WO2022222493A1 - 一种氧化物型固体电解质薄膜及其制备方法 - Google Patents

一种氧化物型固体电解质薄膜及其制备方法 Download PDF

Info

Publication number
WO2022222493A1
WO2022222493A1 PCT/CN2021/137634 CN2021137634W WO2022222493A1 WO 2022222493 A1 WO2022222493 A1 WO 2022222493A1 CN 2021137634 W CN2021137634 W CN 2021137634W WO 2022222493 A1 WO2022222493 A1 WO 2022222493A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
salt
oxide
spraying
type solid
Prior art date
Application number
PCT/CN2021/137634
Other languages
English (en)
French (fr)
Inventor
陈大明
陈宇童
高敏
刘俊龙
陈永
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2022222493A1 publication Critical patent/WO2022222493A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium ion battery materials, in particular to an oxide-type solid electrolyte film and a preparation method thereof.
  • lithium-ion batteries have excellent performances such as small size, light weight, high energy density, wide electrochemical window, and environmental friendliness, and are widely used.
  • the electrolyte inside traditional liquid lithium-ion batteries is flammable. It is explosive, so the safety issue has received extensive attention.
  • solid electrolytes have stable properties and can perfectly solve such safety problems.
  • Solid electrolytes are mainly divided into oxide type and sulfide type, and oxide type includes garnet, perovskite, NASICON, LISICON and other structures type.
  • the garnet-type solid electrolyte Li 7 La 3 Zr 2 O 12 (LLZO) has good prospects in the application of lithium-ion batteries, with good thermal stability, wide electrochemical window and high safety.
  • Lithium lanthanum zirconium oxide garnet type solid electrolyte which has two phases: tetragonal phase and cubic phase.
  • the phase of lithium lanthanum zirconium oxide garnet type solid electrolyte is mainly tetragonal phase, and lithium in the tetragonal phase
  • the sites of lithium are completely occupied by lithium, the geometric space for lithium ions to move is small, and the transport of lithium ions is very difficult, resulting in the poor conductivity of lithium lanthanum zirconium oxide garnet-type solid electrolytes at room temperature, and its ionic conductivity is small.
  • the solid electrolyte is prepared as a thin-film material, the diffusion time of lithium ions and the total impedance of the all-solid-state battery will be greatly reduced, which can make up for the deficiency of LLZO in ionic conductivity. It has been reported that in LLZO thin films, these LLZO electrolyte thin films cannot be applied in all-solid-state batteries due to the preparation method and substrate requirements.
  • the existing thin film preparation methods, pulsed laser deposition method can control the orientation growth of LLZO thin films, but the deposition area is small, and the large-scale manufacturing is limited; the magnetron sputtering method has a slow deposition rate and low conductivity of the prepared electrolyte films ; and both methods need to be carried out based on a vacuum environment, and the conditions are harsh.
  • Metal-organic vapor deposition has significant advantages in deposition speed and morphology control; atomic layer deposition, as a common method for interfacial modification, can uniformly deposit solid electrolyte layers on the surfaces of various complex substrates.
  • the present application proposes an oxide-type solid electrolyte film and a preparation method thereof, which can obtain a high ionic conductivity solid electrolyte film with excellent electrochemical performance in a short time and a simple process, which can be applied to all-solid-state In the battery, and the cost is low, it can be industrially produced.
  • a preparation method of an oxide-type solid electrolyte film comprising the following steps: (1) preparation of a water-based precursor solution:
  • the lithium salt takes lithium salt, lanthanum salt, zirconium salt, aluminum salt, calcium salt, citric acid, ethylene glycol, binder and surfactant, mix with deionized water, stir and heat to prepare 0.11- 0.13mol/L precursor solution
  • the chemical formula of the precursor is Li 6.55+x Al 0.15 La 3-x Ca x Zr 2 (OH) 24 , and x is 0-0.15
  • the molar ratio of ethylene glycol is 1:0.09-0.11:0.9-1.1
  • the Li content is 10% excess on the basis of the stoichiometric ratio. Since lithium is volatile during high-temperature sintering, in order to make up for the loss of lithium during high-temperature sintering, Therefore, the lithium salt should be weighed in excess of 10% on the basis of the stoichiometric ratio.
  • step (2) adding the precursor solution obtained in step (1) into the syringe of the ultrasonic spraying apparatus, placing the cut silicon substrate on the sample stage of the ultrasonic spraying apparatus, and spraying at a flow rate of 0.008-0.011ml/min to On the silicon substrate, the excessive flow rate will lead to regional aggregation of the solution on the surface of the silicon substrate, which is not conducive to the formation of thin films;
  • the sample stage is turned on and heated to 110-130°C.
  • the number of spraying cycles is three times. Each time includes one layer of horizontal spraying and one layer of vertical spraying. There are six layers of spraying in three times. When the number of cycles is 1-2 times (2-4 layers) If the number of cycles is too small, the solution cannot be completely attached to the surface of the silicon substrate; when the number of cycles is 4 (8 layers), the solution will aggregate on the surface of the silicon substrate and cannot be evenly distributed;
  • step (3) Sinter the silicon substrate sprayed in step (2), and heat it up to 1095-1105°C at a heating rate of 2.8-3.2°C/min. If the sintering temperature is too high or the sintering time is too long, the silicon substrate will be deformed. It is not conducive to the formation of a film on the surface of the solution, the conductivity of the film is reduced, and the sintering temperature is too low or the sintering time is too short, which will lead to incomplete reaction, unable to fully form the desired pure phase of the sample, and produce various impurity phases, which is not conducive to Sample properties; then naturally cooled to room temperature to obtain Li 6.55+x Al 0.15 La 3-x Ca x Zr 2 O 12 solid electrolyte film.
  • the present application also provides that the aluminum salt is replaced with an equimolar amount of gallium salt to obtain a Li 6.55+x Ga 0.15 La 3-x Ca x Zr 2 O 12 solid electrolyte film; or the aluminum salt is replaced with an equimolar amount of iron salt to obtain Li 6.55+x Fe 0.15 La 3-x Ca x Zr 2 O 12 solid electrolyte film.
  • the lithium salt is lithium nitrate
  • the lanthanum salt is lanthanum nitrate hexahydrate
  • the zirconium salt is zirconium oxynitrate
  • the aluminum salt is aluminum nitrate nonahydrate
  • the calcium salt is Calcium nitrate tetrahydrate or calcium nitrate anhydrous
  • the binder is a binder SPEEK-PSI-Li
  • the surfactant is a surfactant
  • step (1) the binder and the surfactant are both 9.8%-10.2% of the total mass of the precursor solution.
  • the temperature of the stirring and heating is 85-95°C, preferably 90°C.
  • the stirring and heating method is water bath heating or oil bath heating.
  • step (2) the time for heating at 445-455° C. on the magnetic stirrer is 5-6 min.
  • step (2) the volume of the precursor solution added to the syringe of the ultrasonic sprayer is 9-10ml.
  • step (3) the time of the insulation is 1-3h, preferably 1h.
  • a method for an oxide-type solid electrolyte film comprising the following steps: (1) preparation of a water-based precursor solution:
  • step (2) adding the precursor solution obtained in step (1) into the syringe of the ultrasonic spraying apparatus, placing the cut silicon substrate on the sample stage of the ultrasonic spraying apparatus, and spraying to the silicon base at a flow rate of 0.01 ml/min
  • the sample stage was opened and heated to 120 °C, and the number of spraying cycles was three times, each time including horizontal spraying one layer and vertical spraying one layer, three spraying a total of six layers, after each spraying layer, placed on a magnetic stirrer and heated at 450 °C for treatment 5min;
  • step (3) Sintering the silicon substrate sprayed in step (2), raising the temperature to 1100°C at a heating rate of 3°C/min, maintaining for 1 hour, and then cooling to room temperature naturally to obtain the target product Li 6.55+x Al 0.15 La 3 -x Ca x Zr 2 O 12 .
  • An oxide-type solid electrolyte film is prepared by the preparation method of the oxide-type solid electrolyte film described in any one of the application.
  • This application first prepares a water-based precursor solution, sprays the solution on a silicon substrate by ultrasonic spraying, and finally adopts a high-temperature heat treatment to obtain a solid electrolyte film, which can be prepared in a very short time and with a simple process to obtain high ionic conductivity
  • Electrolyte film the chemical formula is Li 6.55+x Al 0.15 La 3-x Ca x Zr 2 O 12 , Li 6.55+x Ga 0.15 La 3-x Ca x Zr 2 O 12 , Li 6.55+x Fe 0.15 La 3- x Ca x Zr 2 O 12 .
  • the solid electrolyte is prepared as a thin-film material, which greatly reduces the diffusion time of lithium ions and the total impedance of the all-solid-state battery, and makes up for the deficiency of LLZO in ionic conductivity.
  • the main phase of the solid electrolyte prepared in the present application is cubic phase at room temperature, the sites of lithium in the cubic phase are not completely occupied by lithium, and there are a large number of lithium vacancies in the whole structure, which provides a channel for the transport of lithium ions, thereby
  • the electrical conductivity of this type of solid electrolyte is greatly improved, and it has high electrical conductivity at room temperature, and its ionic conductivity is large.
  • the solid electrolyte prepared by the ultrasonic spraying method in the present application not only has excellent electrochemical performance, but also has a simple preparation process, flexible and feasible synthesis conditions, easy control of chemical components, low cost, and is suitable for industrial production. Therefore, the solid electrolyte film prepared in this application can be applied to all-solid-state batteries.
  • Example 1 is a flow chart of the preparation of the oxide-type solid electrolyte film Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 in Example 1.
  • FIG. 2 is an XRD pattern of the oxide-type solid electrolyte thin film Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 in Example 1. It can be seen from Fig. 2 that each peak at different sintering time roughly corresponds to the cubic phase pattern. Between 27° and 30°, there are only (400) peaks and no (004) peaks in each group of samples. It can be seen that the main crystal phases of the obtained samples are all cubic phase structures.
  • FIG. 3 is an SEM image of the oxide-type solid electrolyte thin film Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 in Example 1.
  • Figure 3 shows the electron microscope images of the sample taken at 1000x and 2000x from left to right, respectively. It can be seen that the grain size is not uniform in size. There are some holes and gaps that cause the density to drop.
  • Figure 4 is the EIS spectrum of the oxide-type solid electrolyte film Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 at different temperatures in Example 1; by calculating the ionic conductivity is inversely proportional to the sintering time, at room temperature it is 2.28 ⁇ 10 -5 S/cm.
  • Figure 5 is the EIS spectrum of the oxide-type solid electrolyte film Li 6.6 Ga 0.15 La 2.95 Ca 0.05 Zr 2 O 12 at different test temperatures in Example 5; the ionic conductivity can be up to 2.28 ⁇ 10 -5 S at room temperature by calculating /cm.
  • Figure 6 is the EIS spectrum of the oxide-type solid electrolyte film Li 6.6 Fe 0.15 La 2.95 Ca 0.05 Zr 2 O 12 at different test temperatures of Example 6; the ionic conductivity can be up to 1.14 ⁇ 10 -6 S at room temperature by calculating /cm.
  • the molar ratio of lithium nitrate, citric acid and ethylene glycol is 1:0.1:1, and the added amount of binder and surfactant is 10% of the total mass of the precursor solution.
  • the chemical formula of the precursor was Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 (OH) 24 .
  • step (2) Add about 10ml of the precursor solution prepared in step (1) into the syringe of the ultrasonic sprayer, clean the pipeline with the precursor solution, and place the cut silicon substrate on the heatable sample stage , set the program to spray, and spray on the silicon substrate at a flow rate of 0.01ml/min; the sample stage is opened and heated to 110-130 ° C, this example is heated to 120 ° C, and the number of spraying cycles is three times, each including horizontal spraying One layer and one layer are sprayed longitudinally, and a total of six layers are sprayed in three times. After each sprayed layer, it was placed on a magnetic stirrer and heated at 450 °C for 5 min. Repeat this until all layers are sprayed;
  • step (3) Use flat tweezers to take out the silicon substrate sprayed in step (2), put it into a muffle furnace for sintering, heat up to 1100°C at a heating rate of 3°C/min, and keep it for 1-3 hours. 1 h, and then naturally cooled to room temperature to obtain the target product Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 solid electrolyte film sample.
  • Use flat tweezers to remove the sample and store in an airtight container.
  • the XRD test collects the corresponding characteristic peaks and compares them with the standard cubic phase and tetragonal phase peaks in the database to determine whether the product phase we need is generated, and the appearance of impurity peaks can also be observed.
  • This application uses a D2-PHASER model instrument, a Cu target ray source at a voltage of 40Kv, and a scanning range of 10° to 80°.
  • the Phenom Prox scanning electron microscope is used to analyze the microscopic morphology of the doped solid electrolyte sample, and observe the crystallization of the sample, whether the grains are uniform, dense, and so on.
  • the energy spectrum test obtains the distribution of each element in the sample.
  • This application uses a 1470E electrochemical workstation with a vibration amplitude of 10Mv and a frequency range of 1MHz to 0.1Hz. Testing AC impedance is an intuitive way to characterize the conductivity of solid electrolytic samples.
  • the AC impedance of lithium ion conductors consists of grain boundaries, grain impedances and their corresponding capacitances.
  • the formula for calculating conductivity is as follows:
  • conductivity
  • r radius of ceramic sample
  • R total resistance
  • L thickness of ceramic sample.
  • the activation energy can be calculated by the Arrhenius formula:
  • Ea activation energy
  • R molar gas constant
  • T thermodynamic temperature (K).
  • Example 2 is an XRD pattern of the oxide-type solid electrolyte thin film Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 in Example 1. It can be seen from Fig. 2 that each peak at different sintering time roughly corresponds to the cubic phase pattern. Between 27° and 30°, there are only (400) peaks and no (004) peaks in each group of samples. It can be seen that the main crystal phases of the samples obtained in Example 1 are all cubic phase structures.
  • FIG. 3 is a SEM image of the oxide-type solid electrolyte thin film Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 in Example 1.
  • Figure 3 shows the electron microscope images of the sample taken at 1000x and 2000x from left to right, respectively. It can be seen that the grain distribution is relatively uniform, which means that the sample has good electrical conductivity.
  • Figure 4 shows the EIS spectra of the oxide-type solid electrolyte film Li 6.6 Al 0.15 La 2.95 Ca 0.05 Zr 2 O 12 at different test temperatures; the ionic conductivity can be up to 4.76 ⁇ 10 -6 S/cm at room temperature by calculation.
  • Example 1 With reference to the preparation process of Example 1, adjust the dosage ratio of lithium nitrate, lanthanum nitrate hexahydrate, and calcium nitrate tetrahydrate, and also replace aluminum nitrate nonahydrate with gallium nitrate or ferric nitrate, and other preparation steps are consistent with those in Example 1, respectively preparing Examples 2 to 6 Solid Electrolyte Thin Film Samples.
  • Example 2 Al element is doped alone, the general chemical formula of the oxide electrolyte film with high ionic conductivity is Li 6.55 Al 0.15 La 3 Zr 2 O 12 , and the raw materials used are LiNO 3 , La(NO 3 ) 3 , ZrO (NO 3 ) 2 , Al(NO 3 ) 3 powder.
  • Example 3 Doping Ga element alone, the general chemical formula of the oxide electrolyte film with high ionic conductivity is Li 6.55 Ga 0.15 La 3 Zr 2 O 12 , and the raw materials used are LiNO 3 , La(NO 3 ) 3 , ZrO (NO 3 ) 2 , Ga(NO 3 ) 3 powder.
  • Example 4 Doping Fe alone, the general chemical formula of the oxide electrolyte film with high ionic conductivity is Li 6.55 Fe 0.15 La 3 Zr 2 O 12 , and the raw materials used are LiNO 3 , La(NO 3 ) 3 , ZrO (NO 3 ) 2 , Fe(NO 3 ) 3 powder.
  • Example 5 Double-doped Ga element and Ca element, the general chemical formula of the oxide electrolyte film with high ionic conductivity is Li 6.6 Ga 0.15 La 2.95 Ca 0.05 Zr 2 O 12 , and the raw materials used are LiNO 3 , La(NO 3 ) 3 , ZrO(NO 3 ) 2 , Ga(NO 3 ) 3 , Ca(NO 3 ) 2 powder.
  • Example 6 Double-doped Fe element and Ca element, the general chemical formula of the oxide electrolyte film with high ionic conductivity is Li 6.6 Fe 0.15 La 2.95 Ca 0.05 Zr 2 O 12 , and the raw materials used are LiNO 3 , La(NO 3 ) 3 , ZrO(NO 3 ) 2 , Fe(NO 3 ) 3 , Ca(NO 3 ) 2 powder.
  • Figure 5 is the EIS spectrum of the oxide-type solid electrolyte film Li 6.6 Ga 0.15 La 2.95 Ca 0.05 Zr 2 O 12 at different test temperatures in Example 5; the ionic conductivity can be up to 2.28 ⁇ 10 -5 S at room temperature by calculating /cm.
  • Figure 6 is the EIS spectrum of the oxide-type solid electrolyte film Li 6.6 Fe 0.15 La 2.95 Ca 0.05 Zr 2 O 12 at different test temperatures of Example 6; the ionic conductivity can be up to 1.14 ⁇ 10 -6 S at room temperature by calculating /cm.
  • Example 1 On the basis of Example 1, the preparation process of the water-based precursor solution remains unchanged. Instead of using an ultrasonic spraying instrument for spraying, the solution is attached to the surface of the silicon substrate by spin coating, and the silicon substrate coated with the solution is placed on the surface. It is sintered in a muffle furnace, and the sintering process remains unchanged. The precursor solution cannot be uniformly attached to the surface of the silicon substrate, and the macroscopic and microscopic properties of the obtained electrolyte are degraded compared with ultrasonic spraying.
  • Example 1 On the basis of Example 1, the preparation process of the water-based precursor solution remains unchanged. Instead of using an ultrasonic spraying instrument for spraying, the solution is attached to the surface of the silicon substrate by dip coating, and the silicon substrate coated with the solution is placed on the surface. It is sintered in a muffle furnace, and the sintering process remains unchanged. Similar to Comparative Example 1, the precursor solution could not be uniformly attached to the surface of the silicon substrate, and the macroscopic and microscopic properties of the obtained electrolyte decreased compared with ultrasonic spraying.
  • Example 1 On the basis of Example 1, the number of spraying cycles was adjusted, and the number of cycles was two (four layers), and the water-based precursor solution could not be completely attached to the surface of the silicon substrate.
  • Example 1 On the basis of Example 1, the number of spraying cycles was adjusted, and the number of cycles was four (eight layers), and the water-based precursor solution would aggregate on the surface of the silicon substrate and could not be uniformly distributed.
  • Example 1 On the basis of Example 1, when the sintering temperature is adjusted to 1300°C, the silicon substrate is deformed, which is not conducive to the formation of a film on the surface of the water-based precursor solution, and the conductivity of the film decreases.
  • Example 1 On the basis of Example 1, when the sintering temperature was adjusted to 800°C, the reaction was incomplete, the desired pure phase of the sample could not be completely formed, and various impurity phases were generated, which was not conducive to the performance of the sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种氧化物型固体电解质薄膜及其制备方法,首先取锂盐、镧盐、锆盐、铝盐、钙盐、柠檬酸、乙二醇、粘结剂和表面活性剂,与去离子水混合,搅拌加热,制备0.11-0.13mol/L前驱体溶液;将前驱体溶液加入到超声喷涂仪的注射器中,将裁好的硅基片放在超声喷涂仪的样品台上,以流速0.008-0.011ml/min进行喷涂至硅基片上,样品台打开加热至110-130℃,喷涂循环次数为三次,三次共喷涂六层,每喷涂一层后放在磁力搅拌器上加热445-455℃处理;将喷涂好的硅基片进行烧结,以2.8-3.2℃/min的升温速率升温至1095-1105℃保温,然后自然冷却至室温,制得固体电解质薄膜。采用本申请的方法,可以在较短的时间及简单的工艺制得具有优异的电化学性能的高离子电导率固体电解质薄膜,成本低,可工业化生产。

Description

一种氧化物型固体电解质薄膜及其制备方法 技术领域
本申请涉及锂离子电池材料技术领域,特别涉及一种氧化物型固体电解质薄膜及其制备方法。
背景技术
在目前的电池领域研究中,锂离子电池具有体积小、质量轻、能量密度高、电化学窗口宽、环境友好等优越性能而且应用广泛,但目前传统的液态锂离子电池内部的电解液易燃易爆,因此安全性问题受到了广泛关注。对比之下,固体电解质的性质稳定,能完美地解决这类安全性问题,固体电解质主要分为氧化物型与硫化物型,而氧化物型包含石榴石、钙钛矿、NASICON、LISICON等结构型。其中,石榴石型固体电解质Li 7La 3Zr 2O 12(LLZO)在锂离子电池的应用上具有良好的前景,具有良好的热稳定性,宽的电化学窗口和高的安全性等优点。
问题1:锂镧锆氧石榴石型固体电解质,它具有两种物相:四方相和立方相,在室温下锂镧锆氧石榴石型固体电解质的物相主要是四方相,四方相中锂的位点被锂完全占据,锂离子移动的几何空间较小,锂离子传输十分困难,导致室温下锂镧锆氧石榴石型固体电解质的导电能力十分差,其离子电导率较小。这些问题严重制约LLZO的应用。
如果将固体电解质制备成薄膜型材料,会大大降低锂离子的扩散时间与全固态电池的总阻抗,可以弥补LLZO在离子电导率方面的不足。目前已报道LLZO薄膜中,由于制备方法、基底要求等问题,这些LLZO电解质薄膜还不能在全固态电池中取得应用。
问题2:目前已有的薄膜制备方法,脉冲激光沉积法能控制LLZO薄膜取向生长,但沉积面积小,大规模制造受限;磁控溅射法沉积速率慢,制备出的电解质薄膜电导率低;且这两种方法都需要基于真空环境进行,条件严苛。金属有机气相沉积在沉积速度和形貌控制方面有着显著的优势;原子层沉积法作为界面改性的一种常用方法,可以将固体电解质层均匀地沉积在各种复杂基底的表面。可以看出研究者们已通过各种方法能够制备出LLZO超薄电解质薄膜,且能精确控制薄膜的厚度。但是由于上述介绍的制备方法,由于自身的局限性,如严苛的制备条件、高要求的基底材料、非晶薄膜较低的离子电导、制备成本高等,使得这类的LLZO薄膜电解质还没有被有效地应用在全固态电池中。
因此,本领域急需一种新型固态电解质制备方法。
发明内容
鉴于此,本申请提出一种氧化物型固体电解质薄膜及其制备方法,可以在较短的时间及简单的工艺制得具有优异电化学性能的高离子电导率固体电解质薄膜,可以应用于全固态电池中,并且成本低,可工业化生产。
本申请的技术方案是这样实现的:一种氧化物型固体电解质薄膜的制备方法,包括以下步骤:(1)水基前驱体溶液制备:
按照相应的化学计量比,取锂盐、镧盐、锆盐、铝盐、钙盐、柠檬酸、乙二醇、粘结剂和表面活性剂,与去离子水混合,搅拌加热,制备0.11-0.13mol/L前驱体溶液,所述前驱体的化学通式为Li 6.55+xAl 0.15La 3-xCa xZr 2(OH) 24,x为0-0.15;所述锂盐、柠檬酸和乙二醇的摩尔比为1:0.09-0.11:0.9-1.1;其中Li含量在化学计量比基础上过量10%,由于锂在高温烧结过程中易挥发,为了弥补高温烧结过程中的锂损失,因此称量锂盐时需在化学计量比基础上过量10%。
(2)将步骤(1)制得前驱体溶液加入到超声喷涂仪的注射器中,将裁好的硅基片放在超声喷涂仪的样品台上,以流速0.008-0.011ml/min进行喷涂至硅基片上,流速过大会导致溶液在硅基片表面区域性聚集,不利于形成薄膜;
样品台打开加热至110-130℃,喷涂循环次数为三次,每次包含横向喷涂一层和纵向喷涂一层,三次共喷涂六层,当循环次数为1-2次(2-4层)时循环次数过少,溶液无法完全附着在硅基片表面;循环次数为4次(8层)时,溶液会在硅基片表面聚集无法均匀分布;
每喷涂一层后放在磁力搅拌器上加热445-455℃处理;
(3)将步骤(2)喷涂好的硅基片进行烧结,以2.8-3.2℃/min的升温速率升温至1095-1105℃保温,烧结温度过高或烧结时间过长会导致硅基片变形不利于溶液在其表面成膜,薄膜电导率降低,烧结温度过低或烧结时间过短会导致反应不完全,无法完全形成所需的样品纯相,产生各种各样的杂相,不利于样品性能;然后自然冷却至室温,制得Li 6.55+xAl 0.15La 3-xCa xZr 2O 12固体电解质薄膜。
本申请还提供,将铝盐替换为等摩尔量的镓盐,制得Li 6.55+xGa 0.15La 3-xCa xZr 2O 12固体电解质薄膜;或者将铝盐替换为等摩尔量的铁盐,制得Li 6.55+xFe 0.15La 3-xCa xZr 2O 12固体电解质薄膜。
进一步的,步骤(1),所述锂盐为硝酸锂,所述镧盐为六水合硝酸镧,所述锆盐为硝酸氧锆,所述铝盐为九水合硝酸铝,所述钙盐为四水合硝酸钙或者无水硝酸钙;所述粘结剂为粘结剂SPEEK-PSI-Li;所述表面活性剂为表面活性剂
Figure PCTCN2021137634-appb-000001
进一步的,步骤(1),所述粘结剂和表面活性剂均为前驱体溶液总质量的9.8%-10.2%。
进一步的,步骤(1),所述搅拌加热的温度为85-95℃,优选90℃。
进一步的,步骤(2),所述搅拌加热的方式为水浴加热或者油浴加热。
进一步的,步骤(2),所述磁力搅拌器上加热445-455℃处理的时间为5-6min。
进一步的,步骤(2),所述前驱体溶液加入到超声喷涂仪的注射器中体积量为9-10ml。
进一步的,步骤(3),所述保温的时间为1-3h,优选1h。
一种氧化物型固体电解质薄膜的方法,包括以下步骤:(1)水基前驱体溶液制备:
取硝酸锂、六水合硝酸镧、硝酸氧锆、九水合硝酸铝、四水合硝酸钙、柠檬酸、乙二醇、粘结剂SPEEK-PSI-Li、表面活性剂
Figure PCTCN2021137634-appb-000002
与去离子水混合,搅拌加热,制备0.12mol/L前驱体溶液,所述前驱体的化学通式为Li 6.55+xAl 0.15La 3-xCa xZr 2(OH) 24,x为0-0.15;所述锂盐、柠檬酸和乙二醇的摩尔比为1:0.1:1;
(2)将步骤(1)制得前驱体溶液加入到超声喷涂仪的注射器中,将裁好的硅基片放在超声喷涂仪的样品台上,以流速0.01ml/min进行喷涂至硅基片上,样品台打开加热至120℃,喷涂循环次数为三次,每次包含横向喷涂一层和纵向喷涂一层,三次共喷涂六层,每喷涂一层后放在磁力搅拌器上加热450℃处理5min;
(3)将步骤(2)喷涂好的硅基片进行烧结,以3℃/min的升温速率升温至1100℃,保温1h,然后自然冷却至室温,得到目标产品Li 6.55+xAl 0.15La 3-xCa xZr 2O 12
一种氧化物型固体电解质薄膜,由本申请任一项所述的氧化物型固体电解质薄膜的制备方法制得。
与现有技术相比,本申请的有益效果是:
(1)本申请首先制备水基前驱体溶液,通过超声波喷涂在硅基片上对溶液进行喷涂,最后采用高温热处理得到固体电解质薄膜,可以在很短的时间及简单的工艺制备得到高离子电导率电解质薄膜,化学通式为Li 6.55+xAl 0.15La 3-xCa xZr 2O 12、Li 6.55+xGa 0.15La 3-xCa xZr 2O 12、Li 6.55+xFe 0.15La 3-xCa xZr 2O 12
(2)本申请将固体电解质制备成薄膜型材料,大大降低锂离子的扩散时间与全固态电池的总阻抗,弥补了LLZO在离子电导率方面的不足。本申请所制备的固体电解质在室温下的主要物相为立方相,立方相中锂的位点被锂不完全占据,整个结构中存在大量的锂空位,这为锂离子的传输提供通道,从而大大提高该类型固体电解质的导电能力,在室温下就具有较高的导电能力,其离子电导率较大。
(3)相较于已存在的薄膜电解质制备方法(磁控溅射、脉冲激光沉积等),由于方法自 身的局限性,如严苛的制备条件、高要求的基底材料、非晶薄膜较低的离子电导、制备成本高等,使得这类LLZO电解质薄膜还没有被有效地应用在全固态电池中。而本申请采用超声波喷涂法不仅制得的固态电解质具有优异的电化学性能,而且制备过程简单、合成条件灵活可行、化学组分易于控制、成本低、适宜工业化生产。因此本申请制备的固体电解质薄膜可应用于全固态电池。
附图说明
图1为实施例1氧化物型固体电解质薄膜Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12的制备流程图。
图2实施例1氧化物型固体电解质薄膜Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12的XRD图。由图2能够看到不同烧结时间下的各个峰与立方相图谱大致对应。在27°~30°之间各组样品均只存在(400)峰,不存在(004)峰,可知所获得的样品主晶相均为立方相结构。
图3实施例1氧化物型固体电解质薄膜Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12的SEM图。如图3从左至右分别是样品在1000倍和2000倍下拍摄的电镜图。能看到晶粒尺寸大小不均匀。存在一些孔洞和间隙,导致密度下降。
图4为实施例1氧化物型固体电解质薄膜Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12在不同温度下的EIS图谱;通过计算离子电导率与烧结时间呈反比,在室温下为2.28×10 -5S/cm。
图5为实施例5氧化物型固体电解质薄膜Li 6.6Ga 0.15La 2.95Ca 0.05Zr 2O 12在不同测试温度下的EIS图谱;通过计算离子电导率在室温下最高可达2.28×10 -5S/cm。
图6为实施例6氧化物型固体电解质薄膜Li 6.6Fe 0.15La 2.95Ca 0.05Zr 2O 12在不同测试温度下的EIS图谱;通过计算离子电导率在室温下最高可达1.14×10 -6S/cm。
具体实施方式
为了更好理解本申请技术内容,下面提供具体实施例,对本申请做进一步的说明。
本申请实施例所用的实验方法如无特殊说明,均为常规方法。
本申请实施例所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
一、产品制备
实施例1 氧化物型固体电解质薄膜的制备
(1)水基前驱体溶液制备:原料混合:按照相应的化学计量比,对硝酸锂(LiNO 3)、六水合硝酸镧(La(NO 3) 3`6H 2O)、硝酸氧锆(ZrO(NO 3) 2)、九水合硝酸铝(Al(NO 3) 3`9H 2O)、 四水合硝酸钙(Ca(NO 3) 2`4H 2O)、柠檬酸、乙二醇、粘结剂SPEEK-PSI-Li、表面活性剂
Figure PCTCN2021137634-appb-000003
进行相应的称量,化学计量比为Li:La:Zr:Al:Ca=6.6:2.95:2:0.15:0.05(132:59:40:3:1),其中Li含量在化学计量比基础上过量10%,由于锂在高温烧结过程中易挥发,为了弥补高温烧结过程中的锂损失,因此称量硝酸锂(LiNO 3)时需过量10%。其中,硝酸锂、柠檬酸和乙二醇的摩尔比为1:0.1:1,粘结剂和表面活性剂的加入量均为前驱体溶液总质量的10%。将原料与适量的去离子水混合,一同加入到烧杯中,开启磁力搅拌器,水浴加热搅拌,加热温度90℃,直至原料完全混合溶解,搅拌过程中注意观察溶液量变化,加入去离子水以维持溶液浓度不变,制备0.12mol/L前驱体溶液,溶液呈透明状,所述前驱体的化学通式为Li 6.6Al 0.15La 2.95Ca 0.05Zr 2(OH) 24
(2)将步骤(1)配制好的前驱体溶液取约10ml加入到超声喷涂仪的注射器中,用前驱体溶液对管路进行清洗,将裁好的硅基片放在可加热样品台上,设定好程序进行喷涂,以流速0.01ml/min进行喷涂至硅基片上;样品台打开加热至110-130℃,本实施例加热至120℃,喷涂循环次数为三次,每次包含横向喷涂一层和纵向喷涂一层,三次共喷涂六层。每喷涂一层后放在磁力搅拌器上加热450℃处理5min。如此反复直至全部层数喷涂结束;
(3)使用扁形镊子将步骤(2)喷涂好的硅基片取出放入到马弗炉中进行烧结,以3℃/min的升温速率升温至1100℃,保温1-3h,本实施例保温1h,然后自然冷却至室温,得到目标产品Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12固体电解质薄膜样品。使用扁形镊子取出样品,密封保存。
二、产品性能测试
1.测试方法
(1)XRD测试
XRD测试采集相应的特征峰,与数据库中的标准立方相与四方相峰值进行比较,判断是否生成我们所需的产品物相,同时也能观测到杂质峰的出现。本申请采用D2-PHASER型号仪器,在40Kv电压下Cu靶射线源,扫描范围10°到80°。
(2)扫描电子显微镜(SEM)及能谱测试
本申请采用Phenom Prox型号扫描电子显微镜对掺杂固体电解质样品进行微观形貌分析,观测样品的结晶情况、晶粒是否均匀、致密度等等。能谱测试得到各个元素在样品中的分布情况。
(3)交流阻抗(EIS)测试
本申请采用1470E型号电化学工作站,振动幅度10Mv,频率范围1MHz到0.1Hz。测试交流阻抗是对固体电解样品电导率直观的表征方式,锂离子导体的交流阻抗由晶界、晶粒阻抗及其相对应的电容组成。电导率计算公式如下:
σ=L/(πr 2)R
式中符号:σ:电导率;r:陶瓷样品半径;R:总电阻;L:陶瓷样品厚度。
样品在25度到150度范围内测量四个以上阻抗值,按照上式得出离子电导率后,可通过阿伦尼乌斯公式进行活化能的计算:
lnσ=lnσ 0-Ea/RT
式中符号:Ea:活化能;R:摩尔气体常数;T:热力学温度(K)。
2.测试结果
图2为实施例1氧化物型固体电解质薄膜Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12的XRD图。由图2能够看到不同烧结时间下的各个峰与立方相图谱大致对应。在27°~30°之间各组样品均只存在(400)峰,不存在(004)峰,可知实施例1所获得的样品主晶相均为立方相结构。
图3为实施例1氧化物型固体电解质薄膜Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12的SEM图。如图3从左至右分别是样品在1000倍和2000倍下拍摄的电镜图。能看到晶粒分布较为均匀,这意味着样品有良好的导电性能。
图4为氧化物型固体电解质薄膜Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12在不同测试温度下的EIS图谱;通过计算离子电导率在室温下最高可达4.76×10 -6S/cm。
参照实施例1制备工艺,调整硝酸锂、六水合硝酸镧、四水合硝酸钙用量比例,还可以将九水合硝酸铝替换为硝酸镓或硝酸铁,其他制备步骤与实施例1保持一致,分别制备实施例2至6固体电解质薄膜样品。
序号 产品的化学通式 Li La Zr Al Ga Ca Fe
实施例1 Li 6.6Al 0.15La 2.95Ca 0.05Zr 2O 12 6.60 2.95 2.00 0.15 0 0.05 0
实施例2 Li 6.55Al 0.15La 3Zr 2O 12 6.55 3.00 2.00 0.15 0 0 0
实施例3 Li 6.55Ga 0.15La 3Zr 2O 12 6.55 3.00 2.00 0 0.15 0 0
实施例4 Li 6.55Fe 0.15La 3Zr 2O 12 6.55 3.00 2.00 0 0 0 0.15
实施例5 Li 6.6Ga 0.15La 2.95Ca 0.05Zr 2O 12 6.60 2.95 2.00 0 0.15 0.05 0
实施例6 Li 6.6Fe 0.15La 2.95Ca 0.05Zr 2O 12 6.60 2.95 2.00 0 0 0.05 0.15
实施例2:单独掺杂Al元素,其高离子电导率氧化物电解质薄膜化学通式为 Li 6.55Al 0.15La 3Zr 2O 12,所使用的原料为LiNO 3、La(NO 3) 3、ZrO(NO 3) 2、Al(NO 3) 3粉末。
实施例3:单独掺杂Ga元素,其高离子电导率氧化物电解质薄膜化学通式为Li 6.55Ga 0.15La 3Zr 2O 12,所使用的原料为LiNO 3、La(NO 3) 3、ZrO(NO 3) 2、Ga(NO 3) 3粉末。
实施例4:单独掺杂Fe元素,其高离子电导率氧化物电解质薄膜化学通式为Li 6.55Fe 0.15La 3Zr 2O 12,所使用的原料为LiNO 3、La(NO 3) 3、ZrO(NO 3) 2、Fe(NO 3) 3粉末。
实施例5:双掺杂Ga元素和Ca元素,其高离子电导率氧化物电解质薄膜化学通式为Li 6.6Ga 0.15La 2.95Ca 0.05Zr 2O 12,所使用的原料为LiNO 3、La(NO 3) 3、ZrO(NO 3) 2、Ga(NO 3) 3、Ca(NO 3) 2粉末。
实施例6:双掺杂Fe元素和Ca元素,其高离子电导率氧化物电解质薄膜化学通式为Li 6.6Fe 0.15La 2.95Ca 0.05Zr 2O 12,所使用的原料为LiNO 3、La(NO 3) 3、ZrO(NO 3) 2、Fe(NO 3) 3、Ca(NO 3) 2粉末。
图5为实施例5氧化物型固体电解质薄膜Li 6.6Ga 0.15La 2.95Ca 0.05Zr 2O 12在不同测试温度下的EIS图谱;通过计算离子电导率在室温下最高可达2.28×10 -5S/cm。
图6为实施例6氧化物型固体电解质薄膜Li 6.6Fe 0.15La 2.95Ca 0.05Zr 2O 12在不同测试温度下的EIS图谱;通过计算离子电导率在室温下最高可达1.14×10 -6S/cm。
对比例1
在实施例1的基础上,水基前驱体溶液制备工艺不变,不采用超声波喷涂仪器进行喷涂,而采用旋涂方式在硅基片表面进行溶液附着,将表面涂好溶液的硅基片放入马弗炉中烧结,烧结工艺不变。前驱体溶液未能均匀地附着在硅基片表面,相较于超声波喷涂,获得的电解质宏观及微观性能都有所下降。
对比例2
在实施例1的基础上,水基前驱体溶液制备工艺不变,不采用超声波喷涂仪器进行喷涂,而采用浸涂方式在硅基片表面进行溶液附着,将表面涂好溶液的硅基片放入马弗炉中烧结,烧结工艺不变。与对比例1类似,前驱体溶液未能均匀地附着在硅基片表面,相较于超声波喷涂,获得的电解质宏观及微观性能出现下降。
对比例3
在实施例1的基础上,调整喷涂循环次数,循环次数为两次(四层),水基前驱体溶液 无法完全附着在硅基片表面。
对比例4
在实施例1的基础上,调整喷涂循环次数,循环次数为四次(八层),水基前驱体溶液会在硅基片表面聚集无法均匀分布。
对比例5
在实施例1的基础上,调整烧结温度为1300℃,硅基片变形,不利于水基前驱体溶液在其表面成膜,薄膜电导率降低。
对比例6
在实施例1的基础上,调整烧结温度为800℃,反应不完全,无法完全形成所需的样品纯相,产生各种各样的杂相,不利于样品性能。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种氧化物型固体电解质薄膜的制备方法,其特征在于,包括以下步骤:
    (1)水基前驱体溶液制备:
    取锂盐、镧盐、锆盐、铝盐、钙盐、柠檬酸、乙二醇、粘结剂和表面活性剂,与去离子水混合,搅拌加热,制备0.11-0.13mol/L前驱体溶液,所述前驱体的化学通式为Li 6.55+xAl 0.15La 3-xCa xZr 2(OH) 24,x为0-0.15;所述锂盐、柠檬酸和乙二醇的摩尔比为1:0.09-0.11:0.9-1.1;
    (2)将步骤(1)制得前驱体溶液加入到超声喷涂仪的注射器中,将裁好的硅基片放在超声喷涂仪的样品台上,以流速0.008-0.011ml/min进行喷涂至硅基片上,样品台打开加热至110-130℃,喷涂循环次数为三次,每次包含横向喷涂一层和纵向喷涂一层,三次共喷涂六层,每喷涂一层后放在磁力搅拌器上加热445-455℃处理;
    (3)将步骤(2)喷涂好的硅基片进行烧结,以2.8-3.2℃/min的升温速率升温至1095-1105℃保温,然后自然冷却至室温,制得Li 6.55+xAl 0.15La 3-xCa xZr 2O 12固体电解质薄膜。
  2. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,所述铝盐替换为等摩尔量的镓盐,制得Li 6.55+xGa 0.15La 3-xCa xZr 2O 12固体电解质薄膜;或者所述铝盐替换为等摩尔量的铁盐,制得Li 6.55+xFe 0.15La 3-xCa xZr 2O 12固体电解质薄膜。
  3. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,步骤(1),所述锂盐为硝酸锂,所述镧盐为六水合硝酸镧,所述锆盐为硝酸氧锆,所述铝盐为九水合硝酸铝,所述钙盐为四水合硝酸钙或者无水硝酸钙;
    所述粘结剂为粘结剂SPEEK-PSI-Li;所述表面活性剂为表面活性剂
    Figure PCTCN2021137634-appb-100001
  4. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,步骤(1),所述粘结剂和表面活性剂均为前驱体溶液总质量的9.8%-10.2%。
  5. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,步骤(1),所述搅拌加热的温度为85-95℃。
  6. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,步骤(2),所述磁力搅拌器上加热445-455℃处理的时间为5-6min。
  7. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,步骤(2), 所述前驱体溶液加入到超声喷涂仪的注射器中体积量为9-10ml。
  8. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,步骤(3),所述保温的时间为1-3h。
  9. 根据权利要求1所述的氧化物型固体电解质薄膜的制备方法,其特征在于,包括以下步骤:(1)水基前驱体溶液制备:
    取硝酸锂、六水合硝酸镧、硝酸氧锆、九水合硝酸铝、四水合硝酸钙、柠檬酸、乙二醇、粘结剂SPEEK-PSI-Li、表面活性剂
    Figure PCTCN2021137634-appb-100002
    与去离子水混合,搅拌加热,制备0.12mol/L前驱体溶液,所述前驱体的化学通式为Li 6.55+xAl 0.15La 3-xCa xZr 2(OH) 24,x为0-0.15;所述锂盐、柠檬酸和乙二醇的摩尔比为1:0.1:1;
    (2)将步骤(1)制得前驱体溶液加入到超声喷涂仪的注射器中,将裁好的硅基片放在超声喷涂仪的样品台上,以流速0.01ml/min进行喷涂至硅基片上,样品台打开加热至120℃,喷涂循环次数为三次,每次包含横向喷涂一层和纵向喷涂一层,三次共喷涂六层,每喷涂一层后放在磁力搅拌器上加热450℃处理5min;
    (3)将步骤(2)喷涂好的硅基片进行烧结,以3℃/min的升温速率升温至1100℃,保温1h,然后自然冷却至室温,得到目标产品Li 6.55+xAl 0.15La 3-xCa xZr 2O 12
  10. 一种氧化物型固体电解质薄膜,其特征在于,由权利要求1至9任一项所述的氧化物型固体电解质薄膜的制备方法制得。
PCT/CN2021/137634 2021-04-22 2021-12-14 一种氧化物型固体电解质薄膜及其制备方法 WO2022222493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110433054.7A CN113336547B (zh) 2021-04-22 2021-04-22 一种氧化物型固体电解质薄膜及其制备方法
CN202110433054.7 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022222493A1 true WO2022222493A1 (zh) 2022-10-27

Family

ID=77468328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137634 WO2022222493A1 (zh) 2021-04-22 2021-12-14 一种氧化物型固体电解质薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN113336547B (zh)
WO (1) WO2022222493A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336547B (zh) * 2021-04-22 2022-05-31 海南大学 一种氧化物型固体电解质薄膜及其制备方法
CN113903985B (zh) * 2021-09-17 2024-02-23 海南大学 一种固体电解质缓冲层及其制备方法
CN113871704B (zh) * 2021-09-28 2023-12-08 吉林大学 一种掺杂型Li4SiO4-LiAlO2固体电解质的制备方法
CN115799607A (zh) * 2022-10-31 2023-03-14 海南大学 一种氧化物基复合固态电解质及其固态锂电池
CN115872446A (zh) * 2022-12-01 2023-03-31 宁波工程学院 一种锂镧锆氧基材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220173A (ja) * 2013-05-10 2014-11-20 日本碍子株式会社 リチウムイオン伝導性固体電解質並びにそれを用いた複合体及び電池
CN106803601A (zh) * 2017-02-26 2017-06-06 合肥国轩高科动力能源有限公司 一种固态电解质锂镧钛氧化合物薄膜的制备方法
CN109742442A (zh) * 2018-12-24 2019-05-10 北京化工大学 石榴石型固态电解质的制备及应用该固态电解质的二次电池
CN109980272A (zh) * 2019-04-16 2019-07-05 山东大学 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用
US20200044281A1 (en) * 2018-08-01 2020-02-06 Samsung Electronics Co., Ltd. Solid-state electrolyte and method of manufacture thereof
US20200403269A1 (en) * 2019-06-18 2020-12-24 Samsung Electronics Co., Ltd. Lithium solid electrolyte and method of manufacture thereof
CN113336547A (zh) * 2021-04-22 2021-09-03 海南大学 一种氧化物型固体电解质薄膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001236095A1 (en) * 2000-03-14 2001-09-24 Nagase And Co., Ltd. Composition for forming thin metal oxide film
CN101348279B (zh) * 2007-07-20 2010-06-09 中国科学院合肥物质科学研究院 钼酸镧基固体电解质薄膜材料及其制备方法
CN103456983B (zh) * 2013-09-09 2016-10-19 桂林电子科技大学 薄膜固体电解质材料及其制备方法
JP6252350B2 (ja) * 2014-05-15 2017-12-27 富士通株式会社 固体電解質構造体、及びその製造方法、並びに全固体電池
US10211481B2 (en) * 2014-11-26 2019-02-19 Corning Incorporated Stabilized solid garnet electrolyte and methods thereof
KR20180010568A (ko) * 2016-07-21 2018-01-31 현대자동차주식회사 상온 고속분말분사법을 이용한 고밀도 고체전해질 박막의 제조방법
CN106941190A (zh) * 2017-04-14 2017-07-11 中国科学院宁波材料技术与工程研究所 石榴石型固体电解质材料的制备方法
CN107887640A (zh) * 2017-09-25 2018-04-06 同济大学 一种石榴石结构固体电解质材料及其制备方法
US20210202982A1 (en) * 2017-10-20 2021-07-01 Quantumscape Corporation Borohydride-sulfide interfacial layer in all solid-state battery
CN111653820B (zh) * 2018-02-11 2021-04-30 中国科学院苏州纳米技术与纳米仿生研究所 一种固态电解质及其应用
US11268196B2 (en) * 2018-10-31 2022-03-08 Arizona Board Of Regents On Behalf Of Arizona State University Lithium lanthanum zirconate thin films
CN109659602A (zh) * 2018-11-26 2019-04-19 北京化工大学 一种水滑石改性锂镧锆氧固体电解质及其制备方法
CN111477948A (zh) * 2020-04-24 2020-07-31 华中科技大学 一种石榴石型固体电解质的制备方法及产品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220173A (ja) * 2013-05-10 2014-11-20 日本碍子株式会社 リチウムイオン伝導性固体電解質並びにそれを用いた複合体及び電池
CN106803601A (zh) * 2017-02-26 2017-06-06 合肥国轩高科动力能源有限公司 一种固态电解质锂镧钛氧化合物薄膜的制备方法
US20200044281A1 (en) * 2018-08-01 2020-02-06 Samsung Electronics Co., Ltd. Solid-state electrolyte and method of manufacture thereof
CN109742442A (zh) * 2018-12-24 2019-05-10 北京化工大学 石榴石型固态电解质的制备及应用该固态电解质的二次电池
CN109980272A (zh) * 2019-04-16 2019-07-05 山东大学 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用
US20200403269A1 (en) * 2019-06-18 2020-12-24 Samsung Electronics Co., Ltd. Lithium solid electrolyte and method of manufacture thereof
CN113336547A (zh) * 2021-04-22 2021-09-03 海南大学 一种氧化物型固体电解质薄膜及其制备方法

Also Published As

Publication number Publication date
CN113336547B (zh) 2022-05-31
CN113336547A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2022222493A1 (zh) 一种氧化物型固体电解质薄膜及其制备方法
WO2019109398A1 (zh) 一种超薄金属锂复合体及其制备方法和用途
Song et al. Aerosol-assisted MOCVD growth of Gd2O3-doped CeO2 thin SOFC electrolyte film on anode substrate
CN103456983B (zh) 薄膜固体电解质材料及其制备方法
Li et al. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation
Liu et al. Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte
Zhao et al. Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12
Pershina et al. Promising high-conductivity Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 solid electrolytes: The effect of crystallization temperature on the microstructure and transport properties
US11342581B2 (en) Ceramic powder material, method for producing ceramic powder material, and battery
Zhao et al. Garnet-like Li7-xLa3Zr2-xNbxO12 (x= 0− 0.7) solid state electrolytes enhanced by self-consolidation strategy
CN112340787A (zh) 单相尖晶石型高熵氧化物及制备方法及应用
CN106803601B (zh) 一种固态电解质锂镧钛氧化合物薄膜的制备方法
dos Santos-Gómez et al. An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells
Zhang et al. Characterization of Sr-doped lithium lanthanum titanate with improved transport properties
TW201437151A (zh) LiCoO2膜形成用前驅物溶液及使用該溶液之LiCoO2膜之形成方法
Yang et al. Electrical conductivity of Al-doped Li2ZrO3 ceramics for Li-ion conductor electrolytes
JP5211721B2 (ja) 全固体リチウム二次電池
CN101114719B (zh) 一种以多孔衬底材料为支撑的梯度结构薄膜的制备方法
Zhang et al. Sr doped amorphous LLTO as solid electrolyte material
Kuterbekov et al. Effect of the cobalt content on properties of La2Ni1-xCoxO4+ δ
CN113186535A (zh) 一种固态电解质及其制备方法和阴极保护系统
Lin et al. Preparation of SDC electrolyte thin films on dense and porous substrates by modified sol–gel route
Li et al. Effect of Ga-Bi co-doped on structural and ionic conductivity of Li 7 La 3 Zr 2 O 12 solid electrolytes derived from sol–gel method
Pouchko et al. Sol–gel fabrication and lithium insertion kinetics of the Mo-doped lithium vanadium oxide thin films Li1+ xMoyV3− yO8
CN111430787A (zh) 复合薄膜固体电解质及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937715

Country of ref document: EP

Kind code of ref document: A1