WO2022230810A1 - フィルムヒータ、及び、ヒータ付きガラス - Google Patents

フィルムヒータ、及び、ヒータ付きガラス Download PDF

Info

Publication number
WO2022230810A1
WO2022230810A1 PCT/JP2022/018733 JP2022018733W WO2022230810A1 WO 2022230810 A1 WO2022230810 A1 WO 2022230810A1 JP 2022018733 W JP2022018733 W JP 2022018733W WO 2022230810 A1 WO2022230810 A1 WO 2022230810A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard coat
dielectric layer
film heater
coat layer
Prior art date
Application number
PCT/JP2022/018733
Other languages
English (en)
French (fr)
Inventor
▲祥▼平 原田
康児 三島
一志 山田
和久 稲葉
英昭 伊藤
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US18/288,247 priority Critical patent/US20240215120A1/en
Priority to JP2023517509A priority patent/JPWO2022230810A1/ja
Priority to CN202280029990.4A priority patent/CN117204119A/zh
Publication of WO2022230810A1 publication Critical patent/WO2022230810A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • H05B3/86Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields the heating conductors being embedded in the transparent or reflecting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present disclosure relates to film heaters and glass with heaters.
  • Patent Literature 1 proposes a transparent film heater having a transparent conductive layer containing a conductive polymer and an energizing electrode on at least one side of a transparent film substrate.
  • film heaters may be used outdoors, so they are required to have excellent durability. Moreover, depending on the application, excellent transmission visibility may also be required. Accordingly, the present disclosure provides a film heater that is excellent in durability and capable of sufficiently reducing the absorptance of visible light.
  • the present disclosure provides a heater-equipped glass having a film heater that is excellent in durability and capable of sufficiently reducing the absorptance of visible light.
  • the present disclosure comprises a substrate, a first hard coat layer containing a first resin component and a silica filler, a first dielectric layer, a metal layer containing one or both of silver and a silver alloy, and a second dielectric layer. and an ITO layer or an IZO layer in this order, the thickness of the metal layer is 5.5 to 7.5 nm, and the surface of the first hard coat layer on the first dielectric layer side is detected by X-ray fluorescence analysis. , and a peak intensity of 15 to 35 cps indicating the K ⁇ line of Si element.
  • the peak intensity indicating the K ⁇ line of the Si element detected by fluorescent X-ray analysis of the surface of the first hard coat layer on the first dielectric layer side is greater than a predetermined value.
  • the silica filler is sufficiently exposed on the surface of the first hard coat layer on the first dielectric layer side. Since the silica filler is exposed in this way, adhesion between the first hard coat layer and the first dielectric layer, or between the first hard coat layer and the first dielectric layer and the layer in contact with the first hard coat layer can be sufficiently high. Therefore, the durability of the film heater can be enhanced.
  • the peak intensity indicating the K ⁇ line of Si element detected by fluorescent X-ray analysis of the surface of the first hard coat layer on the second dielectric layer side is smaller than a predetermined value.
  • the thickness of the metal layer is within a predetermined range. These factors can sufficiently reduce the absorption of visible light.
  • Such film heaters can have high transparency.
  • the film heater includes a second hard coat layer containing a second resin component and a low-reflection layer in this order from the base material side on the opposite side of the base material to the first hard coat layer side, and the low-reflection layer is , a refractive index lower than that of the substrate and the second hard coat layer and higher than that of air.
  • the film heater may include a high refractive index layer between the first hard coat layer and the first dielectric layer. As a result, the transmittance of visible light incident from the second dielectric layer side of the film heater can be sufficiently increased.
  • the content of the silica filler relative to the first resin component of the first hard coat layer may be 8-20% by mass.
  • the present disclosure provides a heater-equipped glass comprising any of the film heaters described above, an electrode on the surface of the ITO layer or IZO layer, and a glass plate facing the ITO layer or IZO layer and the electrode.
  • the heater-equipped glass includes any one of the film heaters described above. Therefore, the absorptivity of visible light is sufficiently low and the durability is excellent.
  • Such glass with a heater can be suitably used for applications requiring high durability and transparency. For example, it is preferably used for vehicles, outdoor display devices, and buildings.
  • the application of the glass with heater is not limited to the above.
  • a film heater that has excellent durability and can sufficiently reduce the absorption rate of visible light. It is possible to provide a heater-equipped glass provided with a film heater that is excellent in durability and capable of sufficiently reducing the absorptivity of visible light.
  • the film heater includes a substrate, a first hard coat layer containing a first resin component and a silica filler, a first dielectric layer, a metal layer containing one or both of silver and a silver alloy, and a second dielectric.
  • a layer and an ITO layer or an IZO layer are provided in this order.
  • the film heater may be transparent (transparent film heater).
  • ITO in the present disclosure is indium tin oxide.
  • IZO in the present disclosure is indium zinc oxide.
  • Transparent in the present disclosure means that visible light is transmitted, and may scatter light to some extent. The concept of “transparency” in the present disclosure also includes objects that scatter light, which is generally called translucent. For example, a film heater having a transmittance of 75% or more in the wavelength range of 360 to 740 nm corresponds to a transparent film heater. The transmittance of the transparent film heater may be 80% or more. Visible light in the present disclosure refers to light in the wavelength range of 360-740 nm.
  • the base material in the film heater is a transparent base material, and may be, for example, a resin base material composed of a flexible organic resin film.
  • the organic resin film may be an organic resin sheet.
  • organic resin films include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polycarbonate films, acrylic films, norbornene films, polyarylate films, and polyethersulfone films. , diacetyl cellulose film, and triacetyl cellulose film.
  • polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferred.
  • the base material is not limited to those made of organic resin, and may be, for example, molded articles of inorganic compounds such as soda lime glass, alkali-free glass, and quartz glass.
  • the base material in the film heater is thick.
  • the base material is preferably thin from the viewpoint of thinning the film heater. From this point of view, the thickness of the substrate is, for example, 10 to 200 ⁇ m.
  • the first hard coat layer contains, for example, a resin component obtained by curing a resin composition (first resin component) and a silica filler dispersed in the resin component.
  • the resin composition preferably contains at least one selected from a thermosetting resin composition, an ultraviolet curable resin composition, and an electron beam curable resin composition.
  • the thermosetting resin composition may contain at least one selected from epoxy-based resins, phenoxy-based resins, and melamine-based resins.
  • a resin composition is, for example, a composition containing a curable compound having an energy ray reactive group such as (meth)acryloyl group or vinyl group.
  • a curable compound having an energy ray reactive group such as (meth)acryloyl group or vinyl group.
  • the notation of a (meth)acryloyl group means including at least one of an acryloyl group and a methacryloyl group.
  • the curable compound preferably contains a polyfunctional monomer or oligomer containing two or more, preferably three or more energy ray reactive groups in one molecule.
  • the curable compound preferably contains an acrylic monomer.
  • acrylic monomers include 1,6-hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, trimethylolpropane tri(meth) Acrylate, trimethylolpropane ethylene oxide-modified tri(meth)acrylate, trimethylolpropane propylene oxide-modified tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate acrylates, dipentaerythritol hexa(meth)acrylate, pentaerythritol tri(meth)acrylate, and 3-(meth)acryloyloxyglycerin mono(meth)acrylate and the like.
  • acrylic monomers
  • a compound having a vinyl group may be used as the curable compound.
  • examples of compounds having a vinyl group include ethylene glycol divinyl ether, pentaerythritol divinyl ether, 1,6-hexanediol divinyl ether, trimethylolpropane divinyl ether, ethylene oxide-modified hydroquinone divinyl ether, ethylene oxide-modified bisphenol A divinyl ether, Pentaerythritol trivinyl ether, dipentaerythritol hexavinyl ether, ditrimethylolpropane polyvinyl ether, and the like. However, it is not necessarily limited to these.
  • the resin composition contains a photopolymerization initiator when the curable compound is cured with ultraviolet light.
  • a photoinitiator may be appropriately selected from known compounds such as acetophenone-based, benzoin-based, benzophenone-based, and thioxanthone-based compounds. More specifically, Darocure 1173, Irgacure 651, Irgacure 184, Irgacure 907, Irgacure 127 (trade names, manufactured by Ciba Specialty Chemicals), and KAYACURE DETX-S (trade name, manufactured by Nippon Kayaku Co., Ltd.) is mentioned.
  • the content of the photopolymerization initiator may be 0.01 to 20% by mass, or may be 1 to 10% by mass, based on the mass of the resin composition.
  • the resin composition may be a known one containing an acrylic monomer and a photopolymerization initiator.
  • Examples of the resin composition containing an acrylic monomer and a photopolymerization initiator include UV-curable SD-318 (trade name, manufactured by Dainippon Ink and Chemicals Co., Ltd.) and XNR5535 (trade name, Nagase & Co., Ltd.). Co., Ltd.) and the like.
  • the resin composition When using a resin composition that cures with energy rays, the resin composition can be cured by irradiating it with energy rays such as ultraviolet rays.
  • the average particle size of the silica filler dispersed in the resin component in the first hard coat layer may be 10 nm or more from the viewpoint of improving the adhesion between the first hard coat layer and the layer adjacent thereto, It may be 20 nm or more. From the viewpoint of ensuring sufficient transparency, the average particle size of the silica filler may be 200 nm or less, or 150 nm or less.
  • This average particle size is the cumulative distribution of the number-based particle size distribution measured using a particle size distribution analyzer using a laser diffraction/scattering method, when the integrated value from the small particle size reaches 50% of the total. Particle size (median size, D50).
  • the silica filler may be treated with a silane coupling agent, and may have energy ray-reactive groups such as (meth)acryloyl groups and/or vinyl groups formed on the surface in the form of a film.
  • the content of the silica filler relative to the resin component in the first hard coat layer may be 8-20% by mass.
  • the lower limit of the content may be 10% by mass. , 12% by weight, and may be 14% by weight.
  • the upper limit of the content may be 17% by mass or 15% by mass. If the content of the silica filler is too low, the effect of thermal expansion and swelling of the resin component will increase in a high-temperature and high-humidity environment, and the durability tends to be impaired. On the other hand, when the content of the silica filler is too large, the absorptivity of visible light tends to increase.
  • the peak intensity indicating the K ⁇ line of Si element detected by X-ray fluorescence analysis of the surface of the first hard coat layer on the first dielectric layer side is 15 to 35 cps.
  • This peak intensity is an index of the amount of silica filler exposed on the surface of the first hard coat layer on the first dielectric layer side. That is, the higher the strength, the larger the amount of silica filler exposed on the surface of the first hard coat layer. Since the peak intensity is at least the above lower limit, the adhesion between the first hard coat layer and the first dielectric layer, or between the first hard coat layer and the first dielectric layer and the layer in contact with the first hard coat layer can be made high enough. Therefore, the durability of the film heater can be enhanced.
  • the lower limit of the peak intensity may be 17 cps, 19 cps, or 25 cps.
  • the upper limit of the peak intensity may be 30 cps or 27 cps. Measurement conditions for fluorescent X-ray analysis are as described in Examples.
  • the above peak intensity can be adjusted by changing the content of the silica filler in the first hard coat layer.
  • the first hard coat layer can be formed by applying a paint (dispersion) containing a solvent, a resin composition, and a silica filler onto one surface of the base material, drying it, and curing the resin composition.
  • a paint dispensersion
  • the application at this time can be performed by a known method.
  • coating methods include extrusion nozzle method, blade method, knife method, bar coating method, kiss coating method, kiss reverse method, gravure roll method, dip method, reverse roll method, direct roll method, curtain method, and squeeze method. etc.
  • Usual organic solvents can be used as the solvent. If the viscosity of the above paint is increased, it becomes difficult for the silica filler to settle downward (on the substrate side). This makes it possible to increase the above-mentioned peak intensity. From this point of view, the viscosity (20° C.) of the paint is preferably, for example, 0.8 to 1.2 mPa ⁇ s.
  • the thickness of the first hard coat layer may be, for example, 0.1 to 10 ⁇ m, or may be 0.5 to 5 ⁇ m.
  • the adhesion between the first hard coat layer and the layer (for example, the high refractive index layer or the first dielectric layer) that is in direct contact with the first hard coat layer is sufficiently high, and the occurrence of thickness unevenness and wrinkles is sufficiently prevented. can be suppressed.
  • the refractive index of the first hard coat layer may be, for example, 1.40 to 1.60.
  • the absolute value of the difference in refractive index between the substrate and the first hard coat layer may be, for example, 0.1 or less.
  • first dielectric layer and the second dielectric layer may be, for example, a layer containing a metal oxide different from ITO and IZO, and a metal oxide (other than ITO and IZO) as a main component. It may be a metal oxide layer containing a metal oxide, or a metal oxide layer composed only of a metal oxide (excluding ITO and IZO).
  • the first dielectric layer may contain, for example, four components of zinc oxide, tin oxide, indium oxide and titanium oxide, or three components of zinc oxide, indium oxide and titanium oxide as main components. By including the above four components, the first dielectric layer can have both sufficiently high conductivity and transparency.
  • Zinc oxide is for example ZnO and indium oxide is for example In 2 O 3 .
  • Titanium oxide is eg TiO 2 and tin oxide is eg SnO 2 .
  • the ratio of metal atoms to oxygen atoms in each metal oxide may deviate from the stoichiometric ratio.
  • the ratio to the whole is 80% by mass or more.
  • the first dielectric layer may have a higher resistance than the second dielectric layer. Therefore, the tin oxide content of the first dielectric layer may be less than that of the second dielectric layer, and may be free of tin oxide.
  • the amount is preferably the largest among the above three components.
  • the content of ZnO with respect to the total of the above three components is, for example, 45 mol % or more from the viewpoint of suppressing the visible light absorptance of the first dielectric layer.
  • the content of ZnO with respect to the total of the above three components is, for example, 85 mol % or less from the viewpoint of sufficiently increasing durability in a high-temperature, high-humidity environment.
  • the content of In 2 O 3 with respect to the total of the above three components is, for example, 35 mol % or less from the viewpoint of suppressing the visible light absorption rate of the first dielectric layer.
  • the content of In 2 O 3 with respect to the total of the above three components is, for example, 10 mol % or more from the viewpoint of sufficiently increasing durability in a high-temperature, high-humidity environment.
  • the content of TiO 2 with respect to the total of the above three components is, for example, 20 mol % or less from the viewpoint of suppressing the visible light absorptance of the first dielectric layer.
  • the content of TiO 2 with respect to the total of the above three components is, for example, 5 mol % or more from the viewpoint of sufficiently increasing the durability in a high-temperature, high-humidity environment.
  • the content of each of the above three components is a value obtained by converting zinc oxide, indium oxide and titanium oxide into ZnO, In2O3 and TiO2 , respectively .
  • the second dielectric layer may contain, for example, four components of zinc oxide, indium oxide, titanium oxide and tin oxide as main components. By containing the above four components as main components, the second dielectric layer can have both conductivity and high transparency.
  • Zinc oxide is for example ZnO and indium oxide is for example In 2 O 3 .
  • Titanium oxide is eg TiO 2 and tin oxide is eg SnO 2 .
  • the ratio of metal atoms to oxygen atoms in each metal oxide may deviate from the stoichiometric ratio.
  • the content of zinc oxide with respect to the total of the above four components is, for example, 20 mol % or more from the viewpoint of sufficiently increasing conductivity while maintaining high transparency.
  • the content of zinc oxide with respect to the total of the above four components is, for example, 68 mol % or less from the viewpoint of sufficiently increasing durability in a high-temperature, high-humidity environment.
  • the content of indium oxide with respect to the total of the above four components is, for example, 35 mol % or less from the viewpoint of keeping the transmittance in an appropriate range while sufficiently reducing the surface resistance.
  • the content of indium oxide with respect to the total of the above four components is, for example, 15 mol % or more from the viewpoint of sufficiently increasing durability in a high-temperature, high-humidity environment.
  • the content of titanium oxide with respect to the total of the above four components is, for example, 20 mol % or less from the viewpoint of ensuring the transmittance of visible light.
  • the content of titanium oxide with respect to the total of the above four components is, for example, 5 mol % or more from the viewpoint of sufficiently increasing alkali resistance.
  • the content of tin oxide with respect to the total of the above four components is, for example, 40 mol % or less from the viewpoint of ensuring high transparency.
  • the content of tin oxide with respect to the total of the above four components is, for example, 5 mol % or more from the viewpoint of sufficiently increasing durability in a high-temperature, high-humidity environment.
  • the content of each of the above four components is a value obtained by converting zinc oxide, indium oxide, titanium oxide and tin oxide into ZnO, In2O3 , TiO2 and SnO2, respectively .
  • the first dielectric layer and the second dielectric layer have the functions of adjusting optical properties, protecting the metal layer, and ensuring conductivity.
  • the first dielectric layer and the second dielectric layer may contain minor components or unavoidable components in addition to the above-described components within a range that does not significantly impair their functions.
  • it is preferable that the ratio of the above three components in the first dielectric layer and the total ratio of the above four components in the second dielectric layer are high. The ratio of both is, for example, 95% by mass or more, preferably 97% by mass or more.
  • the first dielectric layer may consist of the above three components.
  • the second dielectric layer may consist of the above four components.
  • the composition of the first dielectric layer may be the same as or different from the composition of the second dielectric layer. If the first dielectric layer and the second dielectric layer have the same composition, the manufacturing process can be simplified.
  • the first dielectric layer may be a layer containing the four components of zinc oxide, indium oxide, titanium oxide and tin oxide as main components in the same manner as the second dielectric layer. In this case, the specific ratio of each metal oxide to the sum of the four components in the first dielectric layer may be the same as in the second dielectric layer.
  • the first dielectric layer is a layer containing three components, zinc oxide, indium oxide, and titanium oxide, as main components. may This makes it possible to reduce manufacturing costs while maintaining high transparency.
  • the conductivity of the first dielectric layer is lower than that of the second dielectric layer, there is no particular problem because the conductivity can be ensured by the second dielectric layer.
  • the thickness of the first dielectric layer and the second dielectric layer is, for example, 3 to 70 nm, preferably 5 to 50 nm, from the viewpoint of achieving both high transparency and high conductivity.
  • the thickness of the first dielectric layer and the thickness of the second dielectric layer may be the same or different. For example, by individually adjusting the thickness of the first dielectric layer and the second dielectric layer, it is possible to suppress the color tone change of the transmitted color, or the light interference effect for converting the reflected light generated in the metal layer into transmitted light. can be effectively utilized.
  • the first dielectric layer and the second dielectric layer can be produced by a vacuum deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method.
  • a vacuum deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method.
  • the sputtering method is preferable in that the film formation chamber can be made compact and the film formation speed is high.
  • Sputtering methods include DC magnetron sputtering.
  • As a target an oxide target, a metal or a metalloid target can be used.
  • the metal layer may contain one or both of silver and a silver alloy as a main component.
  • the total content of silver and silver alloy in the metal layer may be, for example, 90% by mass or more, or may be 95% by mass or more in terms of silver element.
  • the metal layer may contain metals (alloys) other than silver and silver alloys.
  • metals alloys
  • As a metal or alloy by containing at least one element selected from the group consisting of Cu, Ge, Ga, Nd, Pt, Pd, Bi, Sn and Sb as a constituent element of a silver alloy or a single metal, the metal The environmental resistance of the layer can be improved.
  • silver alloys include Ag--Pd, Ag--Cu, Ag--Pd--Cu, Ag--Nd--Cu, Ag--In--Sn, and Ag--Sn--Sb.
  • the thickness of the metal layer is 5.5 to 7.5 nm from the viewpoint of sufficiently reducing the absorption rate of visible light. If the thickness of the metal layer is smaller than this range, the absorption rate of visible light increases and the transparency is impaired. That is, if the thickness of the metal layer is too small, the visible light absorptance increases. On the other hand, if the thickness of the metal layer exceeds the above range, the visible light absorptance increases and the transparency is impaired. Therefore, by setting the thickness of the metal layer within the above range, the absorptivity of visible light can be sufficiently reduced.
  • the metal layer can be formed using DC magnetron sputtering, for example.
  • the method for forming the metal layer is not particularly limited, and other vacuum film forming methods using plasma or ion beams, or coating methods using a liquid in which the constituent components are dispersed in an appropriate binder can be appropriately selected. can.
  • the ITO layer or IZO layer is a layer with higher electrical conductivity than the second dielectric layer.
  • the ITO layer may contain inevitable impurities in addition to ITO.
  • the IZO layer may contain inevitable impurities in addition to IZO.
  • the contact resistance can be sufficiently reduced when the electrode is connected to the second dielectric layer side. If the ITO or IZO layer and the second dielectric layer are in direct contact, the thickness of the film heater can be kept sufficiently small while maintaining a sufficiently high transparency.
  • the thickness of the ITO layer is, for example, 5 to 40 nm, preferably 10 to 30 nm, from the viewpoint of reducing both the reflectance and transmittance of visible light in a well-balanced manner.
  • the ITO layer (IZO layer) can be formed using DC magnetron sputtering, for example.
  • the method for forming the ITO layer (IZO layer) is not particularly limited, and other vacuum film forming methods using plasma or ion beams, or coating methods using a liquid in which the constituent components are dispersed in an appropriate binder can be used as appropriate. can be selected.
  • the film heater may have one or more arbitrary layers in addition to the layers described above.
  • an organic protective layer may be provided over the ITO or IZO layer.
  • the organic protective layer may be, for example, a UV curable resin (eg, Z-773L (product name) manufactured by Aica Kogyo Co., Ltd.) or a hard coat layer composed of a thermosetting resin or the like.
  • Film heaters are suitably used for vehicles, outdoor display devices, and buildings. For example, it may be attached to the surface of the liquid crystal panel to improve the driveability of the liquid crystal.
  • the application of the glass with heater is not limited to the above.
  • the film heater may be adhered to one surface of the glass to form a glass with a film heater.
  • FIG. 1 is a schematic cross-sectional view showing an example of a film heater.
  • a film heater 100 of FIG. A layer 22 and an ITO layer 26 are provided in that order.
  • the substrate 10, the first hard coat layer 11, the first dielectric layer 21, the metal layer 24 containing one or both of silver and silver alloy, the second dielectric layer 22, and the ITO layer 26 are as described above. be.
  • the high refractive index layer 20 is a layer having a higher refractive index than the substrate 10, the first hard coat layer 11 and the first dielectric layer 21.
  • the high refractive index layer 20 may be a layer (third dielectric layer) having a composition different from that of the first dielectric layer 21 .
  • High refractive index layer 20 may comprise, for example, an oxide or nitride and may have a refractive index between 1.8 and 2.5. By providing such a high refractive index layer 20, the reflectance of visible light on the substrate 10 side can be sufficiently reduced.
  • the high refractive index layer 20 is selected from silicon nitride, niobium oxide, and titanium oxide from the viewpoint of improving adhesion to the first dielectric layer 21 while sufficiently reducing the reflectance of visible light on the base material 10 side. may contain at least one
  • the high refractive index layer 20 preferably contains silicon nitride. This increases the affinity with the silica filler contained in the first hard coat layer 11 . Therefore, the adhesion between the first hard coat layer 11 and the high refractive index layer 20 is enhanced, and the durability of the film heater can be further improved.
  • the thickness of the high refractive index layer 20 is, for example, 5 to 40 nm, preferably 10 to 30 nm, from the viewpoint of reducing both the reflectance and transmittance of visible light in a well-balanced manner.
  • the high refractive index layer 20 can be formed using DC magnetron sputtering, for example.
  • the film formation method of the high refractive index layer 20 is not particularly limited, and it may be formed by other vacuum film formation methods using plasma, ion beam, or the like. Such a high refractive index layer 20 has a smooth surface.
  • the peak intensity of Si element K ⁇ rays detected by the fluorescent X-ray analysis of the surface 11A of the first hard coat layer 11 is 15 to 35 cps.
  • the silica filler is sufficiently exposed on such a surface 11A. Therefore, even if the surface of the layer (high refractive index layer 20) with which the surface 11A of the first hard coat layer 11 contacts is smooth, the first hard coat layer 11 and the high refractive index layer 20 in direct contact therewith can sufficiently maintain the adhesion of. Therefore, the durability of the film heater 100 can be sufficiently increased.
  • a portion of the ITO layer 26, a portion of the second dielectric layer 22, and a portion of the metal layer 24 in the film heater 100 may be removed by etching or the like.
  • the metal layer 24, the second dielectric layer 22 and the ITO layer 26 form a conductor pattern.
  • a portion of the first dielectric layer 21 may also be removed by etching or the like.
  • FIG. 2 is a schematic cross-sectional view showing another example of the film heater.
  • the film heater 101 in FIG. 2 has a first hard coat layer 11, a high refractive index layer 20, a first dielectric layer 21, silver and silver on one surface of the substrate 10, similar to the film heater 100 in FIG.
  • a metal layer 24 comprising one or both of the alloys, a second dielectric layer 22 and an ITO layer 26 are provided in that order. These configurations are as described above.
  • the film heater 101 of FIG. 2 has the second hard coat layer 12 and the low-reflection layer 28 in this order from the substrate 10 side on the other surface of the substrate 10 .
  • the second hard coat layer 12 may contain the same components as the first hard coat layer 11 .
  • it may contain a resin component (second resin component) obtained by curing a resin composition and a filler dispersed in the resin component.
  • the second resin component include those similar to those of the first resin component.
  • the filler contained in the second hard coat layer 12 may be the same silica filler as the first hard coat layer 11, or may be a filler different from the silica filler.
  • the filler content in the second hard coat layer 12 may be the same as or different from that in the first hard coat layer 11 . May not contain fillers.
  • the resin component in the second hard coat layer 12 may be the same as or different from that in the first hard coat layer 11 .
  • the second hard coat layer 12 can be formed by the same method as the first hard coat layer 11 .
  • the thickness of the second hard coat layer 12 may be, for example, 0.1 to 10 ⁇ m, or may be 0.5 to 5 ⁇ m. As a result, the adhesion between the second hard coat layer 12 and the layer in direct contact therewith (for example, the low-reflection layer 28) can be sufficiently enhanced, and the occurrence of thickness unevenness and wrinkles can be sufficiently suppressed. .
  • the refractive index of the second hard coat layer 12 may be, for example, 1.40 to 1.60.
  • the absolute value of the difference in refractive index between the substrate 10 and the second hard coat layer 12 may be, for example, 0.1 or less.
  • the low-reflection layer 28 reduces reflection of visible light that enters the film heater 101 from one side (ITO layer 26) of the substrate 10 and exits from the other side (low-reflection layer 28) of the substrate 10. It is a layer that has the function of That is, the low-reflection layer 28 forming the other surface of the film heater 101 has a refractive index lower than that of the substrate 10 and the second hard coat layer 12 and higher than that of air. This makes it possible to increase the visible light transmittance of the film heater 101 and achieve even higher transparency.
  • the refractive index of the low-reflection layer 28 may be, for example, 1.1 to 1.4.
  • the low-reflection layer 28 may contain, for example, a resin component obtained by curing a resin composition and a filler dispersed in the resin component.
  • the filler is preferably hollow. Thereby, the refractive index can be made lower than that of the second hard coat layer 12 and the substrate 10 .
  • the filler may be a hollow silica filler.
  • the resin component may contain an acrylic resin.
  • the thickness of the low-reflection layer 28 may be 10-300 nm, 30-200 nm, or 50-150 nm. Thereby, reflection can be sufficiently suppressed while the thickness of the film heater 101 is kept thin.
  • film heater in the present disclosure is not limited to the examples of FIGS. 1 and 2.
  • film heaters 100 and 101 may each comprise any other layer.
  • the film heater 101 does not have to include at least one of the second hard coat layer 12 and the low reflection layer 28 .
  • the film heater 100 may have at least one of the second hard coat layer 12 and the low reflection layer 28 .
  • the visible light absorptivity of the film heaters 100 and 101 is, for example, 10.3% or less. Thereby, the visible light transmittance can be increased to, for example, 80% or more. Also, the surface resistivity of the ITO layer 26 of the film heaters 100, 101 is, for example, 5 to 30 ⁇ /sq. and 10-20 ⁇ /sq. may be Such a film heater is suitably used for vehicle glass (for example, windshield and rear glass) that are required to have high transparency and excellent defrosting performance and defogging performance.
  • vehicle glass for example, windshield and rear glass
  • FIG. 3 is a schematic cross-sectional view showing an example of glass with a heater.
  • the heater-equipped glass 200 shown in FIG. 3 includes the film heater 100 shown in FIG. , provided.
  • a portion of the surface 26A on the ITO layer side is covered with an electrode 60.
  • the electrodes 60 may be formed, for example, by applying silver paste to the surface 26A. After providing the electrode 60 so as to partially cover the surface 26A of the ITO layer in this manner, an adhesive is applied so as to cover the surface 26A of the ITO layer and the electrode 60, and the adhesive is applied so as to face the surface 26A and the electrode 60.
  • a glass plate 50 is placed. After that, the glass plate 50, the surface 26A and the electrode 60 are pressed against each other to obtain the glass 200 with the heater.
  • the adhesive forming the adhesive layer 40 may be optical glue, for example.
  • the electrodes 60 are provided in pairs, and are connected to a power source (not shown) to energize the film heater 100 to generate heat.
  • a power source not shown
  • ice, frost, etc. adhering to the surface 50A of the glass plate 50 can be removed.
  • Water droplets (fogging) adhering to the surface 10A opposite to the surface 26A of the film heater 100 on the ITO layer 26 side can also be removed smoothly.
  • the temperature rise width ( ⁇ T) of the film heater 100 may be 20 to 45° C., or may be 25 to 40° C., based on the temperature before the temperature rise. As a result, it is possible to suppress an excessive temperature rise on the surface 10A while maintaining a sufficiently high performance of removing ice, frost, etc. on the surface 50A.
  • the surface resistivity of the film heater is preferably 5 to 30 ⁇ /sq. and more preferably 10 to 20 ⁇ /sq. is.
  • the heater-equipped glass 200 includes the film heater 100 in the example of FIG. 3, it is not limited to this.
  • the film heater 101 of FIG. 2 may be provided, or a modification thereof may be provided.
  • a variation of film heater 100 or a variation of film heater 101 may include an IZO layer instead of ITO layer 26 .
  • an electrode 60 may be provided so as to partially cover the surface of the IZO layer to form glass with a heater.
  • the present disclosure includes the following contents [1] to [5].
  • a substrate a first hard coat layer containing a first resin component and a silica filler, a first dielectric layer, a metal layer containing one or both of silver and a silver alloy, and a second dielectric layer , an ITO layer or an IZO layer in this order
  • the metal layer has a thickness of 5.5 to 7.5 nm
  • a film heater having a peak intensity of 15 to 35 cps indicating a K ⁇ ray of Si element detected by fluorescent X-ray analysis of the surface of the first hard coat layer on the first dielectric layer side.
  • a second hard coat layer containing a second resin component and a low-reflection layer are provided in this order from the base material side on the side opposite to the first hard coat layer side of the base material,
  • Example 1 A polyethylene terephthalate (PET) film having a thickness of 125 ⁇ m was prepared as a base material. A first hard coat layer was formed on one surface of the PET film. Specifically, a silica filler (average particle size: 100 nm, manufactured by CIK Nanotech, trade name: AB-S53), a resin composition containing an acrylic monomer (curable compound) and a photopolymerization initiator, and a solvent was blended to prepare a paint. Z-737-9AL (trade name) manufactured by Aica Kogyo Co., Ltd.
  • the content of the photopolymerization initiator based on the mass of the resin composition was 5% by mass.
  • the solvent content, based on the weight of the paint, was 80% by weight.
  • the viscosity of the paint (20° C.) was 0.9 mPa ⁇ .
  • This paint was applied on one side of the PET film, dried, and cured by irradiation with ultraviolet rays to form the first hard coat layer.
  • the content of the silica filler relative to the resin component in the first hard coat layer which is calculated from the compounding amount of the resin composition (monomer + Kojugo initiator) and the compounding amount of the silica filler in the paint, was 12% by mass.
  • a high refractive index layer was formed on the first hard coat layer by DC magnetron sputtering.
  • This high refractive index layer was formed using a boron-doped Si target in a mixed atmosphere containing 80% by volume of argon gas and 20% by volume of nitrogen gas.
  • the high refractive index layer thus formed was composed of SiN.
  • the refractive index of the high refractive index layer was 1.9.
  • a first dielectric layer, a metal layer containing a silver alloy, a second dielectric layer, and an ITO layer were formed in this order on the high refractive index layer.
  • a first dielectric layer was formed using a ZnO--In 2 O 3 --TiO 2 target, and a second dielectric layer was formed using a ZnO--In 2 O 3 --TiO 2 --SnO 2 target.
  • the composition (molar ratio) of each target was as shown in Table 1.
  • the first dielectric layer and the second dielectric layer each had the same composition as the target.
  • a metal layer was formed using an Ag--Pd--Cu target.
  • the metal layer had the same composition as the target.
  • the ITO layer had approximately the same composition as the ITO target.
  • a film heater having a PET substrate, a first hard coat layer, a high refractive index layer, a first dielectric layer, a metal layer, a second dielectric layer, and an ITO layer in this order was obtained.
  • the obtained film heater was cut along the stacking direction using a focused ion beam device (FIB). The cut surface was observed with a transmission electron microscope to determine the thickness of each layer.
  • the thickness of the first hard coat layer was 1.5 ⁇ m
  • the thickness of the high refractive index layer was 20 nm
  • the thickness of the first dielectric layer was 10 nm
  • the thickness of the metal layer was 6 nm
  • the thickness of the second dielectric layer was 6 nm.
  • the thickness of the ITO layer was 20 nm.
  • Examples 2 to 7, Comparative Examples 1 to 4 Same as Example 1, except that the output of DC magnetron sputtering was adjusted to change the thickness of the metal layer and/or the blending amount of the silica filler used in forming the first hard coat layer was changed. Then, film heaters for each example and each comparative example were produced. In the same manner as in Example 1, the thickness of the metal layer and the content of the silica filler in the first hard coat layer in the film heaters of each example and each comparative example were determined. Table 2 shows the results.
  • the adhered cellophane tape was peeled off, the state of peeling in 100 squares was visually confirmed, and the results were classified into six grades of 5B, 4B, 3B, 2B, 1B, and 0B. Between the high refractive index layer and the first hard coat layer, the case where there was no peeling was classified as "5B", and the case where the ratio of the peeled region was the highest was classified as "0B". The measurement results were as shown in Table 2.
  • the visible light absorptances of the film heaters of Comparative Example 1 in which the thickness of the metal layer is less than 5.5 nm, and Comparative Example 2, in which the thickness of the metal layer exceeds 7.5 nm, are the target values. It exceeded a certain 10.3%. Moreover, in Comparative Example 1, the surface resistivity was high, and ⁇ T tended to be too small. In Comparative Example 2, the surface resistivity was low and ⁇ T tended to be too large.
  • Comparative Example 3 in which the peak intensity of the K ⁇ ray of the silicon element was too small, the adhesion between the first hard coat layer and the high refractive index layer was lowered, and it was confirmed that the durability was insufficient. rice field. This is probably because less silica filler is exposed on the surface of the first hard coat layer (the interface between the first hard coat layer and the high refractive index layer).
  • the absorptance of visible light in Comparative Example 4 in which the intensity of fluorescent X-rays was excessive, exceeded the target value of 10.3%. This is presumed to be due to the excessive silica filler content.
  • the absorption rate of visible light was sufficiently small, and the adhesion between the high refractive index layer and the first hard coat layer was sufficiently excellent. It was also confirmed that ⁇ T is in an appropriate range and is useful in many applications.
  • a film heater that has excellent durability and is capable of sufficiently reducing the absorptance of visible light. Also provided is glass with a heater, which has a film heater that is excellent in durability and capable of sufficiently reducing the absorptance of visible light.
  • SYMBOLS 10 Base material 10A, 11A, 26A, 50A... Surface 11... First hard coat layer 12... Second hard coat layer 20... High refractive index layer 21... First dielectric layer 22... Second Dielectric layer 24 Metal layer 26 ITO layer 28 Low reflection layer 40 Adhesive layer 50 Glass plate 60 Electrode 100, 101 Film heater 200 Glass with heater.

Landscapes

  • Laminated Bodies (AREA)

Abstract

基材10と、第1樹脂成分及びシリカフィラーを含む第1ハードコート層11と、第1誘電体層21と、銀及び銀合金の一方又は双方を含む金属層24と、第2誘電体層22と、ITO層26又はIZO層と、をこの順に備え、金属層24の厚みが5.5~7.5nmであり、第1ハードコート層11の第1誘電体層21側の表面11Aの蛍光X線分析で検出される、Si元素のKα線を示すピーク強度が15~35cpsである、フィルムヒータ100を提供する。

Description

フィルムヒータ、及び、ヒータ付きガラス
 本開示は、フィルムヒータ、及び、ヒータ付きガラスに関する。
 車両、屋外表示装置、及び建物等のガラスには、曇り止め、融雪及び結露防止等のため、ヒータ機能付きガラスが用いられている。このようなヒータ機能付きガラスとしては、従来から、ガラス内にニクロム細線を配置したヒータ機能付きガラスが知られている。ただし、このようなヒータ機能付きガラスの場合、ニクロム細線が透過視認性を阻害する。このため、ヒータに透明導電フィルムを用いることが検討されている。例えば、特許文献1では、透明フィルム基材の少なくとも片面に、導電性高分子を含む透明導電層と通電用電極とを有する透明フィルムヒータが提案されている。
特開2016-126913号公報
 フィルムヒータは、用途によっては、屋外で使用される場合もあるため、耐久性に優れることが求められる。また、用途によっては、透過視認性に優れることも求められる場合もある。そこで、本開示は、耐久性に優れるとともに、可視光の吸収率を十分に低減することが可能なフィルムヒータを提供する。本開示は、耐久性に優れるとともに、可視光の吸収率を十分に低減することが可能なフィルムヒータを備えるヒータ付きガラスを提供する。
 本開示は、基材と、第1樹脂成分及びシリカフィラーを含む第1ハードコート層と、第1誘電体層と、銀及び銀合金の一方又は双方を含む金属層と、第2誘電体層と、ITO層又はIZO層をこの順に備え、金属層の厚みが5.5~7.5nmであり、第1ハードコート層の第1誘電体層側の表面の蛍光X線分析で検出される、Si元素のKα線を示すピーク強度が15~35cpsである、フィルムヒータを提供する。
 上記フィルムヒータは、第1ハードコート層の第1誘電体層側の表面の蛍光X線分析で検出されるSi元素のKα線を示すピーク強度が所定値よりも大きい。このような第1ハードコート層の第1誘電体層側の表面には、シリカフィラーが十分に露出している。このようにシリカフィラーが露出しているため、第1ハードコート層と第1誘電体層、又は第1ハードコート層と第1誘電体層の間において第1ハードコート層と接触する層の密着性を十分に高くすることができる。したがって、フィルムヒータの耐久性を高くすることができる。
 上記フィルムヒータは、第1ハードコート層の第2誘電体層側の表面の蛍光X線分析で検出されるSi元素のKα線を示すピーク強度が所定値よりも小さい。これによって、第1ハードコート層の表面の凹凸が過剰となること、及びシリカフィラーの含有量が過剰になることを抑制している。また、金属層の厚みが所定の範囲となっている。これらの要因によって、可視光の吸収率を十分に低減することができる。このようなフィルムヒータは、高い透明性を有することができる。
 上記フィルムヒータは、基材の第1ハードコート層側とは反対側に、基材側から、第2樹脂成分を含む第2ハードコート層と低反射層とをこの順に備え、低反射層は、基材及び第2ハードコート層よりも小さく且つ空気よりも大きい屈折率を有してもよい。これによって、フィルムヒータのITO層側又はIZO層側の表面から入射した可視光がフィルムヒータの反対側の表面から出射する際の反射率を低減し、可視光の透過率を十分に高くすることができる。したがって、フィルムヒータの透明性を一層高くすることができる。
 上記フィルムヒータは、第1ハードコート層と第1誘電体層との間に高屈折率層を備えてもよい。これによって、フィルムヒータの第2誘電体層側から入射する可視光の透過率を十分に高くすることができる。
 第1ハードコート層の第1樹脂成分に対するシリカフィラーの含有量は8~20質量%であってよい。これによって、第1ハードコート層と、これに接触する層の密着性を一層高くするとともに、可視光の吸収率を一層低減することができる。
 本開示は、上述のいずれかのフィルムヒータと、ITO層又はIZO層の表面上に電極と、ITO層又はIZO層、及び電極と対向するガラス板と、を備える、ヒータ付きガラスを提供する。
 上記ヒータ付きガラスは、上述のいずれかのフィルムヒータを備える。このため、可視光の吸収率が十分に低く、且つ耐久性に優れる。このようなヒータ付きガラスは、高い耐久性と透明性が求められる用途に好適に用いることができる。例えば、車両、屋外表示装置、及び建物用として好適に用いられる。ただし、上記ヒータ付きガラスの用途は、上述のものに限定されない。
 耐久性に優れるとともに、可視光の吸収率を十分に低減することが可能なフィルムヒータを提供することができる。耐久性に優れるとともに、可視光の吸収率を十分に低減することが可能なフィルムヒータを備えるヒータ付きガラスを提供することができる。
フィルムヒータの一例を示す模式断面図である。 フィルムヒータの別の例を示す模式断面図である。 ヒータ付きガラスの一例を示す模式断面図である。
 以下、場合により図面を参照して、本開示の実施形態を以下に説明する。ただし、以下の例は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一構造又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、各要素の寸法比率は図示の比率に限定されない。
 フィルムヒータは、基材と、第1樹脂成分とシリカフィラーとを含む第1ハードコート層と、第1誘電体層と、銀及び銀合金の一方又は双方を含む金属層と、第2誘電体層と、ITO層又はIZO層と、をこの順に備える。フィルムヒータは透明(透明フィルムヒータ)であってよい。
 本開示における「ITO」は、酸化インジウムスズ(Indium Tin Oxide)である。本開示における「IZO」は、酸化インジウム・酸化亜鉛(Indium Zinc Oxide)である。本開示における「透明」とは、可視光が透過することを意味しており、光をある程度散乱してもよい。一般に半透明といわれるような光の散乱があるものも、本開示における「透明」の概念に含まれる。例えば、360~740nmの波長範囲における透過率が75%以上であるフィルムヒータは、透明フィルムヒータに該当する。透明フィルムヒータの上記透過率は、80%以上であってよい。本開示における可視光とは、360~740nmの波長範囲の光をいう。
 フィルムヒータにおける基材は透明基材であり、例えば、可撓性を有する有機樹脂フィルムで構成される樹脂基材であってもよい。有機樹脂フィルムは有機樹脂シートであってもよい。有機樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリエチレン及びポリプロピレン等のポリオレフィンフィルム、ポリカーボネートフィルム、アクリルフィルム、ノルボルネンフィルム、ポリアリレートフィルム、ポリエーテルスルフォンフィルム、ジアセチルセルロースフィルム、並びにトリアセチルセルロースフィルム等が挙げられる。これらのうち、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等のポリエステルフィルムが好ましい。上述の1種を単独で、又は2種以上を組み合わせてもよい。ただし、基材は、有機樹脂製のものに限定されず、例えば、ソーダライムガラス、無アルカリガラス、及び、石英ガラス等の無機化合物の成形物であってもよい。
 フィルムヒータにおける基材は、剛性の観点からは厚い方が好ましい。一方、基材は、フィルムヒータを薄くする観点からは薄い方が好ましい。このような観点から、基材の厚みは、例えば10~200μmである。
 第1ハードコート層は、例えば、樹脂組成物を硬化させて得られる樹脂成分(第1樹脂成分)と当該樹脂成分中に分散されたシリカフィラーを含有する。樹脂組成物は、熱硬化性樹脂組成物、紫外線硬化性樹脂組成物、及び電子線硬化性樹脂組成物から選ばれる少なくとも一種を含むことが好ましい。熱硬化性樹脂組成物は、エポキシ系樹脂、フェノキシ系樹脂、及びメラミン系樹脂から選ばれる少なくとも一種を含んでもよい。
 樹脂組成物は、例えば、(メタ)アクリロイル基、ビニル基等のエネルギー線反応性基を有する硬化性化合物を含む組成物である。なお、(メタ)アクリロイル基の表記は、アクリロイル基及びメタクリロイル基の少なくとも一方を含む意味である。硬化性化合物は、1つの分子内に2つ以上、好ましくは3つ以上のエネルギー線反応性基を含む多官能モノマー又はオリゴマーを含んでいることが好ましい。
 硬化性化合物は、好ましくはアクリル系モノマーを含有する。アクリル系モノマーとしては、具体的には、1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、及び3-(メタ)アクリロイルオキシグリセリンモノ(メタ)アクリレート等が挙げられる。ただし、必ずしもこれらに限定されるものではない。例えば、ウレタン変性アクリレート、及びエポキシ変性アクリレート等も挙げられる。
 硬化性化合物として、ビニル基を有する化合物を用いてもよい。ビニル基を有する化合物としては、例えば、エチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド変性ヒドロキノンジビニルエーテル、エチレンオキサイド変性ビスフェノールAジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、及び、ジトリメチロールプロパンポリビニルエーテル等が挙げられる。ただし、必ずしもこれらに限定されるものではない。
 樹脂組成物は、硬化性化合物を紫外線によって硬化させる場合、光重合開始剤を含む。光重合開始剤としては、種々のものを用いることができる。例えば、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、及びチオキサントン系等の公知の化合物から適宜選択すればよい。より具体的には、ダロキュア1173、イルガキュア651、イルガキュア184、イルガキュア907、イルガキュア127(以上商品名、チバスペシャルティケミカルズ社製)、及び、KAYACURE DETX-S(商品名、日本化薬(株)製)が挙げられる。
 光重合開始剤の含有量は、樹脂組成物の質量を基準として、0.01~20質量%であってよく、1~10質量%であってもよい。樹脂組成物は、アクリル系モノマーと光重合開始剤とを含む公知のものであってもよい。アクリル系モノマーと光重合開始剤を含む樹脂組成物としては、例えば、紫外線硬化性であるSD-318(商品名、大日本インキ化学工業(株)製)、及び、XNR5535(商品名、長瀬産業(株)製)等が挙げられる。
 エネルギー線で硬化する樹脂組成物を用いると、紫外線等のエネルギー線を照射することによって、樹脂組成物を硬化させることができる。
 第1ハードコート層において樹脂成分中に分散しているシリカフィラーの平均粒子径は、第1ハードコート層とこれに隣接する層との密着性を向上する観点から、10nm以上であってよく、20nm以上であってもよい。シリカフィラーの平均粒子径は、十分な透明性を確保する観点から、200nm以下であってもよく、150nm以下であってもよい。この平均粒子径は、レーザー回折・散乱法のよる粒度分布測定装置を用いて測定される個数基準の粒子径分布の累積分布において、小粒径からの積算値が全体の50%に達するときの粒子径(メジアン径、D50)である。シリカフィラーはシランカップリング剤で処理されたものであってよく、(メタ)アクリロイル基、及び/又はビニル基等のエネルギー線反応性基が表面に膜状に形成されていてもよい。
 第1ハードコート層における樹脂成分に対するシリカフィラーの含有量は8~20質量%であってよい。第1ハードコート層とこれに直接接触する層(例えば、高屈折率層又は第1誘電体層)との密着性を十分高くする観点から、当該含有量の下限は10質量%であってよく、12質量%であってよく、14質量%であってよい。フィルムヒータの可視光の吸収率を十分に低くする観点から、当該含有量の上限は17質量%であってよく、15質量%であってもよい。シリカフィラーの含有量が少なくなり過ぎると、高温高湿環境下において、樹脂成分の熱膨張及び膨潤による影響が大きくなり、耐久性が損なわれる傾向にある。一方、シリカフィラーの含有量が多くなり過ぎると、可視光の吸収率が高くなる傾向にある。
 第1ハードコート層の第1誘電体層側の表面の蛍光X線分析で検出される、Si元素のKα線を示すピーク強度は15~35cpsである。このピーク強度は、第1ハードコート層の第1誘電体層側の表面において露出するシリカフィラーの量の指標となる。すなわち、この強度が大きいほど、第1ハードコート層の表面に露出するシリカフィラーの量が多いことを意味する。ピーク強度が上記下限値以上であるため、第1ハードコート層と第1誘電体層、又は第1ハードコート層と第1誘電体層の間において第1ハードコート層と接触する層の密着性を十分に高くすることができる。したがって、フィルムヒータの耐久性を高くすることができる。
 フィルムヒータの耐久性を一層向上する観点から、上記ピーク強度の下限値は、17cpsであってよく、19cpsであってよく、25cpsであってもよい。一方、フィルムヒータの可視光の透過率を十分に低減する観点から、上記ピーク強度の上限値は、30cpsであってよく、27cpsであってもよい。蛍光X線分析の測定条件は、実施例に記載のとおりである。
 上述のピーク強度は、第1ハードコート層におけるシリカフィラーの含有量を変えることによって調節することができる。
 第1ハードコート層は、溶剤と樹脂組成物とシリカフィラーを含む塗料(分散液)を、基材の一方面上に塗布して乾燥し、樹脂組成物を硬化させて形成することができる。この際の塗布は、公知の方法により行うことができる。塗布方法としては、例えば、エクストルージョンノズル法、ブレード法、ナイフ法、バーコート法、キスコート法、キスリバース法、グラビアロール法、ディップ法、リバースロール法、ダイレクトロール法、カーテン法、及びスクイズ法などが挙げられる。溶剤としては、通常の有機溶剤を用いることができる。上述の塗料の粘度を大きくすれば、シリカフィラーが下方(基材側)に沈降し難くなる。これによって、上述のピーク強度を大きくすることができる。このような観点から、塗料の粘度(20℃)は、例えば、0.8~1.2mPa・sであることが好ましい。
 第1ハードコート層の厚みは、例えば0.1~10μmであってよく、0.5~5μmであってもよい。これによって、第1ハードコート層とこれに直接接触する層(例えば、高屈折率層又は第1誘電体層)との密着性を十分に高くしつつ、厚みムラ及びシワ等の発生を十分に抑制することができる。第1ハードコート層の屈折率は、例えば1.40~1.60であってよい。基材と第1ハードコート層の屈折率の差の絶対値は、例えば0.1以下であってよい。
 第1誘電体層及び第2誘電体層の一方又は双方は、例えば、ITO及びIZOとは異なる金属酸化物を含む層であってよく、主成分として金属酸化物(ITO及びIZOを除く)を含む金属酸化物層であってよく、金属酸化物(ITO及びIZOを除く)のみで構成される金属酸化物層であってもよい。
 第1誘電体層は、例えば、酸化亜鉛、酸化スズ、酸化インジウム及び酸化チタンの4成分、又は、酸化亜鉛、酸化インジウム及び酸化チタンの3成分を、主成分として含有してよい。第1誘電体層は上記4成分を含むことによって、十分に高い導電性と透明性を兼ね備えた第1誘電体層とすることができる。酸化亜鉛は例えばZnOであり、酸化インジウムは例えばInである。酸化チタンは例えばTiOであり、酸化スズは、例えばSnOである。上記各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。
 本開示における「主成分」とは、全体に対する比率が80質量%以上であることを意味する。第1誘電体層は、第2誘電体層よりも抵抗が高くてもよい。したがって、第1誘電体層の酸化スズの含有量は第2誘電体層よりも少なくてもよく、酸化スズを含んでいなくてもよい。
 第1誘電体層が酸化亜鉛、酸化インジウム及び酸化チタンの3成分を含む場合、上記3成分をそれぞれZnO、In及びTiOに換算したときに、上記3成分の合計に対するZnOの含有量は、上記3成分の中で最も多いことが好ましい。上記3成分の合計に対するZnOの含有量は、第1誘電体層の可視光の吸収率を抑制する観点から、例えば45mol%以上である。第1誘電体層において、上記3成分の合計に対するZnOの含有量は、高温高湿度の環境下における耐久性を十分に高くする観点から、例えば85mol%以下である。
 第1誘電体層において、上記3成分の合計に対するInの含有量は、第1誘電体層の可視光の吸収率を抑制する観点から、例えば35mol%以下である。第1誘電体層において、上記3成分の合計に対するInの含有量は、高温高湿度の環境下における耐久性を十分に高くする観点から、例えば10mol%以上である。
 第1誘電体層において、上記3成分の合計に対するTiOの含有量は、第1誘電体層の可視光の吸収率を抑制する観点から、例えば20mol%以下である。第1誘電体層において、上記3成分の合計に対するTiOの含有量は、高温高湿度の環境下における耐久性を十分に高くする観点から、例えば5mol%以上である。なお、上記3成分のそれぞれの含有量は、酸化亜鉛、酸化インジウム及び酸化チタンを、それぞれ、ZnO、In及びTiOに換算して求められる値である。
 第2誘電体層は、例えば、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの4成分を、主成分として含有してよい。第2誘電体層は、主成分として上記4成分を含むことによって、導電性と高い透明性を兼ね備えることができる。酸化亜鉛は例えばZnOであり、酸化インジウムは例えばInである。酸化チタンは例えばTiOであり、酸化スズは、例えばSnOである。上記各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。
 第2誘電体層において、上記4成分の合計に対する酸化亜鉛の含有量は、高い透明性を維持しつつ導電性を十分に高くする観点から、例えば20mol%以上である。第2誘電体層22において、上記4成分の合計に対する酸化亜鉛の含有量は、高温高湿度の環境下における耐久性を十分に高くする観点から、例えば68mol%以下である。
 第2誘電体層において、上記4成分の合計に対する酸化インジウムの含有量は、表面抵抗を十分に低くしつつ透過率を適切な範囲とする観点から、例えば35mol%以下である。第2誘電体層において、上記4成分の合計に対する酸化インジウムの含有量は、高温高湿度の環境下における耐久性を十分に高くする観点から、例えば15mol%以上である。
 第2誘電体層において、上記4成分の合計に対する酸化チタンの含有量は、可視光の透過率を確保する観点から、例えば20mol%以下である。第2誘電体層において、上記4成分の合計に対する酸化チタンの含有量は、アルカリ耐性を十分に高くする観点から、例えば5mol%以上である。
 第2誘電体層において、上記4成分の合計に対する酸化スズの含有量は、高い透明性を確保する観点から、例えば40mol%以下である。第2誘電体層において、上記4成分の合計に対する酸化スズの含有量は、高温高湿度の環境下における耐久性を十分に高くする観点から、例えば5mol%以上である。なお、上記4成分のそれぞれの含有量は、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズを、それぞれ、ZnO、In、TiO及びSnOに換算して求められる値である。
 第1誘電体層及び第2誘電体層は、光学特性の調整、金属層の保護、及び導電性の確保といった機能を兼ね備える。第1誘電体層及び第2誘電体層は、その機能を大きく損なわない範囲で、上述の成分の他に、微量成分又は不可避的成分を含んでいてもよい。ただし、十分に高い特性を有するフィルムヒータとする観点から、第1誘電体層における上記3成分の割合、及び第2誘電体層における上記4成分の合計の割合は高い方が好ましい。その割合は、双方ともに、例えば95質量%以上であり、好ましくは97質量%以上である。第1誘電体層は上記3成分からなるものであってもよい。第2誘電体層は上記4成分からなるものであってもよい。
 第1誘電体層の組成は、第2誘電体層の組成と同じでもよく、異なってもよい。第1誘電体層と第2誘電体層が同一の組成であれば、製造プロセスを簡素化することができる。第1誘電体層は、第2誘電体層と同様に酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの4成分を、主成分として含有する層であってもよい。この場合、第1誘電体層における4成分の合計に対する各金属酸化物の具体的な割合は、第2誘電体層と同じであってよい。
 第2誘電体層が上記4成分を主成分として含有する層であるのに対し、第1誘電体層は、酸化亜鉛、酸化インジウム、及び酸化チタンの3成分を主成分として含有する層であってもよい。これによって、透明性を高く維持しつつ製造コストを低減することができる。この場合、第1誘電体層は、第2誘電体層よりも導電性が低くなるものの、第2誘電体層によって導電性を確保することが可能なため特に支障はない。
 第1誘電体層及び第2誘電体層の厚みは、高い透明性と導電性を高水準で両立させる観点から、例えば3~70nmであり、好ましくは5~50nmである。第1誘電体層と第2誘電体層の厚みは同一であってもよいし、互いに異なっていてもよい。例えば、第1誘電体層と第2誘電体層の厚みを個別に調整することによって、透過色の色調変化を抑制したり、金属層で生じる反射光を透過光に変換するための光干渉効果を有効に活用したりすることができる。
 第1誘電体層及び第2誘電体層は、真空蒸着法、スパッタリング法、イオンプレーティング法、又はCVD法などの真空成膜法によって作製することができる。これらのうち、成膜室を小型化できる点、及び、成膜速度が速い点で、スパッタリング法が好ましい。スパッタリング法としては、DCマグネトロンスパッタリングが挙げられる。ターゲットとしては、酸化物ターゲット、金属又は半金属ターゲットを用いることができる。
 金属層は、主成分として、銀及び銀合金の一方又は双方を含んでよい。金属層における銀及び銀合金の合計含有量は、銀元素換算で例えば90質量%以上であってよく、95質量%以上であってもよい。金属層は、銀及び銀合金以外の金属(合金)を含んでいてもよい。例えば、金属又は合金として、Cu、Ge、Ga、Nd、Pt、Pd、Bi、Sn及びSbからなる群より選ばれる少なくとも一つの元素を銀合金の構成元素又は金属単体として含有することによって、金属層の耐環境性を向上することができる。銀合金の例としては、Ag-Pd、Ag-Cu、Ag-Pd-Cu、Ag-Nd-Cu、Ag-In-Sn、及びAg-Sn-Sbが挙げられる。
 金属層の厚みは、可視光の吸収率を十分に低減する観点から5.5~7.5nmである。金属層の厚みがこの範囲よりも小さくなると、可視光の吸収率が高くなり、透明性が損なわれる。すなわち、金属層の厚みが過小になると可視光の吸収率は高くなる。一方、金属層の厚みが上述の範囲を超える場合も、可視光の吸収率が高くなり、透明性が損なわれる。このため、金属層の厚みを上述の範囲にすることによって、可視光の吸収率を十分に低減することができる。
 金属層は、例えばDCマグネトロンスパッタを用いて形成することができる。金属層の成膜方法は特に限定されず、プラズマ又はイオンビーム等を用いたその他の真空成膜法、或いは構成成分を適当なバインダーに分散した液体を用いたコーティング法等を適宜選択することができる。
 ITO層又はIZO層は、第2誘電体層よりも電気伝導性が高い層である。ITO層又はIZO層を設けることによって、第2誘電体層の材料選択の自由度を向上することができる。ITO層は、ITOの他に不可避不純物を含んでいてもよい。IZO層は、IZOの他に不可避不純物を含んでいてもよい。ITO層又はIZO層を設けることによって、第2誘電体層側に電極を接続する場合に、接触抵抗を十分に低減することができる。ITO層又はIZO層と第2誘電体層とが直接接触していれば、フィルムヒータの厚さを十分に小さく維持しつつ高い透明性を十分に維持することができる。
 ITO層(IZO層)の厚みは、可視光の反射率と透過率の両方をバランスよく低減する観点から、例えば5~40nmであり、好ましくは10~30nmである。
 ITO層(IZO層)は、例えばDCマグネトロンスパッタを用いて形成することができる。ITO層(IZO層)の成膜方法は特に限定されず、プラズマ又はイオンビーム等を用いたその他の真空成膜法、或いは構成成分を適当なバインダーに分散した液体を用いたコーティング法等を適宜選択することができる。
 フィルムヒータは、上述の層以外に、一つ又は複数の任意の層を有してもよい。例えば、ITO層又はIZO層の上に、有機保護層を備えていてもよい。有機保護層は、例えばUV硬化樹脂(例えば、アイカ工業株式会社製のZ-773L(製品名))、又は熱硬化性樹脂等で構成されるハードコート層であってよい。フィルムヒータは、車両、屋外表示装置、及び建物用として好適に用いられる。例えば、液晶パネルの表面に取り付けて、液晶の駆動性を改善してもよい。ただし、上記ヒータ付きガラスの用途は、上述のものに限定されない。フィルムヒータは、ガラスの一方面上に接着してフィルムヒータ付きガラスを構成してよい。
 図1は、フィルムヒータの一例を示す模式断面図である。図1のフィルムヒータ100は、基材10、第1ハードコート層11、高屈折率層20、第1誘電体層21、銀及び銀合金の一方又は双方を含む金属層24、第2誘電体層22、及びITO層26をこの順で備える。基材10、第1ハードコート層11、第1誘電体層21、銀及び銀合金の一方又は双方を含む金属層24、第2誘電体層22及びITO層26は、上述の説明が適用される。
 高屈折率層20は、基材10、第1ハードコート層11及び第1誘電体層21よりも高い屈折率を有する層である。高屈折率層20は、第1誘電体層21とは異なる組成を有する層(第3誘電体層)であってもよい。高屈折率層20を設けることによって、基材10側の可視光の反射率を低減しつつ、第1誘電体層21の材料選択の自由度を向上することができる。高屈折率層20は、例えば、酸化物又は窒化物を含んでもよく、屈折率は1.8~2.5であってもよい。このような高屈折率層20を設けることによって、基材10側の可視光の反射率を十分に低減することができる。基材10側の可視光の反射率を十分に低減しつつ、第1誘電体層21との密着性を向上する観点から、高屈折率層20は、窒化ケイ素、酸化ニオブ及び酸化チタンから選ばれる少なくとも一つを含有してよい。
 高屈折率層20は窒化ケイ素を含有することが好ましい。これによって、第1ハードコート層11に含まれるシリカフィラーとの親和性が高くなる。したがって、第1ハードコート層11と高屈折率層20との密着性が高くなり、フィルムヒータの耐久性を一層向上することができる。
 高屈折率層20の厚みは、可視光の反射率と透過率の両方をバランスよく低減する観点から、例えば5~40nmであり、好ましくは10~30nmである。
 高屈折率層20は、例えばDCマグネトロンスパッタを用いて形成することができる。高屈折率層20の成膜方法は特に限定されず、プラズマ又はイオンビーム等を用いたその他の真空成膜法で製膜されたものであってよい。このような高屈折率層20は、表面が平滑である。
 フィルムヒータ100では、第1ハードコート層11の表面11Aの蛍光X線分析で検出される、Si元素のKα線を示すピーク強度が15~35cpsである。このような表面11Aには、シリカフィラーが十分に露出している。このため、第1ハードコート層11の表面11Aが接触する層(高屈折率層20)の表面が平滑であっても、第1ハードコート層11とこれに直接接触する高屈折率層20との密着性を十分に維持することができる。したがって、フィルムヒータ100の耐久性を十分に高くすることができる。
 フィルムヒータ100におけるITO層26の一部、第2誘電体層22の一部、及び金属層24の一部は、エッチング等によって除去されていてもよい。この場合、金属層24、第2誘電体層22及びITO層26によって、導体パターンが形成される。第1誘電体層21の一部も、エッチング等によって除去されていてもよい。
 図2は、フィルムヒータの別の例を示す模式断面図である。図2のフィルムヒータ101は、基材10の一方面上に、図1のフィルムヒータ100と同様に、第1ハードコート層11、高屈折率層20、第1誘電体層21、銀及び銀合金の一方又は双方を含む金属層24、第2誘電体層22、及びITO層26をこの順で備える。これらの構成については、上述したとおりである。
 上述の各層に加えて、図2のフィルムヒータ101は、基材10の他方面上に、基材10側から第2ハードコート層12及び低反射層28をこの順に備える。第2ハードコート層12は、第1ハードコート層11と同様の成分を含んでいてよい。例えば、樹脂組成物を硬化させて得られる樹脂成分(第2樹脂成分)と当該樹脂成分中に分散されたフィラーを含有していてよい。第2樹脂成分としては、第1樹脂成分と同様のものが挙げられる。
 第2ハードコート層12に含まれるフィラーは、第1ハードコート層11と同じシリカフィラーであってもよいし、シリカフィラーとは異なるフィラーであってもよい。また、第2ハードコート層12におけるフィラーの含有量は、第1ハードコート層11と同じであってもよいし、異なっていてもよい。フィラーを含んでいなくてもよい。第2ハードコート層12における樹脂成分は、第1ハードコート層11と同じであってもよいし、異なっていてもよい。第2ハードコート層12は、第1ハードコート層11と同様の方法で形成することができる。
 第2ハードコート層12の厚みは、例えば0.1~10μmであってよく、0.5~5μmであってもよい。これによって、第2ハードコート層12とこれに直接接触する層(例えば、低反射層28)との密着性を十分に高くしつつ、厚みムラ及びシワ等の発生を十分に抑制することができる。第2ハードコート層12の屈折率は、例えば1.40~1.60であってよい。基材10と第2ハードコート層12の屈折率の差の絶対値は、例えば0.1以下であってよい。
 低反射層28は、基材10の一方面側(ITO層26)からフィルムヒータ101に入射する可視光が、基材10の他方面側(低反射層28)から出射する際の反射を低減する機能を有する層である。すなわち、フィルムヒータ101の他方面側の表面をなす低反射層28は、基材10及び第2ハードコート層12よりも低く、空気よりも大きい屈折率を有する。これによって、フィルムヒータ101の可視光の透過率を高くして、より一層高い透明性を実現することができる。低反射層28の屈折率は、例えば、1.1~1.4であってよい。
 低反射層28は、例えば、樹脂組成物を硬化させて得られる樹脂成分と当該樹脂成分中に分散されたフィラーを含有していてよい。フィラーは、中空状であることが好ましい。これによって、第2ハードコート層12及び基材10よりも屈折率を低くすることができる。フィラーは、中空状のシリカフィラーであってよい。樹脂成分としては、アクリル系の樹脂を含んでいてよい。低反射層28の厚みは、10~300nmであってよく、30~200nmであってよく、50~150nmであってもよい。これによって、フィルムヒータ101の厚みを薄く維持しつつ、反射を十分に抑制することができる。
 本開示におけるフィルムヒータは、図1,図2の例に限定されない。例えば、フィルムヒータ100,101は、それぞれ他の任意の層を備えていてもよい。フィルムヒータ101は、第2ハードコート層12及び低反射層28の少なくとも一方を備えていなくてもよい。フィルムヒータ100は、第2ハードコート層12及び低反射層28の少なくとも一方を備えていてもよい。
 フィルムヒータ100,101の可視光の吸収率は、例えば10.3%以下である。これによって、可視光の透過率を例えば80%以上にすることができる。また、フィルムヒータ100,101のITO層26における表面抵抗率は、例えば5~30Ω/sq.であってよく、10~20Ω/sq.であってもよい。このようなフィルムヒータは、高い透明性と、除霜性能及び除曇性能に優れることが求められる車両のガラス用(例えばフロントガラス用及びリアガラス用)に好適に用いられる。
 図3は、ヒータ付きガラスの一例を示す模式断面図である。図3のヒータ付きガラス200は、図1のフィルムヒータ100と、フィルムヒータ100のITO層側の表面26Aと対向するガラス板50と、ガラス板50と表面26Aとの間に接着剤層40と、を備える。ITO層側の表面26Aの一部は、電極60で覆われている。電極60は、例えば、表面26Aに銀ペーストを塗布して形成してよい。このように電極60をITO層の表面26Aの一部を覆うように設けた後、ITO層の表面26A及び電極60を覆うように接着剤を塗布し、表面26A及び電極60と対向するようにガラス板50を配置する。その後、ガラス板50と表面26A及び電極60が互いに対向する方向に圧着することによって、ヒータ付きガラス200が得られる。接着剤層40を形成する接着剤は、例えば光学のりであってよい。
 電極60を対をなすように設けるとともに、図示しない電源にこれらを接続し、通電することによってフィルムヒータ100を発熱させる。これによって、ガラス板50の表面50Aに付着した氷及び霜等を除去することができる。また、フィルムヒータ100のITO層26側の表面26Aとは反対側の表面10Aに付着した水滴(曇)も円滑に除去することができる。フィルムヒータ100の温度上昇幅(ΔT)は、昇温前の温度を基準として、20~45℃であってよく、25~40℃であってもよい。これによって、表面50Aにおける氷及び霜等の除去性能を十分に高く維持しつつ、表面10Aにおける過剰な温度上昇を抑制することができる。このような温度上昇幅とする観点から、フィルムヒータの表面抵抗率は、好ましくは5~30Ω/sq.であり、より好ましくは10~20Ω/sq.である。
 図3の例では、ヒータ付きガラス200はフィルムヒータ100を備えるが、これに限定されない。例えば、フィルムヒータ100の代わりに図2のフィルムヒータ101を備えてもよいし、その変形例を備えていてもよい。
 以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、フィルムヒータ100の変形例、又はフィルムヒータ101の変形例は、ITO層26の代わりにIZO層を備えていてもよい。この場合、IZO層の表面の一部を覆うように電極60を設けてヒータ付きガラスを構成してもよい。
 本開示は以下の[1]~[5]の内容を含む。
[1]基材と、第1樹脂成分及びシリカフィラーを含む第1ハードコート層と、第1誘電体層と、銀及び銀合金の一方又は双方を含む金属層と、第2誘電体層と、ITO層又はIZO層と、をこの順に備え、
 前記金属層の厚みが5.5~7.5nmであり、
 前記第1ハードコート層の前記第1誘電体層側の表面の蛍光X線分析で検出される、Si元素のKα線を示すピーク強度が15~35cpsである、フィルムヒータ。
[2]前記基材の前記第1ハードコート層側とは反対側に、前記基材側から、第2樹脂成分を含む第2ハードコート層と低反射層とをこの順に備え、
 前記低反射層は、前記基材及び前記第2ハードコート層よりも小さく、且つ空気よりも大きい屈折率を有する、[1]に記載のフィルムヒータ。
[3]前記第1ハードコート層と前記第1誘電体層との間に高屈折率層を備える、[1]又は[2]に記載のフィルムヒータ。
[4]前記第1ハードコート層の前記第1樹脂成分に対する前記シリカフィラーの含有量が8~20質量%である、[1]~[3]のいずれか一つに記載のフィルムヒータ。
[5]前記記[1]~[4]のいずれか一つに記載のフィルムヒータと、前記ITO層又は前記IZO層の表面上に電極と、前記ITO層又は前記IZO層、及び前記電極と対向するガラス板と、を備える、ヒータ付きガラス。
 実施例、及び比較例を参照して、本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
[フィルムヒータの作製]
(実施例1)
 基材として厚さ125μmのポリエチレンテレフタレート(PET)フィルムを準備した。PETフィルムの一方面上に、第1ハードコート層を形成した。具体的には、シリカフィラー(平均粒子径:100nm、CIKナノテック製、商品名:AB-S53)と、アクリル系のモノマー(硬化性化合物)及び光重合開始剤を含む樹脂組成物と、溶剤とを、配合して塗料を調製した。アクリル系のモノマーとしては、アイカ工業株式会社製のZ-737-9AL(商品名)を、光重合開始剤としては、チバスペシャルティケミカルズ社製のイルガキュア127(商品名)を、溶剤としてはメチルエチルケトンを、それぞれ用いた。樹脂組成物の質量を基準とする光重合開始剤の含有量は5質量%であった。塗料の質量を基準とする溶剤の含有量は80質量%であった。塗料の粘度(20℃)は、0.9mPa・であった。
 この塗料をPETフィルムの一方面上に塗布して乾燥し、紫外線を照射して硬化させることによって第1ハードコート層を形成した。塗料における樹脂組成物(モノマー+光樹豪開始剤)の配合量とシリカフィラーの配合量から算出される、第1ハードコート層における樹脂成分に対するシリカフィラーの含有量は12質量%であった。
 DCマグネトロンスパッタリングによって、第1ハードコート層上に、高屈折率層を形成した。この高屈折率層は、アルゴンガス80体積%と窒素ガス20体積%を含む混合雰囲気下、ホウ素をドープしたSiターゲットを用いて形成した。このようにして形成した高屈折率層は、SiNで構成されていた。高屈折率層の屈折率は、1.9であった。この高屈折率層の上に、第1誘電体層、銀合金を含む金属層、第2誘電体層、及び、ITO層をこの順に形成した。
 第1誘電体層はZnO-In-TiOターゲットを、第2誘電体層はZnO-In-TiO-SnOターゲットを用いて、それぞれ形成した。それぞれのターゲットの組成(モル比率)は、表1に示すとおりとした。第1誘電体層及び第2誘電体層は、それぞれターゲットと同じ組成を有していた。
 金属層は、Ag-Pd-Cuターゲットを用いて形成した。ターゲットの組成は、Ag:Pd:Cu=99.0:0.5:0.5(質量%)であった。金属層は、ターゲットと同じ組成を有していた。ITO層は、アルゴンガスと酸素ガスの混合雰囲気下(Ar:O=98体積%:2体積%)、ITOターゲット(In-SnOターゲット)を用いて形成した。ITOターゲットの組成は、In:SnO=92:8(質量%)であった。ITO層は、ITOターゲットとほぼ同じ組成を有していた。
 このようにして、PET製の基材、第1ハードコート層、高屈折率層、第1誘電体層、金属層、第2誘電体層、及びITO層をこの順で有するフィルムヒータを得た。得られたフィルムヒータを、集束イオンビーム装置(FIB)を用いて積層方向に沿って切断した。切断面を、透過型電子顕微鏡で観察して、各層の厚みを求めた。その結果、第1ハードコート層の厚みは1.5μm、高屈折率層の厚みは20nm、第1誘電体層の厚みは10nm、金属層の厚みは6nm、第2誘電体層の厚みは6nm、及びITO層の厚みは20nmであった。
Figure JPOXMLDOC01-appb-T000001
(実施例2~7、比較例1~4)
 DCマグネトロンスパッタリングの出力を調節して金属層の厚みを変えたこと、及び/又は、第1ハードコート層を形成する際に用いるシリカフィラーの配合量を変えたこと以外は、実施例1と同様にして、各実施例及び各比較例のフィルムヒータを作製した。実施例1と同様にして、各実施例及び各比較例のフィルムヒータにおける金属層の厚みと、第1ハードコート層のシリカフィラーの含有量を求めた。表2に結果を示す。
[フィルムヒータの評価]
<蛍光X線分析>
 酸を用いたエッチングによって、各実施例及び各比較例のフィルムヒータのITO層、第2誘電体層、金属層、第1誘電体層及び高屈折率層を溶解して除去した。露出した第1ハードコート層の表面の蛍光X線分析を行った。測定には、株式会社リガク製のZSX Primus III(商品名)を用いた。測定条件は、以下のとおりとした。得られた蛍光X線スペクトルから、Si元素のKα線のピーク強度を求めた。表2に結果を示す。
  X線管:Rh 50kV50mA
  分光結晶:PET
  検出器:PC
  測定径:φ30mm
  測定雰囲気:真空(真空度:≦10Pa)
  測定幅と測定速度:0.05°ステップ、6°/min
<表面抵抗率の測定>
 各実施例及び各比較例のフィルムヒータを、縦×横=100mm×100mmのサイズにカットした。カットした試料のITO層の表面に、銀ペーストを用いて一対の電極を形成して測定用試料を得た。この測定用試料の表面抵抗率(ITO層の表面における表面抵抗率)を、4端子抵抗率計(商品名:ロレスタEP、株式会社三菱ケミカルアナリテック製)を用いて測定した。表2に結果を示す。
<温度上昇幅の評価>
 上記測定用試料の電極に12Vの直流電源を接続し、10分間通電した後の温度(T1)を、赤外線温度センサを用いて測定した。通電前の温度(T0=25℃)からの温度上昇幅(ΔT=T1-T0)を求めた。表2に結果を示す。
<可視光の吸収率の測定>
 市販の分光測色計(商品名:CM-5、コニカミノルタ製)を用いて、各実施例及び各比較例のフィルムヒータの可視光の吸収率を測定した。測定は、360~740nmの波長範囲において、1nm刻みで行った。測定値の平均値を光吸収率として表2に示す。
<密着性の評価>
 各実施例及び各比較例のフィルムヒータを温度85℃、相対湿度85%RHの恒温恒湿槽中に240時間保存した。その後、以下のクロスカット試験を行って、第1ハードコート層と高屈折率層との間の密着性を評価した。クロスカット試験は、ASTM D 3559-Bに基づいて行った。具体的には、ITO層の表面に、1mm間隔で縦方向及び横方向に沿ってそれぞれ11本の切り込みを入れて碁盤の目を100マス形成した。その後、切り込みを入れた領域にセロハンテープを貼り付けた。貼り付けたセロハンテープを引き剥がし、100マスにおける剥離状況を目視で確認し、結果を、5B,4B,3B,2B,1B,0Bの6段階に分類した。高屈折率層と第1ハードコート層との間において、剥がれが全くない場合を「5B」、剥がれた領域の割合が最も高い場合を「0B」に分類した。測定結果は表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、金属層の厚みが5.5nm未満である比較例1、及び、金属層の厚みが7.5nmを超える比較例2のフィルムヒータの可視光の吸収率は、目標値である10.3%を超えていた。また、比較例1では、表面抵抗率が高く、ΔTが小さくなり過ぎる傾向にあった。比較例2では、表面抵抗率が低く、ΔTが大きくなり過ぎる傾向にあった。
 ケイ素元素のKα線のピーク強度が過小である比較例3では、第1ハードコート層と高屈折率層との間の密着性が低下しており、耐久性が不十分であることが確認された。これは、第1ハードコート層の表面(第1ハードコート層と高屈折率層の界面)に露出するシリカフィラーが少なくなったことに起因するものと考えられる。一方、蛍光X線の強度が過大である比較例4の可視光の吸収率は、目標値である10.3%を超えていた。これは、シリカフィラーの含有量が過剰であったことによるものと推察される。
 一方、各実施例は、可視光の吸収率が十分に小さく、高屈折率層と第1ハードコート層の密着性も十分に優れていた。また、ΔTも、適度な範囲となっており、多くの用途において有用であることが確認された。
 本開示によれば、耐久性に優れるとともに、可視光の吸収率を十分に低減することが可能なフィルムヒータが提供される。また、耐久性に優れるとともに、可視光の吸収率を十分に低減することが可能なフィルムヒータを備えるヒータ付きガラスが提供される。
 10…基材、10A,11A,26A,50A…表面、11…第1ハードコート層、12…第2ハードコート層、20…高屈折率層、21…第1誘電体層、22…第2誘電体層、24…金属層、26…ITO層、28…低反射層、40…接着剤層、50…ガラス板、60…電極、100,101…フィルムヒータ、200…ヒータ付きガラス。

 

Claims (5)

  1.  基材と、第1樹脂成分及びシリカフィラーを含む第1ハードコート層と、第1誘電体層と、銀及び銀合金の一方又は双方を含む金属層と、第2誘電体層と、ITO層又はIZO層と、をこの順に備え、
     前記金属層の厚みが5.5~7.5nmであり、
     前記第1ハードコート層の前記第1誘電体層側の表面の蛍光X線分析で検出される、Si元素のKα線を示すピーク強度が15~35cpsである、フィルムヒータ。
  2.  前記基材の前記第1ハードコート層側とは反対側に、前記基材側から、第2樹脂成分を含む第2ハードコート層と低反射層とをこの順に備え、
     前記低反射層は、前記基材及び前記第2ハードコート層よりも小さく、且つ空気よりも大きい屈折率を有する、請求項1に記載のフィルムヒータ。
  3.  前記第1ハードコート層と前記第1誘電体層との間に高屈折率層を備える、請求項1又は2に記載のフィルムヒータ。
  4.  前記第1ハードコート層の前記第1樹脂成分に対する前記シリカフィラーの含有量が8~20質量%である、請求項1又は2に記載のフィルムヒータ。
  5.  請求項1又は2に記載のフィルムヒータと、前記ITO層又は前記IZO層の表面上に電極と、前記ITO層又は前記IZO層、及び前記電極と対向するガラス板と、を備える、ヒータ付きガラス。

     
PCT/JP2022/018733 2021-04-26 2022-04-25 フィルムヒータ、及び、ヒータ付きガラス WO2022230810A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/288,247 US20240215120A1 (en) 2021-04-26 2022-04-25 Film heater and heater-equipped glass
JP2023517509A JPWO2022230810A1 (ja) 2021-04-26 2022-04-25
CN202280029990.4A CN117204119A (zh) 2021-04-26 2022-04-25 薄膜加热器和带加热器的玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021074132 2021-04-26
JP2021-074132 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230810A1 true WO2022230810A1 (ja) 2022-11-03

Family

ID=83847191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018733 WO2022230810A1 (ja) 2021-04-26 2022-04-25 フィルムヒータ、及び、ヒータ付きガラス

Country Status (4)

Country Link
US (1) US20240215120A1 (ja)
JP (1) JPWO2022230810A1 (ja)
CN (1) CN117204119A (ja)
WO (1) WO2022230810A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963754A (ja) * 1995-06-15 1997-03-07 Mitsui Toatsu Chem Inc 耐久性透明面状ヒーター及びその製造方法
JP2004031241A (ja) * 2002-06-27 2004-01-29 Kyocera Corp セラミックヒータ及びその製造方法
JP2018020771A (ja) * 2016-07-25 2018-02-08 日本板硝子株式会社 ウインドシールドおよびその製造方法
WO2020022270A1 (ja) * 2018-07-24 2020-01-30 Tdk株式会社 ヒータ用透明導電フィルム及びヒータ
JP2020082513A (ja) * 2018-11-26 2020-06-04 Tdk株式会社 透明導電体、調光体及び透明発熱体
JP2020167047A (ja) * 2019-03-29 2020-10-08 日東電工株式会社 ヒータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963754A (ja) * 1995-06-15 1997-03-07 Mitsui Toatsu Chem Inc 耐久性透明面状ヒーター及びその製造方法
JP2004031241A (ja) * 2002-06-27 2004-01-29 Kyocera Corp セラミックヒータ及びその製造方法
JP2018020771A (ja) * 2016-07-25 2018-02-08 日本板硝子株式会社 ウインドシールドおよびその製造方法
WO2020022270A1 (ja) * 2018-07-24 2020-01-30 Tdk株式会社 ヒータ用透明導電フィルム及びヒータ
JP2020082513A (ja) * 2018-11-26 2020-06-04 Tdk株式会社 透明導電体、調光体及び透明発熱体
JP2020167047A (ja) * 2019-03-29 2020-10-08 日東電工株式会社 ヒータ

Also Published As

Publication number Publication date
CN117204119A (zh) 2023-12-08
JPWO2022230810A1 (ja) 2022-11-03
US20240215120A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
JP6601199B2 (ja) 透明導電体
US9582130B2 (en) Transparent conductor and touch panel
WO2020022270A1 (ja) ヒータ用透明導電フィルム及びヒータ
KR20130099213A (ko) 투명 도전성 필름 및 그 제조 방법
KR20160146638A (ko) 투명 도전성 필름
JP6048526B2 (ja) 透明導電体及びタッチパネル
WO2015046519A1 (ja) 導電性積層体およびそれを用いるタッチパネル
JP6739310B2 (ja) 光透過性導電フィルム、その製造方法、調光フィルムおよびその製造方法
JP2018124449A (ja) 調光体用の積層体、及び調光体
WO2017217329A1 (ja) 透明導電体
JP7046497B2 (ja) 液晶調光部材、光透過性導電フィルム、および液晶調光素子
JP6409588B2 (ja) 透明導電体及びタッチパネル
JP6923415B2 (ja) 透明導電性フィルムおよび透明導電性フィルム積層体
WO2022230810A1 (ja) フィルムヒータ、及び、ヒータ付きガラス
JP2014106779A (ja) 透明導電性フィルム及びタッチパネル
JP7225734B2 (ja) 透明導電体、調光体及び透明発熱体
JP2018022634A (ja) 透明導電体
WO2022230811A1 (ja) フィルムヒータ、及び、ヒータ付きガラス
JP7141237B2 (ja) ハードコートフィルム、透明導電性フィルム、透明導電性フィルム積層体および画像表示装置
JP7024852B2 (ja) 透明導電体、調光体及び透明発熱体
JP3681280B2 (ja) ディスプレイ用光学フィルター
JP6798219B2 (ja) 透明導電体
WO2019116719A1 (ja) 透明導電性フィルム
JP6880592B2 (ja) 近赤外線遮蔽積層体、車両用ガラス及び車両
KR102187987B1 (ko) 다층 박막 구조를 갖는 투명 히터용 전극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517509

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280029990.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18288247

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795723

Country of ref document: EP

Kind code of ref document: A1