WO2022230791A1 - プロピレンの製造方法 - Google Patents

プロピレンの製造方法 Download PDF

Info

Publication number
WO2022230791A1
WO2022230791A1 PCT/JP2022/018666 JP2022018666W WO2022230791A1 WO 2022230791 A1 WO2022230791 A1 WO 2022230791A1 JP 2022018666 W JP2022018666 W JP 2022018666W WO 2022230791 A1 WO2022230791 A1 WO 2022230791A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
catalyst
propylene
alumina
alumina catalyst
Prior art date
Application number
PCT/JP2022/018666
Other languages
English (en)
French (fr)
Inventor
啓介 田中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP22795704.0A priority Critical patent/EP4332077A1/en
Priority to JP2023517496A priority patent/JPWO2022230791A1/ja
Priority to CN202280028312.6A priority patent/CN117279878A/zh
Priority to KR1020237036574A priority patent/KR20230175211A/ko
Publication of WO2022230791A1 publication Critical patent/WO2022230791A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing propylene by dehydrating propanol using a catalyst.
  • Propylene is used as a raw material for polypropylene, propylene oxide, aromatic hydrocarbons, aromatic alcohols, etc.
  • a method for producing propylene a method of dehydrating isopropanol (IPA) or normal propanol (NPA) is known.
  • IPA isopropanol
  • NPA normal propanol
  • Patent Document 1 discloses a method for producing propylene using silica gel supporting 1000 to 10000 ppm by mass of aluminum element as an IPA dehydration catalyst.
  • Non-Patent Document 1 discloses that when propylene is produced using silica-alumina as an IPA dehydration catalyst, the presence of a large amount of water in IPA, which is a raw material, reduces the dehydration rate of IPA. .
  • the present invention has been made in view of the above problems, and aims to provide a method for efficiently producing propylene from propanol containing a large amount of water.
  • the present inventors have made intensive studies and found that propanol containing a large amount of water can be obtained by using a catalyst containing silica alumina containing Al 2 O 3 and SiO 2 in a specific ratio. can be efficiently converted into propylene by a dehydration reaction, leading to the completion of the present invention.
  • the present invention includes the following configurations.
  • ⁇ 3> The method for producing propylene according to ⁇ 1> or ⁇ 2>, wherein the temperature of the catalyst layer containing the catalyst in the dehydration reaction step is 450° C. or less.
  • ⁇ 4> In the fluid produced in the dehydration reaction step, at least one of the olefins represented by the following general formula (1) or (2) is present in a molar ratio with respect to the amount of propylene contained in the fluid: The method for producing propylene according to any one of ⁇ 1> to ⁇ 3>, wherein the amount is 0.1 or less.
  • R 1 , R 2 and R 3 are a methyl group and the rest are hydrogen.
  • a method for producing propylene according to an embodiment of the present invention uses a catalyst containing silica alumina having a SiO 2 content of 3 to 80 in molar ratio to Al 2 O 3 to prepare a raw material containing propanol and water.
  • the catalyst containing silica-alumina is produced by a production method including a step of calcining at a calcination temperature of 400° C. or higher and 950° C. or lower. It can also be said that the molar ratio of SiO 2 to Al 2 O 3 in the silica alumina is 3-80.
  • the method for producing propylene according to one embodiment of the present invention is also referred to as the present production method.
  • a catalyst containing silica-alumina is also called a silica-alumina catalyst.
  • the silica-alumina catalyst is used as a dehydration catalyst in the present production method.
  • the silica-alumina catalyst By using the silica-alumina catalyst, propanol can be efficiently dehydrated to produce propylene even when propanol as a raw material contains a large amount of water.
  • the use of the silica-alumina catalyst enables the dehydration reaction of propanol at low temperatures, thereby suppressing the production of by-products such as olefins having 6 carbon atoms (C6 olefins). The resulting carbon deposition during propylene production can be suppressed.
  • the raw material contains water, it serves as a heat carrier for the heat of reaction, making it possible to make the temperature in the reaction system more uniform during the production of propylene (relaxation of temperature distribution), thereby improving industrial usability. .
  • IPA isopropanol
  • IPA isopropanol
  • IPA may be converted to propylene by either intramolecular dehydration or intermolecular dehydration.
  • Propylene is produced directly from IPA when intramolecular dehydration of IPA is performed.
  • DIPE diisopropyl ether
  • the silica-alumina catalyst used in the dehydration reaction step of this production method is produced by a production method including a step of firing at a firing temperature of 400° C. or higher and 950° C. or lower.
  • the method for producing propylene may include a step of calcining the raw material of the silica-alumina catalyst at a calcination temperature of 400° C. or more and 950° C. or less to obtain a silica-alumina catalyst.
  • the method for producing a silica-alumina catalyst may include other production steps than the calcination step.
  • the silica-alumina contained in the catalyst used in the dehydration reaction step of the present production method has a SiO 2 content of 3 to 80, preferably 4 to 70 in molar ratio to Al 2 O 3 , and more It is preferably 4-60, more preferably 4-50.
  • the above molar ratio can be measured, for example, by the inductively coupled plasma atomic emission spectrometry (ICP-AES method) described in the examples below.
  • the above catalyst can be used together with a molding agent (binder).
  • a molding agent binder
  • the molar ratio of SiO 2 and Al 2 O 3 measured by the ICP-AES method is the silica and/or alumina added as the binder.
  • a value including the amount of SiO 2 and Al 2 O 3 contained in that is, when the catalyst is used in combination with the binder, the molar ratio of SiO 2 and Al 2 O 3 is measured based on the total amount of SiO 2 and Al 2 O 3 contained in the catalyst and the binder. be done. This is the same when alumina or the like is used together with the silica-alumina catalyst as a co-catalyst.
  • the ratio of Al 2 O 3 contained in the catalyst is larger than that of conventional silica-alumina. Therefore, by ensuring a sufficient amount of acid during the dehydration reaction of propanol, the catalyst becomes highly active and propylene can be produced efficiently even if the raw propanol contains a large amount of water. .
  • the silica-alumina catalyst may contain, in addition to Al 2 O 3 and SiO 2 , trace amounts of metal elements derived from impurities in the raw material. Examples of such metal elements include Ca, Fe, Mg, Na, Ti and Zr.
  • metal elements include Ca, Fe, Mg, Na, Ti and Zr.
  • As the silica-alumina catalyst a commercially available product or a chemically synthesized product may be used as long as the molar ratio of SiO 2 to Al 2 O 3 is within the above range.
  • a silicon compound and an aluminum compound can be used as raw materials.
  • raw materials containing silicon include tetraethylorthosilicate, silica gel, and sodium silicate.
  • the raw material containing aluminum is preferably water-soluble, and specific examples thereof include aluminum nitrate, aluminum sulfate, and aluminum phosphate. Further, these aluminum-containing compounds may be a single substance or a hydrate.
  • the method for synthesizing the silica-alumina catalyst may be, for example, either an impregnation method or a sol-gel method.
  • a method for synthesizing the silica-alumina catalyst by a sol-gel method is shown below.
  • First, the raw material containing silicon and the raw material containing aluminum are stirred in the presence of a solvent and an organic additive to obtain a gel.
  • This reaction is usually carried out by adding a silicon compound to an aqueous solution containing an aluminum compound.
  • the obtained gel is dried in air or by an evaporator or the like to be powdered.
  • the silica-alumina catalyst can be obtained by calcining the obtained powder.
  • Organic additives include citric acid, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2,3-butanediol, and 2-methyl-2,4-pentane A diol or the like can be used.
  • the firing temperature of the powder is 400° C. or higher and 950° C. or lower.
  • the lower limit of the firing temperature is 400° C. or higher, preferably 500° C. or higher, and more preferably 600° C. or higher.
  • the upper limit of the firing temperature is 950° C. or lower, preferably 900° C. or lower, and more preferably 850° C. or lower.
  • the firing temperature of the powder may be 200° C. or higher or 300° C. or higher.
  • the firing time is preferably 1 hour to 10 hours, more preferably 2 hours to 9 hours. Firing of the powder may be performed in multiple steps. When firing is performed multiple times, the heating temperature and heating time may be the same or different.
  • the heating method is also not particularly limited, but it can be carried out by using, for example, a muffle furnace, a tubular furnace, a rotary kiln, a shaft kiln, or the like.
  • the silica-alumina catalyst By performing calcination during the production of the silica-alumina catalyst, Si--O--Al chemical bonds are formed in the resulting silica-alumina catalyst. As a result, the resulting silica-alumina catalyst has a stronger acid point than SiO 2 or Al 2 O 3 alone or a mixture thereof, resulting in high activity. Further, when the calcination temperature is within the above range, the resulting silica-alumina catalyst becomes more active, so that the yield of propylene is improved when used for dehydration of propanol. Moreover, if the calcination temperature is 400° C. or higher, the organic additives used in the preparation of the silica-alumina catalyst can be sufficiently removed. Therefore, the silica-alumina catalyst can obtain sufficient acid sites and also has improved moldability, so that it can be suitably used as a catalyst for dehydration of propanol.
  • the raw material to be dehydrated contains water and propanol.
  • Propanol includes isopropanol (IPA), normal propanol (NPA), or any mixture of IPA and NPA.
  • the mass of water in the raw material is 0.01 to 2 times, preferably 0.1 to 2 times, more preferably 0.5 to 2 times the mass of propanol in the raw material. Yes, and particularly preferably 1.0 to 2 times.
  • the raw material preferably contains 33 to 99% by mass, more preferably 33 to 90% by mass, and still more preferably 33 to 50% by mass of propanol when the entire raw material is 100% by mass. If the content of propanol in the raw material is 99% by mass or less, the raw material can contain water, so that the above-described effect of containing water can be obtained. Further, when the content of propanol in the raw material is 33% by mass or more, the production amount of propylene is improved.
  • this raw material may further contain other components such as impurities that may be mixed in during the process of manufacturing this raw material.
  • Other components such as impurities include, for example, unreacted raw materials used in the production of the present raw material, by-products produced in the production process of the present raw material, and the like.
  • impurities include, for example, acetone, methanol, ethylene glycol, dimethyl ether, methyl ethyl ether, dimethyl carbonate, and the like.
  • the content of impurities in the raw material is not particularly limited as long as it does not affect the production of propylene, but it is preferably 5% by mass or less, more preferably 1% by mass or less, and ideally no impurity. Not included.
  • the production method includes a dehydration reaction step of dehydrating the raw material using the silica-alumina catalyst.
  • the silica-alumina catalyst may be used as a catalyst layer filled in a reactor or the like.
  • the type of reactor used in the dehydration reaction step is not particularly limited, and may be, for example, batch type, semi-batch type, or continuous flow type.
  • the form of the dehydration reaction step is not particularly limited, and it can be carried out in any form of liquid phase, gas phase, or gas-liquid mixed layer.
  • the packing method for forming the catalyst into the catalyst layer is not particularly limited, and packing can be performed by any method such as fixed bed, fluidized bed, suspended bed, and tray fixed bed.
  • a gaseous component that does not interfere with the dehydration reaction step may be added.
  • gaseous components include, for example, nitrogen, carbon dioxide, argon, helium, methane, ethane and propane.
  • the silica-alumina catalyst may be used alone, or may be used in combination with a catalyst or molding agent (binder) that can be used for dehydration reaction.
  • a catalyst or molding agent binder
  • the above silica-alumina catalyst is used together with a molding agent, it may be used in the form of a molded product having increased mechanical strength by kneading and extruding them.
  • catalysts or forming agents that can be used for dehydration reactions include silica, alumina, clay, titania, zirconia, zinc oxide, ceria, lanthana, graphite, and ethyl cellulose.
  • the temperature of the catalyst layer during the dehydration reaction step is preferably 450° C. or lower, more preferably 400° C. or lower, even more preferably 300° C. or lower, and 200° C. or lower. Especially preferred.
  • the lower limit of the temperature is not particularly limited as long as it is at least the temperature at which the dehydration reaction step can be carried out, but from the viewpoint of enhancing the activity of the resulting catalyst, it can be 160° C. or higher, or 180° C. or higher.
  • the temperature of the catalyst layer can be appropriately adjusted by changing the temperature of the device used for the dehydration treatment.
  • the dehydration reaction can be carried out at a relatively low temperature, so the energy required for the reaction can be reduced.
  • propylene oligomerization and heavy weighting are accelerated in a high temperature environment. Therefore, by carrying out the reaction at a lower temperature than before, the production of by-products is suppressed and the yield of propylene is improved.
  • the reaction pressure during the dehydration reaction step is not particularly limited, but is preferably 0 to 100000 KPa (gauge pressure), more preferably 0 to 5000 KPa (gauge pressure), and still more preferably 0 to 4000 KPa (gauge pressure). be.
  • the ratio (W/F) of the catalyst weight g to the propanol flow rate mol ⁇ h ⁇ 1 during the dehydration reaction step is not particularly limited, but is preferably 0.01 to 10000 g ⁇ h ⁇ mol ⁇ 1 , more preferably 0.00 g ⁇ h ⁇ mol ⁇ 1 . 1 to 5000 g ⁇ h ⁇ mol ⁇ 1 , still more preferably 1 to 200 g ⁇ h ⁇ mol ⁇ 1 .
  • the activity of the catalyst may be recovered using a known method.
  • two or more reactors are arranged in parallel, and while one reactor is recovering the activity of the catalyst, another reactor is used for the dehydration reaction. It doesn't matter.
  • two or more reactors in which the activity of the catalyst has not been recovered may be connected in series to reduce variations in production.
  • the reactor system is a fluidized bed circulation reaction system or a moving bed reaction system, continuously or intermittently withdraw part or all of the catalyst from the reactor, and an amount equivalent to the amount withdrawn By replenishing the catalyst, it is possible to maintain constant catalytic activity.
  • the product propylene may be taken out in a gas-liquid separation step and then purified by distillation or the like.
  • the products in this production method may contain impurities other than propylene.
  • impurities include water, unreacted propanol, and by-products.
  • by-products include C6 olefins.
  • the content of the impurities is preferably 0.1 or less, more preferably 0.05 or less, and still more preferably 0.01 or less in molar ratio to the propylene content in the product. is.
  • the impurities should ideally be completely absent from the product.
  • At least one of the olefins represented by the following general formula (1) or (2) may be contained in the fluid produced in the dehydration reaction step of the production method.
  • olefins represented by the following general formula (1) or (2) include 3-methyl-2-pentene, 2-methyl-1-pentene and the like.
  • the lower limit of the content of the olefin may be contained in an amount of 0.00000001 or more in a molar ratio with respect to the amount of propylene in the fluid, and may be contained in an amount of 0.0000001 or more in a molar ratio, It may be contained in an amount of 0.000001 or more in terms of molar ratio.
  • the upper limit may be included in an amount of 0.1 or less in a molar ratio, may be included in an amount of 0.05 or less in a molar ratio, or 0.01 in a molar ratio with respect to the amount of propylene in the fluid. May contain the following amounts:
  • the olefin represented by the following general formula (1) or (2) corresponds to an olefin having a main chain of 5 carbon atoms and a methyl group. Ideally, the olefin should not be contained in the fluid at all, but the lower limit of the amount of the olefin contained may be greater than 0, for example in terms of molar ratio. If the olefin is contained in the fluid, carbon may deposit on the catalyst. Carbon deposited on the catalyst causes a decrease in the acid sites of the catalyst, which may reduce catalytic activity.
  • R 1 , R 2 and R 3 are a methyl group and the rest are hydrogen.
  • oligomers and the like can be mixed as by-products in the method of producing propylene by propanol dehydration.
  • the structure of the oligomer was not known, and in particular, the C6 olefin having a branch in the carbon skeleton represented by the above formula (1) or (2) was not known as a by-product.
  • propylene obtained by this production method is not particularly limited, but it can be suitably used as a raw material for polypropylene, propylene oxide, plastics, aromatic hydrocarbons, aromatic alcohols, and the like.
  • Propylene yield (%) [(supplied propanol [mol/min] - unreacted propanol [mol/min])/supplied propanol [mol/min]] x [3 x amount of propylene produced [mol/min]/ (Total amount of carbon-based production of each product [mol/min])] ⁇ 100 (4) ⁇ Example 1> (a. Method for producing silica-alumina catalyst (A)) 60.14 g of pure water, 23.16 g of aluminum nitrate nonahydrate and 13.05 g of citric acid were placed in a 200 ml glass beaker and stirred at room temperature for 5 minutes.
  • silica-alumina catalyst (A) had a SiO 2 /Al 2 O 3 molar ratio of 11.
  • silica-alumina catalyst (A) was pressurized at 60 MPa (gauge pressure) for 20 minutes using a press to obtain a silica-alumina catalyst (A) compact. After that, the obtained compact was pulverized in an agate mortar, passed through 10-mesh and 26-mesh sieves, and taken out from between the two sieves to obtain silica-alumina catalyst (A) compact powder. 3.08 g of the powder of the silica-alumina catalyst (A) compact thus obtained was packed into a SUS reaction tube with an inner diameter of 1.4 cm, including a SUS tube with an outer diameter of 3 mm containing a thermocouple, and the filling volume was 5.
  • a catalyst layer of 0.77 ml was formed. After that, the temperature of the catalyst layer was raised from room temperature to 200° C. over 45 minutes in a reaction tube heating furnace while flowing nitrogen at 136.7 Nml/min. Under nitrogen flow, a hydrous IPA raw material containing 1-fold mass of water relative to IPA is introduced into a vaporizer heated to 110°C at a flow rate of 0.298 ml/min with a liquid feed pump, and then connected to the latter stage of the vaporizer. It was introduced into the reaction tube with After that, the temperature of the reaction tube heating furnace was adjusted so that the temperature at the center of the catalyst layer was about 200°C.
  • the liquid from the reaction tube was collected in two glass trap containers containing 26 g of methanol for 36 minutes, and the liquid component was analyzed by gas chromatography. rice field.
  • the gas components emitted from the outlets of the two glass trap containers containing methanol were collected with a gas bag, and the gas components were analyzed by gas chromatography.
  • the silica-alumina catalyst (B) had a SiO 2 /Al 2 O 3 molar ratio of 404.
  • the silica-alumina catalyst (B) corresponds to the catalyst described in Example 4 of Patent Document 1.
  • Example 2> (a. Method for producing silica-alumina catalyst (C)) 59.73 g of pure water, 5.11 g of aluminum nitrate nonahydrate, and 12.95 g of citric acid were placed in a 200 ml glass beaker and stirred at room temperature for 5 minutes. While continuing to stir the mixture in the beaker at room temperature, 71.63 g of tetraethyl orthosilicate was added dropwise from the dropping buret over 1 hour to obtain a gel. This gel was transferred to a porcelain dish, dried in the atmosphere at room temperature for 24 hours, and then dried in an evaporator under reduced pressure of 160 hPa at a water bath temperature of 50° C.
  • C silica-alumina catalyst
  • silica-alumina catalyst (C) had a SiO 2 /Al 2 O 3 molar ratio of 51.
  • a silica-alumina catalyst (C) molded powder was obtained from the silica-alumina catalyst (C) using a press and a sieve in the same manner as in Example 1. Same as Example 1, except that the silica-alumina catalyst (C) compact was vacuum-dried at 200°C for 2 hours to form a catalyst layer with a filling volume of 5.77 ml, and the temperature of the vaporizer was 210°C. Propylene was produced by the method of Example 1, and the liquid component and gas component were analyzed in the same manner as in Example 1.
  • Example 3> (a. Method for producing silica-alumina catalyst (D)) 60.03 g of pure water, 3.67 g of aluminum nitrate nonahydrate and 13.06 g of citric acid were placed in a 200 ml glass beaker and stirred at room temperature for 5 minutes. While continuing to stir the mixture in the beaker at room temperature, 71.54 g of tetraethyl orthosilicate was added dropwise from the dropping buret over 1 hour to obtain a gel. This gel was transferred to a porcelain dish, dried in the atmosphere at room temperature for 24 hours, and then dried in an evaporator under reduced pressure of 160 hPa at a water bath temperature of 50° C. to obtain 47.25 g of powder.
  • D silica-alumina catalyst
  • silica-alumina catalyst (D) As a result of analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES method), the silica-alumina catalyst (C) had a SiO 2 /Al 2 O 3 molar ratio of 69.
  • a silica-alumina catalyst (D) molded powder was obtained from the silica-alumina catalyst (D) using a press and a sieve in the same manner as in Example 1. Same as Example 1, except that the silica-alumina catalyst (D) molded body was vacuum-dried at 200°C for 2 hours to form a catalyst layer with a filling volume of 5.77 ml, and the temperature of the vaporizer was set to 210°C. Propylene was produced by the method of Example 1, and the liquid component and gas component were analyzed in the same manner as in Example 1.
  • ⁇ Comparative Example 2> (Method for producing silica-alumina catalyst (E)) 59.88 g of pure water, 23.17 g of aluminum nitrate nonahydrate, and 13.07 g of citric acid were placed in a 200 ml glass beaker and stirred at room temperature for 5 minutes. While continuing to stir the mixture in the beaker at room temperature, 71.67 g of tetraethyl orthosilicate was added dropwise from the dropping buret over 1 hour to obtain a gel. This gel was transferred to a porcelain dish, dried in the atmosphere at room temperature for 24 hours, and then dried in an evaporator under reduced pressure of 160 hPa at a water bath temperature of 50° C.
  • silica-alumina catalyst (E) was colored brown because the organic components contained in the raw materials for preparation had not been removed. Further, molding was attempted using a press in the same manner as in Example 1, but molding was not possible.
  • Example 4> (a. Method for producing silica-alumina catalyst (F)) 12.30 g of silica-alumina catalyst (E) was placed in the muffle furnace again and calcined at 500° C. for 2 hours to obtain 10.11 g of silica-alumina catalyst (F).
  • Example 2 A silica-alumina catalyst (F) molded powder was obtained from the silica-alumina catalyst (F) using a press and a sieve in the same manner as in Example 1. The same procedure as in Example 1 was carried out, except that a catalyst layer with a filling volume of 5.77 ml was formed after drying the silica-alumina catalyst (F) compact at 200°C for 2 hours, and the temperature of the vaporizer was set at 210°C. Propylene was produced in the same manner as in Example 1, and liquid and gas components were analyzed in the same manner as in Example 1.
  • Example 5> (a. Method for producing silica-alumina catalyst (G)) 60.79 g of pure water, 23.17 g of aluminum nitrate nonahydrate and 13.02 g of citric acid were placed in a 200 ml glass beaker and stirred at room temperature for 5 minutes. While continuing to stir the mixture in the beaker at room temperature, 72.21 g of tetraethyl orthosilicate was added dropwise from the dropping buret over 1 hour to obtain a gel. This gel was transferred to a porcelain dish, dried in the atmosphere at room temperature for 24 hours, and then dried in an evaporator under reduced pressure of 160 hPa at a water bath temperature of 50° C. to obtain 62.75 g of powder. 30.52 g of this powder was calcined in a muffle furnace at 900° C. for 1 hour to obtain 11.35 g of silica-alumina catalyst (G).
  • Example 2 A silica-alumina catalyst (G) molded powder was obtained from the silica-alumina catalyst (G) using a press and a sieve in the same manner as in Example 1. The same procedure as in Example 1 was carried out, except that a catalyst layer with a filling volume of 5.77 ml was formed after drying the silica-alumina catalyst (G) compact at 200°C for 2 hours, and the temperature of the vaporizer was set at 210°C. Propylene was produced in the same manner as in Example 1, and liquid and gas components were analyzed in the same manner as in Example 1.
  • a hydrous IPA raw material containing 1-fold mass of water relative to IPA is introduced into a vaporizer heated to 210°C at a flow rate of 0.237 ml/min with a liquid feed pump, and then connected to the latter stage of the vaporizer. It was introduced into the reaction tube with After that, the temperature of the reaction tube heating furnace was adjusted so that the temperature at the center of the catalyst layer was about 200°C. Thirty minutes after the temperature of the catalyst layer was adjusted, the liquid from the reaction tube was collected in two glass trap containers containing 25 g of methanol for 35 minutes, and the liquid component was analyzed by gas chromatography. rice field. Thirty-four minutes after the collection of the liquid, the gas components emitted from the outlets of the two glass trap containers containing methanol were collected with a gas bag, and the gas components were analyzed by gas chromatography.
  • Example 6> Manufacture of propylene
  • a catalyst layer having a filling volume of 5.77 ml was formed.
  • the temperature of the catalyst layer was raised from room temperature to 300° C. over 70 minutes in a reaction tube heating furnace while flowing nitrogen at 136.7 Nml/min.
  • a hydrous NPA raw material containing one mass of water to NPA is introduced into a vaporizer heated to 210°C at a flow rate of 0.298 ml/min by a liquid feed pump, and then connected to the latter stage of the vaporizer.
  • the temperature of the reaction tube heating furnace was adjusted so that the temperature at the center of the catalyst layer was about 300°C.
  • the liquid from the reaction tube was collected in two glass trap containers containing 26 g of methanol for 36 minutes, and the liquid component was analyzed by gas chromatography. rice field.
  • the gas components emitted from the outlets of the two glass trap containers containing methanol were collected with a gas bag, and the gas components were analyzed by gas chromatography.
  • Example 7> (a. Method for producing silica-alumina catalyst (I)) 59.88 g of pure water, 23.17 g of aluminum nitrate nonahydrate, and 13.07 g of citric acid were placed in a 200 ml glass beaker and stirred at room temperature for 5 minutes. While continuing to stir the mixture in the beaker at room temperature, 71.67 g of tetraethyl orthosilicate was added dropwise from the dropping buret over 1 hour to obtain a gel. This gel was transferred to a porcelain dish, dried in the atmosphere at room temperature for 24 hours, and then dried in an evaporator under reduced pressure of 160 hPa at a water bath temperature of 50° C. to obtain 65.67 g of powder. 30.40 g of this powder was calcined in a muffle furnace at 800° C. for 2 hours to obtain 10.11 g of silica-alumina catalyst (I).
  • silica-alumina catalyst (I) molded powder was obtained from the silica-alumina catalyst (I) using a press and a sieve in the same manner as in Example 1. Propylene production was carried out in the same manner as in Example 6, except that a catalyst layer having a filling volume of 5.77 ml was formed after drying the silica alumina catalyst (I) molded body at 200 ° C. for 2 hours. Analysis of the liquid component and the gas component was performed in the same manner as in 6.
  • Example 8> Manufacture of propylene
  • the powder of the silica-alumina catalyst (A) compact was packed in a SUS reaction tube to form a catalyst layer with a packed volume of 5.77 ml. After that, the temperature of the catalyst layer was raised from room temperature to 180° C. over 40 minutes in a reaction tube heating furnace while flowing nitrogen at 267.0 Nml/min. After introducing a hydrous IPA raw material containing 0.2 times the mass of water to IPA under nitrogen flow into a vaporizer heated to 110 ° C.
  • the latter stage of the vaporizer was introduced into a reaction tube connected to After that, the temperature of the reaction tube heating furnace was adjusted so that the temperature at the center of the catalyst layer was about 180°C.
  • the liquid from the reaction tube was collected in two glass trap containers containing 25 g of methanol for 34 minutes, and the liquid component was analyzed by gas chromatography. rice field.
  • the gas components emitted from the outlets of the two glass trap containers containing methanol were collected with a gas bag, and the gas components were analyzed by gas chromatography.
  • Example 9 Manufacture of propylene
  • Propylene was produced in the same manner as in Example 8 except that the was used, and the liquid and gas components were analyzed in the same manner as in Example 8.
  • Table 1 shows the propylene yield calculated by gas chromatography analysis of the SiO 2 /Al 2 O 3 ratio, calcination temperature, liquid component, and gaseous component of the catalysts of Examples 1-5 and Comparative Examples 1-3.
  • Table 2 shows the propylene yield calculated by gas chromatography analysis of the SiO 2 /Al 2 O 3 ratio, calcination temperature, liquid component, and gas component of the catalysts of Examples 6 to 7 and Comparative Examples 4 and 5.
  • Table 3 shows the propylene yield calculated by gas chromatography analysis of the SiO 2 /Al 2 O 3 ratio, the liquid component, and the gas component of the silica-alumina catalyst (A) shaped bodies of Examples 8 and 9.
  • the silica-alumina catalyst (A) compact of Example 1 the silica-alumina catalyst (C) compact of Example 2, the silica-alumina catalyst (D) compact of Example 3, and the silica-alumina of Example 4 It can be seen that most of the IPA was converted to propylene when the catalyst (F) compact and the silica-alumina catalyst (G) compact of Example 5 were used.
  • the silica-alumina catalyst (B) having a high SiO 2 molar ratio of Comparative Example 1 was used, the amount of propylene produced was below the detection limit, and IPA was not converted to propylene at all.
  • the yield of propylene was 81.35% when a hydrous IPA raw material containing 0.2 times the mass of the IPA of Example 8 was used.
  • the propylene yield The rate was 53.66%.
  • the molar ratio of 2-methyl-1-pentene to propylene obtained in Example 9 was 0.04.
  • the present invention can be suitably used as a method for producing propylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

水が多量に含まれたプロパノールから、効率よくプロピレンを製造する方法を提供する。本発明の一実施形態に係るプロピレンの製造方法は、SiOの含有量がAlに対するモル比で3~80であるシリカアルミナを含む触媒を用いて、プロパノールと水とを含む原料を脱水する脱水反応工程を含み、前記シリカアルミナを含む触媒は400℃以上、950℃以下の焼成温度で焼成する工程を含む製造方法により製造される。

Description

プロピレンの製造方法
 本発明は触媒を用いた、プロパノールの脱水によるプロピレンの製造方法に関する。
 プロピレンはポリプロピレン、プロピレンオキサイド、芳香族炭化水素、芳香族アルコール等の原料として用いられている。プロピレンの製造方法としては、イソプロパノール(IPA)、またはノルマルプロパノール(NPA)を脱水する方法等が知られている。例えば、特許文献1には、アルミニウム元素が1000~10000質量ppm担持されたシリカゲルをIPA脱水触媒として用いて、プロピレンを製造する方法が開示されている。また、非特許文献1には、シリカアルミナをIPA脱水触媒として用いて、プロピレンを製造する際に、原料であるIPA中に水が多く存在するとIPAの脱水率が低下することが開示されている。
国際公開第2014/196517
De Mourgues et al., JOURNAL OF CATALYSIS 7, 117-125 (1967)
 したがって、上述した従来のプロパノールの脱水方法では、原料であるプロパノールに多量の水が含まれている場合、脱水反応により効率よくプロピレンを製造することができなかった。
 本発明は上記課題を鑑みたものであり、水が多量に含まれたプロパノールから、効率よくプロピレンを製造する方法の提供を目的とする。
 上記の課題を解決するために、本発明者らは鋭意検討した結果、AlおよびSiOを特定の比率で含有するシリカアルミナを含む触媒を使用することにより、多量の水を含むプロパノールを脱水反応により効率よくプロピレンに変換できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の構成を含む。
<1>
 SiOの含有量がAlに対するモル比で3~80であるシリカアルミナを含む触媒を用いて、プロパノールと水とを含む原料を脱水する脱水反応工程を含み、前記シリカアルミナを含む触媒は400℃以上、950℃以下の焼成温度で焼成する工程を含む製造方法により製造される、プロピレンの製造方法。
<2>
 上記原料中の水の質量が、上記原料中のプロパノールの質量に対して、0.01~2倍である、<1>に記載のプロピレンの製造方法。
<3>
 上記脱水反応工程における上記触媒を含む触媒層の温度が450℃以下である、<1>または<2>に記載のプロピレンの製造方法。
<4>
 上記脱水反応工程において生成される流体中に、下記一般式(1)または(2)で表されるオレフィンの内、少なくとも1種類が、当該流体中に含まれるプロピレンの量に対してモル比で0.1以下の量含まれる、<1>~<3>のいずれかに記載のプロピレンの製造方法。
Figure JPOXMLDOC01-appb-C000002
 式(1)および(2)中、R、R、Rのうちいずれか一つがメチル基であり、残りが水素である。
 本発明の一態様によれば、水が多量に含まれたプロパノールから、効率よくプロピレンを製造する方法を提供できる。
 〔1.プロピレンの製造方法〕
 本発明の一実施形態に係るプロピレンの製造方法は、SiOの含有量がAlに対するモル比で3~80であるシリカアルミナを含む触媒を用いて、プロパノールと水とを含む原料を脱水する脱水反応工程を含み、前記シリカアルミナを含む触媒は400℃以上、950℃以下の焼成温度で焼成する工程を含む製造方法により製造される。上記シリカアルミナ中のAlに対するSiOのモル比が3~80であるとも言える。以下、本発明の一実施形態に係るプロピレンの製造方法を、本製造方法とも称する。また、シリカアルミナを含む触媒をシリカアルミナ触媒とも称する。上記シリカアルミナ触媒は、本製造方法において、脱水触媒として使用される。
 上記シリカアルミナ触媒を使用することにより、原料となるプロパノールに多量の水が含まれている場合でも、効率よくプロパノールの脱水を行って、プロピレンを製造することができる。また、上記シリカアルミナ触媒を使用することにより、低温下のプロパノールの脱水反応が可能となるため、炭素数6個のオレフィン(C6オレフィン)等の副生成物の生成が抑制され、副生成物に起因するプロピレン製造時の炭素析出を抑制することができる。さらに、上記原料が水を含むことにより、反応熱の熱媒となり、プロピレン製造時の反応系内の温度をより均一にすることができ(温度分布の緩和)、工業的な利用性も向上する。
 本製造方法における、プロパノールの脱水反応によりプロピレンが製造される過程は、具体的には、下記式(3)に示される。
 COH→C+HO・・・(3)
 本製造方法において、プロパノールとして、イソプロパノール(IPA)を用いる場合は、IPAは分子内脱水、あるいは分子間脱水のいずれによってもプロピレンへと転化されてもよい。IPAの分子内脱水が行われる場合、IPAから直接プロピレンが製造される。一方、IPAの分子間脱水が行われる場合、ジイソプロピルエーテル(DIPE)を経由して、プロピレンが製造される。
 (シリカアルミナ触媒)
 本製造方法の脱水反応工程において使用されるシリカアルミナ触媒は、400℃以上、950℃以下の焼成温度で焼成する工程を含む製造方法によって製造される。換言すれば、プロピレンの製造方法は400℃以上、950℃以下の焼成温度で、シリカアルミナ触媒の原料の焼成を行ってシリカアルミナ触媒を得る工程を含んでもよい。また、シリカアルミナ触媒を製造する方法は、前記焼成する工程以外のその他の製造工程を含んでいてもよい。
 本製造方法の脱水反応工程において使用される触媒に含まれるシリカアルミナは、SiOの含有量が、Alに対するモル比で、3~80であり、好ましくは4~70であり、より好ましくは4~60であり、さらに好ましくは4~50である。上記モル比は、例えば後述する実施例に記載の誘導結合プラズマ発光分析法(ICP-AES法)によって測定することができる。
 但し、後述するように、上記触媒は成形剤(バインダー)と併せて使用することができる。バインダーとしてシリカ、および/またはアルミナが用いられた場合においては、ICP-AES法にて測定されるSiOとAlとのモル比は、当該バインダーとして加えられたシリカ、および/またはアルミナに含まれるSiOおよびAlの量を含めた値とする。すなわち、上記触媒が上記バインダーと併せて使用される場合、上記SiOおよびAlのモル比は、上記触媒および上記バインダーに含まれるSiOおよびAlの合計値に基づいて測定される。これは、助触媒としてアルミナ等がシリカアルミナ触媒と併用された場合についても同様である。
 上記触媒に含まれるシリカアルミナにおける、Alに対するSiOのモル比が上記範囲であれば、触媒に含まれるAlの割合が従来のシリカアルミナと比べて大きい。そのため、プロパノールの脱水反応中に十分な酸量が確保されることにより、原料となるプロパノールに水が多量に含まれていても、触媒が高活性となり、効率的にプロピレンを製造することができる。
 上記シリカアルミナ触媒は、AlおよびSiO以外にも、原料の不純物に由来する、微量の金属元素を含んでいてもよい。そのような金属元素としては例えば、Ca、Fe、Mg、Na、Ti、Zr等が挙げられる。上記シリカアルミナ触媒は、Alに対するSiOのモル比が上記範囲であれば市販品を用いてもよいし、化学的に合成したものを使用してもよい。
 上記シリカアルミナ触媒を化学的に合成する場合、ケイ素化合物と、アルミニウム化合物とを原料として使用することができる。上記ケイ素を含む原料としては、例えば、テトラエチルオルトシリケート、シリカゲル、およびケイ酸ナトリウム等が挙げられる。また、上記アルミニウムを含む原料としては、水溶性であることが好ましく、具体的には、硝酸アルミニウム、硫酸アルミニウム、リン酸アルミニウム等が挙げられる。また、これらのアルミニウムを含む化合物は、単体であってもよく、水和物であってもよい。
 上記シリカアルミナ触媒を合成する方法としては、例えば、含浸法、ゾルゲル法のいずれであってもよい。以下に一例として、ゾルゲル法による上記シリカアルミナ触媒の合成方法を示す。まず、上述したケイ素を含む原料と、アルミニウムを含む原料とを溶媒、および有機添加物の存在下にて撹拌することにより、ゲルを得る。この反応は通常、アルミニウム化合物を含有する水溶液に対して、ケイ素化合物を添加することによって行われる。次に、得られたゲルを、大気、あるいはエバポレーター等により乾燥させて、粉末状にする。その後、得られた粉末を焼成することにより、上記シリカアルミナ触媒を得ることができる。
 上記溶媒としては、取り扱い、および除去が容易であることから、水が好ましい。有機添加物としては、クエン酸、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2,3-ブタンジオール、および2-メチル―2,4-ペンタンジオール等を用いることができる。上記粉末の焼成温度は、400℃以上、950℃以下である。焼成温度の下限は、400℃以上であり、好ましくは500℃以上であり、より好ましくは600℃以上である。焼成温度の上限は、950℃以下であり、好ましくは、900℃以下であり、より好ましくは、850℃以下である。別の実施形態において粉末の焼成温度は、200℃以上または300℃以上であってもよい。焼成時間は、好ましくは1時間~10時間、より好ましくは2時間~9時間である。粉末の焼成は、複数回に分けて行ってもよい。焼成を複数回行う場合、加熱温度、および加熱時間は同一であってもよいし、異なっていてもよい。加熱方法も特に限定されないが、例えば、マッフル炉、管状炉、ロータリーキルン、またはシャフトキルン等を用いることによって行うことができる。
 上記シリカアルミナ触媒の製造時に焼成を行うことにより、得られるシリカアルミナ触媒中に、Si-O-Alの化学結合が形成される。これにより、SiO、またはAl単独、あるいはこれらの混合物よりも、得られるシリカアルミナ触媒の酸点が強くなり、高活性となる。また、焼成温度が上記範囲であれば、得られるシリカアルミナ触媒がさらに高活性となるため、プロパノールの脱水に使用した際に、得られるプロピレンの収率が向上する。また、焼成温度が400℃以上であれば、シリカアルミナ触媒の調製に使用した有機添加物を十分に除去することができる。そのため、シリカアルミナ触媒が十分な酸点を得ることができ、また成形性も向上するため、プロパノールの脱水の触媒に好適に使用することができる。
 (原料)
 本製造方法において、脱水される原料(以下、本原料とも称する。)は、水とプロパノールとを含む。プロパノールはイソプロパノール(IPA)、またはノルマルプロパノール(NPA)、またはIPAとNPAを任意の割合で混合したものを含む。
 本原料中の水の質量は、本原料中のプロパノールの質量に対して、0.01~2倍であり、好ましくは0.1~2倍であり、より好ましくは0.5~2倍であり、特に好ましくは1.0~2倍であり得る。
 本原料中の水の含有量が、プロパノールの質量に対して0.01倍以上であることによれば、脱水反応時の副生成物由来の、炭素の析出が抑制され、プロピレンをより効率的に製造可能であるという効果が得られる。また、水が反応熱の熱媒として作用するため、プロピレン製造時の反応系内の温度をより均一にすることができ(温度分布の緩和)、脱水反応を効率的に行うことができる。また、本原料中の水の含有量がプロパノールの質量に対して2倍以下であれば、本原料がプロパノールを十分に含むため、プロピレンの生成量が向上する。
 本原料は、本原料全体を100質量%としたときに、プロパノールを33~99質量%含むことが好ましく、より好ましくは33~90質量%含み、さらに好ましくは33~50質量%含む。本原料のプロパノールの含有量が99質量%以下であれば、本原料が水を含み得るため、上述した水を含む場合の効果が得られる。また、本原料のプロパノールの含有量が33質量%以上であれば、プロピレンの生成量が向上する。
 本原料は水とプロパノール以外にも、本原料を製造する過程において混入し得る不純物等の他の成分をさらに含んでいてもよい。そのような不純物等の他の成分としては例えば、本原料の製造に用いられた未反応原料、本原料の製造工程において副生した副生成物等が挙げられる。このような不純物としては例えば、アセトン、メタノール、エチレングリコール、ジメチルエーテル、メチルエチルエーテルおよび炭酸ジメチル等が挙げられる。本原料における不純物の含有量は、プロピレンの製造に影響を与えない範囲であれば特に限定されないが、好ましくは5質量%以下であり、より好ましくは1質量%以下であり、理想的には全く含まない。
 (脱水反応工程)
 本製造方法は、上記シリカアルミナ触媒を用いて本原料を脱水する、脱水反応工程を含む。上記脱水反応工程において、上記シリカアルミナ触媒は、反応器等に充填された触媒層としてから使用されてもよい。
 上記脱水反応工程において用いられる反応器の方式は特に限定されず、例えば、バッチ式、セミバッチ式、連続流通式のいずれであってもよい。また、上記脱水反応工程の形態についても特に限定されず、液相、気相、気-液混合層のいずれの形態においても実施が可能である。さらに、触媒を触媒層とするための充填方式も特に限定されず、固定床、流動床、懸濁床、および棚段固定床等のいずれの方式によっても充填可能である。また、上記脱水反応工程を行う際、当該脱水反応工程を妨げない気体成分を添加してもよい。このような気体成分としては例えば、窒素、二酸化炭素、アルゴン、ヘリウム、メタン、エタンおよびプロパン等が挙げられる。
 上記触媒層とされる触媒としては、上記シリカアルミナ触媒のみを使用してもよいし、通常脱水反応に使用され得る触媒または成形剤(バインダー)等と併せて使用してもよい。上記シリカアルミナ触媒を成形剤と共に使用する場合、それらを混錬して押し出し成形して機械強度を高めた成形体の形態で使用してもよい。通常脱水反応に使用され得る触媒、または成形剤としては、例えば、シリカ、アルミナ、粘土、チタニア、ジルコニア、酸化亜鉛、セリア、ランタナ、黒鉛、およびエチルセルロース等が挙げられる。
 上記脱水反応工程時の、上記触媒層の温度は、450℃以下であることが好ましく、400℃以下であることがより好ましく、300℃以下であることがさらに好ましく、200℃以下であることが特に好ましい。上記温度の下限は脱水反応工程が実施しえる温度以上であれば特に限定されないが、得られる触媒の活性を高める観点から、160℃以上であり得るし、180℃以上でもあり得る。上記触媒層の温度は、脱水処理に使用する装置の温度の変更等によって、適宜調整することができる。
 上記触媒層の温度が上記範囲であれば、比較的低温で脱水反応が実施可能であるため、反応に要するエネルギーを低減することができる。また、プロピレンのオリゴマー化、および重質化は高温環境下にて促進される。そのため、従来よりも低温で反応させることにより、副生成物の生成が抑制され、プロピレンの収率が向上する。
 上記脱水反応工程時の反応圧力は、特に限定されないが、0~100000KPa(ゲージ圧)が好ましく、より好ましくは0~5000KPa(ゲージ圧)であり、更により好ましくは0~4000KPa(ゲージ圧)である。
 上記脱水反応工程時のプロパノール流量mol・h-1に対する触媒重量gの比(W/F)は、特に限定されないが、0.01~10000g・h・mol-1が好ましく、より好ましくは0.1~5000g・h・mol-1であり、更により好ましくは1~200g・h・mol-1である。
 上記脱水反応工程中、上記触媒の活性が低下した場合には、公知の方法を用いて当該触媒の活性を回復させてもよい。また、プロピレンの生産量を維持するために、2つ以上の反応器を並列に並べて、1つの反応器が触媒の活性回復を行っている間に、他の反応器により脱水反応を行う切り替え方式をとっても構わない。さらに、反応器が3つ以上ある場合、触媒の活性回復を行っていない2つ以上の反応器を直列に繋ぎ、生産量の変動を少なくしてもよい。また、反応器の方式が流動床流通反応方式、あるいは移動床反応方式である場合は、反応器から連続的、または断続的に一部またはすべての触媒を抜き出し、抜き出した量と同等の量の触媒を補充することにより、一定の触媒活性を維持することが可能である。上記脱水反応工程後、例えば、生成物であるプロピレンを気液分離工程にて取り出し、次いで蒸留などにより精製する工程を行ってもよい。
 〔2.生成物〕
 本製造方法の脱水反応工程において、プロパノールを含む本原料の脱水が行われ、プロピレンを含む生成物が生成される。
 本製造方法における上記生成物(例えば、液体および気体等の流体)には、プロピレン以外にも不純物が含まれ得る。上記不純物としては例えば、水、未反応のプロパノール、および副生成物等が挙げられる。上記副生成物としては例えば、C6オレフィン等が挙げられる。
 上記不純物の含有量は、上記生成物中のプロピレンの含有量に対して、モル比で0.1以下であることが好ましく、より好ましくは0.05以下であり、さらに好ましくは0.01以下である。上記不純物は理想的には、上記生成物中に全く含まれないことが好ましい。
 本製造方法の上記脱水反応工程において生成される流体中に、下記一般式(1)または(2)で表されるオレフィンの内、少なくとも1種類が含まれていてもよい。下記一般式(1)または(2)で表されるオレフィンは例えば、3-メチル-2-ペンテン、2-メチル-1-ペンテン等が挙げられる。前記オレフィンの含有量の下限値は当該流体中のプロピレンの量に対して、モル比で0.00000001以上の量含まれてもよく、モル比で0.0000001以上の量含まれてもよく、モル比で0.000001以上の量含まれてもよい。上限値は当該流体中のプロピレンの量に対して、モル比で0.1以下の量含まれてもよく、モル比で0.05以下の量含まれてもよく、モル比で0.01以下の量含まれてもよい。下記一般式(1)または(2)で表されるオレフィンは、主鎖の炭素数が5であり、かつメチル基を有するオレフィンに該当する。上記オレフィンは理想的には、上記流体中に全く含まれないことが好ましいが、上記オレフィンが含まれる量の下限値は例えばモル比で0より大きくてもよい。上記オレフィンが上記流体中に含まれる場合は、触媒上に炭素が析出することがある。触媒上に析出した炭素は、触媒の酸点の減少を引き起こすため、触媒活性が低下することがある。
Figure JPOXMLDOC01-appb-C000003
 式(1)および(2)中、R、R、Rのうちいずれか一つがメチル基であり、残りが水素である。
 プロパノール脱水によるプロピレンの製造方法において、オリゴマー等が副生成物として混入し得ることが知られている。しかしながら、オリゴマーの構造については知られておらず、特に上記式(1)または(2)に示される炭素骨格内に分岐を有するC6オレフィンは、副生成物としては知られていなかった。プロパノール脱水によるプロピレンの製造において、副生成物であるこれら分岐を有するC6オレフィンの生成を抑えることがプロピレン収率向上にとって重要である。これは本製造方法がもたらす、当業者が予想し得ない効果といえる。
 本製造方法によって得られたプロピレンの用途は特に限定されないが、ポリプロピレン、プロピレンオキサイド、プラスチック、芳香族炭化水素、芳香族アルコール等の原料として好適に用いることができる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。
 <測定方法>
 実施例のプロピレンの製造において、反応器出口から出る液体成分、気体成分の分析はガスクロマトグラフィーにより行い、プロピレン収率を以下の式(4)により算出した。
 プロピレン収率(%)=[(供給したプロパノール[mol/min]-未反応プロパノール[mol/min])/供給したプロパノール[mol/min]]×[3×プロピレン生成量[mol/min]/(各生成物のカーボンベースでの生成量の総和[mol/min])]×100・・・(4)
 <実施例1>
 (a.シリカアルミナ触媒(A)の製造方法)
 ガラス製200mlビーカーに純水60.14g、硝酸アルミニウム9水和物23.16g、クエン酸13.05gを入れて、室温で5分間撹拌した。室温でのビーカー内の混合物の撹拌を継続しつつ、テトラエチルオルトシリケート71.90gを1時間かけて滴下ビュレットから滴下し、ゲルを得た。このゲルを磁製皿に移し、室温にて24時間、大気中で乾燥後、エバポレーターにて160hPaの減圧下、水浴温度50℃で乾燥させて95.67gの粉末を得た。この粉末43.86gをマッフル炉にて500℃、5時間焼成した後、マッフル炉から取り出し、11.35gの粉末を得た。取り出した粉末10.02gを再度マッフル炉に入れて600℃にて2時間焼成し、シリカアルミナ触媒(A)10.11gを得た。誘導結合プラズマ発光分析法(ICP-AES法)による分析の結果、シリカアルミナ触媒(A)のSiO/Alのモル比率は11であった。
 (b.プロピレンの製造)
 上記シリカアルミナ触媒(A)を、プレス機を用いて60MPa(ゲージ圧)で20分間加圧して、シリカアルミナ触媒(A)成形体を得た。その後、得られた成形体をメノウ乳鉢で粉砕し、10メッシュ、および26メッシュの篩を通過させ、2つの篩の間から取り出すことによりシリカアルミナ触媒(A)成形体の粉末を得た。得られた3.08gの上記シリカアルミナ触媒(A)成形体の粉末を、熱電対の入った外径3mmのSUS管を含む、内径1.4cmのSUS反応管中に充填して充填体積5.77mlの触媒層を形成した。その後、窒素136.7Nml/min流通下で、触媒層の温度を反応管加熱炉にて、45分かけて室温から200℃まで昇温した。窒素流通下でIPAに対して1質量倍の水を含む含水IPA原料を送液ポンプにて、0.298ml/minの流量で110℃に加熱した気化器に導入後、気化器の後段に連結された反応管に導入した。その後、触媒層中心の温度が約200℃となるように反応管加熱炉の温度を調整した。触媒層の温度を調整してから30分経過後に、反応管からの液を26gのメタノールの入った2つのガラス製トラップ容器に36分間捕集し、ガスクロマトグラフィーにて液体成分の分析を行った。液の捕集後35分経過後に、メタノールの入った2つのガラス製トラップ容器の出口から出る気体成分をガスバッグにて捕集し、ガスクロマトグラフィーにて気体成分の分析を行った。
 <比較例1>
 (a)シリカアルミナ触媒(B)の製造方法
 ガラス製ビーカー100ml内に純水19.31g、および硝酸アルミニウム9水和物0.55gの混合物を調製し、パスツールピペットを用いてガラス製ビーカー500ml内の富士シリシア製キャリアクト(Q-30)20gに室温にて一滴ずつ滴下した。この混合物を120℃で3時間乾燥させた後、混合物19.85gをマッフル炉に入れて500℃にて6時間焼成し、シリカアルミナ触媒(B)19.67gを得た。ICP-AES法による分析の結果、シリカアルミナ触媒(B)のSiO/Alのモル比率は404であった。なお、シリカアルミナ触媒(B)は、特許文献1の実施例4に記載されている触媒に相当する。
 (b)プロピレンの製造
 上記シリカアルミナ触媒(B)2.12gを使用して充填体積5.77mlの触媒層を形成させたことを除き、実施例1と同様の方法にてプロピレンの製造を実施し、実施例1と同様の方法にて液体成分、および気体成分の分析を行った。
 <実施例2>
 (a.シリカアルミナ触媒(C)の製造方法)
 ガラス製200mlビーカーに純水59.73g、硝酸アルミニウム9水和物5.11g、クエン酸12.95gを入れて、室温で5分間撹拌した。室温でのビーカー内の混合物の撹拌を継続しつつ、テトラエチルオルトシリケート71.63gを1時間かけて滴下ビュレットから滴下し、ゲルを得た。このゲルを磁製皿に移し、室温にて24時間、大気中で乾燥後、エバポレーターにて160hPaの減圧下、水浴温度50℃で乾燥させて41.55gの粉末を得た。この粉末35.83gをマッフル炉にて600℃、2時間焼成し、シリカアルミナ触媒(C)23.10gを得た。誘導結合プラズマ発光分析法(ICP-AES法)による分析の結果、シリカアルミナ触媒(C)のSiO/Alのモル比率は51であった。
 (b.プロピレンの製造)
 上記シリカアルミナ触媒(C)から実施例1と同様にプレス機と篩を用いてシリカアルミナ触媒(C)成形体の粉末を得た。シリカアルミナ触媒(C)成形体を200℃で2時間真空乾燥した後に充填体積5.77mlの触媒層を形成したこと、および気化器の温度を210℃としたことを除き、実施例1と同様の方法にてプロピレンの製造を実施し、実施例1と同様の方法にて液体成分、および気体成分の分析を行った。
 <実施例3>
 (a.シリカアルミナ触媒(D)の製造方法)
 ガラス製200mlビーカーに純水60.03g、硝酸アルミニウム9水和物3.67g、クエン酸13.06gを入れて、室温で5分間撹拌した。室温でのビーカー内の混合物の撹拌を継続しつつ、テトラエチルオルトシリケート71.54gを1時間かけて滴下ビュレットから滴下し、ゲルを得た。このゲルを磁製皿に移し、室温にて24時間、大気中で乾燥後、エバポレーターにて160hPaの減圧下、水浴温度50℃で乾燥させて47.25gの粉末を得た。この粉末46.44gをマッフル炉にて600℃、2時間焼成し、シリカアルミナ触媒(D)20.79gを得た。誘導結合プラズマ発光分析法(ICP-AES法)による分析の結果、シリカアルミナ触媒(C)のSiO/Alのモル比率は69であった。
 (b.プロピレンの製造)
 上記シリカアルミナ触媒(D)から実施例1と同様にプレス機と篩を用いてシリカアルミナ触媒(D)成形体の粉末を得た。シリカアルミナ触媒(D)成形体を200℃で2時間真空乾燥した後に充填体積5.77mlの触媒層を形成したこと、および気化器の温度を210℃としたことを除き、実施例1と同様の方法にてプロピレンの製造を実施し、実施例1と同様の方法にて液体成分、および気体成分の分析を行った。
 <比較例2>
 (シリカアルミナ触媒(E)の製造方法)
 ガラス製200mlビーカーに純水59.88g、硝酸アルミニウム9水和物23.17g、クエン酸13.07gを入れて、室温で5分間撹拌した。室温でのビーカー内の混合物の撹拌を継続しつつ、テトラエチルオルトシリケート71.67gを1時間かけて滴下ビュレットから滴下し、ゲルを得た。このゲルを磁製皿に移し、室温にて24時間、大気中で乾燥後、エバポレーターにて160hPaの減圧下、水浴温度50℃で乾燥させて65.67gの粉末を得た。この粉末30.40gをマッフル炉にて300℃、2時間焼成した後、マッフル炉から取り出し、シリカアルミナ触媒(E)12.47gの粉末を得た。このシリカアルミナ触媒(E)は調製原料に含まれる有機成分が除去されておらず茶色に着色していた。また、実施例1と同様にプレス器で成形を試みたが、成形することができなかった。
 <実施例4>
 (a.シリカアルミナ触媒(F)の製造方法)
 シリカアルミナ触媒(E)12.30gを再度マッフル炉に入れて500℃にて2時間焼成し、シリカアルミナ触媒(F)10.11gを得た。
 (b.プロピレンの製造)
 上記シリカアルミナ触媒(F)から実施例1と同様にプレス機と篩を用いてシリカアルミナ触媒(F)成形体の粉末を得た。シリカアルミナ触媒(F)成形体を200℃で2時間乾燥した後に充填体積5.77mlの触媒層を形成したこと、および気化器の温度を210℃としたことを除き、実施例1と同様の方法にてプロピレンの製造を実施し、実施例1と同様の方法にて液体成分、および気体成分の分析を行った。
 <実施例5>
 (a.シリカアルミナ触媒(G)の製造方法)
 ガラス製200mlビーカーに純水60.79g、硝酸アルミニウム9水和物23.17g、クエン酸13.02gを入れて、室温で5分間撹拌した。室温でのビーカー内の混合物の撹拌を継続しつつ、テトラエチルオルトシリケート72.21gを1時間かけて滴下ビュレットから滴下し、ゲルを得た。このゲルを磁製皿に移し、室温にて24時間、大気中で乾燥後、エバポレーターにて160hPaの減圧下、水浴温度50℃で乾燥させて62.75gの粉末を得た。この粉末30.52gをマッフル炉にて900℃、1時間焼成し、シリカアルミナ触媒(G)11.35gを得た。
 (b.プロピレンの製造)
 上記シリカアルミナ触媒(G)から実施例1と同様にプレス機と篩を用いてシリカアルミナ触媒(G)成形体の粉末を得た。シリカアルミナ触媒(G)成形体を200℃で2時間乾燥した後に充填体積5.77mlの触媒層を形成したこと、および気化器の温度を210℃としたことを除き、実施例1と同様の方法にてプロピレンの製造を実施し、実施例1と同様の方法にて液体成分、および気体成分の分析を行った。
 <比較例3>
 (a.シリカアルミナ触媒(H)の製造方法)
 シリカアルミナ触媒(A)成形体の粉末4.57gをマッフル炉に入れて1000℃にて1時間焼成し、シリカアルミナ触媒(H)成形体4.18gを得た。
 (b.プロピレンの製造)
 4.00gの上記シリカアルミナ触媒(H)成形体の粉末を、熱電対の入った外径3mmのSUS管を含む、内径1.4cmのSUS反応管中に充填して充填体積4.62mlの触媒層を形成した。その後、窒素110.0Nml/min流通下で、触媒層の温度を反応管加熱炉にて、45分かけて室温から200℃まで昇温した。窒素流通下でIPAに対して1質量倍の水を含む含水IPA原料を送液ポンプにて、0.237ml/minの流量で210℃に加熱した気化器に導入後、気化器の後段に連結された反応管に導入した。その後、触媒層中心の温度が約200℃となるように反応管加熱炉の温度を調整した。触媒層の温度を調整してから30分経過後に、反応管からの液を25gのメタノールの入った2つのガラス製トラップ容器に35分間捕集し、ガスクロマトグラフィーにて液体成分の分析を行った。液の捕集後34分経過後に、メタノールの入った2つのガラス製トラップ容器の出口から出る気体成分をガスバッグにて捕集し、ガスクロマトグラフィーにて気体成分の分析を行った。
 <実施例6>
 (プロピレンの製造)
 シリカアルミナ触媒(A)成形体の粉末を200℃で2時間真空乾燥した後に充填体積5.77mlの触媒層を形成した。その後、窒素136.7Nml/min流通下で、触媒層の温度を反応管加熱炉にて、70分かけて室温から300℃まで昇温した。窒素流通下でNPAに対して1質量倍の水を含む含水NPA原料を送液ポンプにて、0.298ml/minの流量で210℃に加熱した気化器に導入後、気化器の後段に連結された反応管に導入した。その後、触媒層中心の温度が約300℃となるように反応管加熱炉の温度を調整した。触媒層の温度を調整してから30分経過後に、反応管からの液を26gのメタノールの入った2つのガラス製トラップ容器に36分間捕集し、ガスクロマトグラフィーにて液体成分の分析を行った。液の捕集後34分経過後に、メタノールの入った2つのガラス製トラップ容器の出口から出る気体成分をガスバッグにて捕集し、ガスクロマトグラフィーにて気体成分の分析を行った。
 <比較例4>
 (プロピレンの製造)
 シリカアルミナ触媒(B)を200℃で2時間真空乾燥した後に充填体積5.77mlの触媒層を形成したことを除き、実施例6と同様の方法にてプロピレンの製造を実施し、実施例6と同様の方法にて液体成分、および気体成分の分析を行った。
 <実施例7>
 (a.シリカアルミナ触媒(I)の製造方法)
 ガラス製200mlビーカーに純水59.88g、硝酸アルミニウム9水和物23.17g、クエン酸13.07gを入れて、室温で5分間撹拌した。室温でのビーカー内の混合物の撹拌を継続しつつ、テトラエチルオルトシリケート71.67gを1時間かけて滴下ビュレットから滴下し、ゲルを得た。このゲルを磁製皿に移し、室温にて24時間、大気中で乾燥後、エバポレーターにて160hPaの減圧下、水浴温度50℃で乾燥させて65.67gの粉末を得た。この粉末30.40gをマッフル炉にて800℃、2時間焼成し、シリカアルミナ触媒(I)10.11gを得た。
 (プロピレンの製造)
上記シリカアルミナ触媒(I)から実施例1と同様にプレス機と篩を用いてシリカアルミナ触媒(I)成形体の粉末を得た。シリカアルミナ触媒(I)成形体を200℃で2時間乾燥した後に充填体積5.77mlの触媒層を形成したことを除き、実施例6と同様の方法にてプロピレンの製造を実施し、実施例6と同様の方法にて液体成分、および気体成分の分析を行った。
 <比較例5>
 (プロピレンの製造)
 シリカアルミナ触媒(H)成形体を200℃で2時間乾燥した後に充填体積5.77mlの触媒層を形成したことを除き、実施例6と同様の方法にてプロピレンの製造を実施し、実施例6と同様の方法にて液体成分、および気体成分の分析を行った。
 <実施例8>
 (プロピレンの製造)
 上記シリカアルミナ触媒(A)成形体の粉末をSUS反応管中に充填して充填体積5.77mlの触媒層を形成した。その後、窒素267.0Nml/min流通下で、触媒層の温度を反応管加熱炉にて、40分かけて室温から180℃まで昇温した。窒素流通下でIPAに対して0.2質量倍の水を含む含水IPA原料を送液ポンプにて、0.193ml/minの流量で110℃に加熱した気化器に導入後、気化器の後段に連結された反応管に導入した。その後、触媒層中心の温度が約180℃となるように反応管加熱炉の温度を調整した。触媒層の温度を調整してから30分経過後に、反応管からの液を25gのメタノールの入った2つのガラス製トラップ容器に34分間捕集し、ガスクロマトグラフィーにて液体成分の分析を行った。液の捕集後33分経過後に、メタノールの入った2つのガラス製トラップ容器の出口から出る気体成分をガスバッグにて捕集し、ガスクロマトグラフィーにて気体成分の分析を行った。
 <実施例9>
 (プロピレンの製造)
 窒素流量を270.0Nml/minとしたこと、およびIPAに対して0.2質量倍の水、およびオレフィンである2-メチル-1-ペンテンをIPAに対して0.058質量倍含む含水IPA原料を使用したことを除き、実施例8と同様の方法にてプロピレンの製造を実施し、実施例8と同様の方法にて液体成分、および気体成分の分析を行った。
 <結果>
 実施例1~5、および比較例1~3の触媒のSiO/Al比率、焼成温度、液体成分、および気体成分のガスクロマトグラフィー分析によって算出したプロピレン収率を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例6~7、および比較例4、5の触媒のSiO/Al比率、焼成温度、液体成分、および気体成分のガスクロマトグラフィー分析によって算出したプロピレン収率を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例8、および実施例9のシリカアルミナ触媒(A)成形体のSiO/Al比率、液体成分、および気体成分のガスクロマトグラフィー分析によって算出したプロピレン収率を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 表1より、実施例1のシリカアルミナ触媒(A)成形体、および実施例2のシリカアルミナ触媒(C)成形体、実施例3のシリカアルミナ触媒(D)成形体、実施例4のシリカアルミナ触媒(F)成形体、および実施例5のシリカアルミナ触媒(G)成形体を用いた場合にはIPAのほとんどがプロピレンへと転化されていることが分かる。一方、比較例1のSiOのモル比が高いシリカアルミナ触媒(B)を用いた場合にはプロピレンの生成量は検出限界値以下であり、IPAは全くプロピレンに転化されなかった。また、比較例2の焼成温度が300℃であるシリカアルミナ触媒(E)を用いた場合には、触媒を成形することができなかった。さらに、比較例3の焼成温度が1000℃であるシリカアルミナ触媒(H)成形体を用いた場合にはプロピレンの生成量は実施例1、実施例4、実施例5よりも低下した。したがって、本発明の一実施形態に係るシリカアルミナ触媒を用いることにより、水を多く含むIPA原料から、効率的にプロピレンを製造可能であることが示された。
 表2より、実施例6のシリカアルミナ触媒(A)成形体を用いた場合、実施例7のシリカアルミナ触媒(I)成形体を用いた場合にはNPAのほとんどがプロピレンへと転化されていることが分かる。一方、比較例4のSiOのモル比が高いシリカアルミナ触媒(B)を用いた場合にはプロピレンの生成量は検出限界値以下であり、NPAは全くプロピレンに転化されなかった。また、比較例5の焼成温度が1000℃であるシリカアルミナ触媒(H)成形体を用いた場合にはプロピレンの生成量は実施例6、実施例7よりも低下した。したがって、本発明の一実施形態に係るシリカアルミナ触媒を用いることにより、水を多く含むNPA原料から、効率的にプロピレンを製造可能であることが示された。
 表3より、実施例8のIPAに対して0.2質量倍の水を含む含水IPA原料を用いた場合にはプロピレン収率が81.35%であった。一方、実施例9のIPAに対して0.2質量倍の水、およびIPAに対して0.058質量倍の2-メチル-1-ペンテンを含む含水IPA原料を用いた場合には、プロピレン収率が53.66%であった。なお、実施例9で得られたプロピレンに対する2-メチル-1-ペンテンの含有量は、モル比で0.04であった。したがって、原料が2-メチル-1-ペンテンを含まない場合、プロピレン収率が向上することが示された。
 本発明は、プロピレンの製造方法として好適に利用することができる。

Claims (4)

  1.  SiOの含有量がAlに対するモル比で3~80であるシリカアルミナを含む触媒を用いて、プロパノールと水とを含む原料を脱水する脱水反応工程を含み、前記シリカアルミナを含む触媒は400℃以上、950℃以下の焼成温度で焼成する工程を含む製造方法により製造される、プロピレンの製造方法。
  2.  上記原料中の水の質量が、上記原料中のプロパノールの質量に対して、0.01~2倍である、請求項1に記載のプロピレンの製造方法。
  3.  上記脱水反応工程における上記触媒を含む触媒層の温度が450℃以下である、請求項1または2に記載のプロピレンの製造方法。
  4.  上記脱水反応工程において生成される流体中に、下記一般式(1)または(2)で表されるオレフィンの内、少なくとも1種類が、当該流体中のプロピレンの量に対して、モル比で0.1以下の量含まれる、請求項1または2に記載のプロピレンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(1)および(2)中、R、R、Rのうちいずれか一つがメチル基であり、残りが水素である。
PCT/JP2022/018666 2021-04-26 2022-04-25 プロピレンの製造方法 WO2022230791A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22795704.0A EP4332077A1 (en) 2021-04-26 2022-04-25 Method for producing propylene
JP2023517496A JPWO2022230791A1 (ja) 2021-04-26 2022-04-25
CN202280028312.6A CN117279878A (zh) 2021-04-26 2022-04-25 丙烯的制造方法
KR1020237036574A KR20230175211A (ko) 2021-04-26 2022-04-25 프로필렌의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074191 2021-04-26
JP2021074191 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230791A1 true WO2022230791A1 (ja) 2022-11-03

Family

ID=83847236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018666 WO2022230791A1 (ja) 2021-04-26 2022-04-25 プロピレンの製造方法

Country Status (6)

Country Link
EP (1) EP4332077A1 (ja)
JP (1) JPWO2022230791A1 (ja)
KR (1) KR20230175211A (ja)
CN (1) CN117279878A (ja)
TW (1) TW202308968A (ja)
WO (1) WO2022230791A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255104A (ja) * 2007-03-09 2008-10-23 Idemitsu Kosan Co Ltd オレフィンの製造方法
WO2014196517A1 (ja) 2013-06-07 2014-12-11 三井化学株式会社 オレフィンの製造方法、およびこれに用いられる脱水触媒
US20150011813A1 (en) * 2013-07-02 2015-01-08 Ut-Battelle, Llc Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock
CN104549436A (zh) * 2013-10-12 2015-04-29 中国石油化工股份有限公司 一种氢型zsm-5分子筛催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255104A (ja) * 2007-03-09 2008-10-23 Idemitsu Kosan Co Ltd オレフィンの製造方法
WO2014196517A1 (ja) 2013-06-07 2014-12-11 三井化学株式会社 オレフィンの製造方法、およびこれに用いられる脱水触媒
US20150011813A1 (en) * 2013-07-02 2015-01-08 Ut-Battelle, Llc Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock
CN104549436A (zh) * 2013-10-12 2015-04-29 中国石油化工股份有限公司 一种氢型zsm-5分子筛催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE MOURGUES ET AL., JOURNAL OF CATALYSIS, vol. 7, 1967, pages 117 - 125

Also Published As

Publication number Publication date
JPWO2022230791A1 (ja) 2022-11-03
TW202308968A (zh) 2023-03-01
EP4332077A1 (en) 2024-03-06
KR20230175211A (ko) 2023-12-29
CN117279878A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
RU2469792C2 (ru) Способ приготовления кремнеалюмофосфатных (sapo) молекулярных сит, катализаторы, содержащие упомянутые сита, и способы каталитической дегидратации с использованием упомянутых катализаторов
JP2779450B2 (ja) シリカ―アルミナゲル
Liu et al. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane
JP5638019B2 (ja) 4〜6個の炭素原子を有するイソオレフィンの製造法
JP5493928B2 (ja) 炭化水素の製造方法
JP5443592B2 (ja) レニウムで促進されたエポキシ化触媒並びにその製造及び使用方法
US20130178680A1 (en) Catalyst for oxidative coupling of methane, method for preparing the same, and method for oxidative coupling reaction of methane using the same
Tang et al. Efficient and selective conversion of lactic acid into acetaldehyde using a mesoporous aluminum phosphate catalyst
JP7305558B2 (ja) 触媒及びその製造方法、並びに前記触媒を用いたジエン化合物の製造方法
Nadji et al. Gas phase dehydration of glycerol to acrolein over WO 3-based catalysts prepared by non-hydrolytic sol–gel synthesis
Liu et al. Highly efficient VO x/SBA-15 mesoporous catalysts for oxidative dehydrogenation of propane
JPWO2018056250A1 (ja) オリゴシランの製造方法
JPWO2007083684A1 (ja) 触媒およびそれを用いるオレフィンの製造方法
KR20100075923A (ko) 경질 올레핀류 제조용 촉매 및 경질 올레핀류의 제조 방법
JPH01279854A (ja) メチル―t―ブチルエーテルの一段階合成方法
JP7023382B2 (ja) 軽質オレフィン製造用触媒、その製造方法、およびこれを用いて軽質オレフィンを製造する方法
JP6091310B2 (ja) ブタジエンの製造方法
JP5877853B2 (ja) 混合酸化物組成物及びイソオレフィンの製造方法
JP7394950B2 (ja) 酸化亜鉛修飾mfi型ゼオライト及びそれを用いた芳香族化合物の製造方法
WO2022230791A1 (ja) プロピレンの製造方法
Brandão et al. Synthesis and characterisation of chromium-substituted ETS-10
JP2694180B2 (ja) クメンの製法
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
JP7262189B2 (ja) 共役ジエン製造用触媒、前記触媒の製造方法、及び共役ジエンの製造方法
JP2017178885A (ja) 炭化水素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18285398

Country of ref document: US

Ref document number: 2023517496

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280028312.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2301006861

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022795704

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795704

Country of ref document: EP

Effective date: 20231127

WWE Wipo information: entry into national phase

Ref document number: 523451257

Country of ref document: SA