检测件3进行颗粒物检测,其中,待检测件例如为已进行清洁处理的机械加工件。
本发明实施例提供的颗粒物清洁度检测方法,在对待检测件3进行颗粒物检测之前,先对浸泡液1的颗粒物数量进行检测,并判断检测到的浸泡液1的颗粒物数量是否满足预设的第一标准,若浸泡液1的颗粒物数量满足第一标准,再采用浸泡液1对已进行清洁处理的待检测件3进行颗粒物检测, 这样就可以避免浸泡液1中的颗粒物在不满足上述第一标准时对待检测件3的颗粒物清洁度造成干扰,以能够降低检测结果的误差,提高检测结果的准确度,从而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。另外,通过在对待检测件进行颗粒物检测之前,先判断浸泡液的颗粒物数量是否满足第一标准,可以使浸泡液的颗粒物数量具有统一的技术标准,从而可以避免人为主观因素对检测结果产生影响。
在实际应用中,若检测到的浸泡液1的颗粒物数量不满足预设的第一标准,则可以对浸泡液1进行过滤,直到浸泡液1的颗粒物数量满足预设的第一标准。但是,本发明实施例并不以此为限,例如,若检测到的浸泡液1的颗粒物数量不满足预设的第一标准,也可以对浸泡液1进行更换,更换后的浸泡液1的颗粒物数量满足预设的第一标准即可。
需要说明的是,本发明实施例中所涉及的待清洗件3可以为静电吸盘(Electrostatic Chuck,简称ESC),本发明实施例提供的颗粒物清洁度检测方法,可用于检测该静电吸盘表面的颗粒清洁度,当然本发明实施例提供的颗粒物清洁度检测方法也可以应用于其他需要检测颗粒物清洁度的部件,本发明实施例对此没有特别的限制。另外,本发明实施例提供的颗粒物清洁度检测方法不仅可以对在经过上述的清洗方法清洗后的待检测件3的颗粒物清洁度进行检测,而且还可以对其他任意清洗方法清洗后的待检测件进行检测,本发明实施例对此没有特别的限制。
可选的,浸泡液1可以为去离子水。
可选的,上述第一标准可以为在浸泡液1中直径大于或等于0.3μm(微米)的颗粒物的数量小于或等于400P/ml(个每毫升)。即,若检测到的浸泡液1中的直径大于或等于0.3μm的颗粒物的数量小于或等于400P/ml,则检测到的浸泡液1的颗粒物数量满足预设的第一标准,可以采用该浸泡液1对待检测件3的颗粒物清洁度进行检测,若检测到的浸泡液1中的直径大于或 等于0.3μm的颗粒物的数量大于400P/ml,则检测到的浸泡液1的颗粒物数量不满足预设的第一标准,不可以采用该浸泡液1对待检测件3的颗粒物清洁度进行检测。但是,上述第一标准并不局限于此,在实际应用中,对于第一标准的设定与所选取的浸泡液相关,以该浸泡液不影响待检测件的颗粒物清洁度为基准。
通过使用颗粒物数量满足预设的第一标准的浸泡液1对待检测件3进行颗粒物检测,不仅可以避免由于浸泡液1中的颗粒物数量过多,而对待检测件3的颗粒物清洁度造成干扰,而且还可以为浸泡液1是否可以用于检测设定了统一的技术标准,从而可以避免人为主观因素对检测结果产生影响,进而可以降低检测结果的误差,提高检测结果的准确度,从而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。
如图2、图10-图12所示,在本发明一优选实施例中,上述步骤S3,可以包括以下步骤:
S31,将上述步骤S2中检测获得的颗粒物数量作为第一检测值;
即,预先对上述步骤S2中检测获得的颗粒物数量进行记录。
S32,将待检测件3浸没在浸泡液1中;
S33,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置;
S34,检测静置后的浸泡液1中的颗粒物数量,并将检测到的浸泡液1中的颗粒物数量作为第二检测值;
S35,计算第二检测值与第一检测值的差值,并判断差值是否满足预设的第二标准,若是,则待检测件3的颗粒物清洁度合格;若否,则待检测件3的颗粒物清洁度不合格。
上述第一预设时长可以设定为待检测件3表面颗粒经震荡可全部脱落所需的时长。一般而言,对待检测件3震荡时长越长,待检测件3表面颗粒脱 落的越完全,也即第一预设时长越长,则检测准确度越高。对于不同类型的待检测件3,第一预设时长可能相同也可能不同。此处所说的全部脱落,为基本上保证颗粒脱落至浸泡液1,最终浸泡液1中颗粒数量基本不变。通过对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长,可以基本上保证待检测件3表面上的颗粒全部脱落,这样可以在绝大程度上避免在经过超声震荡、静置之后,待检测件3的表面上仍附着有颗粒,从而能够准确地检测到待检测件3表面的颗粒物数量,使第二检测值更准确,继而能够降低检测结果的误差,提高检测结果的准确度,从而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。
可选的,以待检测件3的材质为陶瓷为例,上述第二标准可以为在浸泡液1中直径大于或等于0.2μm的颗粒物的数量小于或等于150000ea/ml(个每毫升)。此时,第一检测值和第二检测值可以为浸泡液1中直径大于或等于0.2μm的颗粒物的数量,若第二检测值与第一检测值的差值小于或等于150000ea/ml,则该差值满足预设的第二标准,待检测件3的颗粒物清洁度合格,若第二检测值与第一检测值的差值大于150000ea/ml,则该差值不满足预设的第二标准,待检测件3的颗粒物清洁度不合格。
但是,第二标准并不以此为限,第二标准可以根据待检测件3的材质作适应性改变,例如,当待检测件3的材质为铝合金、不锈钢和石英时,第二标准均可以为在浸泡液1中直径大于或等于0.2μm的颗粒物的数量小于或等于150000ea/ml,当待检测件3的材质为树脂时,第二标准可以为在浸泡液1中直径大于或等于0.2μm的颗粒物的数量小于或等于50000ea/ml。
另外,通过对超声震荡的时长(即,上述第一预设时长)进行预设,可以使超声震荡的时长具有统一的标准,避免每次对同类待检测件3的颗粒物清洁度进行检测时,由于不同人对超声震荡的时长设定不同而对同类待检测件3的颗粒物清洁度的检测结果造成干扰,进一步减少人为主观因素,从而 能够进一步降低检测结果的误差,而且无需在每次检测时另外设定,操作更为便利。
在本发明一优选实施例中,上述第一预设时长的获得可以包括以下步骤:
在进行颗粒物清洁度检测之前,对浸有待检测件3的浸泡液1进行N次超声震荡,并在每次超声震荡之后静置,且在每次超声震荡并静置之后,对浸泡液1的氢离子浓度指数和电阻值进行检测,若检测到的第t+1次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值,与检测到的第t次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值相等,则将第一预设时长设定为从第1次到第t次超声震荡所花费的时长之和,其中,N为大于或等于2的正整数,t为大于或等于1的正整数,且(t+1)小于或等于N。
这是由于在对浸有待检测件3的浸泡液1进行超声震荡并静置之后,待检测件3上的颗粒物会被超声震荡至浸泡液1中,因此,浸有待检测件3的浸泡液1在超声震荡前后的氢离子浓度指数(即,PH值)和电阻值均会发生变化,且被超声震荡至浸泡液1的颗粒物越多,则浸有待检测件3的浸泡液1在超声震荡前后的氢离子浓度指数和电阻值的变化越大。因此,当检测到的第t+1次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值,与检测到的第t次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值不相等时,则说明超声震荡的时长不足以将待检测件3上的颗粒物充分震下,需要延长超声震荡时长,而当检测到的第t+1次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值,与检测到的第t次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值相等时,则说明第t次对浸泡液1的氢离子浓度指数和电阻值进行检测时,待检测件3上的颗粒物已经被充分震下,也就是说第1次到第t次超声震荡所用的时长总和可以将待检测件3上的颗粒物充分震下,因此,可以将第1次到第t次超声震荡的时长之和作为第一预 设时长。由于浸泡液1的氢离子浓度指数和电阻值的检测较为简单,因此,这样可以使得第一预设时长的获得较为简便。
但是,第一预设时长的获得方式并不以此为限,例如,也可以在每次超声震荡并静置之后,对浸泡液1中的颗粒物数量进行检测,若检测到的第t+1次颗粒物数量与检测到的第t次颗粒物数量相等,则将第1次到第t次超声震荡的时长之和作为第一预设时长。
例如,在进行颗粒物清洁度检测之前,对浸有待检测件3的浸泡液1进行第1次超声震荡0min并静置5min,之后对浸泡液1的氢离子浓度指数和电阻值进行检测,检测到的超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值分别为6.35和4MΩ,对浸有待检测件3的浸泡液1进行第2次超声震荡5min并静置5min,之后对浸泡液1的氢离子浓度指数和电阻值进行检测,检测到的超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值分别为6.50和4.31MΩ,由于6.50和4.31MΩ与6.35和4MΩ不相等,即,检测到的第2次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值,与检测到的第1次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值不相等,因此,对浸有待检测件3的浸泡液1进行第3次超声震荡2min并静置5min,之后对浸泡液1的氢离子浓度指数和电阻值进行检测,检测到的超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值分别为6.59和4.42MΩ,由于6.59和4.42MΩ与6.50和4.31MΩ不相等,即,检测到的第3次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值,与检测到的第2次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值不相等,因此,对浸有待检测件3的浸泡液1进行第4次超声震荡2min并静置5min,之后对浸泡液1的氢离子浓度指数和电阻值进行检测,检测到的超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值分别为6.64和4.45MΩ,由于6.64和4.45MΩ与6.59和4.42MΩ不相等,即,检测到的第4次超声震荡并静置后的 浸泡液1的氢离子浓度指数和电阻值,与检测到的第3次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值不相等,因此,对浸有待检测件3的浸泡液1进行第5次超声震荡1min并静置5min,之后对浸泡液1的氢离子浓度指数和电阻值进行检测,检测到的超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值分别为6.65和4.49MΩ,由于6.65和4.49MΩ与6.64和4.45MΩ不相等,即,检测到的第5次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值,与检测到的第4次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值不相等,因此,对浸有待检测件3的浸泡液1进行第6次超声震荡1min并静置5min,之后对浸泡液1的氢离子浓度指数和电阻值进行检测,检测到的超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值分别为6.65和4.49MΩ,由于6.65和4.49MΩ与6.65和4.49MΩ相等,即,检测到的第6次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值,与检测到的第5次超声震荡并静置后的浸泡液1的氢离子浓度指数和电阻值相等。
因此,将第1次到第5次对浸有待检测件3的浸泡液1进行超声震荡的时长之和作为第一预设时长,即,第1次超声震荡的时长0min、第2次超声震荡的时长5min、第3次超声震荡的时长2min、第4次超声震荡的时长2min、第5次超声震荡的时长1min相加,得到第一预设时长为10min。
在本发明一优选实施例中,上述步骤S33中,可以对浸有所述待检测件的所述浸泡液进行超声震荡,直至达到第一预设时长之后静置,直至达到第二预设时长。即,以第一预设时长,对浸有待检测件3的浸泡液1进行超声震荡,再以第二预设时长,对浸有待检测件3的浸泡液1进行静置。
通过在对浸有待检测件3的浸泡液1进行超声震荡之后,再对浸有待检测件3的浸泡液1进行静置,可以避免超声震荡产生的气泡对待检测件3的颗粒物清洁度造成干扰,并通过对超声震荡的时长和静置的时长进行预设, 可以避免每次对待检测件3的颗粒物清洁度进行检测时,由于超声震荡的时长不同,以及静置的时长不同对待检测件3的颗粒物清洁度造成干扰,进一步减少人为主观因素,从而能够进一步降低检测结果的误差,提高检测结果的准确度,继而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。
可选的,第一预设时长可以为9min(分钟)-11min的任意一值。
优选的,第一预设时长可以为10min。
可选的,第二预设时长可以为大于等于5min的任意一值。
优选的,第二预设时长可以为5min。
在选定一个第一预设时长和一个第二预设时长之后,在每次对待检测件3的颗粒物清洁度进行检测时,均采用选定的一个第一预设时长和选定的一个第二预设时长。举例来说,第一预设时长选定为10min,第二预设时长选定为5min,则在每次对待检测件3的颗粒物清洁度进行检测时,均先对浸有待检测件3的浸泡液1进行超声震荡10min,之后,再对浸有待检测件3的浸泡液1进行静置5min。
需要说明的是,在本实施例中,步骤S31中,将上述步骤S2中检测获得的颗粒物数量作为第一检测值,但是本发明实施例并不局限于此,例如,如图5和图9所示,在本发明一优选实施例中,在进行步骤S32之前,上述步骤S3还包括以下步骤:
S107,对浸泡液1进行超声震荡并静置;
S31’,对浸泡液1中的颗粒物数量进行检测,并将检测到的浸泡液1中的颗粒物数量作为第一检测值。
在获取第一检测值之前,先对浸泡液1进行超声震荡并静置,一方面可以使浸泡液1中的颗粒物均匀分散,另一方面可以避免超声震荡产生的气泡对浸泡液1的颗粒物清物检测造成干扰,以提高第一检测值的准确度。
需要说明的是,上述步骤S31’代替上述步骤S31,在依次进行上述步骤S107和步骤S31’之后,进行步骤S32。
可选的,步骤S107中,可以对浸泡液进行超声震荡,直至达到第三预设时长之后静置第四预设时长。
通过对超声震荡的时长和静置的时长进行预设,可以避免每次对浸泡液1的颗粒物清洁度进行检测时,由于超声震荡的时长不同,以及静置的时长不同对浸泡液1的颗粒物清洁度造成干扰,进一步减少人为主观因素,从而能够进一步降低检测结果的误差,提高检测结果的准确度,继而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。
可选的,第三预设时长可以为9min-11min的任意一值。
优选的,第三预设时长可以为10min。
可选的,第四预设时长可以为大于等于5min的任意一值。
优选的,第四预设时长可以为5min。
在选定一个第三预设时长和一个第四预设时长之后,在每次对浸泡液1的颗粒物清洁度进行检测时,均采用选定的一个第三预设时长和选定的一个第四预设时长。举例来说,第三预设时长选定为10min,第四预设时长选定为5min,则在每次对浸泡液1的颗粒物清洁度进行检测时,均先对浸泡液1进行超声震荡10min,之后,再对浸泡液1进行静置5min。
在本发明一优选实施例中,在上述步骤S3包括上述步骤S31至步骤S35的基础上,还可以包括以下步骤:
在上述步骤S32之后,且在上述步骤S33之前,对浸泡液1的评估参数值进行检测,并将检测到的浸泡液1的评估参数值作为第一评估参数值;
在上述步骤S33之后,且在上述步骤S34之前,对静置后的浸泡液1的评估参数值进行检测,并将检测到的浸泡液1的评估参数值作为第二评估参 数值;
计算上述第二评估参数值与第一评估参数值的差值,并判断该差值是否满足预设的第三标准,若满足,则进行上述步骤S34。
上述评估参数值可以包括浸泡液1的氢离子浓度指数,上述第一评估参数值为第一氢离子浓度指数,上述第二评估参数值为第二氢离子浓度指数;和/或,上述评估参数值包括浸泡液1的电阻值,第一评估参数值为第一电阻值,第二评估参数值为第二电阻值。需要说明的是,上述评估参数值可以既包括浸泡液的氢离子浓度指数,又包括浸泡液1的电阻值,也可以只包括浸泡液的氢离子浓度指数,或者只包括浸泡液1的电阻值。也就是说,可以同时对浸泡液1的电阻值和氢离子浓度指数进行评估,也可以只对其中一者进行评估。
以只对浸泡液1的氢离子浓度指数进行评估为例,如图3所示,上述步骤S3还包括:
在上述步骤S32之后,且在上述步骤S33之前,进行以下步骤:
S101,对浸泡液1的氢离子浓度指数进行检测,并将检测到的浸泡液1的氢离子浓度指数作为第一氢离子浓度指数;
在上述步骤S33之后,且在上述步骤S34之前,进行以下步骤:
S102,对静置后的浸泡液1的氢离子浓度指数进行检测,并将检测到的浸泡液1的氢离子浓度指数作为第二氢离子浓度指数;
S103,计算第二氢离子浓度指数与第一氢离子浓度指数的差值,并判断上述第二氢离子浓度指数与第一氢离子浓度指数的差值是否在第一预设范围内,若是,则进行上述步骤S34;若否,则对浸泡液1进行过滤或更换浸泡液,之后返回上述步骤S101。
由于在上述步骤S32之后,且在上述步骤S33之前,待检测件3上的颗粒物会被超声震荡至浸泡液1中,因此,浸有待检测件3的浸泡液1在超声 震荡前后的氢离子浓度指数(即,PH值)会发生变化,且被超声震荡至浸泡液1中的颗粒物越多,则浸有待检测件3的浸泡液1在超声震荡前后的氢离子浓度指数的变化越大。通过计算上述第二氢离子浓度指数与第一氢离子浓度指数的差值,可以获知上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)前后的氢离子浓度指数的变化数值,再判断该差值是否满足预设的第三标准(即,是否在上述第一预设范围内),若是,则进行上述步骤S34(即,检测浸泡液1中的颗粒物数量),这样当上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)前后的氢离子浓度指数的变化数值过大,待检测件3的颗粒物清洁度必然不合格时,就无需对浸泡液1中的颗粒物数量进行检测,即,若上述差值不在上述第一预设范围内,则可以对浸泡液进行过滤或更换浸泡液之后再返回步骤S101。
只有当上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)前后的氢离子浓度指数的变化数值较小,待检测件3的颗粒物清洁度可能合格时,才对浸泡液1中的颗粒物数量进行检测,可以减少对浸泡液1中的颗粒物数量进行检测的次数,从而能够提高检测效率,并且,由于浸泡液1的氢离子浓度指数的检测较为简单,因此,这样可以使得检测较为简便。
可选的,上述第一预设范围可以为小于或等于0.5。即,若第二氢离子浓度指数与第一氢离子浓度指数的差值小于或等于0.5,则该差值满足预设的第三标准,可以进行上述步骤S34(即,检测浸泡液1中的颗粒物数量),若第二氢离子浓度指数与第一氢离子浓度指数的差值大于0.5,则该差值不满足预设的第三标准,无需进行上述步骤S34(即,检测浸泡液1中的颗粒物数量)。举例来说,若在上述步骤S33之前,检测到的浸泡液1的第一氢离子浓度指数为6.35,在上述步骤S33之后,检测到的浸泡液1的第二氢离子浓 度指数为6.65,则第二氢离子浓度指数与第一氢离子浓度指数的差值为0.3小于0.5,则该差值在上述第一预设范围内,满足预设的第三标准,可以进行上述步骤S34(即,检测浸泡液1中的颗粒物数量)。
以只对浸泡液1的电阻值进行评估为例,如图4所示,上述步骤S3还包括:
在上述步骤S32之后,且在上述步骤S33之前,进行以下步骤:
S104,对浸泡液1的电阻值进行检测,并将检测到的浸泡液1的电阻值作为第一电阻值;
在上述步骤S33之后,且在上述步骤S34之前,进行以下步骤:
S105,对静置后的浸泡液1的电阻值进行检测,并将检测到的浸泡液1的电阻值作为第二电阻值;
S106,计算第二电阻值与第一电阻值的差值,并判断差值是否在第二预设范围内,若是,则进行上述步骤S34;若否,则对浸泡液1进行过滤或更换浸泡液,之后返回上述步骤S104。
由于在上述步骤S32之后,且在上述步骤S33之前,待检测件3上的颗粒物会被超声震荡至浸泡液1中,因此,浸有待检测件3的浸泡液1在超声震荡前后的电阻值会发生变化,且被超声震荡至浸泡液1中的颗粒物越多,则浸有待检测件3的浸泡液1在超声震荡前后的电阻值的变化越大。通过计算上述第二电阻值与第一电阻值的差值,可以获知上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)前后的电阻值的变化数值,再判断该差值是否满足预设的第三标准(即,是否在上述第二预设范围内),若是,则进行上述步骤S34(即,检测浸泡液1中的颗粒物数量),这样当上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)前后的电阻值的变化数值过大,待检测件3的颗粒物清洁度必然不合格时,就无需对浸泡液1中的颗 粒物数量进行检测,即,若上述差值不在上述第一预设范围内,则可以对浸泡液进行过滤或更换浸泡液之后再返回步骤S104。
只有当上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)前后的电阻值的变化数值较小,待检测件3的颗粒物清洁度可能合格时,才对浸泡液1中的颗粒物数量进行检测,可以减少对浸泡液1中的颗粒物数量进行检测的次数,从而能够提高检测效率,并且,由于浸泡液1的电阻值的检测较为简单,因此,这样可以使得检测较为简便。
可选的,上述第二预设范围可以为小于或等于0.5MΩ(兆欧)。即,若第二电阻值与第一电阻值的差值小于或等于0.5MΩ,则该差值满足预设的第三标准(即,在上述第二预设范围内),可以检测浸泡液1中的颗粒物数量,若第二电阻值与第一电阻值的差值大于0.5MΩ,则该差值不在上述第二预设范围,无需检测浸泡液1中的颗粒物数量。举例来说,若在上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)之前,检测到的浸泡液1的第一电阻值为4MΩ,在上述步骤S33(即,对浸有待检测件3的浸泡液1进行超声震荡,直至达到第一预设时长之后静置)之后,检测到的浸泡液1的第二电阻值为4.49MΩ,则第二电阻值与第一电阻值的差值为0.49MΩ小于0.5MΩ,则该差值满足预设的第三标准,可以进行上述步骤S34(即,检测浸泡液1中的颗粒物数量)。
在本发明一优选实施例中,可以对浸有待检测件3的浸泡液1以预设超声波强度进行超声震荡。
通过对超声震荡的超声波强度进行预设,可以避免每次对待检测件3的颗粒物清洁度进行检测时,由于超声震荡的超声波强度不同对待检测件3的颗粒物清洁度造成干扰,进一步减少人为主观因素,从而能够进一步降低检测结果的误差,提高检测结果的准确度,继而提高检测结果的可靠性和稳定 性,进而降低半导体设备的零部件对半导体工艺结果的影响。
可选的,超声波强度可以为8-10W/inch2(瓦每平方英寸)的任意一值,即,在选定一个超声波强度之后,在每次对待检测件3的颗粒物清洁度进行检测时,均采用选定的一个超声波强度。举例来说,超声波强度选定为9W/inch2,则在每次对待检测件3的颗粒物清洁度进行检测时,均对浸有待检测件3的浸泡液1以9W/inch2的超声波强度进行超声震荡。
如图11所示,在本发明一优选实施例中,在将待检测件3浸没在浸泡液1中时,可以使待检测件3的顶部距离浸泡液1的顶面第一预设距离(如图11中距离A所示),并使待检测件3的底部距离浸泡液1的底面第二预设距离(如图11中距离B所示),在检测经上述步骤S33(即,对浸有所述待检测件的所述浸泡液进行超声震荡,直至达到第一预设时长之后静置)之后的浸泡液1中的颗粒物数量时,可以在待检测件3的顶部上方第三预设距离处取样。
通过使待检测件3的顶部距离浸泡液1的顶面第一预设距离,并使待检测件3的底部距离浸泡液1的底面第二预设距离,可以使待检测件3顶部的颗粒物和待检测件3底部的颗粒物均能够从待检测件3上被浸泡下来至浸泡液1中,并且通过对待检测件3的顶部与浸泡液1的顶面之间的距离进行预设,并对待检测件3的底部与浸泡液1的底面之间的距离进行预设,可以避免由于每次对待检测件3的颗粒物清洁度进行检测时,待检测件3的顶部与浸泡液1的顶面之间的距离不同,以及待检测件3的底部与浸泡液1的底面之间的距离不同对待检测件3的颗粒物清洁度造成干扰,进一步减少人为主观因素,从而能够进一步降低检测结果的误差,提高检测结果的准确度,继而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。并且,经过本申请发明人在实验中不断测试,发现在检测浸泡液1中的颗粒物数量时,在待检测件3的顶部上方第三预设距离处取样, 所获得的浸泡液1中的颗粒物数量最能够体现待检测件3的颗粒物清洁度,并且通过对取样的位置进行预设,可以避免由于每次对待检测件3的颗粒物清洁度进行检测时,取样位置的不同对待检测件3的颗粒物清洁度造成干扰,进一步减少人为主观因素,从而能够进一步降低检测结果的误差,提高检测结果的准确度,继而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。
可选的,第一预设距离可以为85mm(毫米)-115mm。
优选的,第一预设距离可以为100mm。
可选的,第二预设距离可以为25mm-35mm。
优选的,第二预设距离可以为30mm。
可选的,可以通过在预设容器2内放置支撑架,并将待检测件3放置于支撑架上,以使待检测件3的顶部能够距离浸泡液1的顶面第一预设距离,并使待检测件3的顶部能够距离浸泡液1的底面第二预设距离。
可选的,支撑架的材质可以为特氟龙。
可选的,第三预设距离可以为25mm-35mm。
优选的,第三预设距离可以为30mm。
在本发明一优选实施例中,可以在待检测件3的顶部上方第三预设距离处多次取样,并将多次取样获得的浸泡液1中的颗粒物数量作为多个第二检测值,并计算多个第二检测值的平均值,并计算该平均值与第一检测值的差值,并判断该差值是否满足预设的第二标准,若是,则待检测件3的颗粒物清洁度合格。
例如在待检测件3的顶部上方第三预设距离处进行15次取样,直径大于或等于0.1μm的颗粒物的数量分别为32000ea/ml、43000ea/ml、57000ea/ml、73000ea/ml、76000ea/ml、70000ea/ml、68000ea/ml、63000ea/ml、55000ea/ml、50000ea/ml、47000ea/ml、42000ea/ml、39000ea/ml、36000ea/ml和31000ea/ml, 之后将15次取样获得的浸泡液1中的颗粒物数量作为15个第二检测值,并计算15个第二检测值的平均值,即为54000ea/ml,再计算54000ea/ml与第一检测值的差值,并判断该差值是否满足预设的第二标准,若是,则待检测件3的颗粒物清洁度合格。
需要说明的是,上文中的第二标准是在浸泡液1中直径大于或等于0.2μm的颗粒物的数量,而此处的取样的是在浸泡液1中直径大于或等于0.1μm的颗粒物的数量,因此,此处的取样不可以与上文中的第二标准进行比较,需要再建立一个以浸泡液1中直径大于或等于0.1μm的颗粒物的数量为基础的标准,通过取样浸泡液1中直径大于或等于0.1μm的颗粒物的数量,由于直径大于或等于0.1μm的颗粒物包括有直径大于或等于0.2μm的颗粒物,因此,直径大于或等于0.1μm的颗粒物的数量要多于直径大于或等于0.2μm的颗粒物的数量,这样可以进一步提高检测结果的准确度。但是,取样的浸泡液1中的颗粒物的直径并不以此为限,例如,取样的浸泡液1中的颗粒物的直径也可以为大于或等于0.3μm。
如图6、图7和图8所示,在本发明一优选实施例中,步骤S1,将浸泡液1取至预设容器2内可以包括以下步骤:
S201,将浸泡液1取至第一预设容器21内,同时进行计时,并在达到第五预设时长时停止取液;
S202,将第一预设容器21放置在第二预设容器22内;其中,第一预设容器21可以采用聚乙烯材料制作。
通过将浸泡液1取至第一预设容器21内的时长(即,第五预设时长)进行预设,可以避免每次对浸泡液1的颗粒物清洁度进行检测时,由于将浸泡液1取至第一预设容器21内的时长不同对浸泡液1的颗粒物清洁度造成干扰,进一步减少人为主观因素,从而能够进一步降低检测结果的误差,提高检测结果的准确度,继而提高检测结果的可靠性和稳定性,进而降低半导体 设备的零部件对半导体工艺结果的影响。并且,由于聚乙烯材料具有防潮、耐酸碱和抗氧化的特性,可以进一步降低检测结果的误差,进一步提高检测结果的准确度,从而进一步提高检测结果的可靠性和稳定性,进而进一步降低半导体设备的零部件对半导体工艺结果的影响。
可选的,第五预设时长可以为135s(秒)-155s。
优选的,第五预设时长可以为150s。
如图8所示,在本发明一优选实施例中,第二预设容器22可以包括能够产生超声震荡的震荡槽。
综上所述,本发明提供的颗粒物清洁度检测方法,能够降低检测结果的误差,提高检测结果的准确度,从而提高检测结果的可靠性和稳定性,进而降低半导体设备的零部件对半导体工艺结果的影响。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

  1. 一种颗粒物清洁度检测方法,其特征在于,包括以下步骤:
    将浸泡液取至预设容器内;
    对所述预设容器内的所述浸泡液的颗粒物数量进行检测,并判断检测到的所述浸泡液的颗粒物数量是否满足预设的第一标准;
    若是,则采用所述浸泡液对已进行清洁处理的待检测件进行颗粒物检测。
  2. 根据权利要求1所述的颗粒物清洁度检测方法,其特征在于,所述采用所述浸泡液对已进行清洁处理的待检测件进行颗粒物检测,包括以下步骤:
    将所述待检测件浸没在所述浸泡液中;
    对浸有所述待检测件的所述浸泡液进行超声震荡,直至达到第一预设时长之后静置,其中,所述第一预设时长为所述待检测件表面颗粒经震荡可全部脱落所需的时间;
    检测静置后的所述浸泡液中的颗粒物数量,并将检测到的所述浸泡液中的颗粒物数量作为第二检测值;
    计算所述第二检测值与对未浸泡所述待检测件的所述浸泡液检测颗粒物数量获得的第一检测值的差值,并判断所述差值是否满足预设的第二标准,若是,则所述待检测件的颗粒物清洁度合格。
  3. 根据权利要求2所述的颗粒物清洁度检测方法,其特征在于,所述第一预设时长的获得包括以下步骤:
    在进行所述颗粒物清洁度检测之前,对浸有所述待检测件的所述浸泡液进行N次超声震荡,并在每次超声震荡之后静置,且在每次超声震荡并静置之后,对所述浸泡液的氢离子浓度指数和电阻值进行检测,
    若检测到的第t+1次超声震荡并静置后的所述浸泡液的氢离子浓度指数和电阻值,与检测到的第t次超声震荡并静置后的所述浸泡液的氢离子浓度指数和电阻值相等,则将所述第一预设时长设定为从第1次到第t次超声震荡所花费的时长之和,其中,N为大于或等于2的正整数,t为大于或等于1的正整数,且(t+1)小于或等于N。
  4. 根据权利要求2所述的颗粒物清洁度检测方法,其特征在于,所述采用所述浸泡液对已进行清洁处理的待检测件进行颗粒物检测,还包括以下步骤:
    在所述将所述待检测件浸没在所述浸泡液中之后,且在所述对浸有所述待检测件的所述浸泡液进行超声震荡,直至达到第一预设时长之后静置之前,
    对所述浸泡液的评估参数值进行检测,并将检测到的所述浸泡液的评估参数值作为第一评估参数值;
    在所述静置之后,且在所述检测静置后的所述浸泡液中的颗粒物数量之前,
    对静置后的所述浸泡液的评估参数值进行检测,并将检测到的所述浸泡液的评估参数值作为第二评估参数值;
    计算所述第二评估参数值与所述第一评估参数值的差值,并判断所述差值是否满足预设的第三标准,若满足,则进行所述检测静置后的所述浸泡液中的颗粒物数量。
  5. 根据权利要求4所述的颗粒物清洁度检测方法,其特征在于,所述评估参数值为所述浸泡液的氢离子浓度指数,所述第一评估参数值为第一氢离子浓度指数,所述第二评估参数值为第二氢离子浓度指数;
    所述判断所述差值是否满足预设的第三标准,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量,包括:
    判断所述第二氢离子浓度指数与所述第一氢离子浓度指数的差值是否在第一预设范围内,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量;
    和/或,所述评估参数值为所述浸泡液的电阻值,所述第一评估参数值为第一电阻值,所述第二评估参数值为第二电阻值;
    所述判断所述差值是否满足预设的第三标准,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量,包括:
    判断所述第二电阻值与所述第一电阻值的差值是否在第二预设范围内,若是,则进行所述检测静置后的所述浸泡液中的颗粒物数量。
  6. 根据权利要求1所述的颗粒物清洁度检测方法,其特征在于,所述浸泡液为去离子水,所述第一标准为在所述浸泡液中直径大于或等于0.3μm(微米)的颗粒物的数量小于或等于400P/ml(个每毫升)。
  7. 根据权利要求2所述的颗粒物清洁度检测方法,其特征在于,在所述将所述待检测件浸没在所述浸泡液中的步骤中,使所述待检测件的顶部距离所述浸泡液的顶面第一预设距离,并使所述待检测件的底部距离所述浸泡液的底面第二预设距离;
    在所述检测静置后的所述浸泡液中的颗粒物数量的步骤中,在所述待检测件的顶部上方第三预设距离处取样。
  8. 根据权利要求2所述的颗粒物清洁度检测方法,其特征在于,所述采用所述浸泡液对已进行清洁处理的所述待检测件进行颗粒物检测,还包括以下步骤:
    在所述将所述待检测件浸没在所述浸泡液中之前,对所述浸泡液进行超声震荡,直至达到第三预设时长之后静置第四预设时长;
    对所述浸泡液中的颗粒物数量进行检测,并将检测到的所述浸泡液中的 颗粒物数量作为所述第一检测值。
  9. 根据权利要求2所述的颗粒物清洁度检测方法,其特征在于,将所述对所述预设容器内的所述浸泡液的颗粒物数量进行检测的步骤中检测获得的颗粒物数量作为所述第一检测值。
  10. 根据权利要求1所述的颗粒物清洁度检测方法,其特征在于,所述将所述浸泡液取至所述预设容器内,包括以下步骤:
    将所述浸泡液取至第一预设容器内,同时进行计时,并在达到第五预设时长时停止取液;
    将所述第一预设容器放置在第二预设容器内;其中,所述第一预设容器采用聚乙烯材料制作。
PCT/CN2022/090185 2021-05-13 2022-04-29 颗粒物清洁度检测方法 WO2022237577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110522751.XA CN113267431A (zh) 2021-05-13 2021-05-13 颗粒物清洁度检测方法
CN202110522751.X 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022237577A1 true WO2022237577A1 (zh) 2022-11-17

Family

ID=77230584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090185 WO2022237577A1 (zh) 2021-05-13 2022-04-29 颗粒物清洁度检测方法

Country Status (3)

Country Link
CN (1) CN113267431A (zh)
TW (1) TWI823373B (zh)
WO (1) WO2022237577A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267431A (zh) * 2021-05-13 2021-08-17 北京北方华创微电子装备有限公司 颗粒物清洁度检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267921A (ja) * 1993-03-15 1994-09-22 Hitachi Ltd 洗浄装置
US6241827B1 (en) * 1998-02-17 2001-06-05 Tokyo Electron Limited Method for cleaning a workpiece
JP2001276760A (ja) * 2000-04-03 2001-10-09 Toshiba Corp 部品清浄度評価方法とその装置および洗浄方法
US20040238005A1 (en) * 2003-05-29 2004-12-02 Kazuhisa Takayama Method of judging end of cleaning treatment and device for the cleaning treatment
CN101152651A (zh) * 2006-09-28 2008-04-02 北京北方微电子基地设备工艺研究中心有限责任公司 一种陶瓷零件表面的清洗方法
US20110139173A1 (en) * 2009-12-15 2011-06-16 Nhk Spring Co., Ltd. Method of and apparatus for measuring strength of ultrasonic waves
US20120024049A1 (en) * 2010-07-30 2012-02-02 Nhk Spring Co., Ltd. Cleanliness inspection apparatus and cleanliness inspection method for object to be inspected
CN109709023A (zh) * 2018-12-26 2019-05-03 沈阳富创精密设备有限公司 应用于半导体领域的氧化钇涂层零件颗粒的检测方法
CN110132803A (zh) * 2019-05-17 2019-08-16 洛阳大工检测技术有限公司 零配件清洁度检测方法及零配件清洁度检测系统
CN113267431A (zh) * 2021-05-13 2021-08-17 北京北方华创微电子装备有限公司 颗粒物清洁度检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744170B2 (ja) * 1988-03-11 1995-05-15 信越半導体株式会社 精密洗浄方法
JP2009289960A (ja) * 2008-05-29 2009-12-10 Tokyo Electron Ltd 石英部材の洗浄方法及び洗浄システム
WO2017104194A1 (ja) * 2015-12-14 2017-06-22 三菱電機株式会社 洗浄装置および洗浄方法、並びに膜分離バイオリアクタ
US10081036B2 (en) * 2016-09-19 2018-09-25 Applied Materials, Inc. Methods and systems for liquid particle prequalification
US11007620B2 (en) * 2017-11-14 2021-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for cleaning process monitoring
CN109894450A (zh) * 2019-02-27 2019-06-18 江苏南大光电材料股份有限公司 电子材料包装容器的清洗及在线式洁净度检测方法
CN110047736B (zh) * 2019-04-22 2021-02-26 成都晶宝时频技术股份有限公司 一种晶片清洗方法
CN111069140A (zh) * 2019-11-25 2020-04-28 哈尔滨思哲睿智能医疗设备有限公司 一种医疗器械末道清洗工艺的验证方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267921A (ja) * 1993-03-15 1994-09-22 Hitachi Ltd 洗浄装置
US6241827B1 (en) * 1998-02-17 2001-06-05 Tokyo Electron Limited Method for cleaning a workpiece
JP2001276760A (ja) * 2000-04-03 2001-10-09 Toshiba Corp 部品清浄度評価方法とその装置および洗浄方法
US20040238005A1 (en) * 2003-05-29 2004-12-02 Kazuhisa Takayama Method of judging end of cleaning treatment and device for the cleaning treatment
CN101152651A (zh) * 2006-09-28 2008-04-02 北京北方微电子基地设备工艺研究中心有限责任公司 一种陶瓷零件表面的清洗方法
US20110139173A1 (en) * 2009-12-15 2011-06-16 Nhk Spring Co., Ltd. Method of and apparatus for measuring strength of ultrasonic waves
US20120024049A1 (en) * 2010-07-30 2012-02-02 Nhk Spring Co., Ltd. Cleanliness inspection apparatus and cleanliness inspection method for object to be inspected
CN109709023A (zh) * 2018-12-26 2019-05-03 沈阳富创精密设备有限公司 应用于半导体领域的氧化钇涂层零件颗粒的检测方法
CN110132803A (zh) * 2019-05-17 2019-08-16 洛阳大工检测技术有限公司 零配件清洁度检测方法及零配件清洁度检测系统
CN113267431A (zh) * 2021-05-13 2021-08-17 北京北方华创微电子装备有限公司 颗粒物清洁度检测方法

Also Published As

Publication number Publication date
CN113267431A (zh) 2021-08-17
TW202244478A (zh) 2022-11-16
TWI823373B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
JP4511591B2 (ja) 基板洗浄装置及び洗浄部材の交換時期判定方法
WO2022237577A1 (zh) 颗粒物清洁度检测方法
JP3569072B2 (ja) セラミック基板のクラック検査方法
CN207338309U (zh) 清洁系统
US10875059B2 (en) Method and apparatus for automated particulate extraction from solid parts
JP2010175275A (ja) 自動分析装置及び自動分析方法
JP2009031173A (ja) 高精度液中パーティクル計測装置
US8662093B2 (en) Method of and apparatus for measuring strength of ultrasonic waves
JP5470186B2 (ja) 被検査物の清浄度検査装置と、清浄度検査方法
TW396477B (en) Conformity evaluating method of semiconductor wafer polishing process using silicon wafer
JP2001276760A (ja) 部品清浄度評価方法とその装置および洗浄方法
JP2013516062A (ja) 水の分析方法および水中で洗浄される基板の分析方法
Jüschke et al. An erosion sensor based on a quartz crystal microbalance for quantitative determination of the cleaning efficiency in an ultrasonic vessel
KR100931788B1 (ko) 기판 세정장치용 세정 부품의 적합성 검사 장치
JP2000012669A (ja) 半導体処理用治具の評価方法
JP2005185973A (ja) 洗浄中のハードディスク基板に付着するパーティクル数推定方法およびパーティクル数評価装置
US6341529B1 (en) Method and apparatus for measuring substrate surface cleanliness
KR101516905B1 (ko) 용존 질소 농도 모니터링 방법, 기판 세정 방법, 및 기판 세정 장치
JP7243643B2 (ja) 化学処理液の評価方法
JP7411641B2 (ja) 粒子測定方法および粒子測定装置
JP7054995B2 (ja) 超純水の評価方法、超純水製造用膜モジュールの評価方法及び超純水製造用イオン交換樹脂の評価方法
Sasaki et al. Evaluation of particles on a Si wafer before and after cleaning using a new laser particle counter
JP3661718B2 (ja) はんだクラックの測定方法
JPH0731939A (ja) 洗浄評価法
JPH03158743A (ja) 自動コンタミナント計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE