WO2017217329A1 - 透明導電体 - Google Patents

透明導電体 Download PDF

Info

Publication number
WO2017217329A1
WO2017217329A1 PCT/JP2017/021450 JP2017021450W WO2017217329A1 WO 2017217329 A1 WO2017217329 A1 WO 2017217329A1 JP 2017021450 W JP2017021450 W JP 2017021450W WO 2017217329 A1 WO2017217329 A1 WO 2017217329A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide layer
metal
layer
transparent conductor
Prior art date
Application number
PCT/JP2017/021450
Other languages
English (en)
French (fr)
Inventor
新開 浩
祥久 玉川
喜彦 田邊
佐藤 吉徳
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201780036160.3A priority Critical patent/CN109313964B/zh
Priority to EP17813226.2A priority patent/EP3471111A4/en
Priority to US16/309,295 priority patent/US20190160783A1/en
Publication of WO2017217329A1 publication Critical patent/WO2017217329A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/22Antistatic materials or arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0288Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using passive elements as protective elements, e.g. resistors, capacitors, inductors, spark-gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes

Definitions

  • This disclosure relates to a transparent conductor.
  • the transparent conductor is used as a transparent electrode for a display such as a liquid crystal display (LCD), a plasma display panel (PDP), and an electroluminescence panel (organic EL, inorganic EL), and a solar cell. In addition to these, they are also used for electromagnetic wave shielding films and infrared ray prevention films.
  • a material for the metal oxide layer in the transparent conductor ITO in which tin (Sn) is added to indium oxide (In 2 O 3 ) is widely used.
  • Patent Document 1 proposes a transparent conductive film having a laminated structure of a metal oxide layer mainly composed of indium oxide or zinc oxide and a metal layer.
  • Transparent conductors having both transparency and conductivity are used in various applications. For example, when used as an electrode of an organic device, it is required to suppress moisture permeation in order to ensure the reliability of the organic layer.
  • a transparent conductor a conductive part and an insulating part are formed by performing a patterning process. In order to perform such a patterning process smoothly, it is required to have excellent etching properties.
  • an object of the present invention is to provide a transparent conductor that can be easily patterned and can maintain an excellent water vapor barrier property even when the patterning is performed.
  • the present invention provides a transparent conductor comprising a transparent resin substrate, a first metal oxide layer, a metal layer containing a silver alloy, and a second metal oxide layer in this order, 1 of the metal oxide layer contains at least one of tin oxide and niobium oxide, tin oxide and niobium oxide to when converted into SnO 2 and Nb 2 O 5, respectively, contained in the first metal oxide layer the total content of a molar basis of SnO 2 and Nb 2 O 5 to the sum of the metal oxides, the total moles of SnO 2 and Nb 2 O 5 to the sum of the metal oxides contained in the second metal oxide layer
  • a transparent conductor having a content larger than a reference content and having a content in the first metal oxide layer of 45 mol% or more.
  • the second metal oxide layer of the transparent conductor has a lower molar content of SnO 2 and Nb 2 O 5 relative to the total metal oxide than the first metal oxide layer,
  • the metal oxide layer is more easily dissolved in an etching solution containing phosphoric acid, acetic acid, nitric acid and hydrofluoric acid than the first metal oxide layer. For this reason, the second metal oxide layer and the metal layer can be removed by the etching solution, and patterning can be easily performed.
  • the first metal oxide layer remaining without being etched is excellent in water vapor barrier properties.
  • the transparent conductor can maintain an excellent water vapor barrier property even if it is patterned. Therefore, for example, when a device in which an organic layer or the like is laminated on a patterned transparent conductor is formed, moisture intrusion into the organic layer is suppressed, and the reliability of the device can be improved.
  • the first metal oxide layer does not dissolve in an etching solution containing phosphoric acid, acetic acid, nitric acid, and hydrofluoric acid that dissolves the second metal oxide layer. This makes it possible to further improve the water vapor barrier property while facilitating patterning.
  • the first metal oxide layer contains tin oxide, when converting the tin oxide SnO 2, SnO 2 content to the total of metal oxides may be more 30 mol%.
  • the first metal oxide layer containing niobium oxide, when converting the niobium oxide Nb 2 O 5, the content of Nb 2 O 5 to the sum of the metal oxides may be more than 50 mol%.
  • the first metal oxide layer may be amorphous. Thereby, the water vapor barrier property in the first metal oxide layer can be further improved.
  • the first metal oxide layer may include at least one selected from tin oxide and niobium oxide, and at least one selected from zinc oxide, indium oxide, and titanium oxide.
  • SnO 2 , Nb 2 O 5 , ZnO, In 2 O 3 and TiO 2 respectively, SnO with respect to the total of the above five components
  • the total content of 2 and Nb 2 O 5 is, for example, 45 to 80 mol%.
  • the total content of ZnO, In 2 O 3 and TiO 2 with respect to the five components is, for example, 20 to 55 mol%.
  • the second metal oxide layer contains zinc oxide, indium oxide, titanium oxide, and tin oxide, and the four components of zinc oxide, indium oxide, titanium oxide, and tin oxide are ZnO, In 2 O 3 , and TiO 2 , respectively.
  • ZnO zinc oxide
  • In 2 O 3 zinc oxide
  • TiO 2 titanium oxide
  • the SnO 2 content may be 12 to 30 mol%.
  • the silver alloy in the metal layer may have Ag, Pd and Cu as constituent elements. Thereby, deterioration such as migration of the metal layer is further suppressed, and the corrosion resistance of the transparent conductor can be improved.
  • the transparent conductor is patterned so that a part of the first metal oxide layer is exposed, and includes a transparent resin base material and a first metal oxide layer.
  • FIG. 1 is a cross-sectional view of a transparent conductor according to an embodiment.
  • FIG. 2 is a cross-sectional view of a transparent conductor according to another embodiment.
  • FIG. 3 is a cross-sectional view of a transparent conductor according to still another embodiment.
  • FIG. 1 is a cross-sectional view showing an embodiment of a transparent conductor.
  • the transparent conductor 100 has a laminated structure in which a film-like transparent resin base material 10, a first metal oxide layer 12, a metal layer 16, and a second metal oxide layer 14 are arranged in this order. .
  • Transparent in this specification means that visible light is transmitted, and the light may be scattered to some extent.
  • the required level varies depending on the use of the transparent conductor 100. What has light scattering generally referred to as translucent is also included in the concept of “transparency” in this specification.
  • the degree of light scattering is preferably small, and the transparency is preferably high.
  • the total light transmittance of the entire transparent conductor 100 is, for example, 84% or more, preferably 86% or more, and more preferably 88% or more. This total light transmittance is a transmittance including diffuse transmitted light obtained using an integrating sphere, and is measured using a commercially available haze meter.
  • the transparent resin substrate 10 is not particularly limited, and may be a flexible organic resin film.
  • the organic resin film may be an organic resin sheet.
  • organic resin films include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polycarbonate films, acrylic films, norbornene films, polyarylate films, and polyether sulfone films. , A diacetyl cellulose film, a triacetyl cellulose film, and the like.
  • polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable.
  • the transparent resin base material 10 is preferably thicker from the viewpoint of rigidity.
  • the transparent resin substrate 10 is preferably thin from the viewpoint of thinning the transparent conductor 100. From such a viewpoint, the thickness of the transparent resin substrate 10 is, for example, 10 to 200 ⁇ m.
  • the refractive index of the transparent resin substrate is, for example, 1.50 to 1.70 from the viewpoint of a transparent conductor excellent in optical characteristics.
  • the transparent resin substrate 10 may be subjected to at least one surface treatment selected from the group consisting of corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, and ozone treatment. Good.
  • the transparent resin substrate may be a resin film.
  • the transparent conductor 100 can be made excellent in flexibility. Thereby, it can be used more suitably for transparent conductors for touch panel applications, transparent electrodes for organic devices such as flexible organic EL lighting, and electromagnetic wave shields.
  • the first metal oxide layer 12 contains at least one of tin oxide and niobium oxide.
  • Tin oxide is, for example, SnO 2 and niobium oxide is, for example, Nb 2 O 5 .
  • the total molar content of Nb 2 O 5 is 45 mol% or more.
  • the upper limit of the content is, for example, 90 mol% or less from the viewpoint of maintaining bulk conductivity. When this content exceeds 90 mol%, the bulk conductivity tends to decrease.
  • the above-mentioned molar basis content is a value obtained by converting metal oxides different from tin oxide and niobium oxide into metal oxides that exist most stably at normal temperature and pressure.
  • the contents of the following metal oxides are also determined in the same manner.
  • the first metal oxide layer 12 contains a tin oxide
  • SnO 2 content when converting the tin oxide SnO 2, SnO 2 content to the total of the metal oxide contained in the first metal oxide layer 12 is It is preferable that it is 30 mol% or more. By having such a composition, it is possible to achieve both an excellent water vapor barrier property and insolubility in an etching solution at a higher level.
  • the upper limit of the content of SnO 2 is, for example, 80 mol% or less from the viewpoint of maintaining high transmittance.
  • the first metal oxide layer 12 contains a niobium oxide, when converting the niobium oxide Nb 2 O 5, that the content of Nb 2 O 5 to the sum of the metal oxides is not less than 50 mol% preferable.
  • the upper limit of the content of Nb 2 O 5 is, for example, 80 mol% or less from the viewpoint of maintaining excellent alkali resistance.
  • the first metal oxide layer 12 may contain both tin oxide and niobium oxide, or may contain a metal oxide different from tin oxide and niobium oxide. Different oxides include zinc oxide, indium oxide and titanium oxide. The first metal oxide layer 12 may include at least one of these. Zinc oxide is, for example, ZnO, and indium oxide is, for example, In 2 O 3 . Titanium oxide is, for example, TiO 2.
  • the first metal oxide layer 12 includes at least one of tin oxide and niobium oxide and at least one selected from zinc oxide, indium oxide, and titanium oxide, tin oxide, niobium oxide, zinc oxide, indium oxide, and
  • the five components of titanium oxide are converted into SnO 2 , Nb 2 O 5 , ZnO, In 2 O 3 and TiO 2 respectively
  • the total content of SnO 2 and Nb 2 O 5 with respect to the total of the five components is For example, 45 to 80 mol%.
  • the total content of ZnO, In 2 O 3 and TiO 2 with respect to the five components is, for example, 20 to 55 mol%.
  • the ratio of metal atoms to oxygen atoms in each metal oxide included in the first metal oxide layer 12 may deviate from the stoichiometric ratio.
  • oxides having the same metal element and different oxidation numbers may be included.
  • the first metal oxide layer 12 has the functions of adjusting optical characteristics and protecting the metal layer 16.
  • the first metal oxide layer 12 may contain a trace component or an unavoidable component in addition to the above-described metal oxide as long as the function is not significantly impaired. 95 mol% or more may be sufficient as the ratio of the said 5 components with respect to the whole metal oxide contained in the 1st metal oxide layer 12, and 97 mol% or more may be sufficient as it.
  • the first metal oxide layer 12 may not contain a metal oxide other than the above five components.
  • the first metal oxide layer 12 is preferably transparent and does not dissolve in an etching solution containing phosphoric acid, acetic acid, nitric acid and hydrofluoric acid.
  • This etching solution can be prepared by blending a PAN-based etching solution containing phosphoric acid, acetic acid, and nitric acid and hydrofluoric acid.
  • the first metal oxide layer 12 is preferably amorphous. Thereby, the water vapor barrier property of the first metal oxide layer 12 can be further improved.
  • the first metal oxide layer 12 can be made amorphous by adjusting the composition.
  • the second metal oxide layer 14 is a transparent layer containing an oxide and contains, for example, four components of zinc oxide, indium oxide, titanium oxide, and tin oxide as main components.
  • the 2nd metal oxide layer 14 can be made into the 2nd metal oxide layer 14 which had the outstanding electroconductivity and the outstanding transparency by including the said 4 component as a main component.
  • Zinc oxide is, for example, ZnO
  • indium oxide is, for example, In 2 O 3 .
  • Titanium oxide is, for example, TiO 2
  • tin oxide is, for example, SnO 2 .
  • the ratio of metal atoms to oxygen atoms in each of the metal oxides may deviate from the stoichiometric ratio.
  • the ratio of metal atoms to oxygen atoms in each metal oxide included in the second metal oxide layer 14 may deviate from the stoichiometric ratio.
  • oxides having the same metal element and different oxidation numbers may be included.
  • the second metal oxide layer 14 is the sum of the four components when the four components of zinc oxide, indium oxide, titanium oxide and tin oxide are converted into ZnO, In 2 O 3 , TiO 2 and SnO 2 , respectively.
  • the content of SnO 2 is preferably 12 to 30 mol%. By setting the content of SnO 2 in the above range, both high conductivity and solubility in an etching solution can be achieved at a sufficiently high level.
  • the content of SnO 2 is more preferably 15 to 25 mol%.
  • the content of ZnO with respect to the total of the four components is preferably 20 to 50 mol%, more preferably 30 to 50 ml%, from the viewpoint of achieving both excellent transparency and excellent conductivity.
  • the content of In 2 O 3 with respect to the total of the four components is preferably 20 to 35 mol%, more preferably 22 to 30 mol%, from the viewpoint of achieving both excellent transparency and high conductivity.
  • the content of TiO 2 with respect to the total of the four components is preferably 10 to 15 mol%, more preferably 12 to 15 mol%, from the viewpoint of achieving both high conductivity and excellent corrosion resistance.
  • the second metal oxide layer 14 may contain a metal oxide different from the above metal oxide.
  • niobium oxide may be included.
  • the reference content is smaller than the same content in the first metal oxide layer determined in the same manner. That is, the total molar content of SnO 2 and Nb 2 O 5 with respect to the total metal oxide contained in the second metal oxide layer 14 is less than 45 mol%, preferably 12 to 30 mol%. More preferably, it is 15 to 25 mol%. This makes it possible to achieve both high conductivity and solubility in an etching solution at a sufficiently high level.
  • the second metal oxide layer 14 has functions such as adjustment of optical characteristics, protection of the metal layer 16, conductivity, solubility in an etching solution, and securing of alkali resistance.
  • the second metal oxide layer 14 may contain a trace component or an unavoidable component in addition to the above-described components as long as the function is not significantly impaired.
  • the total ratio of the four components to the entire metal oxide contained in the second metal oxide layer 14 may be, for example, 95 mol% or more, or 97 mol% or more.
  • the second metal oxide layer 14 may not contain a metal oxide other than the above four components.
  • the first metal oxide layer 12 and the second metal oxide layer 14 have different compositions. As a result, only the second metal oxide layer 14 and the metal layer 16 can be removed by etching in one step, and the first metal oxide layer 12 can be left as it is.
  • the thickness of the first metal oxide layer 12 and the second metal oxide layer 14 is, for example, 80 nm or less from the viewpoint of further improving the transparency. On the other hand, from the viewpoint of further improving the corrosion resistance and improving the productivity, the thickness is, for example, 20 nm or more.
  • the first metal oxide layer 12 and the second metal oxide layer 14 can be manufactured by a vacuum film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method.
  • a vacuum film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method.
  • the sputtering method is preferable in that the film forming chamber can be downsized and the film forming speed is high.
  • Examples of the sputtering method include DC magnetron sputtering.
  • As a target, an oxide target, a metal, or a metalloid target can be used.
  • a wiring electrode or the like may be provided on the second metal oxide layer 14.
  • a current that conducts through a metal layer 16 to be described later is supplied from the wiring electrode or the like provided on the second metal oxide layer 14 via the second metal oxide layer 14 to the second metal oxide layer 14. It is led to another wiring electrode provided on the top.
  • the 2nd metal oxide layer 14 has high electroconductivity.
  • the surface resistance value of the second metal oxide layer 14 single layer is preferably 1.0 ⁇ 10 +7 ⁇ / sq or less, for example, 5.0 ⁇ 10 +6 ⁇ / sq. The following is more preferable.
  • the metal layer 16 is a layer containing a silver alloy as a main component. Since the metal layer 16 has high transparency and conductivity, the surface resistance can be sufficiently lowered while sufficiently increasing the total light transmittance of the transparent conductor 100.
  • the constituent element of the silver alloy include Ag and at least one selected from Pd, Cu, Nd, In, Sn, and Sb.
  • silver alloys include Ag—Pd, Ag—Cu, Ag—Pd—Cu, Ag—Nd—Cu, Ag—In—Sn, and Ag—Sn—Sb.
  • the content of metals other than silver is, for example, 0.5 to 5% by mass based on the metal layer 16 from the viewpoint of further improving corrosion resistance and transparency.
  • the silver alloy preferably contains Pd as a metal other than silver. Thereby, the durability in a high temperature and high humidity environment can be further improved.
  • the content of Pd in the silver alloy may be, for example, 1% by mass or more.
  • the silver alloy preferably contains Cu together with Ag and Pd. Thereby, deterioration such as migration of the metal layer 16 is further suppressed, and the corrosion resistance of the transparent conductor 100 can be improved.
  • the thickness of the metal layer 16 is, for example, 1 to 30 nm. From the viewpoint of sufficiently increasing the total light transmittance while sufficiently reducing the water vapor transmittance of the transparent conductor 100, the thickness of the metal layer 16 is preferably 4 to 20 nm. If the thickness of the metal layer 16 is too large, the total light transmittance tends to decrease. On the other hand, if the thickness of the metal layer 16 is too small, the total light transmittance and the corrosion resistance tend to decrease, and the surface resistance tends to increase.
  • the metal layer 16 has a function of adjusting the total light transmittance and surface resistance of the transparent conductor 100.
  • the metal layer 16 can be produced by a vacuum film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD method.
  • the sputtering method is preferable because the film forming chamber can be downsized and the film forming speed is high. Examples of the sputtering method include DC magnetron sputtering.
  • a metal target can be used as the target.
  • the transparent conductor 100 preferably has a low water vapor transmission rate.
  • Water vapor permeability of the transparent conductor 100 (WVTR) is in a state before being patterned, for example, 5 ⁇ 10 -3 g / m 2 / day may be not more than, 5 ⁇ 10 -4 g / m 2 / It may be less than day. Since the transparent conductor 100 can sufficiently block water vapor by having such a low water vapor transmission rate, it can be suitably used particularly as a transparent electrode of an organic device.
  • the water vapor transmission rate (WVTR) in this specification is a value measured using a commercially available measuring device such as MOCON water vapor transmission rate measuring device (AQATRAN) manufactured by Hitachi High-Technologies Corporation.
  • At least a part of the second metal oxide layer 14 and at least a part of the metal layer 16 in the transparent conductor 100 may be removed by etching or the like.
  • a conductor pattern is formed by the metal layer 16 and the second metal oxide layer 14.
  • a part of the first metal oxide layer 12 may also be removed by etching or the like.
  • the resistance value of the transparent conductor 100 is, for example, 30 ⁇ / sq. It is as follows. Conventionally, an ITO film having a thickness of 100 nm or more has been used as the transparent electrode, but it has been difficult to sufficiently reduce the resistance.
  • the transparent conductor 100 can be made lower in resistance than ITO having the above-described thickness, and is suitably used as a transparent electrode for uses that are required to have a low resistance.
  • the transparent conductor 100 can also be used for a liquid crystal screen and an antenna.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the transparent conductor.
  • the transparent conductor 101 includes a conductive portion 40 (second stacked portion) having a transparent resin base material 10, a first metal oxide layer 12, a metal layer 16, and a second metal oxide layer 14 in this order,
  • the non-conductive portion 30 (first laminated portion) having the two metal oxide layers 14 and 16 and having the transparent resin base material 10 and the first metal oxide layer 12 is provided.
  • the conductive portion 40 and the nonconductive portion 30 are formed so as to be adjacent to each other.
  • the transparent conductor 101 is obtained by removing the second metal oxide layer 14 and the metal layer 16 of the transparent conductor 100 of FIG. 1 by etching. In the non-conductive part 30, the surface (one main surface) of the first metal oxide layer 12 is exposed. On the other hand, the conductive portion 40 includes the metal layer 16 and the second metal oxide layer 14 on the surface of the first metal oxide layer 12, and constitutes a conductor pattern.
  • the transparent conductor 101 includes the first metal oxide layer 12 not only in the conductive portion 40 but also in the nonconductive portion 30.
  • the first metal oxide layer 12 has an excellent water vapor barrier property. For this reason, the patterned transparent conductor 101 can maintain an excellent water vapor barrier property.
  • the water vapor transmission rate (WVTR) of the transparent conductor 101 may be, for example, 5 ⁇ 10 ⁇ 2 g / m 2 / day or less, or 1 ⁇ 10 ⁇ 2 g / m 2 / day or less.
  • the transparent conductor 101 having a conductor pattern with a predetermined shape has excellent water vapor barrier properties
  • various displays such as organic EL displays, organic EL lighting, organic devices such as organic thin-film solar cells, light control films, and electronic paper
  • it can be suitably used as a transparent electrode for a transparent electrode, an antistatic material, or an electromagnetic wave shield.
  • FIG. 3 is a schematic cross-sectional view showing still another embodiment of the transparent conductor.
  • the transparent conductor 102 is different from the transparent conductor 100 of FIG. 1 in that the transparent conductor 102 includes a pair of hard coat layers 20 with the transparent resin substrate 10 interposed therebetween. Other configurations are the same as those of the transparent conductor 100.
  • the transparent conductor 102 has a first hard coat layer 22 on the main surface of the transparent resin substrate 10 on the first metal oxide layer 12 side, and a first layer of the transparent resin substrate 10.
  • a second hard coat layer 24 is provided on the main surface opposite to the one metal oxide layer 12 side. That is, the transparent conductor 102 includes the second hard coat layer 24, the transparent resin substrate 10, the first hard coat layer 22, the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer. 14 has a laminated structure laminated in this order.
  • the thickness, structure, and composition of the first hard coat layer 22 and the second hard coat layer 24 may be the same or different. Further, it is not always necessary to provide both the first hard coat layer 22 and the second hard coat layer 24, and only one of them may be provided.
  • the hard coat layer 20 contains a cured resin obtained by curing the resin composition.
  • the resin composition preferably contains at least one selected from a thermosetting resin composition, an ultraviolet curable resin composition, and an electron beam curable resin composition.
  • the thermosetting resin composition may include at least one selected from an epoxy resin, a phenoxy resin, and a melamine resin.
  • the resin composition is, for example, a composition containing a curable compound having an energy ray reactive group such as a (meth) acryloyl group or a vinyl group.
  • a curable compound having an energy ray reactive group such as a (meth) acryloyl group or a vinyl group.
  • the notation of (meth) acryloyl group includes at least one of acryloyl group and methacryloyl group.
  • the curable compound preferably contains a polyfunctional monomer or oligomer containing 2 or more, preferably 3 or more energy ray reactive groups in one molecule.
  • the curable compound preferably contains an acrylic monomer.
  • acrylic monomers include 1,6-hexanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, ethylene oxide-modified bisphenol A di (meth) acrylate, and trimethylolpropane tri (meth).
  • a compound having a vinyl group may be used as the curable compound.
  • the compound having a vinyl group include ethylene glycol divinyl ether, pentaerythritol divinyl ether, 1,6-hexanediol divinyl ether, trimethylolpropane divinyl ether, ethylene oxide-modified hydroquinone divinyl ether, ethylene oxide-modified bisphenol A divinyl ether, Examples include pentaerythritol trivinyl ether, dipentaerythritol hexavinyl ether, and ditrimethylolpropane polyvinyl ether. However, it is not necessarily limited to these.
  • the resin composition contains a photopolymerization initiator when the curable compound is cured by ultraviolet rays.
  • Various photopolymerization initiators can be used.
  • it may be appropriately selected from known compounds such as acetophenone, benzoin, benzophenone, and thioxanthone. More specifically, Darocur 1173, Irgacure 651, Irgacure 184, Irgacure 907 (above trade name, manufactured by Ciba Specialty Chemicals), and KAYACURE DETX-S (trade name, manufactured by Nippon Kayaku Co., Ltd.) can be mentioned. .
  • the photopolymerization initiator may be about 0.01 to 20% by mass, or about 0.5 to 5% by mass with respect to the mass of the curable compound.
  • the resin composition may be a known composition obtained by adding a photopolymerization initiator to an acrylic monomer.
  • acrylic monomer with a photopolymerization initiator added include, for example, UV-curable resin SD-318 (trade name, manufactured by Dainippon Ink and Chemicals) and XNR5535 (trade name, Nagase Sangyo). Etc.).
  • the resin composition may contain organic fine particles and / or inorganic fine particles for increasing the strength of the coating film and / or adjusting the refractive index.
  • organic fine particles include organic silicon fine particles, crosslinked acrylic fine particles, and crosslinked polystyrene fine particles.
  • examples of the inorganic fine particles include silicon oxide fine particles, aluminum oxide fine particles, zirconium oxide fine particles, titanium oxide fine particles, and iron oxide fine particles. Of these, silicon oxide fine particles are preferred.
  • the fine particles have a surface treated with a silane coupling agent and energy ray reactive groups such as (meth) acryloyl groups and / or vinyl groups are present on the surface in a film form.
  • energy ray reactive groups such as (meth) acryloyl groups and / or vinyl groups are present on the surface in a film form.
  • the fine particles react with each other upon irradiation with energy rays, or the fine particles and polyfunctional monomers or oligomers react to increase the strength of the film.
  • Silicon oxide fine particles treated with a silane coupling agent containing a (meth) acryloyl group are preferably used.
  • the average particle diameter of the fine particles is smaller than the thickness of the hard coat layer 20, and may be 100 nm or less or 20 nm or less from the viewpoint of ensuring sufficient transparency. On the other hand, from the viewpoint of production of the colloidal solution, it may be 5 nm or more, or 10 nm or more.
  • the total amount of organic fine particles and inorganic fine particles may be, for example, 5 to 500 parts by mass, or 20 to 200 parts by mass with respect to 100 parts by mass of the curable compound. May be.
  • the resin composition can be cured by irradiation with energy rays such as ultraviolet rays. Accordingly, it is preferable to use such a resin composition from the viewpoint of the manufacturing process.
  • the first hard coat layer 22 can be produced by applying a solution or dispersion of the resin composition onto one surface of the transparent resin substrate 10 and drying it to cure the resin composition.
  • coating in this case can be performed by a well-known method. Examples of the coating method include an extrusion nozzle method, a blade method, a knife method, a bar coating method, a kiss coating method, a kiss reverse method, a gravure roll method, a dip method, a reverse roll method, a direct roll method, a curtain method, and a squeeze method. Etc.
  • the second hard coat layer 24 can also be produced on the other surface of the transparent resin substrate 10 in the same manner as the first hard coat layer 22.
  • the thickness of the first hard coat layer 22 and the second hard coat layer 24 is, for example, 0.5 to 10 ⁇ m. If the thickness exceeds 10 ⁇ m, uneven thickness or wrinkles tend to occur. On the other hand, when the thickness is less than 0.5 ⁇ m, when the transparent resin substrate 10 contains a considerable amount of low molecular weight components such as plasticizers or oligomers, the bleeding out of these components can be sufficiently suppressed. It can be difficult. In addition, from the viewpoint of suppressing warpage, it is preferable that the thicknesses of the first hard coat layer 22 and the second hard coat layer 24 be approximately the same.
  • the refractive indexes of the first hard coat layer 22 and the second hard coat layer 24 are, for example, 1.40 to 1.60.
  • the absolute value of the difference in refractive index between the transparent resin substrate 10 and the first hard coat layer 22 is preferably 0.1 or less.
  • the absolute value of the difference in refractive index between the transparent resin substrate 10 and the second hard coat layer 24 is also preferably 0.1 or less.
  • the first hard coat layer 22 and the second hard coat layer 22 are reduced by reducing the absolute value of the difference in refractive index between the first hard coat layer 22 and the second hard coat layer 24 and the transparent resin substrate 10. It is possible to suppress the intensity of interference unevenness generated by the thickness unevenness of 24.
  • each layer constituting the transparent conductor 100, 101, 102 can be measured by the following procedure.
  • the transparent conductors 100, 101, 102 are cut by a focused ion beam apparatus (FIB, Focused Ion Beam) to obtain a cross section.
  • the cross section is observed using a transmission electron microscope (TEM), and the thickness of each layer is measured.
  • TEM transmission electron microscope
  • the measurement is preferably performed at 10 or more arbitrarily selected positions, and the average value is obtained.
  • a microtome may be used as an apparatus other than the focused ion beam apparatus.
  • a scanning electron microscope (SEM) may be used as a method for measuring the thickness. It is also possible to measure the film thickness using a fluorescent X-ray apparatus.
  • the thickness of the transparent conductors 100, 101, 102 may be 300 ⁇ m or less, or 250 ⁇ m or less. Such a thickness can sufficiently satisfy the required level of thinning.
  • the total light transmittance of the transparent conductors 100, 101, 102 can be set to a high value of, for example, 84% or more.
  • the transparent conductors 100, 101, 102 are used for an organic device
  • the transparent conductors 100, 101, 102 are used as a positive electrode of the organic device.
  • an organic layer, a reflective electrode (negative electrode), and a sealing film are provided in this order on the patterned second metal oxide layer 14 from the second metal oxide layer 14 side.
  • the organic layer easily deteriorates due to moisture, the lifetime of the organic device can be extended by using the transparent conductors 100, 101, and 102 having high water vapor barrier properties as the positive electrode.
  • the transparent conductors 100, 101, 102 can also be used as a negative electrode of an organic device.
  • the present invention is not limited to the above-described embodiments.
  • the above-described transparent conductor 102 has a pair of hard coat layers 20, but may include only one of the first hard coat layer 22 and the second hard coat layer 24.
  • a hard coat layer may be provided on one surface of the transparent resin base material 10, and a plurality of optical adjustment layers may be provided by coating on the other surface.
  • the first metal oxide layer 12, the metal layer 16, and the second metal oxide layer 14 may be provided on the optical adjustment layer.
  • the transparent conductors 100, 101, and 102 may be provided with an arbitrary layer at an arbitrary position other than the above-described layers as long as the function is not significantly impaired.
  • Examples 1 to 5 Comparative Examples 1 to 7
  • a transparent conductor as shown in FIG. 1 was produced.
  • the transparent conductor had a laminated structure in which a transparent resin base material, a first metal oxide layer, a metal layer, and a second metal oxide layer were laminated in this order.
  • the transparent conductor of each Example and each comparative example was produced in the following ways.
  • a commercially available polyethylene terephthalate film (thickness: 125 ⁇ m) was prepared.
  • This PET film was used as a transparent resin substrate.
  • a first metal oxide layer, a metal layer, and a second metal oxide layer were sequentially formed by DC magnetron sputtering.
  • the first metal oxide layer and the second metal oxide layer in each example and each comparative example were formed using targets having the compositions shown in Tables 1 and 2.
  • the target of Example 1 contained SnO 2 and ZnO in a molar ratio of 45:55.
  • Comparative Example 7 an AlN layer produced by reactive sputtering using a mixed gas of argon gas and nitrogen gas using an Al target was used as the first metal oxide layer.
  • the first metal oxide layer and the second metal oxide layer formed in each example and each comparative example have the same composition as the target used except for the first metal oxide layer of comparative example 7.
  • Table 1 and Table 2 together also a total content of a molar basis of SnO 2 and Nb 2 O 5 to the sum of the metal oxides contained in the first metal oxide layer and the second metal oxide layer Indicated.
  • the thickness of the first metal oxide layer and the second metal oxide layer in each example was 40 nm.
  • the thickness of the metal layer was 10 nm.
  • the crystallinity of the 1st metal oxide layer and the 2nd metal oxide layer in the transparent conductor of each Example and each comparative example was evaluated using XRD. That is, when the diffraction angle (2 ⁇ ) according to the X-ray diffraction method is in the range of 20 to 60 °, it was determined that the diffraction peak was observed and the crystallinity was observed, and the diffraction peak was not observed was amorphous.
  • the first metal oxide layer and the second metal oxide layer containing ZnO can be determined by the presence or absence of a diffraction peak from the (002) plane of ZnO.
  • etching properties of the transparent conductors of the examples and comparative examples were evaluated by the following procedure. First, a PAN-based etching solution containing phosphoric acid, acetic acid and nitric acid was mixed with hydrofluoric acid to prepare an etching solution. Etching was performed by immersing the transparent conductor in this etching solution at room temperature for 10 minutes. Thereafter, total light transmittance measurement was performed to determine whether or not the second metal oxide layer, the metal layer, and the first metal oxide layer were dissolved.
  • the presence or absence of dissolution was confirmed by measuring the total light transmittance.
  • the total light transmittance was measured using a haze meter (trade name: NDH-7000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • NDH-7000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the total light transmittance after etching matches the total light transmittance of the transparent resin base material, it is determined that the second metal oxide layer, the metal layer, and the first metal oxide layer are all dissolved. did.
  • the total light transmittance after etching coincided with the laminate of the first metal oxide layer and the transparent resin substrate, it was determined that the second metal oxide layer and the metal layer were dissolved.
  • the total light transmittance did not change before and after etching, it was determined that none of the second metal oxide layer, the metal layer, and the first metal oxide layer was dissolved.
  • the column of “Solubility” in Table 1 indicates whether the first metal oxide layer was dissolved or insoluble. In the column of “Solubility” in Table 2, it was shown whether the second metal oxide layer was dissolved or insoluble. In the column of “Etchability” in Table 3, the second metal oxide layer and the dissolved metal layer “A”, the second metal oxide layer, the metal layer, and the first metal oxide layer are all included. “B” was dissolved. There were no examples and comparative examples in which none of the second metal oxide layer, the metal layer, and the first metal oxide layer was dissolved.
  • the water vapor barrier properties of the transparent conductors of the examples and comparative examples were evaluated by the following procedure. Using a MOCON method water vapor transmission rate measuring apparatus (AQATRAN) manufactured by Hitachi High-Technologies Corporation, the water vapor transmission rate was measured under the conditions of 40 ° C. and 90% RH. The measurement was performed before and after the above-described evaluation of “etching property”. Table 3 shows the measurement results.
  • AQATRAN MOCON method water vapor transmission rate measuring apparatus
  • the transparent conductor of each example can maintain excellent water vapor barrier properties even after etching. Moreover, it was confirmed that the transparent conductor of each Example is excellent in etching property and can be easily patterned.
  • SYMBOLS 10 Transparent resin base material, 12 ... 1st metal oxide layer, 14 ... 2nd metal oxide layer, 16 ... Metal layer, 20 ... Hard coat layer, 22 ... 1st hard coat layer, 24 ... 1st 2 hard coat layers, 100, 101, 102 ... transparent conductors.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

透明導電体100は、透明樹脂基材10、第1の金属酸化物層12、銀合金を含む金属層16、及び第2の金属酸化物層14をこの順で備える。第1の金属酸化物層12は、酸化スズ及び酸化ニオブの少なくとも一方を含有する。酸化スズ及び酸化ニオブをそれぞれSnO及びNbに換算したときに、第1の金属酸化物層12に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量は、第2の金属酸化物層14に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量よりも大きく、第1の金属酸化物層12における上記含有量は45mol%以上である。

Description

透明導電体
 本開示は、透明導電体に関する。
 透明導電体は、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、及びエレクトロルミネッセンスパネル(有機EL、無機EL)などのディスプレイ、並びに、太陽電池などの透明電極として使用されている。また、これらの他に、電磁波遮断膜及び赤外線防止膜等にも使用されている。透明導電体における金属酸化物層の材料としては、酸化インジウム(In)に錫(Sn)を添加したITOが広く用いられている。
 透明導電体は、透明性に加えて、用途に応じて種々の特性に優れることが求められている。また、パターニングの微細化に伴い、製造プロセスの観点からも、種々の材質のものが検討されている。例えば、特許文献1では、酸化インジウム又は酸化亜鉛を主成分とする金属酸化物層と金属層との積層構造を有する透明導電膜が提案されている。
特開2002-157929号公報
 透明性と導電性とを兼ね備える透明導電体は、種々の用途に用いられている。例えば、有機デバイスの電極として用いられる場合、有機層の信頼性を確保するために、水分の透過を抑制することが求められる。このような透明導電体は、パターニングプロセスを行うことによって、導電部と絶縁部とが形成される。このようなパターニングプロセスを円滑に行うため、エッチング性にも優れることが求められる。
 そこで、本発明では、パターニングが容易であるとともに、パターニングされても優れた水蒸気バリア性を維持することが可能な透明導電体を提供することを目的とする。
 本発明は、一つの側面において、透明樹脂基材、第1の金属酸化物層、銀合金を含む金属層、及び第2の金属酸化物層をこの順で備える透明導電体であって、第1の金属酸化物層は、酸化スズ及び酸化ニオブの少なくとも一方を含有し、酸化スズ及び酸化ニオブをそれぞれSnO及びNbに換算したときに、第1の金属酸化物層に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量は、第2の金属酸化物層に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量よりも大きく、第1の金属酸化物層における含有量は45mol%以上である透明導電体を提供する。
 上記透明導電体の第2の金属酸化物層は、金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量が第1の金属酸化物層よりも小さいので、第2の金属酸化物層の方が第1の金属酸化物層よりも、リン酸、酢酸、硝酸及び弗酸を含有するエッチング液に溶解され易い。このため、当該エッチング液によって、第2の金属酸化物層及び金属層を除去して、容易にパターニングをすることができる。
 エッチングされずに残存する第1の金属酸化物層は、水蒸気バリア性に優れる。これによって、上記透明導電体は、パターニングされても優れた水蒸気バリア性を維持することができる。したがって、例えば、パターニングされた透明導電体上に有機層等が積層されたデバイスを作製した場合に、有機層への水分の侵入が抑制され、デバイスの信頼性を向上することができる。
 第1の金属酸化物層は、第2の金属酸化物層を溶解するリン酸、酢酸、硝酸及び弗酸を含有するエッチング液に溶解しないことが好ましい。これによって、パターニングを容易にしつつ、水蒸気バリア性を一層向上することができる。
 第1の金属酸化物層は酸化スズを含有し、酸化スズをSnOに換算したときに、金属酸化物の合計に対するSnOの含有量が30mol%以上であってもよい。このような組成を有することによって、優れた水蒸気バリア性とエッチング液への不溶性とを一層高い水準で両立することができる。また、耐アルカリ性も向上することができる。
 第1の金属酸化物層は酸化ニオブを含有し、酸化ニオブをNbに換算したときに、金属酸化物の合計に対するNbの含有量が50mol%以上であってもよい。このような組成を有することによって、優れた水蒸気バリア性とエッチング液への不溶性とを一層高い水準で両立することができる。
 第1の金属酸化物層はアモルファスであってもよい。これによって、第1の金属酸化物層における水蒸気バリア性を一層向上することができる。
 第1の金属酸化物層は、酸化スズ及び酸化ニオブの少なくとも一方と、酸化亜鉛、酸化インジウム及び酸化チタンから選ばれる少なくとも一つを含んでいてもよい。酸化スズ、酸化ニオブ、酸化亜鉛、酸化インジウム及び酸化チタンの5成分を、それぞれSnO、Nb、ZnO、In及びTiOに換算したときに、上記5成分の合計に対するSnO及びNbの合計の含有量は、例えば45~80mol%である。上記5成分に対するZnO、In及びTiOの合計の含有量は、例えば20~55mol%である。このような組成を有することによって、優れた水蒸気バリア性とエッチング液への不溶性とを一層高い水準で両立しつつ、耐アルカリ性を向上することができる。
 第2の金属酸化物層は、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズを含有し、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの4成分を、それぞれZnO、In、TiO及びSnOに換算したときに、上記4成分の合計に対するZnOの含有量が20~50mol%、Inの含有量が20~35mol%、TiOの含有量が10~15mol%、及びSnOの含有量が12~30mol%であってもよい。これによって、エッチング液への溶解性が向上し、パターニングが一層容易となる。
 金属層における銀合金は、構成元素として、Ag、Pd及びCuを有していてもよい。これによって、金属層のマイグレーション等の劣化が一層抑制され、透明導電体の耐食性を向上することができる。
 上記透明導電体は、幾つかの実施形態において、第1の金属酸化物層の一部が露出するようにパターニングされており、透明樹脂基材及び第1の金属酸化物層を備え、第1の金属酸化物層が露出する第1積層部と、透明樹脂基材、第1の金属酸化物層、金属層、及び第2の金属酸化物層を備える第2積層部と、を備えていてもよい。このようにパターニングされていても、第1積層部及び第2積層部は第1の金属酸化物層を備えることから、水蒸気バリア性に優れる。
 パターニングが容易であるとともに、パターニングされても優れた水蒸気バリア性を維持することが可能な透明導電体を提供することができる。
図1は、一実施形態に係る透明導電体の断面図である。 図2は、別の実施形態に係る透明導電体の断面図である。 図3は、さらに別の実施形態に係る透明導電体の断面図である。
 本発明の実施形態を、図面を参照しながら以下に詳細に説明する。ただし、以下の実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 図1は、透明導電体の一実施形態を示す断面図である。透明導電体100は、フィルム状の透明樹脂基材10と、第1の金属酸化物層12と、金属層16と、第2の金属酸化物層14とがこの順に配置された積層構造を有する。
 本明細書における「透明」とは、可視光が透過することを意味しており、光をある程度散乱してもよい。光の散乱度合いについては、透明導電体100の用途によって要求されるレベルが異なる。一般に半透明といわれるような光の散乱があるものも、本明細書における「透明」の概念に含まれる。光の散乱度合いは小さい方が好ましく、透明性は高い方が好ましい。透明導電体100全体の全光線透過率は、例えば84%以上であり、好ましくは86%以上であり、より好ましくは88%以上である。この全光線透過率は、積分球を用いて求められる、拡散透過光を含む透過率であり、市販のヘイズメーターを用いて測定される。
 透明樹脂基材10は、特に限定されず、可撓性を有する有機樹脂フィルムであってもよい。有機樹脂フィルムは有機樹脂シートであってもよい。有機樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルフィルム、ポリエチレン及びポリプロピレン等のポリオレフィンフィルム、ポリカーボネートフィルム、アクリルフィルム、ノルボルネンフィルム、ポリアリレートフィルム、ポリエーテルスルフォンフィルム、ジアセチルセルロースフィルム、並びにトリアセチルセルロースフィルム等が挙げられる。これらのうち、ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等のポリエステルフィルムが好ましい。
 透明樹脂基材10は、剛性の観点からは厚い方が好ましい。一方、透明樹脂基材10は、透明導電体100を薄膜化する観点からは薄い方が好ましい。このような観点から、透明樹脂基材10の厚みは、例えば10~200μmである。透明樹脂基材の屈折率は、光学特性に優れる透明導電体とする観点から、例えば1.50~1.70である。なお、本明細書における屈折率は、λ=633nm、温度20℃の条件下で測定される値である。
 透明樹脂基材10は、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、及びオゾン処理からなる群より選ばれる少なくとも一つの表面処理が施されたものであってもよい。透明樹脂基材は、樹脂フィルムであってもよい。樹脂フィルムを用いることによって、透明導電体100を柔軟性に優れたものとすることができる。これによって、タッチパネル用途の透明導電体、フレキシブルな有機EL照明等の有機デバイス用の透明電極、及び電磁波シールド等に一層好適に用いることできる。
 第1の金属酸化物層12は、酸化スズ及び酸化ニオブの少なくとも一方を含有する。酸化スズは例えばSnOであり、酸化ニオブは例えばNbである。第1の金属酸化物層12は、酸化スズ及び酸化ニオブをそれぞれSnO及びNbに換算したときに、第1の金属酸化物層12に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量は、45mol%以上である。当該含有量の上限は、バルクの導電性を維持する観点から、例えば90mol%以下である。この含有量が90mol%を超えると、バルクの導電性が低下する傾向にある。
 上記モル基準の含有量は、酸化スズ及び酸化ニオブとは異なる金属酸化物については、常温常圧において、最も安定的に存在する金属酸化物に換算して求められる値である。以下の各金属酸化物の含有量も同様にして求められる。
 第1の金属酸化物層12が酸化スズを含有する場合、酸化スズをSnOに換算したときに、第1の金属酸化物層12に含まれる金属酸化物の合計に対するSnOの含有量は30mol%以上であることが好ましい。このような組成を有することによって、優れた水蒸気バリア性とエッチング液への不溶性を一層高い水準で両立することができる。SnOの上記含有量の上限は、透過率を高く維持する観点から、例えば80mol%以下である。
 第1の金属酸化物層12が酸化ニオブを含有する場合、酸化ニオブをNbに換算したときに、金属酸化物の合計に対するNbの含有量が50mol%以上であることが好ましい。このような組成を有することによって、優れた水蒸気バリア性とエッチング液への不溶性を一層高い水準で両立することができる。Nbの上記含有量の上限は、優れた耐アルカリ性を維持する観点から、例えば80mol%以下である。
 第1の金属酸化物層12は、酸化スズ及び酸化ニオブの両方を含んでいてもよいし、酸化スズ及び酸化ニオブとは異なる金属酸化物を含有していてもよい。異なる酸化物としては、酸化亜鉛、酸化インジウム及び酸化チタンが挙げられる。第1の金属酸化物層12は、これらのうちの少なくとも一つを含んでいてもよい。酸化亜鉛は例えばZnOであり、酸化インジウムは例えばInである。酸化チタンは例えばTiOである。
 第1の金属酸化物層12が、酸化スズ及び酸化ニオブの少なくとも一方と、酸化亜鉛、酸化インジウム及び酸化チタンから選ばれる少なくとも一つを含む場合、酸化スズ、酸化ニオブ、酸化亜鉛、酸化インジウム及び酸化チタンの5成分を、それぞれSnO、Nb、ZnO、In及びTiOに換算したときに、上記5成分の合計に対するSnO及びNbの合計の含有量は、例えば45~80mol%である。上記5成分に対するZnO、In及びTiOの合計の含有量は、例えば20~55mol%である。このような組成を有することによって、優れた水蒸気バリア性とエッチング液への不溶性とを一層高い水準で両立しつつ、耐アルカリ性を向上することができる。第1の金属酸化物層12に含まれる各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。また、同一金属元素で酸化数が互いに異なる酸化物を含んでいてもよい。
 第1の金属酸化物層12は、光学特性の調整、及び金属層16の保護といった機能を兼ね備える。第1の金属酸化物層12は、その機能を大きく損なわない範囲で、上術の金属酸化物の他に、微量成分又は不可避的成分を含んでいてもよい。第1の金属酸化物層12に含まれる金属酸化物の全体に対する上記5成分の合計の割合は95mol%以上であってもよく、97mol%以上であってもよい。第1の金属酸化物層12は、上記5成分以外の金属酸化物を含んでいなくてもよい。
 第1の金属酸化物層12は、透明であり、リン酸、酢酸、硝酸及び弗酸を含有するエッチング液に溶解しないものであることが好ましい。このエッチング液は、リン酸、酢酸、及び硝酸を含むPAN系エッチング液と、弗酸とを配合して調製できる。
 第1の金属酸化物層12は、アモルファスであることが好ましい。これによって、第1の金属酸化物層12の水蒸気バリア性を一層向上することができる。第1の金属酸化物層12は、組成を調整することによってアモルファスにすることができる。
 第2の金属酸化物層14は、酸化物を含む透明の層であり、例えば、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの4成分を、主成分として含有する。第2の金属酸化物層14は、主成分として上記4成分を含むことによって、優れた導電性と優れた透明性を兼ね備えた第2の金属酸化物層14とすることができる。酸化亜鉛は例えばZnOであり、酸化インジウムは例えばInである。酸化チタンは例えばTiOであり、酸化スズは、例えばSnOである。上記各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。第2の金属酸化物層14に含まれる各金属酸化物における金属原子と酸素原子の比は、化学量論比からずれていてもよい。また、同一金属元素で酸化数が互いに異なる酸化物を含んでいてもよい。
 第2の金属酸化物層14は、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの4成分を、それぞれZnO、In、TiO及びSnOに換算したときに、上記4成分の合計に対するSnOの含有量は好ましくは12~30mol%である。SnOの含有量を上述の範囲にすることによって、高い導電性とエッチング液への溶解性を十分に高い水準で両立することができる。SnOの上記含有量は、より好ましくは15~25mol%である。
 上記4成分の合計に対するZnOの含有量は、優れた透明性と優れた導電性を両立する観点から、好ましくは20~50mol%であり、より好ましくは30~50ml%である。上記4成分の合計に対するInの含有量は、優れた透明性と高い導電性を両立する観点から、好ましくは20~35mol%であり、より好ましくは、22~30mol%である。上記4成分の合計に対するTiOの含有量は、高い導電性と優れた耐食性を両立する観点から、好ましくは10~15mol%であり、より好ましくは12~15mol%である。
 第2の金属酸化物層14は、上述の金属酸化物とは異なる金属酸化物を含んでいてもよい。例えば、酸化ニオブを含んでいてもよい。ただし、酸化スズ及び酸化ニオブをそれぞれSnO及びNbに換算したときに、第2の金属酸化物層14に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量は、同様にして求められる第1の金属酸化物層における同含有量よりも小さい。すなわち、第2の金属酸化物層14に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量は、45mol%未満であり、好ましくは12~30mol%であり、より好ましくは15~25mol%である。これによって、高い導電性とエッチング液への溶解性を十分に高い水準で両立することができる。
 第2の金属酸化物層14は、光学特性の調整、金属層16の保護、導電性、エッチング液への溶解性及び耐アルカリ性の確保といった機能を兼ね備える。第2の金属酸化物層14は、その機能を大きく損なわない範囲で、上述の成分の他に、微量成分又は不可避的成分を含んでいてもよい。第2の金属酸化物層14に含まれる金属酸化物の全体に対する上記4成分の合計の割合は、例えば95mol%以上であってもよく、97mol%以上であってもよい。第2の金属酸化物層14は、上記4成分以外の金属酸化物を含んでいなくてもよい。
 第1の金属酸化物層12と第2の金属酸化物層14とは、互いに異なる組成を有する。これによって、一つの工程で、第2の金属酸化物層14及び金属層16のみをエッチングして除去し、第1の金属酸化物層12をそのまま残存させることができる。
 第1の金属酸化物層12及び第2の金属酸化物層14の厚さは、透明性を一層向上する観点から、例えば80nm以下である。一方、耐食性を一層向上するとともに生産性を向上する観点から、上記厚さは、例えば20nm以上である。
 第1の金属酸化物層12及び第2の金属酸化物層14は、真空蒸着法、スパッタリング法、イオンプレーティング法、又はCVD法などの真空成膜法によって作製することができる。これらのうち、成膜室を小型化できる点、及び、成膜速度が速い点で、スパッタリング法が好ましい。スパッタリング法としては、DCマグネトロンスパッタリングが挙げられる。ターゲットとしては、酸化物ターゲット、金属又は半金属ターゲットを用いることができる。
 第2の金属酸化物層14の上には配線電極等が設けられてもよい。後述する金属層16を導通する電流は、第2の金属酸化物層14の上に設けられる配線電極等から、第2の金属酸化物層14を経由して、第2の金属酸化物層14の上に設けられる別の配線電極等に導かれる。このため、第2の金属酸化物層14は、高い導電性を有することが好ましい。このような観点から、第2の金属酸化物層14単層での表面抵抗値は、例えば1.0×10+7Ω/sq以下であることが好ましく、5.0×10+6Ω/sq.以下であることがより好ましい。
 金属層16は、主成分として銀合金を含む層である。金属層16が高い透明性と導電性を有することによって、透明導電体100の全光線透過率を十分高くしつつ表面抵抗を十分に低くすることができる。銀合金の構成元素としては、Agと、Pd、Cu、Nd、In、Sn、及びSbから選ばれる少なくとも1種と、が挙げられる。銀合金の例としては、Ag-Pd、Ag-Cu、Ag-Pd-Cu、Ag-Nd-Cu、Ag-In-Sn、及びAg-Sn-Sbが挙げられる。
 銀以外の金属の含有量は、耐食性と透明性を一層向上させる観点から、金属層16を基準として例えば0.5~5質量%である。銀合金は銀以外の金属としてPdを含有することが好ましい。これによって、高温高湿環境下における耐久性を一層向上することができる。銀合金におけるPdの含有量は例えば1質量%以上であってもよい。銀合金は、Ag及びPdとともにCuを含むことが好ましい。これによって、金属層16のマイグレーション等の劣化が一層抑制され、透明導電体100の耐食性を向上することができる。
 金属層16の厚さは、例えば1~30nmである。透明導電体100の水蒸気透過率を十分に低くしつつ全光線透過率を十分に高くする観点から、金属層16の厚さは好ましくは4~20nmである。金属層16の厚さが大きすぎると全光線透過率が低下する傾向にある。一方、金属層16の厚さが小さすぎると全光線透過率及び耐食性が低下する傾向、及び表面抵抗が高くなる傾向がある。
 金属層16は、透明導電体100の全光線透過率及び表面抵抗を調整する機能を有している。金属層16は、真空蒸着法、スパッタリング法、イオンプレーティング法、又はCVD法などの真空成膜法によって作製することができる。これらのうち、成膜室を小型化できる点、及び成膜速度が速い点で、スパッタリング法が好ましい。スパッタリング法としては、DCマグネトロンスパッタリングが挙げられる。ターゲットとしては、金属ターゲットを用いることができる。
 透明導電体100は低い水蒸気透過率を有することが好ましい。透明導電体100の水蒸気透過率(WVTR)は、パターニングされる前の状態で、例えば5×10-3g/m/day以下であってもよく、5×10-4g/m/day以下であってもよい。透明導電体100は、このような低い水蒸気透過率を有することによって、水蒸気を十分にブロックできるため、特に有機デバイスの透明電極として好適に用いることができる。本明細書における水蒸気透過率(WVTR)は、日立ハイテクノロジーズ社製のMOCON法水蒸気透過率測定装置(AQATRAN)等の市販の測定装置を用いて測定される値である。
 透明導電体100における第2の金属酸化物層14の少なくとも一部、及び金属層16の少なくとも一部は、エッチング等によって除去されていてもよい。この場合、金属層16及び第2の金属酸化物層14によって、導体パターンが形成される。第1の金属酸化物層12の一部も、エッチング等によって除去されていてもよい。
 透明導電体100の抵抗値は、例えば30Ω/sq.以下である。従来は、透明電極として、100nm以上の厚みを有するITO膜が用いられてきたが、十分に抵抗を低くすることが困難であった。透明導電体100は、上述の厚みを有するITOよりも抵抗を低くすることが可能であり、低い抵抗を有することが求められる用途の透明電極として好適に用いられる。また、透明導電体100は、液晶スクリーン、及びアンテナに用いることもできる。
 図2は、透明導電体の別の実施形態を示す模式断面図である。透明導電体101は、透明樹脂基材10、第1の金属酸化物層12、金属層16、及び第2の金属酸化物層14をこの順に有する導電部40(第2積層部)と、第2の金属酸化物層14及び金属層16を有さず、且つ、透明樹脂基材10及び第1の金属酸化物層12を有する非導電部30(第1積層部)とを備える。導電部40と非導電部30とは互いに隣り合うように形成されている。
 透明導電体101は、図1の透明導電体100の第2の金属酸化物層14及び金属層16をエッチングで除去することによって得られる。非導電部30では、第1の金属酸化物層12の表面(一方の主面)が露出している。一方、導電部40は、第1の金属酸化物層12の上記表面上に金属層16及び第2の金属酸化物層14を備えており、導体パターンを構成する。
 透明導電体101は、導電部40のみならず、非導電部30にも第1の金属酸化物層12を備える。第1の金属酸化物層12は優れた水蒸気バリア性を有する。このため、パターニングされた透明導電体101は、優れた水蒸気バリア性を維持することができる。透明導電体101の水蒸気透過率(WVTR)は、例えば5×10-2g/m/day以下であってもよく、1×10-2g/m/day以下であってもよい。所定形状の導体パターンを有する透明導電体101は、優れた水蒸気バリア性を有することから、有機ELディスプレイ、有機EL照明、有機薄膜太陽電池等の有機デバイス、調光フィルム及び電子ペーパーなどの各種表示装置において、透明電極用、帯電防止用、電磁波シールド用の透明電極として好適に用いることができる。
 図3は、透明導電体のさらに別の実施形態を示す模式断面図である。透明導電体102は、透明樹脂基材10を挟むようにして一対のハードコート層20を備える点で、図1の透明導電体100と異なっている。その他の構成は、透明導電体100と同様である。
 透明導電体102は、一対のハードコート層20として、透明樹脂基材10の第1の金属酸化物層12側の主面上に第1のハードコート層22と、透明樹脂基材10の第1の金属酸化物層12側とは反対側の主面上に第2のハードコート層24とを備える。すなわち、透明導電体102は、第2のハードコート層24、透明樹脂基材10、第1のハードコート層22、第1の金属酸化物層12、金属層16及び第2の金属酸化物層14がこの順に積層された積層構造を有している。第1のハードコート層22と第2のハードコート層24の厚み、構造及び組成は、同一であってもよく異なっていてもよい。また、必ずしも第1のハードコート層22と第2のハードコート層24の両方を備える必要はなく、どちらか一方のみを備えていてもよい。
 ハードコート層20を設けることによって、透明樹脂基材10に発生する傷を十分に抑制することができる。ハードコート層20は、樹脂組成物を硬化させて得られる樹脂硬化物を含有する。樹脂組成物は、熱硬化性樹脂組成物、紫外線硬化性樹脂組成物、及び電子線硬化性樹脂組成物から選ばれる少なくとも一種を含むことが好ましい。熱硬化性樹脂組成物は、エポキシ系樹脂、フェノキシ系樹脂、及びメラミン系樹脂から選ばれる少なくとも一種を含んでもよい。
 樹脂組成物は、例えば、(メタ)アクリロイル基、ビニル基等のエネルギー線反応性基を有する硬化性化合物を含む組成物である。なお、(メタ)アクリロイル基なる表記は、アクリロイル基及びメタクリロイル基の少なくとも一方を含む意味である。硬化性化合物は、1つの分子内に2つ以上、好ましくは3つ以上のエネルギー線反応性基を含む多官能モノマー又はオリゴマーを含んでいることが好ましい。
 硬化性化合物は、好ましくはアクリル系モノマーを含有する。アクリル系モノマーとしては、具体的には、1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、及び3-(メタ)アクリロイルオキシグリセリンモノ(メタ)アクリレート等が挙げられる。ただし、必ずしもこれらに限定されるものではない。例えば、ウレタン変性アクリレート、及びエポキシ変性アクリレート等も挙げられる。
 硬化性化合物として、ビニル基を有する化合物を用いてもよい。ビニル基を有する化合物としては、例えば、エチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド変性ヒドロキノンジビニルエーテル、エチレンオキサイド変性ビスフェノールAジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、及び、ジトリメチロールプロパンポリビニルエーテル等が挙げられる。ただし、必ずしもこれらに限定されるものではない。
 樹脂組成物は、硬化性化合物を紫外線によって硬化させる場合、光重合開始剤を含む。光重合開始剤としては、種々のものを用いることができる。例えば、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、及びチオキサントン系等の公知の化合物から適宜選択すればよい。より具体的には、ダロキュア1173、イルガキュア651、イルガキュア184、イルガキュア907(以上商品名、チバスペシャルティケミカルズ社製)、及び、KAYACURE DETX-S(商品名、日本化薬(株)製)が挙げられる。
 光重合開始剤は、硬化性化合物の質量に対して、0.01~20質量%、又は0.5~5質量%程度とすればよい。樹脂組成物は、アクリル系モノマーに光重合開始剤を加えた公知のものであってもよい。アクリル系モノマーに光重合開始剤を加えたものとしては、例えば、紫外線硬化型樹脂であるSD-318(商品名、大日本インキ化学工業(株)製)、及び、XNR5535(商品名、長瀬産業(株)製)等が挙げられる。
 樹脂組成物は、塗膜の強度を高めること、及び/又は、屈折率を調整すること等のために、有機微粒子及び/又は無機微粒子を含んでいてもよい。有機微粒子としては、例えば、有機珪素微粒子、架橋アクリル微粒子、及び架橋ポリスチレン微粒子等が挙げられる。無機微粒子としては、例えば、酸化珪素微粒子、酸化アルミニウム微粒子、酸化ジルコニウム微粒子、酸化チタン微粒子、及び酸化鉄微粒子等が挙げられる。これらのうち、酸化珪素微粒子が好ましい。
 微粒子は、その表面がシランカップリング剤で処理され、(メタ)アクリロイル基、及び/又はビニル基等のエネルギー線反応性基が表面に膜状に存在しているものも好ましい。このような反応性を有する微粒子を用いると、エネルギー線照射の際に、微粒子同士が反応したり、微粒子と多官能モノマー又はオリゴマーとが反応したりして、膜の強度を強くすることができる。(メタ)アクリロイル基を含有するシランカップリング剤で処理された酸化珪素微粒子が好ましく用いられる。
 微粒子の平均粒径は、ハードコート層20の厚みよりも小さく、十分な透明性を確保する観点から、100nm以下であってもよく、20nm以下であってもよい。一方、コロイド溶液の製造上の観点から、5nm以上であってもよく、10nm以上であってもよい。有機微粒子及び/又は無機微粒子を用いる場合、有機微粒子及び無機微粒子の合計量は、硬化性化合物100質量部に対して、例えば5~500質量部であってもよく、20~200質量部であってもよい。
 エネルギー線で硬化する樹脂組成物を用いると、紫外線等のエネルギー線を照射することによって、樹脂組成物を硬化させることができる。したがって、このような樹脂組成物を用いることが製造工程上の観点からも好ましい。
 第1のハードコート層22は、樹脂組成物の溶液又は分散液を、透明樹脂基材10の一方面上に塗布して乾燥し、樹脂組成物を硬化させて作製することができる。この際の塗布は、公知の方法により行うことができる。塗布方法としては、例えば、エクストルージョンノズル法、ブレード法、ナイフ法、バーコート法、キスコート法、キスリバース法、グラビアロール法、ディップ法、リバースロール法、ダイレクトロール法、カーテン法、及びスクイズ法などが挙げられる。第2のハードコート層24も、第1のハードコート層22と同様にして、透明樹脂基材10の他方面上に作製することができる。
 第1のハードコート層22及び第2のハードコート層24の厚みは、例えば0.5~10μmである。厚みが10μmを超えると、厚みムラやシワなどが生じ易くなる傾向にある。一方、厚みが0.5μmを下回ると、透明樹脂基材10中に可塑剤又はオリゴマー等の低分子量成分が相当量含まれている場合に、これらの成分のブリードアウトを十分に抑制することが困難になる場合がある。なお、反りを抑制する観点から、第1のハードコート層22及び第2のハードコート層24の厚みは、同程度にすることが好ましい。
 第1のハードコート層22及び第2のハードコート層24の屈折率は、例えば1.40~1.60である。透明樹脂基材10と第1のハードコート層22の屈折率の差の絶対値が0.1以下であること好ましい。透明樹脂基材10と第2のハードコート層24の屈折率の差の絶対値も0.1以下であることが好ましい。第1のハードコート層22及び第2のハードコート層24と透明樹脂基材10との屈折率の差の絶対値を小さくすることで、第1のハードコート層22及び第2のハードコート層24の厚みのムラによって発生する干渉ムラの強度を抑制することができる。
 上記各実施形態に係る透明導電体100,101,102を構成する各層の厚みは、以下の手順で測定することができる。集束イオンビーム装置(FIB,Focused Ion Beam)によって透明導電体100,101,102を切断して断面を得る。透過電子顕微鏡(TEM)を用いて当該断面を観察し、各層の厚みを測定する。測定は、任意に選択された10箇所以上の位置で測定を行い、その平均値を求めることが好ましい。断面を得る方法として、集束イオンビーム装置以外の装置としてミクロトームを用いてもよい。厚みを測定する方法としては、走査電子顕微鏡(SEM)を用いてもよい。また蛍光X線装置を用いても膜厚を測定することが可能である。
 透明導電体100,101,102の厚みは、300μm以下であってもよく、250μm以下であってもよい。このような厚みであれば、薄化の要求レベルを十分に満足することができる。透明導電体100,101,102の全光線透過率は、例えば84%以上もの高い値とすることができる。
 透明導電体100,101,102を有機デバイスに用いる場合、透明導電体100,101,102は、有機デバイスの正極として用いられる。そして、パターニングされた第2の金属酸化物層14の上には、第2の金属酸化物層14側から、有機層、反射電極(負極)、及び封止膜をこの順で備える。有機層は水分によって容易に劣化するが、正極として高い水蒸気バリア性を有する透明導電体100,101,102を用いることによって、有機デバイスの長寿命化を図ることができる。また、透明導電体100,101,102は、有機デバイスの負極としても用いることが可能である。
 以上、本発明の幾つかの実施形態を説明したが、本発明は上述の実施形態に限定されるものではない。例えば、上述の透明導電体102は一対のハードコート層20を有しているが、第1のハードコート層22及び第2のハードコート層24のどちらか一方のみを備えていてもよい。また、透明樹脂基材10の一方面上にハードコート層を設け、他方面上に塗布により複数の光学調整層を設けてもよい。この場合、第1の金属酸化物層12、金属層16及び第2の金属酸化物層14は、この光学調整層の上に設けてもよい。さらに、透明導電体100,101,102には、その機能が大きく損なわれない範囲で、上述の層以外に任意の位置に任意の層を設けてもよい。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1~5,比較例1~7]
(透明導電体の作製)
 図1に示すような透明導電体を作製した。透明導電体は、透明樹脂基材、第1の金属酸化物層、金属層及び第2の金属酸化物層がこの順で積層された積層構造を有していた。各実施例及び各比較例の透明導電体を以下の要領で作製した。
 市販のポリエチレンテレフタレートフィルム(厚さ:125μm)を準備した。このPETフィルムを透明樹脂基材として用いた。PETフィルムの上に、DCマグネトロンスパッタリングによって、第1の金属酸化物層、金属層及び第2の金属酸化物層を順次形成した。各実施例及び各比較例における第1の金属酸化物層及び第2の金属酸化物層は、表1及び表2に示す組成を有するターゲットを用いて形成した。例えば、実施例1のターゲットは、SnOとZnOを45:55のモル比率で含有していた。ただし、比較例7では、Alターゲットを用いて、アルゴンガスと窒素ガスの混合ガスによる反応性スパッタリングによって作製したAlN層を、第1の金属酸化物層とした。
 各実施例及び各比較例で形成された第1の金属酸化物層及び第2の金属酸化物層は、比較例7の第1の金属酸化物層を除いて、使用したターゲットと同じ組成を有していた。表1及び表2には、第1の金属酸化物層及び第2の金属酸化物層に含まれる金属酸化物の合計に対するSnOとNbの合計のモル基準の含有量も併せて示した。各実施例における第1の金属酸化物層及び第2の金属酸化物層の厚さは40nmとした。
 表1に示す全ての実施例において、金属層は、Ag-Pd-Cu(Ag:Pd:Cu=99.0:0.7:0.3(質量%))ターゲットを用いて形成した。金属層の厚さは10nmとした。
(透明導電体の評価)
 各実施例及び各比較例の透明導電体における、第1の金属酸化物層及び第2の金属酸化物層の結晶性を、XRDを用いて評価した。すなわち、X線回折法による回折角(2θ)が20~60°の範囲において、回折ピークが観測された場合を結晶質、回折ピークが観測されなかった場合をアモルファスと判定した。例えば、ZnOを含む第1金属酸化物層及び第2の金属酸化物層については、ZnOの(002)面からの回折ピークの有無で判定できる。ZnOを含まない場合であっても、TiO、Nb、又はAlNの(002)面からの回折ピークの有無で判定できる。判定結果を、表1及び表2の結晶性の欄に示す。表1及び表2中、「C」は結晶質を示し、「A」はアモルファスを示す。
 各実施例及び比較例の透明導電体のエッチング性を以下の手順で評価した。まず、リン酸、酢酸及び硝酸を含むPAN系エッチング液と弗酸とを混合してエッチング液を準備した。このエッチング液に透明導電体を室温で10分間浸漬してエッチングを行った。その後、全光線透過率測定を行って、第2の金属酸化物層、金属層及び第1の金属酸化物層が溶解されているか否かを判定した。
 溶解の有無は、全光線透過率を測定することによって確認した。全光線透過率(透過率)は、ヘイズメーター(商品名:NDH-7000、日本電色工業社製)を用いて測定した。エッチング後の全光線透過率が、透明樹脂基材の全光線透過率と一致した場合は、第2の金属酸化物層、金属層及び第1の金属酸化物層の全てが溶解したものと判定した。エッチング後の全光線透過率が、第1の金属酸化物層及び透明樹脂基材の積層体と一致した場合は、第2の金属酸化物層及び金属層が溶解したものと判定した。エッチング前後で全光線透過率が変わらなかった場合は、第2の金属酸化物層、金属層及び第1の金属酸化物層のいずれもが溶解しなかったものと判定した。
 表1の「溶解性」の欄には、第1の金属酸化物層が溶解したか不溶であったかを示した。表2の「溶解性」の欄には、第2の金属酸化物層が溶解したか不溶であったかを示した。表3の「エッチング性」の欄には、第2の金属酸化物層及び金属層が溶解したもの「A」、第2の金属酸化物層、金属層及び第1の金属酸化物層の全てが溶解したもの「B」と示した。なお、第2の金属酸化物層、金属層及び第1の金属酸化物層のいずれもが溶解しなかった実施例及び比較例はなかった。
 各実施例及び比較例の透明導電体の水蒸気バリア性を以下の手順で評価した。日立ハイテクノロジーズ社製のMOCON法水蒸気透過率測定装置(AQATRAN)を用いて、40℃、90%RHの条件で水蒸気透過率を測定した。測定は、上述の「エッチング性」の評価前後において行った。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、各実施例の透明導電体は、エッチング後においても、優れた水蒸気バリア性を維持できることが確認された。また、各実施例の透明導電体は、エッチング性に優れており、容易にパターニングできることが確認された。
 本開示によれば、パターニングが容易であるとともに、パターニングされていても優れた水蒸気バリア性を維持することが可能な透明導電体が提供される。
 10…透明樹脂基材、12…第1の金属酸化物層、14…第2の金属酸化物層、16…金属層、20…ハードコート層、22…第1のハードコート層、24…第2のハードコート層、100,101,102…透明導電体。

Claims (9)

  1.  透明樹脂基材、第1の金属酸化物層、銀合金を含む金属層、及び第2の金属酸化物層をこの順で備える透明導電体であって、
     前記第1の金属酸化物層は、酸化スズ及び酸化ニオブの少なくとも一方を含有し、
     酸化スズ及び酸化ニオブをそれぞれSnO及びNbに換算したときに、
     前記第1の金属酸化物層に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量は、前記第2の金属酸化物層に含まれる金属酸化物の合計に対するSnO及びNbの合計のモル基準の含有量よりも大きく、
     前記第1の金属酸化物層における前記含有量は45mol%以上である透明導電体。
  2.  前記第1の金属酸化物層は、前記第2の金属酸化物層を溶解するリン酸、酢酸、硝酸及び弗酸を含有するエッチング液に溶解しない、請求項1に記載の透明導電体。
  3.  前記第1の金属酸化物層は酸化スズを含有し、前記酸化スズをSnOに換算したときに、前記金属酸化物の合計に対するSnOの含有量が30mol%以上である、請求項1又は2に記載の透明導電体。
  4.  前記第1の金属酸化物層は酸化ニオブを含有し、前記酸化ニオブをNbに換算したときに、前記金属酸化物の合計に対するNbの含有量が50mol%以上である、請求項1~3のいずれか一項に記載の透明導電体。
  5.  前記第1の金属酸化物層がアモルファスである、請求項1~4のいずれか一項に記載の透明導電体。
  6.  前記第1の金属酸化物層は、酸化亜鉛、酸化インジウム及び酸化チタンの少なくとも一つを含有する、請求項1~5のいずれか一項に記載の透明導電体。
  7.  前記第2の金属酸化物層は、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズを含有し、酸化亜鉛、酸化インジウム、酸化チタン及び酸化スズの4成分を、それぞれZnO、In、TiO及びSnOに換算したときに、前記4成分の合計に対するZnOの含有量が20~50mol%、Inの含有量が20~35mol%、TiOの含有量が10~15mol%、及びSnOの含有量が12~30mol%である、請求項1~6のいずれか一項に記載の透明導電体。
  8.  前記銀合金は、構成元素として、Ag、Pd及びCuを有する、請求項1~7のいずれか一項に記載の透明導電体。
  9.  前記第1の金属酸化物層の一部が露出するようにパターニングされており、
     前記透明樹脂基材及び前記第1の金属酸化物層を備え、前記第1の金属酸化物層が露出する第1積層部と、
     前記透明樹脂基材、前記第1の金属酸化物層、前記金属層、及び前記第2の金属酸化物層を備える第2積層部と、を備える、請求項1~8のいずれか一項に記載の透明導電体。
PCT/JP2017/021450 2016-06-13 2017-06-09 透明導電体 WO2017217329A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780036160.3A CN109313964B (zh) 2016-06-13 2017-06-09 透明导电体
EP17813226.2A EP3471111A4 (en) 2016-06-13 2017-06-09 TRANSPARENT CONDUCTOR
US16/309,295 US20190160783A1 (en) 2016-06-13 2017-06-09 Transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016117142A JP6260647B2 (ja) 2016-06-13 2016-06-13 透明導電体
JP2016-117142 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017217329A1 true WO2017217329A1 (ja) 2017-12-21

Family

ID=60663686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021450 WO2017217329A1 (ja) 2016-06-13 2017-06-09 透明導電体

Country Status (5)

Country Link
US (1) US20190160783A1 (ja)
EP (1) EP3471111A4 (ja)
JP (1) JP6260647B2 (ja)
CN (1) CN109313964B (ja)
WO (1) WO2017217329A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111758067B (zh) * 2018-02-23 2023-04-21 Tdk株式会社 透明导电体、调光体及电子器件
JP7287003B2 (ja) * 2019-02-28 2023-06-06 Tdk株式会社 ガスバリア積層体及びその製造方法
JP7406315B2 (ja) * 2019-07-03 2023-12-27 デクセリアルズ株式会社 導電性積層体及びこれを用いた光学装置、導電性積層体の製造方法
CN114231903B (zh) * 2021-12-08 2023-09-26 洛阳理工学院 一种氧化铌/银纳米线双层结构柔性透明导电薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343562A (ja) * 2001-05-11 2002-11-29 Pioneer Electronic Corp 発光ディスプレイ装置及びその製造方法
JP2010157497A (ja) * 2008-12-02 2010-07-15 Geomatec Co Ltd 透明導電膜付き基板とその製造方法
JP2015115180A (ja) * 2013-12-11 2015-06-22 コニカミノルタ株式会社 透明導電体
JP2015166141A (ja) * 2014-03-03 2015-09-24 日東電工株式会社 赤外線反射基板およびその製造方法
JP2017107825A (ja) * 2015-12-11 2017-06-15 Tdk株式会社 透明導電体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398624B2 (ja) * 2014-11-06 2018-10-03 Tdk株式会社 透明導電体及びタッチパネル
JP6052330B2 (ja) * 2015-04-24 2016-12-27 Tdk株式会社 透明導電体及びその製造方法、並びにタッチパネル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343562A (ja) * 2001-05-11 2002-11-29 Pioneer Electronic Corp 発光ディスプレイ装置及びその製造方法
JP2010157497A (ja) * 2008-12-02 2010-07-15 Geomatec Co Ltd 透明導電膜付き基板とその製造方法
JP2015115180A (ja) * 2013-12-11 2015-06-22 コニカミノルタ株式会社 透明導電体
JP2015166141A (ja) * 2014-03-03 2015-09-24 日東電工株式会社 赤外線反射基板およびその製造方法
JP2017107825A (ja) * 2015-12-11 2017-06-15 Tdk株式会社 透明導電体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3471111A4 *

Also Published As

Publication number Publication date
EP3471111A1 (en) 2019-04-17
EP3471111A4 (en) 2020-03-04
JP6260647B2 (ja) 2018-01-17
JP2017224409A (ja) 2017-12-21
CN109313964A (zh) 2019-02-05
US20190160783A1 (en) 2019-05-30
CN109313964B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
JP6601199B2 (ja) 透明導電体
JP5861719B2 (ja) 透明導電体及びタッチパネル
JP6048526B2 (ja) 透明導電体及びタッチパネル
WO2017217329A1 (ja) 透明導電体
CN107533402B (zh) 透明导电体及其制造方法以及触摸面板
JP5976970B1 (ja) 光透過性フィルム
JP6409588B2 (ja) 透明導電体及びタッチパネル
JP6398624B2 (ja) 透明導電体及びタッチパネル
JP2016012555A (ja) 透明導電性フィルム及びタッチパネル
JP2018022634A (ja) 透明導電体
KR101737778B1 (ko) 투명 도전체 및 터치 패널
JP6798219B2 (ja) 透明導電体
KR20230154984A (ko) 투명 도전성 압전 적층 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017813226

Country of ref document: EP

Effective date: 20190114