WO2022210326A1 - フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス - Google Patents

フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス Download PDF

Info

Publication number
WO2022210326A1
WO2022210326A1 PCT/JP2022/014252 JP2022014252W WO2022210326A1 WO 2022210326 A1 WO2022210326 A1 WO 2022210326A1 JP 2022014252 W JP2022014252 W JP 2022014252W WO 2022210326 A1 WO2022210326 A1 WO 2022210326A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine
carbon atoms
formula
fluororesin
Prior art date
Application number
PCT/JP2022/014252
Other languages
English (en)
French (fr)
Inventor
廷輝 李
貴 福田
慎也 奥
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN202280025842.5A priority Critical patent/CN117136202A/zh
Priority to JP2023511158A priority patent/JPWO2022210326A1/ja
Priority to EP22780540.5A priority patent/EP4317225A1/en
Priority to KR1020237037041A priority patent/KR20230162071A/ko
Publication of WO2022210326A1 publication Critical patent/WO2022210326A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to fluorine-based resins. More particularly, it relates to a fluororesin that can be suitably used for electronic devices.
  • an organic transistor is also being developed.
  • the organic transistor is manufactured through a number of steps, including a step of forming a pattern of the EL light-emitting portion with a protective film made of resin to protect the organic transistor.
  • the pattern is provided, for example, over the source electrode, the drain electrode and the organic semiconductor layer or polymer layer so that it does not lie on the electrodes that form the EL emitter.
  • the EL light emitting part is a technology that exposes a substrate surface coated with a photosensitive material (resist) to a pattern through a photomask or reticle, and forms a pattern consisting of exposed and unexposed parts. It is formed using photolithography. In photolithography, a dry etching method or wet etching is used to open the EL light emitting portion.
  • a photosensitive material resist
  • photolithography a dry etching method or wet etching is used to open the EL light emitting portion.
  • a photoreactive polymer material is used as the pattern forming material.
  • the material is dissolved in a solvent and applied in the form of an ink. After the solvent is removed by drying, the material is made insoluble in the solvent by a photocrosslinking reaction to form a pattern. . Therefore, polymer materials used in coating methods such as the total printing method must have excellent solubility in solvents, and photo-crosslinking reactions of the materials can be achieved by exposure to light at room temperature for a short period of time after solvent removal. It is required to combine the properties of being possible.
  • the polymer material is coated on the substrate, the portion where the pattern is to be formed is subjected to photocrosslinking reaction, and the portion which is not subjected to the photocrosslinking reaction is removed. As a result, the remaining portion becomes a pattern.
  • Various functional layers are laminated on the portion (inside the pattern) from which the polymer material has been removed.
  • a promising technique is to form the functional layer using an ink-like raw material. From the viewpoint of prevention, the material forming the pattern is expected to have liquid repellency.
  • organic semiconductor elements when forming an interlayer insulating film or a gate insulating film on a source electrode, a drain electrode and an organic semiconductor layer, a pattern is formed by photolithography without damage, and a contact hole or the like is formed in the insulating film. expected to form.
  • Patent Document 1 mentions a negative photosensitive resin composition that has high photoreactivity and can be patterned and can form a film with high dielectric properties, and a photocured pattern produced therefrom.
  • this resin requires the use of water or an organic solvent during development.
  • the solvent for the composition should be an organic solvent such as PGMEA (propylene glycol monomethyl ether acetate). Both organic solvents and water cause deterioration in the performance of electronic devices. Therefore, in order to prevent deterioration in the performance of electronic devices, there has been a demand for the development of materials that can employ fluorine-based solvents as solvents.
  • Non-Patent Document 2 has low photocrosslinkability and requires a high exposure dose. Therefore, a fluororesin with high photoreactivity is desired.
  • the present invention has been made in view of the above problems, and its object is to have liquid-repellent performance, high solubility in fluorine-based solvents, and insolubilization in solvents by photocrosslinking at a low exposure amount. It is an object of the present invention to provide a fluororesin capable of
  • the present invention is a fluororesin having a repeating unit represented by the following formula (1) containing a photocrosslinkable group and a repeating unit containing a fluorine atom.
  • the present invention has the following gists.
  • a fluororesin having a repeating unit represented by the following formula (1) containing a photocrosslinkable group and a repeating unit containing a fluorine atom (In formula (1), R 1 represents a hydrogen atom or a methyl group, L 1 represents a single bond or a divalent linking group, A represents an m-valent linking group, R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a branched alkyl group having 3 to 20 carbon atoms.
  • cyclic alkyl group linear halogenated alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, cyano group , represents one of the group consisting of amino groups, m represents an integer of 3 or more, and n represents an integer of m ⁇ 1.
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 represents an alkyl group having 1 to 30 carbon atoms.
  • R 9 represents a hydrogen atom or a methyl group
  • L 2 represents a single bond or a divalent linking group
  • Rf 1 represents a linear fluoroalkyl group having 1 to 15 carbon atoms
  • A is one connecting group of the group consisting of the following formulas (a-1) to (a-4) system resin.
  • a fluororesin that has liquid repellency, is highly soluble in a fluorous solvent, and becomes insoluble in the solvent by photocrosslinking with a low exposure amount.
  • the fluororesin can be used for pattern formation, and pattern formation using the fluororesin can prevent deterioration of the performance of the obtained electronic device.
  • FIG. 1 is a 1 H-NMR chart of fluororesin 1 produced in Example 1.
  • the fluorine-based resin which is one aspect of the present invention, will be described in detail below.
  • the fluororesin of the present invention is a fluororesin having a repeating unit represented by the following formula (1) and a repeating unit containing a fluorine atom.
  • Formula (1) in the fluororesin of the present invention has a photocrosslinkable group. As a result, the fluororesin expresses high photoreactivity, and it becomes possible to selectively insolubilize only the portion irradiated with light in the film obtained by coating the resin.
  • R1 represents a hydrogen atom or a methyl group.
  • L1 represents a single bond or a divalent linking group.
  • the divalent linking group for L 1 includes a linear alkylene group having 1 to 10 carbon atoms, a branched alkylene group having 3 to 10 carbon atoms, a cyclic alkylene group having 3 to 10 carbon atoms, and a cyclic alkylene group having 3 to 10 carbon atoms.
  • linear alkylene groups having 1 to 10 carbon atoms include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, and decylene group.
  • branched alkylene group having 3 to 10 carbon atoms include a dimethylmethylene group, a methylethylene group, a 2,2-dimethylpropylene group, a 2-ethyl-2-thylpropylene group, and the like. .
  • cyclic alkylene group having 3 to 10 carbon atoms include, for example, a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, an adamantane-diyl group, norbornane-diyl group, exo-tetrahydrodicyclopentadiene-diyl group and the like, among which cyclohexylene group is preferred.
  • arylene group having 6 to 12 carbon atoms include a phenylene group, a xylylene group, a biphenylene group, a naphthylene group, a 2,2'-methylenebisphenyl group, etc. Among them, a phenylene group is preferred. .
  • A represents an m-valent linking group.
  • n represents an integer of 3 or more, preferably an integer of 3 to 5, more preferably an integer of 3 to 4, and still more preferably 3.
  • A may be an m-valent hydrocarbon group having 1 to 24 carbon atoms which may have a substituent, since the obtained resin has better solubility in organic solvents and fluorine-based solvents. .
  • Examples of the substituent that the m-valent hydrocarbon group A may have include an alkyl group, an alkoxy group, a halogen atom, and a hydroxyl group.
  • the alkyl group is preferably, for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, such as an alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, propyl and isopropyl.
  • group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group and cyclohexyl group are more preferred, alkyl groups having 1 to 4 carbon atoms are more preferred, and methyl or ethyl is more preferred. is particularly preferred.
  • the alkoxy group includes, for example, an alkoxy group having a linear or branched alkyl group having 1 to 16 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, an isobutoxy group, and an n-pentyloxy group.
  • n-hexyloxy group isohexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-dodecyloxy group, n-tetradecyloxy group, 2-ethylhexyloxy group, 3- ethylheptyloxy group, 2-hexyldecyloxy group and the like, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, isobutoxy group, n-pentyloxy group, n-hexyloxy group, isohexyloxy group, n A group selected from the group consisting of -heptyloxy and n-octyloxy is particularly preferred.
  • the halogen atom includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. Among them, a fluorine atom and a chlorine atom are preferable.
  • the m-valent hydrocarbon group A is preferably one linking group of the group consisting of the following formulas (a-1) to (a-4).
  • *L represents the bonding position with L 1 in the formula (1)
  • * before the carbon atom represents the ester group in the formula (1). It represents the bonding position with the constituent oxygen atom.
  • the m-valent hydrocarbon group A is one of the groups consisting of formula (a-1), formula (a-2), and formula (a-3) for ease of reaction in monomer synthesis. It is preferably a linking group, more preferably a trivalent linking group of formula (a-1) or formula (a-2), and preferably a trivalent linking group of formula (a-1). More preferred.
  • R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and are hydrogen atom, halogen atom, linear alkyl group having 1 to 20 carbon atoms, 3 to 20 branched alkyl groups, cyclic alkyl groups having 3 to 20 carbon atoms, linear halogenated alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, represents one of the group consisting of an aryloxy group having 6 to 20 carbon atoms, a cyano group and an amino group;
  • the halogen atom includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. Among them, a fluorine atom and a chlorine atom are preferable.
  • the linear alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include methyl, ethyl and n-propyl groups. Methyl or ethyl groups are preferred.
  • the branched alkyl group having 3 to 20 carbon atoms is preferably an alkyl group having 3 to 6 carbon atoms, and specific examples thereof include an isopropyl group and a tert-butyl group.
  • the cyclic alkyl group having 3 to 20 carbon atoms is preferably an alkyl group having 3 to 6 carbon atoms, and specific examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, etc. Among them, a cyclohexyl group is preferred. .
  • the linear halogenated alkyl group having 1 to 20 carbon atoms is preferably a fluoroalkyl group having 1 to 4 carbon atoms, and specific examples thereof include trifluoromethyl group, perfluoroethyl group and perfluoropropyl group. , a perfluorobutyl group, etc. Among them, a trifluoromethyl group is preferable.
  • the alkoxy group having 1 to 20 carbon atoms is preferably an alkoxy group having 1 to 8 carbon atoms, and specific examples thereof include methoxy group, ethoxy group, n-butoxy group, methoxyethoxy group and the like.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, an ⁇ -methylphenyl group, a naphthyl group and the like. preferable.
  • the aryloxy group having 6 to 20 carbon atoms is preferably an aryloxy group having 6 to 12 carbon atoms, and specific examples thereof include a phenyloxy group, a 2-naphthyloxy group, etc. Among them, a phenyloxy group. is preferred.
  • the amino group includes, for example, primary amino group (—NH 2 ); secondary amino group such as methylamino group; dimethylamino group, diethylamino group, dibenzylamino group, nitrogen-containing heterocyclic compound (e.g., pyrrolidine , piperidine, piperazine, etc.).
  • secondary amino group such as methylamino group; dimethylamino group, diethylamino group, dibenzylamino group, nitrogen-containing heterocyclic compound (e.g., pyrrolidine , piperidine, piperazine, etc.).
  • R 2 , R 3 , R 4 , R 5 and R 6 are a hydrogen atom, an alkyl group, or a halogen atom for the purpose of increasing the solubility in fluorine solvents, photocurability, and liquid repellency of the fluorine resin.
  • R 2 , R 3 , R 4 , R 5 and R 6 are a hydrogen atom, an alkyl group, or a halogen atom for the purpose of increasing the solubility in fluorine solvents, photocurability, and liquid repellency of the fluorine resin.
  • a straight-chain halogenated alkyl group having 1 to 20 carbon atoms more preferably a hydrogen atom.
  • repeating unit B Specific examples of the repeating unit represented by the formula (1) containing a photocrosslinkable group (hereinafter sometimes referred to as repeating unit B) include, for example, the following repeating units B-1 to B- 26, among which B-1 to B-16 are preferred, with B-1, B-2, B-13 and B-16 being particularly preferred.
  • B-1 to B-16 are preferred, with B-1, B-2, B-13 and B-16 being particularly preferred.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Pr represents an isopropyl group.
  • the fluororesin of the present invention has a repeating unit containing a fluorine atom.
  • the fluorine-based resin exhibits liquid repellency and has high solubility in fluorine-based solvents.
  • a repeating unit containing a fluorine atom is preferably a repeating unit represented by the following formula (3).
  • R9 represents a hydrogen atom or a methyl group.
  • L2 represents a single bond or a divalent linking group.
  • the divalent linking group for L 2 includes a linear alkylene group having 1 to 10 carbon atoms, a branched alkylene group having 3 to 20 carbon atoms, a cyclic alkylene group having 3 to 20 carbon atoms, and a cyclic alkylene group having 3 to 20 carbon atoms.
  • linear alkylene groups having 1 to 10 carbon atoms include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, and decylene group.
  • branched alkylene group having 3 to 10 carbon atoms include a dimethylmethylene group, a methylethylene group, a 2,2-dimethylpropylene group, a 2-ethyl-2-thylpropylene group, and the like. .
  • cyclic alkylene group having 3 to 10 carbon atoms include, for example, a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, an adamantane-diyl group, norbornane-diyl group, exo-tetrahydrodicyclopentadiene-diyl group and the like, among which cyclohexylene group is preferred.
  • arylene group having 6 to 12 carbon atoms include a phenylene group, a xylylene group, a biphenylene group, a naphthylene group, a 2,2'-methylenebisphenyl group, etc. Among them, a phenylene group is preferred. .
  • Rf 1 is one of the group consisting of a linear fluoroalkyl group having 1 to 15 carbon atoms, a branched fluoroalkyl group having 3 to 15 carbon atoms, or a cyclic fluoroalkyl group having 3 to 15 carbon atoms. represents a species.
  • Rf 1 is a fluoroalkyl group
  • the fluorine-based resin according to one aspect of the present invention exhibits affinity with fluorine-based solvents and liquid repellency.
  • Rf 1 is a linear fluoroalkyl group
  • specific examples of Rf 1 are fluorine-substituted methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, and octyl groups.
  • the substitution position of the fluorine atom in Rf 1 may be on a carbon atom other than the carbon atom directly bonded to oxygen in L 2 .
  • Rf 1 is a linear fluoroalkyl group
  • Rf 1 is preferably a group represented by the following formula (4).
  • * represents the bonding position with L2 in formula ( 4 ).
  • X is a hydrogen atom or a fluorine atom.
  • y is an integer of 1-4, preferably 1-2.
  • z is an integer of 1-14, preferably 2-10, more preferably 4-8.
  • Rf 1 is a group represented by formula (4), it becomes easier to synthesize a monomer that is a starting material for the repeating unit represented by formula (3).
  • Rf 1 is a branched fluoroalkyl group
  • specific examples of Rf 1 include 1,1,1,3,3,3-hexafluoroisopropyl group, 1-(trifluoromethyl)-2,2,3 , 3,3-pentafluoropropyl group, 1,1-bis(trifluoromethyl)-2,2,2-trifluoroethyl group or 1,1-bis(trifluoromethyl)ethyl group can be exemplified. .
  • Rf 1 is a cyclic fluoroalkyl group
  • specific Rf 1 is a 1,2,2,3,3,4,4,5,5-nonafluorocyclopentane group
  • 1,2,2,3,3 , 4,4,5,5,6,6-undecafluorocyclohexane group can be exemplified.
  • the repeating unit represented by the formula (3) is preferably a repeating unit represented by the following formula (5).
  • R 10 represents either a hydrogen atom or a methyl group.
  • X is a hydrogen atom or a fluorine atom.
  • y is an integer of 1-4, preferably 1-2.
  • z is an integer of 1-14, preferably 2-10, more preferably 4-8.
  • the fluororesin according to one aspect of the present invention may contain one type of repeating unit represented by the above formula (3), or may contain two or more types thereof.
  • both the repeating unit having the linear fluoroalkyl group described above as Rf 1 and the repeating unit having the branched fluoroalkyl group described above as Rf 1 may be included. It may contain two or more repeating units having different linear fluoroalkyl groups.
  • the fluororesin according to one aspect of the present invention preferably contains one type of repeating unit represented by formula (3).
  • the repeating unit containing a fluorine atom in the fluororesin specifically, one of the repeating units represented by the following formulas (C-1) to (C-33) is selected. can be mentioned.
  • the repeating unit containing a fluorine atom one of the repeating units represented by the above formulas (C-1) to (C-33) is preferable, and represented by the formulas (C-9) to (C-33).
  • One of the groups consisting of repeating units represented by formulas (C-14) to (C-21) or the group consisting of repeating units represented by formulas (C-27) to (C-33) is more preferable.
  • One of the group consisting of repeating units is particularly preferred.
  • the fluororesin according to one aspect of the present invention is preferably a copolymer containing a repeating unit represented by the above formula (1) and a repeating unit represented by the above formula (3). That is, the fluororesin according to one aspect of the present invention is preferably a copolymer represented by the following formula (6).
  • R 1 and R 9 represent a hydrogen atom or a methyl group
  • L 1 and L 2 represent a single bond or a divalent linking group
  • A represents an m-valent linking group.
  • R 2 , R 3 , R 4 , R 5 and R 6 are the same or different and are hydrogen atom, halogen atom, linear alkyl group having 1 to 20 carbon atoms, branched alkyl group having 3 to 20 carbon atoms.
  • cyclic alkyl group having 3 to 20 carbon atoms linear halogenated alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, 6 to 20 carbon atoms represents one of the group consisting of an aryloxy group, a cyano group and an amino group, m represents an integer of 3 or more, n represents an integer of m ⁇ 1, and Rf 1 represents a linear group having 1 to 15 carbon atoms.
  • R 1 , L 1 , A, R 2 , R 3 , R 4 , R 5 and R 6 are R 1 , L 1 , A, R 2 , R 3 and R in formula (1). 4 , R5 and R6 .
  • R 9 , L 2 and Rf 1 are synonymous with R 9 , L 2 and Rf 1 in formula (3) above.
  • the copolymer represented by formula (6) may be a random copolymer or a block copolymer.
  • the fluorine-based resin according to one aspect of the present invention has a repeating unit represented by the formula (1) of 10 mol% or more and 90 mol, from the viewpoint of increasing the solubility in a fluorine-based solvent and being more efficiently photocured. % or less, preferably 20 mol % or more and 80 mol % or less, and preferably 20 mol % or more and 70 mol % or less.
  • it preferably contains 10 mol % or more and 90 mol % or less of a repeating unit containing a fluorine atom, preferably 20 mol % or more and 80 mol % or less, and preferably 30 mol % or more and 80 mol % or less.
  • the fluororesin according to one aspect of the present invention preferably further has a repeating unit represented by formula (2).
  • R7 represents a hydrogen atom or a methyl group.
  • R 8 represents an alkyl group having 1 to 30 carbon atoms.
  • R 8 represents an alkyl group having 1 to 30 carbon atoms, and examples of alkyl having 1 to 30 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, Heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl group, etc.
  • Chain alkyl group isopropyl group, isobutyl group, isovaleryl group, isohexyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl group, 2-hexyldecyl group, 2-hexylundecyl group, 2-octyldecyl group , 2-octyldodecyl group, 2-decyltetradecyl group, 2-decylhexadecyl group, 3-hexyldecyl group, 3-octyldecyl group, 3-octyldodecyl group, 3-decyltetradecyl group, 3-decylhexa Branched alkyl such as decyl group, 4-hexyldecyl group, 4-octyldecyl group, 4-octyldodecyl group, 4-de
  • one of the group consisting of a linear alkyl group having 1 to 15 carbon atoms and a branched alkyl group having 3 to 15 carbon atoms is preferable, a linear alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group is more preferred.
  • repeating units represented by formula (2) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, and pentyl (meth)acrylate. , hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, and nonyl (meth)acrylate.
  • the solubility in fluorine-based solvents increases, and from the viewpoint of more efficient photocuring, the formula ( It preferably contains 10 mol % or more and 70 mol % or less of the repeating unit represented by 1), preferably 20 mol % or more and 50 mol % or less, and preferably 30 mol % or more and 50 mol % or less.
  • it preferably contains 10 mol% or more and 70% mol% or less of the repeating unit represented by formula (2), preferably 20 mol% or more and 60% mol% or less, and preferably 30 mol% or more and 50 mol% or less.
  • it preferably contains 10 mol% or more and 80% mol% or less of a repeating unit containing a fluorine atom, preferably 10 mol% or more and 60 mol% or less, preferably 10 mol% or more and 40 mol% or less, and 10 mol% or more and 30 mol% or less. is more preferred.
  • the fluororesin according to one aspect of the present invention may contain other monomeric repeating units within a range that does not deviate from the purpose of the present invention.
  • Other monomer repeating units include, for example, olefin residues such as ethylene residue, propylene residue and 1-butene residue; vinyl aromatic hydrocarbons such as styrene residue and ⁇ -methylstyrene residue.
  • Carboxylic acid vinyl ester residue such as vinyl acetate residue, vinyl propionate residue and vinyl pivalate residue
  • Vinyl ether residue such as methyl vinyl ether residue, ethyl vinyl ether residue and butyl vinyl ether residue
  • N-substituted maleimide residues such as N-methylmaleimide residue, N-cyclohexylmaleimide residue and N-phenylmaleimide residue
  • acrylonitrile residue methacrylonitrile residue and the like.
  • the molecular weight there are no restrictions on the molecular weight, and for example, those having a molecular weight of 2000 to 10,000,000 (g/mol) can be used. It is preferably 10,000 to 1,000,000 (g/mol) from the viewpoint of solution viscosity and mechanical strength of the resulting resin.
  • the method for synthesizing the fluororesin of the present invention is not particularly limited. It can be synthesized by mixing monomers and polymerizing in an organic solvent using a radical polymerization initiator.
  • the method for synthesizing the fluororesin is not particularly limited.
  • a monomer forming a repeating unit represented by formula (2) above, a monomer forming a repeating unit containing a fluorine atom, and a monomer forming any other repeating unit are mixed and mixed in an organic solvent. , can be synthesized by polymerization using a radical polymerization initiator.
  • composition that is one embodiment of the present invention will be described below.
  • a composition according to one aspect of the present invention contains at least one of an organic solvent and a fluorine-based solvent, and a fluorine-based resin.
  • the fluorine-based solvent may be any solvent as long as it dissolves the fluorine-based resin of the present invention.
  • a fluorine-based solvent as a solvent for dissolving the fluorine-based resin, it is possible to minimize damage to the device components, which are mainly composed of organic substances, during the production of electronic devices by the total printing method. It becomes possible to fully exhibit the performance of the device.
  • the fluorine atom content in the fluorine-based compound constituting the fluorine-based solvent is 50% by mass or more and 70% by mass or less, more preferably 55% by mass or more and 70% by mass or less, relative to the total mass of the fluorine-based compound. If it exceeds 70% by mass, the above fluorine-based resin will not dissolve sufficiently. On the other hand, if it is less than 50% by mass, the surface of the organic semiconductor film may dissolve or swell when the organic semiconductor film is coated or printed.
  • fluorine-containing solvent contained in the composition of the present invention the following fluorine-containing hydrocarbons, fluorine-containing ethers or fluorine-containing alcohols can be preferably used, and fluorine-containing hydrocarbons or fluorine-containing ethers can be more preferably used. .
  • a fluorine-containing hydrocarbon has a low ozone depletion potential and is preferable as a fluorine-based solvent contained in the composition of the present invention.
  • straight-chain, branched-chain or cyclic hydrocarbons having 4 to 8 carbon atoms and having at least one hydrogen atom substituted with a fluorine atom are preferred because they are easy to apply.
  • fluorine-containing hydrocarbons include butane, pentane, hexane, heptane, octane, cyclopentane, cyclohexane, and benzene in which at least one hydrogen atom is substituted with a fluorine atom.
  • the boiling point of the fluorine-containing hydrocarbon is preferably 200°C or lower, more preferably 180°C or lower. When the boiling point of the fluorine-containing hydrocarbon is 200° C. or lower, the fluorine-containing hydrocarbon can be easily evaporated and removed by heating.
  • fluorine-containing hydrocarbons the following can be exemplified as examples having a particularly preferable boiling point.
  • fluorine-containing ether can be used as a fluorine-based solvent because of its low ozone depletion potential.
  • the fluorine-containing ether preferably has a boiling point of 200°C or lower, more preferably 180°C or lower. When the boiling point of the fluorine-containing ether is 200° C. or lower, the fluorine-containing ether can be easily evaporated and removed from the fluororesin film by heating.
  • fluorine-containing ethers examples include 1,1,2,3,3,3-hexafluoro-1-(2,2,2-trifluoroethoxy)propane, 1,1,2,3,3,3- Hexafluoro-1-(2,2,3,3,3-pentafluoropropoxy)propane, 1,1,2,3,3,3-hexafluoro-1-(2,2,3,3-tetrafluoro propoxy)propane, 2,2,3,3,3-pentafluoro-1-(1,1,2,2-tetrafluoroethoxy)propane, 1,1,1,2,2,3,3-heptafluoro -3-Methoxypropane, methyl perfluorobutyl ether, or ethyl nonafluorobutyl ether can be exemplified.
  • a fluorine-containing alcohol can be used as a fluorine-based solvent.
  • the fluorine-containing alcohol used preferably has a boiling point of 200° C. or lower, more preferably 180° C. or lower. When the boiling point of the fluorine-containing alcohol is 200° C. or less, the fluorine-containing alcohol can be easily evaporated and removed by heating.
  • Examples of preferred fluorine-containing alcohols include 1H,1H-trifluoroethanol, 1H1H-pentafluoropropanol, 1H,1H-heptafluorobutanol, 2-(perfluorobutyl)ethanol, 3-(perfluorobutyl)propanol, 2 -(perfluorohexyl)ethanol, 3-(perfluorohexyl)propanol, 1H,1H,3H-tetrafluoropropanol, 1H,1H,5H-octafluoropentanol, 1H,1H,7H-dodecafluoroheptanol, 2H -hexafluoro-2-propanol, 1H,1H,3H-hexafluorobutanol.
  • fluorine-based solvents may be included in order to further increase the solubility of the fluorine-based resin.
  • the organic solvent used in the composition of the present invention refers to organic solvents that do not correspond to fluorine-based solvents.
  • the organic solvent is not particularly limited as long as it dissolves the fluororesin of the present invention, and includes hexane, heptane, octane, decane, dodecane, tetradecane, hexadecane, decalin, indane, 1-methylnaphthalene, 2-ethylnaphthalene, 1,4.
  • dimethylnaphthalene dimethylnaphthalene isomer mixture, toluene, xylene, ethylbenzene, 1,2,4-trimethylbenzene, mesitylene, isopropylbenzene, pentylbenzene, hexylbenzene, tetralin, octylbenzene, cyclohexylbenzene, 1,2-dichlorobenzene , 1,3-dichlorobenzene, 1,4-dichlorobenzene, trichlorobenzene, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, ⁇ -butyrolactone, 1,3-butylene glycol, ethylene glycol, benzyl alcohol, glycerin , cyclohexanol acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether
  • an organic solvent having a high dissolving power for dissolving the fluorine-based resin is suitable, and xylene and propylene glycol monomethyl ether acetate are preferable.
  • a mixed solvent in which two or more of the above solvents are mixed in an appropriate ratio can also be used.
  • a composition of a fluorine-based resin and at least one of an organic solvent and a fluorine-based solvent according to an aspect of the present invention contains 1 wt% or more and 50 wt% or less of the fluorine-based resin, and contains 50 wt% or more and 99 wt% or less of the solvent. is preferred.
  • composition according to one aspect of the present invention may contain a photosensitizer. Any photosensitizer may be used as long as it promotes the cross-linking reaction of the photo-crosslinkable group.
  • photosensitizers include acyloins such as benzoin, benzoin methyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; Diketones such as diacetyl and benzyl; Organic sulfides such as diphenyl monosulfide, diphenyl disulfide, and tetramethylthiuram disulfide; Acetophenone, benzophenone, 4,4′-bis(dimethylamino)benzophenone, 4,4′- phenones such as bis(diethylamino)benzophenone, o-methoxybenzophenone, 2,4,6-trimethoxybenzophenone; p-toluenesulfonyl chloride, I-naphthalenesulfonyl chloride, 1,3-benzenesulfonyl chloride, 2,4 - sulfonyl halides such as dinitrobenzene
  • a composition of a fluororesin, a photosensitizer, and at least one of an organic solvent and a fluorous solvent according to an aspect of the present invention contains 1 wt% or more and 50 wt% or less of the fluororesin, and 50 wt% of the solvent. It is preferable to contain 99 wt% or less and contain 0.001 wt% or more and 5 wt% or less of the photosensitizer.
  • a pattern can be formed using the fluororesin of the present invention. More specifically, the fluororesin of the present invention or its composition is used to obtain a photocrosslinked product and form a pattern.
  • a fluororesin coating film is formed on the surface of the substrate by a known coating film forming method.
  • substrates include various glass plates; polyesters such as polyethylene terephthalate; polyolefins such as polypropylene and polyethylene; thermoplastic sheets such as polycarbonate, polymethyl methacrylate, polysulfone and polyimide; epoxy resins; polyester resins; thermosetting plastic sheets such as
  • Examples of methods for forming a coating film include spin coating, drop casting, dip coating, doctor blade coating, pad printing, squeegee coating, roll coating, rod bar coating, air knife coating, wire bar coating, flow coating, gravure printing, and flexography.
  • Printing, superflexographic printing, screen printing, inkjet printing, letterpress reversal printing, reversal offset printing, adhesion contrast printing and the like can be used.
  • Drying evaporates the solvent and leaves a tack-free coating. Drying conditions vary depending on the boiling point and blending ratio of the solvent used, but can be used in a wide range of preferably 50 to 150° C. for 10 to 2000 seconds.
  • the coating film having the predetermined shape is photocrosslinked by performing exposure.
  • a photocrosslinked product is then obtained, which is immobilized and can form a pattern.
  • a coating film having a predetermined shape is not formed at the time of coating film formation, a pattern can be formed from the coating film using photolithography technology.
  • the photolithography technique first, the dried coating film is exposed through a mask having a predetermined shape, ie, a shape capable of forming a desired pattern, and is photocrosslinked.
  • the fluororesin of the present invention is cured by photocrosslinking
  • radiation such as ultraviolet rays and visible light
  • examples thereof include ultraviolet rays having a wavelength of 245 to 435 nm.
  • the irradiation amount is appropriately changed depending on the composition of the resin, and is, for example, 10 to 5000 mJ/cm 2 .
  • the irradiation dose is preferably 100 to 4000 mJ/cm 2 from the viewpoints of preventing a decrease in the degree of cross-linking and improving economic efficiency by shortening the process.
  • Examples of specific light irradiation devices or light sources include germicidal lamps, ultraviolet fluorescent lamps, carbon arcs, xenon lamps, high-pressure mercury lamps for copying, medium- or high-pressure mercury lamps, ultra-high-pressure mercury lamps, electrodeless lamps, metal halide lamps, and the like. mentioned.
  • UV irradiation is usually performed in the atmosphere, but if necessary, it can also be performed in an inert gas or under a certain amount of inert gas flow. If necessary, the photosensitizer can be added to promote the photocrosslinking reaction. After that, the film is developed with a developing solution to remove the unexposed portions.
  • the developer may be any solvent as long as it dissolves the uncured fluororesin, for example, aromatic solvents such as benzene, toluene and xylene; ether solvents such as dioxane, diethyl ether, tetrahydrofuran and diethylene glycol dimethyl ether; Ketone solvents such as acetone and methyl ethyl ketone; Ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate and propylene glycol monomethyl ether acetate; 2H,3H-decafluoropentane, 1,1,2,2,3,3,4 -heptafluorocyclopentane, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, hexafluorobenzene, 2,2,3,3-tetrafluoro-1-propanol, 2, 2,3,3,4,4,5,5-octaflu
  • the development time is preferably 30 to 300 seconds.
  • the developing method may be either a liquid-filling method, a dipping method, or the like.
  • the substrate is washed with a solvent and air-dried with compressed air or compressed nitrogen to remove the solvent on the substrate.
  • a pattern is formed by heat treatment preferably at 40 to 150° C. for 5 to 90 minutes using a heating device such as a hot plate or an oven.
  • the surface of the substrate may be cleaned by irradiating a low-pressure mercury lamp or short-wavelength ultraviolet rays such as excimer UV, or by light ashing.
  • the optical ashing process is a process of irradiating short wavelength ultraviolet rays in the presence of ozone gas.
  • the short wavelength ultraviolet rays are light having a main peak at a wavelength of 100 to 300 nm.
  • the fluororesin of the present invention itself is soluble in a fluorous solvent or an organic solvent, and upon irradiation with light, the photocrosslinkable groups in the side chains are crosslinked and cured, making it insoluble in the solvent used. do.
  • the fluororesin of the present invention can be used as a negative resist in which the non-light-irradiated portion is removed by a fluorinated solvent or an organic solvent when the fluororesin of the present invention is crosslinked by light irradiation.
  • the contact angle of the remaining portion (outside the pattern) where the fluororesin is cross-linked to the ink is It is preferably 40° or more, more preferably 50° or more.
  • the fluororesin of the present invention can be made into a protective film by the same method as the pattern, such as a coating film forming method, photocrosslinking, and development.
  • the fluororesin of the present invention has excellent liquid repellency and can be used as a pattern material when manufacturing organic transistor elements, color filters, and organic EL elements. Further, the fluororesin of the present invention can be used in electronic devices including the organic transistor elements, color filters, and organic EL elements.
  • the fluororesin of the present invention can be used in electronic devices. It can be an electronic device comprising a crosslinked product, and an organic transistor can be mentioned as an electronic device.
  • a general organic transistor is obtained by having a gate insulating layer on a substrate, further forming an organic semiconductor layer on this gate insulating layer, and attaching a source electrode, a drain electrode and a gate electrode.
  • An example of the element structure of an organic transistor is shown in FIG. 1 as a cross-sectional view.
  • 1001 is a bottom gate-top contact type
  • 1002 is a bottom gate-bottom contact type
  • 1003 is a top gate-top contact type
  • 1004 is a top gate-bottom contact type element structure.
  • 1 is an organic semiconductor layer
  • 2 is a substrate
  • 3 is a gate electrode
  • 4 is a gate insulating layer
  • 5 is a source electrode
  • 6 is a drain electrode.
  • FIG. 1 One form of the organic transistor of the present invention is shown in FIG.
  • the organic transistor 1005 shown in FIG. 2 corresponds to the bottom gate-bottom contact type in FIG. 7 indicates a pattern, and 8 indicates a protective film layer.
  • the substrate that can be used is not particularly limited as long as it can ensure sufficient flatness for manufacturing the device.
  • inorganic material substrates such as indium tin oxide; plastics; metals such as gold, copper, chromium, titanium and aluminum; ceramics; A multi-layered material may be used. Also, the surface of these materials can be coated to adjust the surface tension.
  • Plastics used as substrates include polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polycarbonate, polymethyl acrylate, polymethyl methacrylate, polyvinyl chloride, polyethylene, ethylene/vinyl acetate copolymer, polymethylpentene-1, polypropylene, Cyclic polyolefin, fluorinated cyclic polyolefin, polystyrene, polyimide, polyvinylphenol, polyvinyl alcohol, poly(diisopropyl fumarate), poly(diethyl fumarate), poly(diisopropyl maleate), polyether sulfone, polyphenylene sulfide, polyphenylene ether, polyester Examples include elastomers, polyurethane elastomers, polyolefin elastomers, polyamide elastomers, styrene block copolymers, and the like. In addition, two or more of the above plastics
  • Organic semiconductors that can be used in the organic semiconductor layer are not particularly limited, and both N-type and P-type organic semiconductors can be used, and a bipolar transistor combining N-type and P-type can also be used.
  • both low-molecular-weight and high-molecular-weight organic semiconductors can be used, and a mixture thereof can also be used.
  • Specific compounds of the organic semiconductor include, for example, compounds represented by the following formulas (D-1) to (D-11).
  • examples of the method for forming the organic semiconductor layer include a method of vacuum deposition of an organic semiconductor, a method of dissolving an organic semiconductor in an organic solvent, and coating and printing. There is no limitation as long as the method can be formed.
  • the concentration of the solution varies depending on the structure of the organic semiconductor and the solvent used. From the point of view, it is preferably 0.5% to 5 wt%.
  • the organic solvent used in this case is not particularly limited as long as it dissolves the organic semiconductor at a certain concentration at which the film can be formed.
  • a solvent having a high dissolving power to dissolve the organic semiconductor and a boiling point of 100° C. or higher is suitable. 3,4-dimethylanisole, pentylbenzene, tetralin, cyclohexylbenzene, decahydro-2-naphthol are preferred.
  • a mixed solvent in which two or more of the above solvents are mixed in an appropriate ratio can also be used.
  • organic/inorganic polymers or oligomers or organic/inorganic nanoparticles can be added to the organic semiconductor layer as a solid or as a dispersion of nanoparticles dispersed in water or an organic solvent, if necessary. can be coated with a polymer solution to form a protective film. Furthermore, various moisture-proof coatings, light-resistant coatings, etc. can be applied on the protective film as necessary.
  • Gate electrodes, source electrodes, or drain electrodes that can be used in the present invention include aluminum, gold, silver, copper, highly doped silicon, polysilicon, silicide, tin oxide, indium oxide, indium tin oxide, chromium, Examples include conductive materials such as inorganic electrodes such as platinum, titanium, tantalum, graphene, carbon nanotubes, or organic electrodes such as doped conductive polymers (eg, PEDOT-PSS). , can also be used by laminating. Moreover, in order to increase the efficiency of carrier injection, these electrodes can be surface-treated using a surface-treating agent. Examples of such surface treatment agents include benzenethiol and pentafluorobenzenethiol.
  • the method for forming the electrode on the substrate, insulating layer or organic semiconductor layer is not particularly limited, and includes vapor deposition, high frequency sputtering, electron beam sputtering and the like.
  • Solution spin coating, drop casting, dip coating, doctor blade, die coating, pad printing, roll coating, gravure printing, flexographic printing, super flexographic printing, screen printing, inkjet printing, letterpress reverse printing using ink dissolved in a solvent A method such as this can also be adopted.
  • the fluororesin of the present invention can be suitably used for patterns and protective film layers in organic transistors.
  • the organic transistor according to one aspect of the present invention preferably has a mobility of 0.20 cm 2 /Vs or more from the viewpoint of practicality of the organic transistor element.
  • the organic transistor according to one embodiment of the present invention preferably has an on-current/off-current ratio of 10 5 or more from the viewpoint of practicality of the organic transistor element.
  • the organic transistor according to one aspect of the present invention preferably has no hysteresis in the source-drain current.
  • UV irradiation time was adjusted by changing the conveying speed under the condition of a UV intensity of 14.2 mW/cm 2 .
  • a solution of an organic semiconductor (di-n-hexyldithienobenzodithiophene) synthesized according to the manufacturing method of JP-A-2015-224238 is filled in a cartridge with a basic droplet volume of 10 pL, and an inkjet device (manufactured by Fujifilm Dimatix) , DMP-2831, stage temperature 30° C., cartridge temperature 30° C.).
  • Synthesis Example 1 (Synthesis of Photocrosslinkable Monomer 1) 6 g of glycerin monomethacrylate (Blenmer GLM, NOF), 8.6 g of triethylamine and 18 g of tetrahydrofuran were placed in a 200 mL flask under a nitrogen atmosphere and thoroughly mixed. In a nitrogen atmosphere, 14.1 g of cinnamic acid chloride and 42 g of tetrahydrofuran were placed in a glass bottle and dissolved.
  • Example 2 (polymerization of fluororesin 2) 2.31 g of the photocrosslinkable monomer 2 obtained in Synthesis Example 2, 2.85 g of 1H,1H,2H,2H-tridecafluoro-n-octyl methacrylate, and Perhexyl ND as a polymerization initiator were placed in a glass ampoule with a capacity of 75 mL. 0.09 g (manufactured by NOF Corporation) and 12 g of 2-butanone were added, and after repeating nitrogen replacement and depressurization, the container was sealed under reduced pressure. This ampoule was placed in a constant temperature bath at 45° C.
  • Example 3 Polymerization of fluorine-based resin 3) 2.30 g of the photocrosslinkable monomer 3 obtained in Synthesis Example 3, 2.95 g of 1H,1H,2H,2H-tridecafluoro-n-octyl methacrylate, and Perhexyl ND as a polymerization initiator were placed in a glass ampoule with a capacity of 75 mL. 0.09 g (manufactured by NOF Corporation) and 12 g of 2-butanone were added, and after repeating nitrogen replacement and depressurization, the container was sealed under reduced pressure. This ampoule was placed in a constant temperature bath at 45° C.
  • Example 4 Polymerization of fluorine-based resin 4) A glass ampoule with a capacity of 75 mL was charged with 2.78 g of the photocrosslinkable monomer 4 obtained in Synthesis Example 4, 2.69 g of 1H,1H,2H,2H-tridecafluoro-n-octyl methacrylate, and Perhexyl ND as a polymerization initiator. 0.08 g (manufactured by NOF Corporation) and 13 g of 2-butanone were added, and after repeating nitrogen substitution and depressurization, the container was sealed under reduced pressure. This ampoule was placed in a constant temperature bath at 45° C.
  • Example 5 Polymerization of fluororesin 5
  • a glass ampoule with a capacity of 75 mL 5.4 g of the photocrosslinkable monomer 1 obtained in Synthesis Example 1, 5.4 g of 1H,1H,2H,2H-nonafluorohexyl methacrylate, and Perhexyl ND (manufactured by NOF Corporation) as a polymerization initiator. ) and 25 g of 2-butanone were added, and after repeating nitrogen replacement and depressurization, the container was sealed under reduced pressure.
  • This ampoule was placed in a constant temperature bath at 45° C. and held for 24 hours to carry out radical polymerization.
  • Example 7 Polymerization of fluororesin 7
  • a glass ampoule with a capacity of 75 mL 5.7 g of the photocrosslinkable monomer 1 obtained in Synthesis Example 1, 5.2 g of 1H,1H,5H-octafluoropentyl methacrylate, and Perhexyl ND (manufactured by NOF) as a polymerization initiator 0 .22 g and 25 g of 2-butanone were added, and after repeating nitrogen replacement and depressurization, the flask was sealed under reduced pressure. This ampoule was placed in a constant temperature bath at 45° C. and held for 24 hours to carry out radical polymerization.
  • the polymer solution was taken out from the ampoule, and the polymer solution was dropped into 500 mL of methanol to precipitate, and then washed twice with 300 mL of methanol. Further vacuum drying at 30° C. for 8 hours gave 8.8 g of fluororesin 9 (yield: about 88%).
  • Example 10 (polymerization of fluororesin 10) 10.6 g of the photocrosslinkable monomer 1 obtained in Synthesis Example 1, 1.0 g of 1H,1H,2H,2H-tridecafluoro-n-octyl methacrylate, and Perhexyl ND as a polymerization initiator were placed in a glass ampoule with a capacity of 75 mL. 0.18 g (manufactured by NOF Corporation) and 27 g of 2-butanone were added, and after repeating nitrogen replacement and depressurization, the container was sealed under reduced pressure. This ampoule was placed in a constant temperature bath at 45° C. and held for 24 hours to carry out radical polymerization.
  • Example 11 (Production of fluororesin 11) 0.81 g of the photocrosslinkable monomer 1 obtained in Synthesis Example 1, 0.35 g of 1H,1H,2H,2H-tridecafluoro-n-octyl methacrylate, and 0.16 g of methyl methacrylate were placed in a glass ampoule with a capacity of 15 mL. , 0.03 g of Perhexyl ND (manufactured by NOF Corporation) as a polymerization initiator, and 3.1 g of 2-butanone were added, and after repeating nitrogen replacement and depressurization, the reactor was sealed under reduced pressure. This ampoule was placed in a constant temperature bath at 45° C.
  • Example 12 Polymerization of fluorine-based resin 12
  • Example 12 Polymerization of fluorine-based resin 12
  • a glass ampoule with a capacity of 75 mL 2.69 g of the photocrosslinkable monomer 5 obtained in Synthesis Example 5, 2.78 g of 1H,1H,2H,2H-tridecafluoro-n-octyl methacrylate, and Perhexyl ND as a polymerization initiator.
  • 0.08 g manufactured by NOF Corporation
  • 13 g of 2-butanone were added, and after repeating nitrogen substitution and depressurization, the container was sealed under reduced pressure. This ampoule was placed in a constant temperature bath at 45° C.
  • the polymer solution was taken out from the ampoule, and the polymer solution was dropped into 500 mL of methanol to precipitate, and then washed twice with 300 mL of methanol. Further vacuum drying at 30° C. for 8 hours gave 4.6 g of non-fluorine resin 1 (yield: about 81%).
  • Non-fluorine resin 1 Synthesis of Photocrosslinkable Monomer 6 (Synthesis of Photocrosslinkable Monomer 6) 6 g of 2-hydroxyethyl methacrylate, 5.3 g of triethylamine and 18 g of tetrahydrofuran were placed in a 200 mL flask under a nitrogen atmosphere and thoroughly mixed. In a nitrogen atmosphere, 8.7 g of cinnamic acid chloride and 26 g of tetrahydrofuran were placed in a glass bottle and dissolved.
  • Solvent 1 2H,3H-decafluoropentane
  • Solvent 2 1,1,2,2,3,3,4-heptafluorocyclopentane
  • Solvent 3 1,1,2,2-tetrafluoroethyl-2,2, 2-trifluoroethyl ether solvent 4: hexafluorobenzene solvent 5: 2,2,3,3-tetrafluoro-1-propanol solvent 6: 2,2,3,3,4,4,5,5-octafluoro -1-pentanol
  • Solvent 7 1H,1H,7H-dodecafluoro-1-heptanol
  • Solvent 8 2,2,3,3,4,4,4-heptafluoro-1-butanol Fluorinated resins 1 to 12 Dissolution in many fluorine-based solvents was confirmed.
  • fluorine-based resins 1 to 12 had excellent liquid repellency.
  • non-fluorine resin 1 did not have excellent liquid repellency.
  • a solution of fluorine - based resins 1 to 11 or fluorine-based resin 13 or a solution containing a sensitizer (the solution used is See Table 3) was formed by spin coating so that the film thickness after drying was 100 to 150 nm, and dried sufficiently.
  • the fluorine-based resin was irradiated with ultraviolet rays of 50 to 500 mJ/cm 2 to photocrosslink the resin film.
  • the thickness of this film was measured with a Dektak XT stylus profiler manufactured by Bruker and was taken as T0 .
  • the glass plate coated with the photocrosslinked resin film was immersed in acetone, which is a good solvent for fluororesin, for 1 minute, then taken out and dried at 100° C. for 1 minute using a hot plate to measure the film thickness. and T1 .
  • the remaining film ratio (R) was calculated by the following formula.
  • a chromium-patterned mask was used in which 10 squares each having a side length of 50 ⁇ m were arranged vertically and 10 horizontally.
  • a mask was placed on the film obtained by spin-coating the above solution on a glass substrate of 100 ⁇ 100 mm 2 , and UV was irradiated at 300 mJ/cm 2 . After the irradiation, the uncrosslinked portion was washed away with acetone for 1 minute to confirm whether or not a pattern with 100 holes each having a size of 50 ⁇ 50 ⁇ m2 was formed on the film using a laser microscope. .
  • the organic semiconductor (di-n-hexyldithienobenzodiene) represented by the above formula (D-11) is placed inside the pattern (the region where the fluorine-based resins 1 to 11 or the non-fluorine-based resin 1 are removed; the same shall apply hereinafter).
  • thiophene was inkjet printed with a 0.8 wt % tetralin solution. After printing, a laser microscope was used to check whether the semiconductor solution did not wet the outside of the pattern (area where the fluororesin 1 to 11 or the non-fluororesin 1 was not removed) and a semiconductor layer was formed inside the pattern. I confirmed. Table 4 shows the results.
  • the organic semiconductor represented by Formula (D-11) was synthesized according to the method described in JP-A-2012-209329.
  • ⁇ Organic transistor evaluation> (Formation of gate electrode) A glass substrate of 100 ⁇ 100 mm 2 was placed in a sputtering apparatus (Shibaura Mechatronics Co., Ltd., CFS-4EP-LL), a silver film was formed to a thickness of 50 nm, and then patterned by photolithography to form a silver electrode, that is, a gate. An electrode was formed.
  • insulating layer of parylene C was formed to a thickness of about 500 nm on the substrate on which the gate electrode was formed using a parylene vapor deposition apparatus (Nippon Parylene G.K., PDS2010).
  • the substrate on which the above insulating layer is formed is placed in a sputtering apparatus, a silver film is formed to a thickness of 50 nm at 200 W, and then patterned by photolithography to form source/drain electrodes with a channel length of 20 ⁇ m and a channel width of 50 ⁇ m. did.
  • the UV-irradiated substrate was washed with acetone for 1 minute, it was blow-dried with nitrogen gas to remove the fluororesin present in the light-shielding portion of the mask, thereby forming a liquid-repellent pattern.
  • Electrode surface modification The substrate on which the source/drain electrodes were formed was immersed in an isopropyl alcohol solution of pentafluorobenzenethiol (30 mmol/L) for 5 minutes to modify the surface of the electrodes formed on the substrate.
  • a cartridge with a basic droplet volume of 10 pL is filled with the organic semiconductor layer forming solution prepared above, and the channel portion between the source and drain electrodes is modified using an inkjet device (manufactured by Fujifilm Dimatix, DMP-2831). and dried on a hot plate at 90° C. for 10 minutes to form an organic semiconductor layer, thereby producing an organic transistor.
  • an inkjet device manufactured by Fujifilm Dimatix, DMP-2831
  • the source-drain voltage (Vd) was -15 V
  • the gate voltage (Vg) was scanned
  • the transfer characteristics (Id-Vg) before bias voltage application were measured.
  • the mobility was 0.5 to 0.7 cm 2 /V ⁇ s, indicating excellent mobility.
  • a mask having a light-shielding portion was brought into contact with the substrate on which the protective film was formed, and was cured by irradiation with ultraviolet rays of 300 mJ/cm 2 . Further, a pattern was formed by removing the fluorine-based resin present in the light-shielding portion of the mask using 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, which is a fluorine-based solvent. . As a result, the change in mobility before and after forming the protective film was 5% or less, and no damage was caused to the organic semiconductor.

Abstract

撥液性能、フッ素系溶剤への高い可溶性を有し、かつ低露光量での光架橋により溶剤に不溶化するフッ素系樹脂を提供する。本発明のフッ素系樹脂は、光架橋性基を含む式(1)で表される繰り返し単位とフッ素原子を含む繰り返し単位とを有する。 (式中、Rは水素またはメチルを表し、Lは単結合または連結基を表し、Aは連結基を表し、R~Rは水素、ハロゲン、アルキル、ハロゲン化アルキル、アルコキシ、アリール、アリールオキシ、シアノ、アミノからなる群の1種を表す。)

Description

フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス
 本発明はフッ素系樹脂に関する。より詳細には電子デバイスに好適に用いることができるフッ素系樹脂に関するものである。
 近年、低コストで生産性が高い全印刷法による有機電子デバイスの製造に関する技術開発が積極的に行われている。電子デバイスとして、例えば有機トランジスタの開発も進められている。この有機トランジスタは多数の工程を経て製造されるが、樹脂よりなる保護膜が有機トランジスタを保護し、EL発光部のパターンを形成する工程も含まれている。このパターンは、例えば、ソース電極、ドレイン電極および有機半導体層またはポリマー層を覆うように設けられていて、EL発光部を形成するところである電極上には存在しないようになっている。
 通常、EL発光部は、感光性物質(レジスト)を塗布した基板面をフォトマスクまたはレチクル等を介しパターンに露光し、露光された部位と露光されていない部位からなるパターンを形成する技術であるフォトリソグラフィを用いて形成される。フォトリソグラフィではドライエッチング法、または、ウエットエッチングによりEL発光部を開口している。
 パターン形成材料として、光反応性の高分子材料が用いられている。全印刷法のような塗布法では、該材料を溶媒に溶解させたインク状で塗布を行い、溶媒を乾燥除去した後、該材料を光架橋反応させることにより溶媒に不溶化させてパターンを形成させる。したがって、全印刷法のような塗布法に用いられる高分子材料には、該材料の溶媒への可溶性に優れていること、溶媒除去後、常温かつ短時間の露光で該材料の光架橋反応が可能であることの性質を兼ね備えることが求められている。
 ここで、有機電界ディスプレイおよび有機電界照明などに含まれる有機電界発光素子の製造方法を示す。まず基板上に、前記高分子材料を塗布しパターンを形成したい部分を光架橋反応させ、光架橋反応させていない部分を除去する。これにより残存した部分はパターンとなる。この高分子材料が除去されている部分(パターン内部)に、種々の機能層を積層する。該機能層はインク状の原料を用いて形成する技術が有望であるが、パターン内部へのインク付着、および高分子材料が除去されていない部分(パターン外部)を超えた領域外へのインク漏れ予防の観点から、パターンを構成する材料には撥液性能を有することが期待されている。
 また、有機半導体素子においては、ソース電極、ドレイン電極および有機半導体層の上に層間絶縁膜またはゲート絶縁膜を形成する際に、ダメージなくフォトリソグラフィによってパターンを形成し、コンタクトホール等を絶縁膜に形成することが期待されている。
 このような材料として特許文献1の光反応性が高くパターニングが可能であるとともに、高く誘電特性に優れる被膜を形成できるネガ感光型樹脂組成物およびそれから製造される光硬化パターンが挙げられている。しかしながら、この樹脂は現像の際に水または有機溶剤を使う必要がある。また、組成物の溶剤はPGMEA(プロピレングリコールモノメチルエーテルアセテート)のような有機溶剤を使う必要がある。有機溶剤と水はいずれも電子デバイスの性能を低下する原因となる。そこで電子デバイスの性能低下を防ぐために溶媒としてフッ素系の溶剤を採用できる材料の開発が求められていた。
 そのような技術として、特許文献2および非特許文献1で開示されているフッ素系溶剤へ可溶なフッ素系樹脂を用いてパターンを形成する方法がある。しかしながら該フッ素系樹脂は光架橋しない問題がある。
 フッ素系溶剤に溶解し、光架橋するフッ素系樹脂としてアントラセン架橋基を用いた非特許文献2のようなフッ素系樹脂が挙げられる。
日本国特開2017―167513号公報 日本国特許第6281427号
Appl. Phys. Express 7, 101602 (2014) J Polym Sci A Polym Chem 53、1252(2015)
 しかしながら、非特許文献2に記載のフッ素系樹脂は、光架橋性が低く高露光量が必要である。そのため、高い光反応性を備えたフッ素系樹脂が求められている。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、撥液性能を有して、フッ素系溶剤に高い可溶性を有してかつ低露光量で光架橋させることにより溶剤に不溶化し得るフッ素系樹脂を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の構造を有するフッ素系樹脂が上記課題を解決することを見出し、本発明を完成するに至った。
 即ち、本発明は、光架橋性基を含む下記式(1)で表される繰り返し単位とフッ素原子を含む繰り返し単位を有するフッ素系樹脂である。
 すなわち本発明は、以下の要旨を有するものである。
 [1] 光架橋性基を含む下記式(1)で表される繰り返し単位と、フッ素原子を含む繰り返し単位とを有するフッ素系樹脂。
Figure JPOXMLDOC01-appb-C000005
 (式(1)中、Rは、水素原子またはメチル基を表し、Lは、単結合または2価の連結基を表し、Aはm価の連結基を表し、R、R、R、RおよびRは、同一または相異なって、水素原子、ハロゲン原子、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐状アルキル基、炭素数3~20の環状アルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基からなる群の1種を表す。mは3以上の整数を表し、nはm-1の整数を表す。)
 [2] さらに、下記式(2)で表される繰り返し単位を有する[1]に記載のフッ素系樹脂。
Figure JPOXMLDOC01-appb-C000006
 (式(2)中、Rは、水素原子またはメチル基を表し、Rは炭素数1~30のアルキル基を表す。)
 [3] 前記フッ素原子を含む繰り返し単位が下記式(3)で表される繰り返し単位である[1]または[2]に記載のフッ素系樹脂。
Figure JPOXMLDOC01-appb-C000007
 (式(3)中、Rは水素原子またはメチル基を表す。Lは、単結合または2価の連結基を表し、Rfは炭素数1~15の直鎖状フルオロアルキル基、炭素数3~15の分岐鎖状フルオロアルキル基または炭素数3~15の環状フルオロアルキル基からなる群の1種を表す。)
 [4] 前記式(1)中、Aが下記式(a-1)~(a-4)からなる群の1種の連結基である[1]~[3]のいずれかに記載のフッ素系樹脂。
Figure JPOXMLDOC01-appb-C000008
 (式(a-1)~(a-4)中、*Lは、前記式(1)におけるLとの結合位置を表し、炭素原子の先の*は、前記式(1)におけるエステル基を構成する酸素原子との結合位置を表す。)
 [5] 前記式(1)中、Aが前記式(a-1)の連結基である[4]に記載のフッ素系樹脂。
 [6] フッ素系溶剤に可溶である[1]~[5]いずれかに記載のフッ素系樹脂。
 [7] [1]~[6]いずれかに記載のフッ素系樹脂と有機溶剤およびフッ素系溶剤の少なくとも一方の溶剤を含む組成物。
 [8] [1]~[6]いずれかに記載のフッ素系樹脂または[7]に記載の組成物の、光架橋物。
 [9] [8]に記載の光架橋物で構成されるパターン。
 [10] [8]に記載の光架橋物を備える電子デバイス。
 本発明によれば、撥液性能を有して、フッ素系溶剤に高い可溶性を有してかつ低露光量で光架橋させることにより溶剤に不溶化するフッ素系樹脂が得られる。当該フッ素系樹脂は、パターン形成に用いることができ、当該フッ素系樹脂を用いてパターン形成することにより、得られる電子デバイスの性能の低下を防げることができる。
有機トランジスタの断面形状を示す図である。 本発明の電子デバイスの一形態である有機トランジスタの断面形状の示す図である。 実施例1で製造したフッ素系樹脂1のH-NMRチャートを示す図である。
 以下に本発明の一態様であるフッ素系樹脂に関して詳細に説明する。
 本発明のフッ素系樹脂は、下記式(1)で表される繰り返し単位と、フッ素原子を含む繰り返し単位とを有するフッ素系樹脂である。
Figure JPOXMLDOC01-appb-C000009
 本発明のフッ素系樹脂における前記式(1)は光架橋性基を有する。これにより、フッ素系樹脂が高い光反応性を発現し、該樹脂を塗布して得られる膜において光照射した部位のみを選択的に不溶化させることが可能となる。
 式(1)中、Rは水素原子またはメチル基を表す。
 式(1)中、Lは単結合または2価の連結基を表す。
 Lにおける2価の連結基としては、炭素数1~10の直鎖状のアルキレン基、炭素数3~10の分岐状のアルキレン基または炭素数3~10の環状のアルキレン基、炭素数6~12のアリーレン基、エーテル基(-O-)、カルボニル基(-C(=O)-)およびイミノ基(-NH-)からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基であることが好ましい。これにより平坦でひび割れのない膜を形成することが可能となる。
 炭素数1~10の直鎖状のアルキレン基としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、プチレン基、ペンチレン基、ヘキシレン基、デシレン基などが挙げられる。
 炭素数3~10の分岐状のアルキレン基としては、具体的には、例えば、ジメチルメチレン基、メチルエチレン基、2,2-ジメチルプロピレン基、2-エチル-2-チルプロピレン基などが挙げられる。
 炭素数3~10の環状のアルキレン基としては、具体的には、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、アダマンタン-ジイル基、ノルボルナン-ジイル基、exo-テトラヒドロジシクロペンタジエン-ジイル基などが挙げられ、中でも、シクロヘキシレン基が好ましい。
 炭素数6~12のアリーレン基としては、具体的には、例えば、フェニレン基、キシリレン基、ビフェニレン基、ナフチレン基、2,2’-メチレンビスフェニル基などが挙げられ、中でも、フェニレン基が好ましい。
 これらの2価の連結基のうち、カルボニル基とエーテル基とを組み合わせたエステル結合(-C(=O)O-)またはフェニレン基とエーテル基とを組み合わせた連結基であることがより好ましく、(-C(=O)O-)であることが更に好ましい。
 式(1)中、Aはm価の連結基を表す。
 mは3以上の整数を表し、3~5の整数であることが好ましく、3~4の整数であることがより好ましく、3であることが更に好ましい。
 Aは、得られる樹脂の有機溶剤およびフッ素系溶剤への可溶性がより良好になることから、置換基を有していてもよい炭素数1~24のm価の炭化水素基であってもよい。
 m価の炭化水素基Aが有していてもよい置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、水酸基などが挙げられる。
 アルキル基としては、例えば、炭素数1~18の、直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基およびシクロヘキシル基等がより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基またはエチル基であるのが特に好ましい。
 アルコキシ基としては、例えば、炭素数1~16の、直鎖または分岐アルキル基を有するアルコキシ基、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソブトキシ基、n-ペンチロキシ基、n-ヘキシリキシ基、イソヘキシロキシ基、n-ヘプチロキシ基、n-オクチロオキシ基、n-ノニロキシ基、n-デシロキシ基、n-ドデシロキシ基、n-テトラデシロキシ基、2-エチルヘキシロキシ基、3-エチルヘプチロキシ基、2-ヘキシルデシロキシ基等が挙げられ、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソブトキシ基、n-ペンチロキシ基、n-ヘキシロキシ基、イソヘキシロキシ基、n-ヘプチロキシ基、n-オクチロキシ基からなる群より選択される基が特に好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 なかでも、m価の炭化水素基Aは、下記式(a-1)~(a-4)からなる群の1種の連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(a-1)~(a-4)中、*Lは、前記式(1)におけるLとの結合位置を表し、炭素原子の先の*は、前記式(1)におけるエステル基を構成する酸素原子との結合位置を表す。
 m価の炭化水素基Aは、モノマー合成における反応の容易性の理由から、式(a-1)、式(a-2)、式(a-3)からなる群の1種の3価の連結基であることが好ましく、式(a-1)または式(a-2)の3価の連結基であることがより好ましく、式(a-1)の3価の連結基であることがさらに好ましい。
 式(1)中、R、R、R、RおよびRは、同一または相異なって、水素原子、ハロゲン原子、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐状アルキル基、炭素数3~20の環状アルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基からなる群の1種を表す。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 炭素数1~20の直鎖状のアルキル基としては、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、エチル基、n-プロピル基などが挙げられ、中でも、メチル基またはエチル基が好ましい。
 炭素数3~20の分岐状のアルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、イソプロピル基、tert-ブチル基などが挙げられる。
 炭素数3~20の環状アルキル基としては、炭素数3~6のアルキル基が好ましく、具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられ、中でも、シクロヘキシル基が好ましい。
 炭素数1~20の直鎖状のハロゲン化アルキル基としては、炭素数1~4のフルオロアルキル基が好ましく、具体的には、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基などが挙げられ、中でも、トリフルオロメチル基が好ましい。
 炭素数1~20のアルコキシ基としては、炭素数1~8のアルコキシ基が好ましく、具体的には、例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基などが挙げられる。
 炭素数6~20のアリール基としては、炭素数6~12のアリール基が好ましく、具体的には、例えば、フェニル基、α-メチルフェニル基、ナフチル基などが挙げられ、中でも、フェニル基が好ましい。
 炭素数6~20のアリールオキシ基としては、炭素数6~12のアリールオキシ基が好ましく、具体的には、例えば、フェニルオキシ基、2-ナフチルオキシ基などが挙げられ、中でも、フェニルオキシ基が好ましい。
 アミノ基としては、例えば、第1級アミノ基(-NH);メチルアミノ基などの第2級アミノ基;ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、含窒素複素環化合物(例えば、ピロリジン、ピぺリジン、ピペラジンなど)の窒素原子を結合手とした基などの第3級アミノ基が挙げられる。
 R、R、R、RおよびRは、フッ素系樹脂におけるフッ素系溶剤への溶解性、光硬化性、撥液性をより高くする理由から、水素原子、アルキル基、ハロゲン原子、炭素数1~20の直鎖状のハロゲン化アルキル基であることが好ましく、さらに、水素原子であることが好ましい。
 光架橋性基を含む式(1)で表される繰り返し単位(以下、繰り返し単位B、と称することもある)としては、具体的には、例えば、以下に示す繰り返し単位B-1~B-26が挙げられ、その中でもB-1~B-16などが好ましく、特にB-1、B-2、B-13、B-16が好ましい。なお、下記式中、Meはメチル基を表し、Etはエチル基を表し、Prはイソプロピル基を表す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 本発明のフッ素系樹脂は、フッ素原子を含む繰り返し単位を有する。これにより、フッ素系樹脂が撥液性能を発現し、かつ、フッ素系溶剤へも高い溶解性を有する。
 フッ素原子を含む繰り返し単位は下記式(3)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(3)中、Rは水素原子またはメチル基を表す。
 式(3)中、Lは単結合または2価の連結基を表す。
 Lにおける2価の連結基としては、炭素数1~10の直鎖状のアルキレン基、炭素数3~20の分岐状のアルキレン基または炭素数3~20の環状のアルキレン基、炭素数6~12のアリーレン基、エーテル基(-O-)、カルボニル基(-C(=O)-)またはイミノ基(-NH-)からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基であることが好ましい。これにより平坦でひび割れのない膜形成ができる。
 炭素数1~10の直鎖状のアルキレン基としては、具体的には、例えば、メチレン基、エチレン基、プロピレン基、プチレン基、ペンチレン基、ヘキシレン基、デシレン基などが挙げられる。
 炭素数3~10の分岐状のアルキレン基としては、具体的には、例えば、ジメチルメチレン基、メチルエチレン基、2,2-ジメチルプロピレン基、2-エチル-2-チルプロピレン基などが挙げられる。
 炭素数3~10の環状のアルキレン基としては、具体的には、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、アダマンタン-ジイル基、ノルボルナン-ジイル基、exo-テトラヒドロジシクロペンタジエン-ジイル基などが挙げられ、中でも、シクロヘキシレン基が好ましい。
 炭素数6~12のアリーレン基としては、具体的には、例えば、フェニレン基、キシリレン基、ビフェニレン基、ナフチレン基、2,2’-メチレンビスフェニル基などが挙げられ、中でも、フェニレン基が好ましい。
 これらの2価の連結基のうち、カルボニル基とエーテル基とを組み合わせたエステル結合(-C(=O)O-)またはフェニレン基とエーテル基とを組み合わせた連結基であることがより好ましく、(-C(=O)O-)であることが更に好ましい。
 式(3)中、Rfは炭素数1~15の直鎖状フルオロアルキル基、炭素数3~15の分岐鎖状フルオロアルキル基または炭素数3~15の環状フルオロアルキル基からなる群の1種を表す。
 Rfがフルオロアルキル基であることにより、本発明の一態様に係るフッ素系樹脂はフッ素系溶剤との親和性、および撥液性を示す。
 Rfが直鎖状のフルオロアルキル基である場合、具体的なRfとしてフッ素原子で置換されているメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基または炭素数10~14のアルキル基を例示することができる。LにおけるRfとの結合元素が酸素である場合、Rfにおけるフッ素原子の置換位置は、Lの酸素に直接結合している炭素原子以外の炭素原子上であればよい。
 Rfが直鎖状のフルオロアルキル基である場合、Rfは下記式(4)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(4)中、*は、式(4)におけるLとの結合位置を表す。
 式(4)中、Xは水素原子またはフッ素原子である。
 式(4)中、yは1~4の整数であり、好ましくは1~2である。
 式(4)中、zは1~14の整数であり、好ましくは2~10であり、さらに好ましくは4~8である。
 Rfが式(4)で表される基であることにより、式(3)で表される繰り返し単位の原料となる単量体の合成がより容易となる。
 Rfが分岐状のフルオロアルキル基である場合、具体的なRfとして、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、1-(トリフルオロメチル)-2,2,3,3,3-ペンタフルオロプロピル基、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエチル基または1,1-ビス(トリフルオロメチル)エチル基を例示することができる。
 Rfが環状フルオロアルキル基である場合、具体的なRfとして1,2,2,3,3,4,4,5,5-ノナフルオロシクロペンタン基、1,2,2,3,3,4,4,5,5,6,6-ウンデカフルオロシクロヘキサン基を例示することができる。
 前記式(3)で表される繰り返し単位は、下記式(5)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(5)中、R10は水素原子またはメチル基のいずれかを表す。
 式(5)中、Xは水素原子またはフッ素原子である。
 式(5)中、yは1~4の整数であり、好ましくは1~2である。
 式(5)中、zは1~14の整数であり、好ましくは2~10であり、さらに好ましくは4~8である。
 本発明の一態様に係るフッ素系樹脂は、前記式(3)で表わされる繰り返し単位を1種含んでいてもよく、2種以上含んでもよい。例えば、Rfとして前述した直鎖状のフルオロアルキル基を有する繰り返し単位、およびRfとして前述した分岐上のフルオロアルキル基を有する繰り返し単位の両方の繰り返し単位を含んでもよいし、互いに炭素数の異なる直鎖状フルオロアルキル基を有する2種以上の繰り返し単位を含んでもよい。本発明の一態様に係るフッ素系樹脂は、好ましくは式(3)で表わされる繰り返し単位を1種含む。
 本発明の一態様に係るフッ素系樹脂におけるフッ素原子を含む繰り返し単位として、具体的に、以下の式(C-1)~(C-33)で表される繰り返し単位からなる群の1種を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 フッ素原子を含む繰り返し単位として、前記式(C-1)~(C-33)で表される繰り返し単位からなる群の1種が好ましく、式(C-9)~(C-33)で表される繰り返し単位からなる群の1種がさらに好ましく、式(C-14)~(C-21)で表される繰り返し単位からなる群または式(C-27)~(C-33)で表される繰り返し単位からなる群の1種が特に好ましい。
 本発明の一態様に係るフッ素系樹脂は、前記式(1)で表される繰り返し単位と、前記式(3)で表される繰り返し単位を含む共重合体であることが好ましい。すなわち、本発明の一態様に係るフッ素系樹脂は、以下の式(6)で表される共重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 (式(6)の中でR、Rは、水素原子またはメチル基を表し、L、Lは、単結合または2価の連結基を表し、Aはm価の連結基を表し、R、R、R、RおよびRは、同一または相異なって、水素原子、ハロゲン原子、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐状アルキル基、炭素数3~20の環状アルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基からなる群の1種を表す。mは、3以上の整数を表し、nは、m-1の整数を表す。Rfは炭素数1~15の直鎖状フルオロアルキル基、炭素数3~15の分岐鎖状フルオロアルキル基または炭素数3~15の環状フルオロアルキル基からなる群の1種を表す。)
 式(6)中、R、L、A、R、R、R、RおよびRは前記式(1)におけるR、L、A、R、R、R、RおよびRと同義である。
 式(6)中、R、L、Rfは前記式(3)におけるR、L、Rfと同義である。
 式(6)で表される共重合体はランダム共重合体であってもブロック共重合体であってもよい。
 本発明の一態様に係るフッ素系樹脂は、フッ素系溶剤への可溶性が高まり、より効率よく光硬化されるようになる観点から、前記式(1)で表される繰り返し単位を10mol%以上90mol%以下含むことが好ましく、20mol%以上80mol%以下含むことが好ましく、20mol%以上70mol%以下含むことが好ましい。
 また、フッ素原子を含む繰り返し単位を10mol%以上90mol%以下含むことが好ましく、20mol%以上80mol%以下含むことが好ましく、30mol%以上80mol%以下含むことが好ましい。
 本発明の一態様に係るフッ素系樹脂は、式(2)で表される繰り返し単位をさらに有することが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(2)中、Rは、水素原子またはメチル基を表す。
 式(2)中、Rは炭素数1~30のアルキル基を表す。
 式(2)中、Rは炭素数1~30のアルキル基を表し、炭素数1~30のアルキルとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等の直鎖アルキル基;イソプロピル基、イソブチル基、イソバレリル基、イソヘキシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル基、2-ヘキシルデシル基、2-ヘキシルウンデシル基、2-オクチルデシル基、2-オクチルドデシル基、2-デシルテトラデシル基、2-デシルヘキサデシル基、3-ヘキシルデシル基、3-オクチルデシル基、3-オクチルドデシル基、3-デシルテトラデシル基、3-デシルヘキサデシル基、4-ヘキシルデシル基、4-オクチルデシル基、4-オクチルドデシル基、4-デシルテトラデシル基、4-デシルヘキサデシル基、4-シクロヘキシルブチル基、8-シクロヘキシルオクチル基等の分岐アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、3-デシルシクロペンチル基、4-デシルシクロヘキシル基等の環状アルキル基が挙げられる。そして、その中でも、炭素数1~15の直鎖アルキル基、炭素数3~15の分岐アルキル基からなる群の1種が好ましく、炭素数1~3の直鎖アルキルがより好ましく、メチル基がより好ましい。
 式(2)で表される繰り返し単位として、具体的に、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニルで表される繰り返し単位からなる1種を挙げることができる。
 本発明の一態様に係るフッ素系樹脂において、式(2)で表される繰り返し単位を有する場合、フッ素系溶剤への可溶性が高まり、より効率よく光硬化されるようになる観点から、式(1)で表される繰り返し単位を10mol%以上70%mol%以下含むことが好ましく、20mol%以上50%mol%以下含むことが好ましく、30mol%以上50mol%以下含むことが好ましい。
 また、式(2)で表される繰り返し単位を10mol%以上70%mol%以下含むことが好ましく、20mol%以上60%mol%以下含むことが好ましく、30mol%以上50mol%以下含むことが好ましい。
 また、フッ素原子を含む繰り返し単位を10mol%以上80%mol%以下含むことが好ましく、10mol%以上60mol%以下含むことが好ましく、10mol%以上40mol%以下が好ましく、10mol%以上30mol%以下含むことがより好ましい。
 本発明の一態様に係るフッ素系樹脂には、本発明の目的を逸脱しない範囲において、他の単量体繰り返し単位が含まれていても良い。他の単量体繰り返し単位としては、例えば、エチレン残基、プロピレン残基、1-ブテン残基等のオレフィン類残基;スチレン残基、α-メチルスチレン残基等のビニル芳香族炭化水素類残基;酢酸ビニル残基、プロピオン酸ビニル残基、ピバル酸ビニル残基等のカルボン酸ビニルエステル類残基;メチルビニルエーテル残基、エチルビニルエーテル残基、ブチルビニルエーテル残基等のビニルエーテル類残基;N-メチルマレイミド残基、N-シクロヘキシルマレイミド残基、N-フェニルマレイミド残基等のN-置換マレイミド類残基;アクリロニトリル残基;メタクリロニトリル残基等が挙げられる。
 本発明のフッ素系樹脂において、分子量に対して何ら制限はなく、例えば、2000~10,000,000(g/モル)のものを用いることができる。得られる樹脂の溶液粘度、および力学強度の観点から、好ましくは10,000~1,000,000(g/モル)である。
 本発明のフッ素系樹脂の合成法は特に限定されず、例えば、上述した繰り返し単位Bを形成するモノマー、上述したフッ素原子を含む繰り返し単位を形成するモノマー、および、任意の他の繰り返し単位を形成するモノマーを混合し、有機溶剤中で、ラジカル重合開始剤を用いて重合することにより合成することができる。
 本発明の一態様に係るフッ素系樹脂において、式(2)で表される繰り返し単位を有する場合、フッ素系樹脂の合成法は特に限定されず、例えば、上述した繰り返し単位Bを形成するモノマー、上述した式(2)で表される繰り返し単位を形成するモノマー、上述したフッ素原子を含む繰り返し単位を形成するモノマー、および、任意の他の繰り返し単位を形成するモノマーを混合し、有機溶剤中で、ラジカル重合開始剤を用いて重合することにより合成することができる。
 以下に本発明の一態様である組成物について説明する。
 本発明の一態様に係る組成物は有機溶剤およびフッ素系溶剤の少なくとも一方の溶剤とフッ素系樹脂とを含む。
 前記のフッ素系溶剤は、本発明のフッ素系樹脂を溶解させるものであればよい。フッ素系樹脂を溶解させる溶剤としてフッ素系溶剤を用いることで、全印刷法による電子デバイスの作製の際に、有機物を主成分とするデバイス構成部材へのダメージを最小限に抑えることができ、電子デバイスの性能を十分に発揮することが可能となる。
 フッ素系溶剤を構成するフッ素系化合物中、フッ素原子含有量は、フッ素系化合物の全質量に対して、50質量%以上70質量%以下、より好ましくは55質量%以上70質量%以下である。70質量%を超えると前述のフッ素系樹脂が十分溶解しなくなる。また、50質量%より少ないと、有機半導体膜上に塗布または印刷する際、有機半導体膜の表面を溶解または膨潤することがある。
 本発明の組成物に含まれるフッ素系溶剤として、以下に示す含フッ素炭化水素、含フッ素エーテルまたは含フッ素アルコールを好ましく用いることができ、含フッ素炭化水素または含フッ素エーテルをより好ましく用いることができる。
 含フッ素炭化水素はオゾン破壊係数が低く、本発明の組成物が含むフッ素系溶剤として好ましい。特に、炭素数4~8の、直鎖状、分岐鎖状または環状の炭化水素で、水素原子の少なくとも1個がフッ素原子で置換されている含フッ素炭化水素は塗布しやすく好ましい。
 このような含フッ素炭化水素として具体的には、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロヘキサンまたはベンゼンの水素原子の少なくとも1個がフッ素原子で置換されたものを例示することができる。具体的に示せば、例えば、1,1,1,3,3-ペンタフルオロプタン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン、2H,3H-デカフルオロペンタン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロオクタン、ヘキサフルオロシクロペンタン、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、ヘキサフルオロベンゼンの含フッ素炭化水素を例示することができる。
 含フッ素炭化水素は、沸点が200℃以下であることが好ましく、さらに好ましくは180℃以下である。含フッ素炭化水素の沸点が200℃以下であると、加熱により含フッ素炭化水素を蒸発除去しやすい。
 前記含フッ素炭化水素のうち、特に好ましい沸点を有する例として、以下を例示することができる。
 2H,3H-デカフルオロペンタン、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロオクタン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン、ヘキサフルオロベンゼンを例示することができる。
 また、オゾン破壊係数の低さから、フッ素系溶剤として含フッ素エーテルを使用することができる。特に、含フッ素エーテルは、沸点が200℃以下であることが好ましく、さらに好ましくは180℃以下である。含フッ素エーテルの沸点が200℃以下であると、フッ素系樹脂膜から、加熱により含フッ素エーテルを蒸発除去しやすい。
 好ましい含フッ素エーテルの例として、1,1,2,3,3,3-ヘキサフルオロ-1-(2,2,2-トリフルオロエトキシ)プロパン、1,1,2,3,3,3-ヘキサフルオロ-1-(2,2,3,3,3-ペンタフルオロプロポキシ)プロパン、1,1,2,3,3,3-ヘキサフルオロ-1-(2,2,3,3-テトラフルオロプロポキシ)プロパン、2,2,3,3,3-ペンタフルオロ-1-(1,1,2,2-テトラフルオロエトキシ)プロパン、1,1,1,2,2,3,3-ヘプタフルオロ-3-メトキシプロパン、メチルパーフルオロブチルエーテル、または、エチルノナフルオロブチルエーテルを例示することができる。
 好ましい沸点を有する含フッ素エーテルとしてはエチルノナフルオロブチルエーテル、メチルパーフルオロブチルエーテル、エチルノナフルオロブチルエーテル、1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン、2-(トリフルオロメチル)-3-エトキシドデカフルオロヘキサン、(1,1,1,2,3,3-ヘキサフルオロプロポキシ)ペンタン、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル、メトキシパーフルオロヘプテン等を例示することができる。
 フッ素系溶剤として含フッ素アルコールを使用することができる。用いられる含フッ素アルコールは、沸点が200℃以下であることが好ましく、さらに好ましくは180℃以下である。含フッ素アルコールの沸点が200℃以下であると、加熱により含フッ素アルコールを蒸発除去しやすい。
 好ましい含フッ素アルコールの例として、1H,1H-トリフルオロエタノール、1H1H-ペンタフルオロプロパノール、1H,1H-へプタフルオロブタノール、2-(パーフルオロブチル)エタノール、3-(パーフルオロブチル)プロパノール、2-(パーフルオロヘキシル)エタノール、3-(パーフルオロヘキシル)プロパノール、1H,1H,3H-テトラフルオロプロパノール、1H,1H,5H-オクタフルオロペンタノール、1H,1H,7H-ドデカフルオロヘプタノール、2H-ヘキサフルオロ-2-プロパノール、1H,1H,3H-ヘキサフルオロブタノールを例示することができる。
 さらに、フッ素系樹脂の溶解性をより高めるためにフッ素系溶剤を2種類以上含んでいてもよい。
 本発明の組成物に用いられるものとしての有機溶剤とは、フッ素系溶剤に該当しない有機溶剤を指す。有機溶剤としては本発明のフッ素系樹脂が溶解する限り何ら制限はなく、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン、ヘキサデカン、デカリン、インダン、1-メチルナフタレン、2-エチルナフタレン、1,4-ジメチルナフタレン、ジメチルナフタレン異性体混合物、トルエン、キシレン、エチルベンゼン、1,2,4-トリメチルベンゼン、メシチレン、イソプロピルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、オクチルベンゼン、シクロヘキシルベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、トリクロロベンゼン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、γ-ブチロラクトン、1,3-ブチレングリコール、エチレングリコール、ベンジルアルコール、グリセリン、シクロヘキサノールアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、アニソール、シクロヘキサノン、メシチレン、3-メトキシブチルアセテート、シクロヘキサノールアセテート、ジプロピレングリコールジアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、1,6-ヘキサンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、エチルアセテート、フェニルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-N-プロピルエーテル、テトラデカヒドロフェナントレン、1,2,3,4,5,6,7,8-オクタヒドロフェナントレン、デカヒドロ-2-ナフトール、1,2,3,4-テトラヒドロ-1-ナフトール、α-テルピネオール、イソホロントリアセチンデカヒドロ-2-ナフトール、ジプロピレングリコールジメチルエーテル、2,6-ジメチルアニソール、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、1-ベンゾチオフェン、3-メチルベンゾチオフェン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、クロロホルム、ジクロロメタン、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、リモネン等が例示される。好ましい性状の膜を得るためにはフッ素系樹脂を溶解する溶解力が高い有機溶剤が適しており、キシレン、プロピレングリコールモノメチルエーテルアセテートが好ましい。また、前述の溶剤2種以上を適切な割合で混合した混合溶剤も用いることができる。
 本発明の一態様に係るフッ素系樹脂と有機溶剤およびフッ素系溶剤の少なくとも一方の溶剤との組成物は、フッ素系樹脂を1wt%以上50wt%以下含み、当該溶剤を50wt%以上99wt%以下含むことが好ましい。
 また、本発明の一態様に係る組成物は光増感剤を含んでもよい。光増感剤は、光架橋性基の架橋反応を促進させるものであれば良い。
 光増感剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテルなどのアシロイン類;アントラキノン、2-メチルアントラキノン、1,2-ベンズアントラキノン、1-クロロアントラキノン、シクロヘキサノンなどのカルボニル類;ジアセチル、ベンジルなどのジケトン類;ジフェニルモノサルファイド、ジフェニルジサルファイド、テトラメチルチウラムジサルファイドなどの有機サルファイド類;アセトフェノン、ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、o-メトキシベンゾフェノン、2,4,6-トリメトキシベンゾフエノンなどのフェノン類;p-トルエンスルホニルクロライド、I-ナフタレンスルホニルクロライド、1,3-ベンゼンスルホニルクロライド、2,4-ジニトロベンゼンスルホニルブロマイド、p-アセトアミドベンゼンスルホニルクロライドなどのスルホニルハライド類;5-ニトロフルオレン、5-ニトロアセナフテン、N-アセチル-4-ニトロ-1-ナフチルアミン、ビクラミド等の芳香族ニトロ化合物類;7-ジエチルアミノ-3-テノイルクマリン、3,3’-カルボニルビス(7-ジエチルアミノクマリン)などのクマリン類;四塩化炭素、ヘキサブロモエタン、1,1,2,2-テトラブロモエタンなどのハロゲン化炭化水素類;ジアゾメタン、アブビスイソブチロニトリル、ヒドラジン、トリメチルベンジルアンモニウムクロライドなどの窒素誘導体;エチオニン、チオニン、メチレンブルーなどの色素類などが挙げられる。光増感剤を添加することで、より低露光量で本発明の一態様に係るフッ素系樹脂を架橋(不溶化)することができる。また、該増感剤は必要に応じて2種以上を組み合わせて使用できる。
 本発明の一態様に係るフッ素系樹脂と光増感剤と有機溶剤およびフッ素系溶剤の少なくとも一方の溶剤との組成物は、フッ素系樹脂を1wt%以上50wt%以下含み、当該溶剤を50wt%以上99wt%以下含み、光増感剤を0.001wt%以上5wt%以下含むことが好ましい。
 以下に本発明の一態様であるパターンについて説明する。
 本発明のフッ素系樹脂を用いてパターンを形成することができる。より詳細には、本発明のフッ素系樹脂またはその組成物を用いて光架橋物を得、パターンを形成する。
 最初に、公知の塗膜形成方法によって、基板の表面にフッ素系樹脂の塗膜を形成する。基板としては、例えば、各種ガラス板;ポリエチレンテレフタレート等のポリエステル;ポリプロピレン、ポリエチレン等のポリオレフィン;ポリカーボネート、ポリメチルメタクリレート、ポリスルホン、ポリイミドの熱可塑性プラスチックシート;エポキシ樹脂;ポリエステル樹脂;ポリ(メタ)アクリル樹脂等の熱硬化性プラスチックシート等を挙げることができる。
 塗膜の形成方法としては、例えば、スピンコーティング、ドロップキャスト、ディップコーティング、ドクターブレードコーティング、パッド印刷、スキージコート、ロールコーティング、ロッドバーコーティング、エアナイフコーティング、ワイヤーバーコーティング、フローコーティング、グラビア印刷、フレキソ印刷、スーパーフレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷、反転オフセット印刷、付着力コントラスト印刷等を用いることができる。
 次に、塗膜は乾燥される。乾燥することによって、溶剤が揮発し、粘着性のない塗膜が得られる。乾燥条件は、用いる溶剤の沸点および配合割合などによっても異なるが、好ましくは50~150℃、10~2000秒間程度の幅広い範囲で使用できる。
 塗膜形成時に、印刷手法を用いて、所定の形状、すなわち目的とするパターンと同一の形状を有する塗膜を形成した際は、露光を行うことで、所定の形状を有する塗膜が光架橋し光架橋物を得、固定化され、パターンを形成できる。
 一方、塗膜形成時に所定の形状を有する塗膜を形成しなかった場合は、フォトリソグラフィ技術を用いて、塗膜からパターンを形成できる。フォトリソグラフィ技術を用いる場合、まず、乾燥された塗膜に、所定の形状、すなわち目的とするパターンを形成し得る形状のマスクを介して露光し、光架橋させる。
 本発明のフッ素系樹脂を光架橋により硬化させる際、紫外線、可視光等の放射線が用いられ、例えば、波長245~435nmの紫外線が例示される。照射量は樹脂の組成により適宜変更されるが、例えば、10~5000mJ/cmが挙げられる。架橋度の低下を防止し、かつ、プロセスの短時間化による経済性の向上の観点から、照射量は、好ましくは100~4000mJ/cmである。具体的な光照射装置または光源としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧または高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ等が挙げられる。
 紫外線の照射は通常大気中で行うが、必要に応じて不活性ガス中、または一定量の不活性ガス気流下で行うこともできる。必要に応じて前記の光増感剤を添加して光架橋反応を促進させることもできる。その後、現像液により現像し、未露光部分を除去する。現像液としては、未硬化のフッ素系樹脂が溶解する溶剤であれば如何なるものでもよく、例えばベンゼン、トルエン、キシレン等の芳香族溶剤;ジオキサン、ジエチルエーテル、テトラヒドロフラン、ジエチレングリコールジメチルエーテル等のエーテル系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル、酢酸イソプロピル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶剤;2H,3H-デカフルオロペンタン、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、ヘキサフルオロベンゼン、2,2,3,3-テトラフルオロ-1-プロパノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール、1H,1H,7H-ドデカフルオロ-1-ヘプタノール、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール等のフッ素系溶剤等を用いることができる。
 現像時間は、30~300秒間が好ましい。また現像方法は液盛り法、ディッピング法などのいずれでもよい。現像後、溶剤で洗浄を行い、圧縮空気または圧縮窒素で風乾させることによって、基板上の溶剤を除去する。続いて、ホットプレート、オーブンなどの加熱装置により、好ましくは40~150℃で、5~90分間加熱処理をすることによって、パターンが形成される。
 上記のフォトリソグラフィ工程を経て画素パターンを形成させた後、画素内の基板表面の汚れを除去してもよい。例えば、低圧水銀灯もしくはエキシマUV等の短波長紫外線の照射、または光アッシング処理等により基板表面を洗浄することが挙げられる。光アッシング処理とはオゾンガス存在下、短波長紫外線を照射する処理である。前記短波長紫外線とは、100~300nmの波長にメインピークを有する光である。
 このように、本発明のフッ素系樹脂は、それ自体はフッ素系溶剤または有機溶剤に可溶であり、光照射により、側鎖に有する光架橋性基が架橋され硬化し、用いた溶剤に不溶化する。この性質を利用し、本発明のフッ素系樹脂を光照射により架橋した際に、フッ素系溶剤または有機溶剤によって光の照射されていない部分が除去されるネガ型レジストとして使用できる。
 本発明のフッ素系樹脂を用いてパターニングした後、フッ素系樹脂が架橋して残っている部分(パターン外部)は、機能層を形成するためのインクの濡れ広がりを避けるため、インクに対する接触角は40°以上であることが好ましく、50°以上であることがより好ましい。
 本発明のフッ素系樹脂は、塗膜形成方法、光架橋、現像などのパターンと同様の方法で保護膜とすることができる。
 本発明のフッ素系樹脂は、優れた撥液特性を有し、有機トランジスタ素子、カラーフィルター、有機EL素子を製造する際のパターン材料に用いることができる。また、本発明のフッ素系樹脂は前記の有機トランジスタ素子、カラーフィルター、有機EL素子を含む電子バイスに用いることができる。
 以下に本発明の一態様である電子デバイスについて詳細に説明する。
 本発明のフッ素系樹脂は、電子デバイスに用いることができ、より詳細には、本発明のフッ素樹脂またはフッ素系樹脂と有機溶剤およびフッ素系溶剤の少なくとも一方の溶剤とを含む組成物の、光架橋物を備える電子デバイスとすることができ、電子デバイスとして、有機トランジスタを挙げることができる。
 一般的な有機トランジスタは、基板上にゲート絶縁層を有し、更にこのゲート絶縁層の上に有機半導体層を成膜し、ソース電極、ドレイン電極およびゲート電極を付設することにより得られる。有機トランジスタの素子構造の一例を、断面図として図1に示す。1001は、ボトムゲート-トップコンタクト型、1002は、ボトムゲート-ボトムコンタクト型、1003は、トップゲート-トップコンタクト型、1004は、トップゲート-ボトムコンタクト型の素子構造である。1は有機半導体層、2は基板、3はゲート電極、4はゲート絶縁層、5はソース電極、6はドレイン電極を示す。
 本発明の有機トランジスタの一形態を図2に示す。図2に示す有機トランジスタ1005は、図1におけるボトムゲート-ボトムコンタクト型に対応する。7はパターン、8は保護膜層を示す。
 該有機トランジスタにおいて、用いることができる基板は素子を作製できる十分な平坦性を確保できれば特に制限されず、例えば、ガラス、石英、酸化アルミニウム、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;プラスチック;金、銅、クロム、チタン、アルミニウム等の金属;セラミックス;コート紙;表面コート不織布等が挙げられ、これらの材料からなる複合材料またはこれらの材料を多層化した材料であっても良い。また、表面張力を調整するため、これらの材料表面をコーティングすることもできる。
 基板として用いるプラスチックとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリカーボネート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリエチレン、エチレン・酢酸ビニル共重合体、ポリメチルペンテン-1、ポリプロピレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリスチレン、ポリイミド、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエステルエラストマー、ポリウレタンエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、スチレンブロック共重合体等が例示される。また、上記のプラスチックを2種以上用いて積層して基板として用いることができる。
 有機半導体層で用いることができる有機半導体には何ら制限はなく、N型およびP型の有機半導体の何れも使用することができ、N型とP型とを組み合わせたバイポーラトランジスタとしても使用できる。また、低分子および高分子の有機半導体の何れも用いることができ、これらを混合して使用することもできる。有機半導体の具体的な化合物としては、例えば下記式(D-1)~(D-11)で表される化合物等が例示される。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 本発明において、有機半導体層を形成する方法としては、有機半導体を真空蒸着する方法、または有機半導体を有機溶剤に溶解させて塗布、印刷する方法等が例示されるが、有機半導体層の薄膜を形成できる方法であれば何らの制限もない。有機半導体層を有機溶剤に溶解させた溶液を用いて塗布、または印刷する場合の溶液濃度は、有機半導体の構造および用いる溶剤により異なるが、より均一な半導体層の形成および層の厚みの低減の観点から、0.5%~5wt%であることが好ましい。この際の有機溶剤としては有機半導体が製膜可能な一定の濃度で溶解する限り何ら制限はなく、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン、ヘキサデカン、デカリン、インダン、1-メチルナフタレン、2-エチルナフタレン、1,4-ジメチルナフタレン、ジメチルナフタレン異性体混合物、トルエン、キシレン、エチルベンゼン、1,2,4-トリメチルベンゼン、メシチレン、イソプロピルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、オクチルベンゼン、シクロヘキシルベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、トリクロロベンゼン、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、γ-ブチロラクトン、1,3-ブチレングリコール、エチレングリコール、ベンジルアルコール、グリセリン、シクロヘキサノールアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、アニソール、シクロヘキサノン、メシチレン、3-メトキシブチルアセテート、シクロヘキサノールアセテート、ジプロピレングリコールジアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、1,6-ヘキサンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、エチルアセテート、フェニルアセテート、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-N-プロピルエーテル、テトラデカヒドロフェナントレン、1,2,3,4,5,6,7,8-オクタヒドロフェナントレン、デカヒドロ-2-ナフトール、1,2,3,4-テトラヒドロ-1-ナフトール、α-テルピネオール、イソホロントリアセチンデカヒドロ-2-ナフトール、ジプロピレングリコールジメチルエーテル、2,6-ジメチルアニソール、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、1-ベンゾチオフェン、3-メチルベンゾチオフェン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、クロロホルム、ジクロロメタン、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、リモネン等が例示される。好ましい性状の結晶膜を得るためには有機半導体を溶解する溶解力が高く、沸点が100℃以上の溶剤が適しており、キシレン、イソプロピルベンゼン、アニソール、シクロヘキサノン、メシチレン、1,2-ジクロロベンゼン、3,4-ジメチルアニソール、ペンチルベンゼン、テトラリン、シクロヘキシルベンゼン、デカヒドロ-2-ナフトールが好ましい。また、前述の溶剤2種以上を適切な割合で混合した混合溶剤も用いることができる。
 有機半導体層には必要に応じて各種有機・無機の高分子若しくはオリゴマー、または有機・無機ナノ粒子を固体若しくは、ナノ粒子を水若しくは有機溶剤に分散させた分散液として添加でき、上記絶縁層上に高分子溶液を塗布して保護膜を形成できる。更に、必要に応じて本保護膜上に各種防湿コーティング、耐光性コーティング等を行うことができる。
 本発明で用いることができるゲート電極、ソース電極、またはドレイン電極としては、アルミニウム、金、銀、銅、ハイドープシリコン、ポリシリコン、シリサイド、スズ酸化物、酸化インジウム、インジウムスズ酸化物、クロム、白金、チタン、タンタル、グラフェン、カーボンナノチューブ等の無機電極、またはドープされた導電性高分子(例えば、PEDOT-PSS)等の有機電極等の導電性材料が例示され、これらの導電性材料を複数、積層して用いることもできる。また、キャリアの注入効率を上げるために、これらの電極に表面処理剤を用いて表面処理を実施することもできる。このような表面処理剤としては、例えば、ベンゼンチオール、ペンタフルオロベンゼンチオール等を挙げることができる。
 また、前記の基板、絶縁層または有機半導体層の上に電極を形成する方法に特に制限はなく、蒸着、高周波スパッタリング、電子ビームスパッタリング等が挙げられ、前記導電性材料のナノ粒子を水または有機溶剤に溶解させたインクを用いて、溶液スピンコート、ドロップキャスト、ディップコート、ドクターブレード、ダイコート、パッド印刷、ロールコーティング、グラビア印刷、フレキソ印刷、スーパーフレキソ印刷、スクリーン印刷、インクジェット印刷、凸版反転印刷等の方法を採用することもできる。
 本発明のフッ素系樹脂は、有機トランジスタにおけるパターン、保護膜層に好適に用いることができる。
 本発明の一態様に係る有機トランジスタは、有機トランジスタ素子の実用性の観点から、移動度が0.20cm/Vs以上であることが好ましい。
 本発明の一態様に係る有機トランジスタは、有機トランジスタ素子の実用性の観点から、オン電流/オフ電流比が10以上であることが好ましい。
 本発明の一態様に係る有機トランジスタは、有機トランジスタ素子の実用性の観点から、ソース・ドレイン間電流のヒステリシスが無いことが好ましい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例において、以下に示す条件・装置で実施した。
 <モノマー純度>
ガスクロマトグラフィー装置;島津製作所製、(商品名)GC2014
カラム;RESTEK社製、(商品名)Rxi-1HT、30m
上記のガスクロマトグラフィー装置(GC)を用い、モノマーの純度を分析した。
 <フッ素系樹脂の組成>
核磁気共鳴測定装置(日本電子製、商品名JNM-ECZ400S)を用い、プロトン核磁気共鳴分光(H-NMR)スペクトル分析より求めた。
 <スピンコート>
ミカサ株式会社製MS―A100を用いた。
 <膜厚測定>
ブルカー社製DektakXTスタイラスプロファイラーを用いて測定した。
 <UV照射>
ウシオライティング(株)製UVマスクアライナ、UPE-1605MAを用い、UV強度14.2mW/cmの条件で、搬送速度を変えてUV照射時間を調整した。
 <インクジェット印刷>
 特開2015-224238号公報の製造方法に従って合成した、有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の溶液を基本液滴量10pLのカートリッジに充填し、インクジェット装置(富士フイルムDimatix社製、DMP-2831、ステージ温度30℃、カートリッジ温度30℃)を用いて印刷した。
 <レーザ顕微鏡>
 レーザーテック社製レーザーマイクロスコープ、OPTELICS HYBRIDでインクジェット印刷した有機半導体層またはパターンを確認した。
 実施例において、以下の結果を得た。
 合成例1(光架橋性モノマー1の合成)
 窒素雰囲気下で200mLのフラスコにグリセリンモノメタクリレート(ブレンマーGLM、日油)6gとトリエチルアミン8.6gとテトラヒドロフラン18gとを入れ、十分に混合した。また、窒素雰囲気下でガラス瓶に桂皮酸クロリド14.1gとテトラヒドロフラン42gとを入れて溶かした。その後グリセリンモノメタクリレート、トリエチルアミンおよびテトラヒドロフランを入れたフラスコに窒素を流し、滴下ロートを用いて桂皮酸クロリドを溶かした溶液を滴下し、22時間攪拌した。その後、ろ過して副産物である塩を除去し、アスピレーターでテトラヒドロフランを除去した。その後、生成物をトルエン50gに溶解させて炭酸水素ナトリウム水溶液で3回洗浄して真空乾燥した。乾燥後得られた物質のH-NMRおよびガスクロマトグラフィー分析の結果、下記式(7)で表される物質(光架橋性モノマー1)であることを確認した。(GC純度87%)
 (光架橋性モノマー1)
Figure JPOXMLDOC01-appb-C000028
 実施例1(フッ素系樹脂1の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 6.78g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル9.10g、重合開始剤としてパーヘキシルND(日油製)0.27g、および2-ブタノン37gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂1を13.8g得た(収率:約87%)。フッ素系樹脂1のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位)[C-29]=38/62(モル%)であり、式(8)で表される共重合体であることを確認した。H-NMR測定結果を図3に示す。
 (フッ素系樹脂1)
Figure JPOXMLDOC01-appb-C000029
 合成例2(光架橋性モノマー2の合成)
 窒素雰囲気下で50mLのシュレンク管に4-クロロ桂皮酸5gと塩化チオニル7gとN,N-ジメチルホルムアミド3滴とジクロロメタン20mlとを加えて、40℃で4時間攪拌しながら反応を行って真空乾燥し、4-クロロ桂皮酸クロリドを得た。その後、窒素雰囲気下で100mLのフラスコにグリセリンモノメタクリレート(ブレンマーGLM、日油)1.7gとトリエチルアミン3gとトルエン5.1gとを入れ、十分に混合した。また、窒素雰囲気下でガラス瓶に4-クロロ桂皮酸クロリド5.3gとトルエン16gとを入れて溶かした。その後グリセリンモノメタクリレート、トリエチルアミンおよびトルエンを入れたフラスコに窒素を流し、滴下ロートを用いてpCl-桂皮酸クロリドを溶かした溶液を滴下し、22時間攪拌した。その後、ろ過して副産物である塩を除去した。その後、炭酸水素ナトリウム水溶液で3回洗浄して真空乾燥した。乾燥後得られた物質のH-NMRおよびガスクロマトグラフィー分析の結果、下記式(9)で表される化合物(光架橋性モノマー2)であることを確認した。(GC純度93%)
 (光架橋性モノマー2)
Figure JPOXMLDOC01-appb-C000030
 実施例2(フッ素系樹脂2の重合)
 容量75mLのガラスアンプルに、合成例2で得られた光架橋性モノマー2 2.31g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル2.85g、重合開始剤としてパーヘキシルND(日油製)0.09g、および2-ブタノン12gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール200mL中に滴下して析出させた後、メタノール100mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂2を3.0g得た(収率:約61%)。フッ素系樹脂2のH-NMR測定により、その組成は、光架橋性モノマー2(光架橋基単位2)[B-13]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位1)[C-29]=36/64(モル%)であり、式(10)で表される共重合体であることを確認した。
 (フッ素系樹脂2)
Figure JPOXMLDOC01-appb-C000031
 合成例3(光架橋性モノマー3の合成)
 4-クロロ桂皮酸の代わりに(E)-3-(4-メチルフェニル)-2-プロペン酸を使うこと以外は合成例2と同じ方法で合成をおこなった。分析の結果、得られた物質が、下記式(11)で表される化合物(光架橋性モノマー3)であることを確認した。(GC純度89%)
 (光架橋性モノマー3)
Figure JPOXMLDOC01-appb-C000032
 実施例3(フッ素系樹脂3の重合)
 容量75mLのガラスアンプルに、合成例3で得られた光架橋性モノマー3 2.30g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル2.95g、重合開始剤としてパーヘキシルND(日油製)0.09g、および2-ブタノン12gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール200mL中に滴下して析出させた後、メタノール100mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂3を4.2g得た(収率:約84%)。フッ素系樹脂3のH-NMR測定により、その組成は、光架橋性モノマー3(光架橋基単位3)[B-2]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位1)[C-29]=37/63(モル%)であり、式(12)で表される共重合体であることを確認した。
 (フッ素系樹脂3)
Figure JPOXMLDOC01-appb-C000033
 合成例4(光架橋性モノマー4の合成)
 4-クロロ桂皮酸の代わりに3-(トリフルオロメチル)桂皮酸を使うこと以外は合成例2と同じ方法で合成をおこなった。分析の結果、得られた物質が、下記式(13)で表される化合物(光架橋性モノマー4)であることを確認した。(GC純度81%)
 (光架橋性モノマー4)
Figure JPOXMLDOC01-appb-C000034
 実施例4(フッ素系樹脂4の重合)
 容量75mLのガラスアンプルに、合成例4で得られた光架橋性モノマー4 2.78g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル2.69g、重合開始剤としてパーヘキシルND(日油製)0.08g、および2-ブタノン13gを入れ、窒素置換および抜圧を繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール200mL中に滴下して析出させた後、メタノール100mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂4を4.1g得た(収率:約82%)。フッ素系樹脂4のH-NMR測定により、その組成は、光架橋性モノマー4(光架橋基単位4)[B-16]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位1)[B-29]=37/63(モル%)であり、式(14)で表される共重合体であることを確認した。
 (フッ素系樹脂4)
Figure JPOXMLDOC01-appb-C000035
 実施例5(フッ素系樹脂5の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 5.4g、メタクリル酸 1H,1H,2H,2H-ノナフルオロヘキシル5.4g、重合開始剤としてパーヘキシルND(日油製)0.21g、および2-ブタノン25gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂5を8.4g得た(収率:約83%)。フッ素系樹脂5のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸 1H,1H,2H,2H-ノナフルオロヘキシル(フッ素系単位2)[C-27]=39/61(モル%)であり、式(15)で表される共重合体であることを確認した。
 (フッ素系樹脂5)
Figure JPOXMLDOC01-appb-C000036
 実施例6(フッ素系樹脂6の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 6.6g、メタクリル酸2,2,3,3,3-ペンタフルオロプロピル4.4g、重合開始剤としてパーヘキシルND(日油製)0.26g、および2-ブタノン25gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂6を7.0g得た(収率:約69%)。フッ素系樹脂6のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸2,2,3,3,3-ペンタフルオロプロピル(フッ素系単位3)[C-25]=39/61(モル%)であり、式(16)で表される共重合体であることを確認した。
 (フッ素系樹脂6)
Figure JPOXMLDOC01-appb-C000037
 実施例7(フッ素系樹脂7の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 5.7g、メタクリル酸 1H,1H,5H-オクタフルオロペンチル5.2g、重合開始剤としてパーヘキシルND(日油製)0.22g、および2-ブタノン25gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂7を4.3g得た(収率:約43%)。フッ素系樹脂7のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸 1H,1H,5H-オクタフルオロペンチル(フッ素系単位4)[C-23]=40/60(モル%)であり、式(17)で表される共重合体であることを確認した。
 (フッ素系樹脂7)
Figure JPOXMLDOC01-appb-C000038
 実施例8(フッ素系樹脂8の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 4.8g、メタクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル5.9g、重合開始剤としてパーヘキシルND(日油製)0.19g、および2-ブタノン25gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂8を0.8g得た(収率:約8%)。フッ素系樹脂8のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル(フッ素系単位5)[C-24]=41/59(モル%)であり、式(18)で表される共重合体であることを確認した。
 (フッ素系樹脂8)
Figure JPOXMLDOC01-appb-C000039
 実施例9(フッ素系樹脂9の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 8.2g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル3.1g、重合開始剤としてパーヘキシルND(日油製)0.18g、および2-ブタノン26gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂9を8.8g得た(収率:約88%)。フッ素系樹脂9のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位1)[C-29]=26/74(モル%)であり、式(19)で表される共重合体であることを確認した。
 (フッ素系樹脂9)
Figure JPOXMLDOC01-appb-C000040
 実施例10(フッ素系樹脂10の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 10.6g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル1.0g、重合開始剤としてパーヘキシルND(日油製)0.18g、および2-ブタノン27gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂10を8.2g得た(収率:約82%)。フッ素系樹脂10のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位1)[C-29]=15/85(モル%)であり、式(20)で表される共重合体であることを確認した。
 (フッ素系樹脂10)
Figure JPOXMLDOC01-appb-C000041
 実施例11(フッ素系樹脂11の製造)
 容量15mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 0.81g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル0.35g、メタクリル酸メチル 0.16g、重合開始剤としてパーヘキシルND(日油製)0.03g、および2-ブタノン3.1gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール100mL中に滴下して析出させた後、メタノール100mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂11を1.1g得た(収率:約83%)。フッ素系樹脂11のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)[B-1]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位1)[C-29]/メタクリル酸メチル(非フッ素系単位)=36/22/42(モル%)であり、下記式(21)で表される共重合体であることを確認した。
 (フッ素系樹脂11)
Figure JPOXMLDOC01-appb-C000042
 合成例5(光架橋性モノマー5の合成)
 4-クロロ桂皮酸の代わりに4-(トリフルオロメチル)桂皮酸を使うこと以外は合成例2と同じ方法で合成をおこなった。分析の結果、得られた物質が、下記式(22)で表される化合物(光架橋性モノマー5)であることを確認した。(GC純度83%)
 (光架橋性モノマー5)
Figure JPOXMLDOC01-appb-C000043
 実施例12(フッ素系樹脂12の重合)
 容量75mLのガラスアンプルに、合成例5で得られた光架橋性モノマー5 2.69g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル2.78g、重合開始剤としてパーヘキシルND(日油製)0.08g、および2-ブタノン13gを入れ、窒素置換および抜圧を繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール200mL中に滴下して析出させた後、メタノール100mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂12を4.1g得た(収率:約83%)。フッ素系樹脂12のH-NMR測定により、その組成は、光架橋性モノマー5(光架橋基単位5)[B-15]/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位1)[B-29]=36/64(モル%)であり、式(23)で表される共重合体であることを確認した。
 (フッ素系樹脂12)
Figure JPOXMLDOC01-appb-C000044
 比較例1(非フッ素系樹脂1の重合)
 容量75mLのガラスアンプルに、合成例1で得られた光架橋性モノマー1 4.36g、メタクリル酸メチル1.32g、重合開始剤としてパーヘキシルND(日油製)0.17g、および2-ブタノン13gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、非フッ素系樹脂1を4.6g得た(収率:約81%)。非フッ素系樹脂1のH-NMR測定により、その組成は、光架橋性モノマー1(光架橋基単位1)/メタクリル酸メチル(非フッ素系単位)=38/62(モル%)であり、下記式(24)で表される共重合体であることを確認した。
 (非フッ素系樹脂1)
Figure JPOXMLDOC01-appb-C000045
 合成例6(光架橋性モノマー6の合成)
 窒素雰囲気下で200mLのフラスコにメタクリル酸2-ヒドロキシエチル6gとトリエチルアミン5.3gとテトラヒドロフラン18gとを入れ、十分に混合した。また、窒素雰囲気下でガラス瓶に桂皮酸クロリド8.7gとテトラヒドロフラン26gとを入れて溶かした。その後メタクリル酸2-ヒドロキシエチル、トリエチルアミンおよびテトラヒドロフランを入れたフラスコに窒素を流し、滴下ロートを用いて桂皮酸クロリド溶かした溶液を滴下し、22時間攪拌した。その後、ろ過して副産物である塩を除去し、アスピレーターでテトラヒドロフランを除去した。その後、生成物をトルエン50gに溶解させて炭酸水素ナトリウム水溶液に3回洗浄して真空乾燥した。乾燥後、得られた物質のH-NMRおよびガスクロマトグラフィーの結果、下記式(25)で表される物質(光架橋性モノマー6)であることを確認した。(GC純度91%)
 (光架橋性モノマー6)
Figure JPOXMLDOC01-appb-C000046
 比較例2(フッ素系樹脂13の重合製造)
 容量75mLのガラスアンプルに、合成例2で得られた光架橋性モノマー2 3.11g、メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル7.14g、重合開始剤としてパーヘキシルND(日油製)0.21g、および2-ブタノン24gを入れ、窒素置換と抜圧とを繰り返したのち減圧状態で熔封した。このアンプルを45℃の恒温槽に入れ、24時間保持することによりラジカル重合を行った。重合反応終了後、アンプルからポリマー溶液を取り出し、このポリマー溶液を、メタノール500mL中に滴下して析出させた後、メタノール300mLで2回洗浄した。さらに30℃で8時間真空乾燥することにより、フッ素系樹脂13を9.2g得た(収率:約90%)。フッ素系樹脂13のH-NMR測定により、その組成は、光架橋性モノマー6(光架橋基単位6)/メタクリル酸1H,1H,2H,2H-トリデカフルオロ-n-オクチル(フッ素系単位)=38/62(モル%)であり、下記式(26)表される共重合体であることを確認した。
 (フッ素系樹脂13)
Figure JPOXMLDOC01-appb-C000047
 <フッ素系溶剤への溶解性評価>
 合成したフッ素系樹脂1~12または非フッ素系樹脂1を、下記の各フッ素系溶剤(溶剤1~溶剤8)に3wt%となるように加えて50℃まで加熱しながら混合し、常温まで温度を下げて不溶解分または析出分があるかを目視にて確認した。結果を表1に示す。表1では、不溶解分または析出分がある場合を「不溶」として示し、これらがなかった場合を「溶解」として示している。
 溶剤1:2H,3H-デカフルオロペンタン
 溶剤2:1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン
 溶剤3:1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル
 溶剤4:ヘキサフルオロベンゼン
 溶剤5:2,2,3,3-テトラフルオロ-1-プロパノール
 溶剤6:2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール
 溶剤7:1H,1H,7H-ドデカフルオロ-1-ヘプタノール
 溶剤8:2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール
 フッ素系樹脂1~12は多くのフッ素系溶剤に溶解することが確認された。
Figure JPOXMLDOC01-appb-T000048
 <撥液特性(撥水性・撥油性)の評価>
 洗浄、乾燥した30×30mmのガラス(コーニング社製EagleXG)にフッ素系樹脂1~11または非フッ素系樹脂1の溶液(3wt%、溶剤:プロピレングリコールモノメチルエーテルアセテート)を500rpm×5秒、1500rpm×20秒の条件でスピンコートした。UV照射を行った場合は、500mJ/cmの紫外線を照射した。接触角計(協和界面化学社製、商品名DM-300)を使用して、θ/2法により水、ジヨードメタン、m-キシレン、テトラリンに対する接触角を測定した。結果を表2に示す。
 フッ素系樹脂1~12は優れた撥液特性を有することが確認された。一方で非フッ素系樹脂1は優れた撥液特性を有するものではなかった。
Figure JPOXMLDOC01-appb-T000049
 <光架橋(硬化)性の評価>
 洗浄、乾燥した30×30mmのガラス基板(コーニング社製EagleXG)上に、スピンコータ―を用いてフッ素系樹脂1~11もしくはフッ素系樹脂13の溶液またはさらに増感剤を含む溶液(使用溶液は表3を参考)を、乾燥後の膜厚が100~150nmとなるようにスピンコート製膜し、十分に乾燥させた。このフッ素系樹脂に50~500mJ/cmの紫外線を照射して樹脂膜を光架橋した。この膜の厚みをブルカー社製DektakXTスタイラスプロファイラーにより測定し、Tとした。次に、この光架橋した樹脂膜がコーティングされたガラス板をフッ素系樹脂の良溶剤であるアセトンに1分浸漬後、取り出してホットプレート用いて100℃で1分乾燥した後の膜厚を測定してTとした。これらの膜厚測定値を用いて、残膜率(R)を下記の式により算出した。
     R=T/T×100(%)
 残膜率(R)95%以上を架橋の判断基準として、光架橋(硬化)性を評価した。なお、残膜率95%以上に達する紫外線照射量が低いほど光架橋性が高い(早い)ことを示す。500mJ/cm以下の紫外線照射量においてR95%以上が達成されたものを「架橋」と判定し、500mJ/cm以下の紫外線照射量においてはR95%以上が達成されなかったものを「架橋不足」と判定した。結果を表3に示す:
  溶剤6:2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール
  溶剤9:プロピレングリコールモノメチルエーテルアセテート
  増感剤1:4,4’-ビス(ジエチルアミノ)ベンゾフェノン(東京化成工業製)。
Figure JPOXMLDOC01-appb-T000050
 <パターン形成・半導体溶液の塗分け評価>
 パターン形成のため、フッ素系樹脂1~11または非フッ素系樹脂1をプロピレングリコールモノメチルエーテルアセテート溶剤に溶解させ、3wt%溶液を調製した。パターン形成用マスクとしては、一辺が50μmの正方形を縦に10個、横に10個配列した形状の、クロムでパターニングしたマスクを用いた。100×100mmのガラス基板上に前記の溶液をスピンコートして得られた膜上にマスクを配置し、UVを300mJ/cm照射した。照射後、未架橋部分をアセトンで1分間洗浄除去することにより、膜上に50×50μmサイズの穴が100個空いた形状のパターンを形成したか否かを、レーザ顕微鏡を用いて確認した。
 次いで、半導体溶液の塗分け評価を実施した。パターンの内部(フッ素系樹脂1~11または非フッ素系樹脂1が除去された領域。以下同じ。)に、上述の式(D-11)で表す有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)の0.8wt%テトラリン溶液をインクジェット印刷した。印刷後、半導体溶液がパターンの外部(フッ素系樹脂1~11または非フッ素系樹脂1が除去されてない領域)に濡れなくパターンの内部に半導体層が形成されたか否かを、レーザ顕微鏡を用いて確認した。結果を表4に示す。なお、式(D-11)で表す有機半導体は、特開2012-209329号公報に記載の方法に準じ合成した。
Figure JPOXMLDOC01-appb-T000051
 <有機トランジスタ評価>
 (ゲート電極の形成)
 100×100mmのガラス基板をスパッタリング装置(芝浦メカトロニクス株式会社、CFS-4EP-LL)内に設置し、銀を50nmになるように成膜してからフォトリソグラフィでパターニングし、銀電極、すなわちゲート電極を形成した。
 (絶縁層の形成)
 上述のゲート電極を形成した基板に、パリレン蒸着装置(日本パリレン合同会社、PDS2010)を用いてパリレンCの膜厚が約500nmになるように絶縁層を成膜した。
 (ソース・ドレイン電極の形成)
 上述の絶縁層を形成した基板をスパッタリング装置内に設置し、200Wで銀が50nmになるように成膜してからフォトリソグラフィでパターニングし、チャネル長20μmおよびチャネル幅50μmのソース・ドレイン電極を形成した。
 (撥液性のパターン形成)
 フッ素系樹脂1~11それぞれの酢酸2-メトキシ-1-メチルエチル溶液(3wt%)を調製し、膜厚が約100nmになるように、ソース・ドレイン電極を形成した基板上にスピンコートし、100℃で1分間乾燥した。その後、30μm×60μmの長方形状の遮光部を有するマスクを、上記の遮光部の中心部が上記のソース電極およびドレイン電極間の中心部と合致するように位置合わせを行った後、基板と接触させ250mJ/cmの紫外線を照射することで上記遮光部以外の範囲を架橋させた。紫外線照射後の基板をアセトンにて1分間洗浄した後、窒素ガスでブロー乾燥し、前記マスク遮光部に存在したフッ素系樹脂を除去し、撥液性のパターンを形成した。
 (電極表面修飾)
 上記のソース・ドレイン電極を形成した基板を、ペンタフルオロベンゼンチオールのイソプロピルアルコール溶液(30mmol/L)に5分間浸漬することにより、基板上に形成した電極の表面を修飾した。
 (有機半導体層形成用溶液の調製)
 空気下、10mlサンプル管内に、上述の式(D-11)で表す有機半導体(ジ-n-ヘキシルジチエノベンゾジチオフェン)24mgとポリスチレン(シグマアルドリッチ社製 averageMw280,000)3mgとテトラリン(シグマアルドリッチ社製)2,973mgとを入れ、50℃に加熱して有機半導体およびポリスチレンを溶解させることで、有機半導体層形成用溶液の調製を行った。なお、式(D-11)で表す有機半導体は、特開2012-209329号公報に記載の方法に準じ合成した。
 (有機半導体層の形成)
 上述で調製した有機半導体層形成用溶液を基本液滴量10pLのカートリッジに充填し、インクジェット装置(富士フイルムDimatix社製、DMP-2831)を用いて前記電極修飾したソース・ドレイン電極間のチャネル部に印刷し、ホットプレート上で90℃、10分間乾燥することで有機半導体層を形成し、有機トランジスタを作製した。
 (電気特性の結果)
 作製した有機トランジスタについて、ソース・ドレイン間電圧(Vd)を-15Vとして、ゲート電圧(Vg)を走査し、バイアス電圧印加前の伝達特性(Id-Vg)を測定した。結果、移動度は0.5~0.7cm/V・sであり、優れた移動度を示した。
 <有機半導体へのダメージ評価>
 実施例1で得られたフッ素系樹脂1に、増感剤として4,4’-ビス(ジエチルアミノ)ベンゾフェノンを加え、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶剤に溶解させ溶液を調製した(フッ素系樹脂15wt%、増感剤0.4wt%)。該溶液を用いて上記の有機トランジスタの有機半導体層上にスピンコートし、約2μmの保護膜を形成した。その後、遮光部を有するマスクを、当該保護膜を形成した基板と接触させ、300mJ/cmの紫外線を照射して硬化させた。また、フッ素系溶剤である1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルを用いて前記マスク遮光部に存在したフッ素系樹脂を除去してパターンを形成した。その結果、保護膜の形成前後の移動度の変化は5%以下であり、有機半導体へのダメージはなかった。
1 有機半導体層
2 基板
3 ゲート電極
4 ゲート絶縁層
5 ソース電極
6 ドレイン電極
7 パターン
8 保護膜層

 

Claims (10)

  1.  光架橋性基を含む下記式(1)で表される繰り返し単位と、フッ素原子を含む繰り返し単位とを有するフッ素系樹脂。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、Rは、水素原子またはメチル基を表し、Lは、単結合または2価の連結基を表し、Aはm価の連結基を表し、R、R、R、RおよびRは、同一または相異なって、水素原子、ハロゲン原子、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐状アルキル基、炭素数3~20の環状アルキル基、炭素数1~20の直鎖状のハロゲン化アルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、シアノ基、アミノ基からなる群の1種を表す。mは3以上の整数を表し、nはm-1の整数を表す。)
  2.  さらに、下記式(2)で表される繰り返し単位を有する、請求項1に記載のフッ素系樹脂。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、Rは、水素原子またはメチル基を表し、は炭素数1~30のアルキル基を表す。)
  3.  前記フッ素原子を含む繰り返し単位が下記式(3)で表される繰り返し単位である、請求項1または2に記載のフッ素系樹脂。
    Figure JPOXMLDOC01-appb-C000003
     (式(3)中、Rは水素原子またはメチル基を表す。Lは、単結合または2価の連結基を表し、Rfは炭素数1~15の直鎖状フルオロアルキル基、炭素数3~15の分岐鎖状フルオロアルキル基または炭素数3~15の環状フルオロアルキル基からなる群の1種を表す。)
  4.  前記式(1)中、Aが下記式(a-1)~(a-4)からなる群の1種の連結基である、請求項1~3のいずれか一項に記載のフッ素系樹脂。
    Figure JPOXMLDOC01-appb-C000004
     (式(a-1)~(a-4)中、*Lは、前記式(1)におけるLとの結合位置を表し、炭素原子の先の*は、前記式(1)におけるエステル基を構成する酸素原子との結合位置を表す。)
  5.  前記式(1)中、Aが前記式(a-1)の連結基である、請求項4に記載のフッ素系樹脂。
  6.  フッ素系溶剤に可溶である、請求項1~5いずれか一項に記載のフッ素系樹脂。
  7.  請求項1~6いずれか一項に記載のフッ素系樹脂と有機溶剤およびフッ素系溶剤の少なくとも一方の溶剤とを含む、組成物。
  8.  請求項1~6いずれか一項に記載のフッ素系樹脂または請求項6に記載の組成物の、光架橋物。
  9.  請求項8に記載の光架橋物で構成されるパターン。
  10.  請求項8に記載の光架橋物を備える電子デバイス。
     
PCT/JP2022/014252 2021-03-30 2022-03-25 フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス WO2022210326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280025842.5A CN117136202A (zh) 2021-03-30 2022-03-25 氟系树脂、组合物、光交联物和具备它们的电子器件
JP2023511158A JPWO2022210326A1 (ja) 2021-03-30 2022-03-25
EP22780540.5A EP4317225A1 (en) 2021-03-30 2022-03-25 Fluorine resin, composition, photocrosslinked product, and electronic device provided therewith
KR1020237037041A KR20230162071A (ko) 2021-03-30 2022-03-25 불소계 수지, 조성물, 광 가교물, 및 그것을 구비한 전자 디바이스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-056778 2021-03-30
JP2021056777 2021-03-30
JP2021056778 2021-03-30
JP2021-056777 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210326A1 true WO2022210326A1 (ja) 2022-10-06

Family

ID=83458946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014252 WO2022210326A1 (ja) 2021-03-30 2022-03-25 フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス

Country Status (5)

Country Link
EP (1) EP4317225A1 (ja)
JP (1) JPWO2022210326A1 (ja)
KR (1) KR20230162071A (ja)
TW (1) TW202307031A (ja)
WO (1) WO2022210326A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070915A1 (ja) * 2022-09-26 2024-04-04 東ソー株式会社 樹脂、組成物、光架橋物、パターンおよびそれを備えた電子デバイス

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259129A (ja) * 2005-03-16 2006-09-28 Fuji Photo Film Co Ltd 光学補償シートおよびこれを用いた液晶表示装置、光学補償シートの製造方法
JP2008050440A (ja) * 2006-08-23 2008-03-06 Fujifilm Corp 重合性モノマー、高分子化合物、光学異方性フィルム、光学補償シート、偏光板および液晶表示装置、および光学補償シートの製造方法
JP2012209329A (ja) 2011-03-29 2012-10-25 Tosoh Corp ジチエノベンゾジチオフェン誘導体溶液及び有機半導体層
JP2015224238A (ja) 2014-05-29 2015-12-14 東ソー株式会社 ジチエノベンゾジチオフェン誘導体の製造方法
WO2016104317A1 (ja) * 2014-12-25 2016-06-30 Dic株式会社 重合性化合物及び光学異方体
WO2016114253A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016114346A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
JP2017167513A (ja) 2016-03-16 2017-09-21 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ネガ感光型樹脂組成物及びそれから製造される光硬化パターン
JP6281427B2 (ja) 2013-07-19 2018-02-21 セントラル硝子株式会社 膜形成用組成物およびその膜、並びにそれを用いる有機半導体素子の製造方法
WO2018181364A1 (ja) * 2017-03-27 2018-10-04 日産化学株式会社 硬化膜形成組成物、配向材および位相差材
WO2019003682A1 (ja) * 2017-06-30 2019-01-03 富士フイルム株式会社 光配向性共重合体、光配向膜、光学積層体および画像表示装置
WO2022071410A1 (ja) * 2020-09-29 2022-04-07 富士フイルム株式会社 光学積層体、偏光板および画像表示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259129A (ja) * 2005-03-16 2006-09-28 Fuji Photo Film Co Ltd 光学補償シートおよびこれを用いた液晶表示装置、光学補償シートの製造方法
JP2008050440A (ja) * 2006-08-23 2008-03-06 Fujifilm Corp 重合性モノマー、高分子化合物、光学異方性フィルム、光学補償シート、偏光板および液晶表示装置、および光学補償シートの製造方法
JP2012209329A (ja) 2011-03-29 2012-10-25 Tosoh Corp ジチエノベンゾジチオフェン誘導体溶液及び有機半導体層
JP6281427B2 (ja) 2013-07-19 2018-02-21 セントラル硝子株式会社 膜形成用組成物およびその膜、並びにそれを用いる有機半導体素子の製造方法
JP2015224238A (ja) 2014-05-29 2015-12-14 東ソー株式会社 ジチエノベンゾジチオフェン誘導体の製造方法
WO2016104317A1 (ja) * 2014-12-25 2016-06-30 Dic株式会社 重合性化合物及び光学異方体
WO2016114253A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016114346A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
JP2017167513A (ja) 2016-03-16 2017-09-21 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. ネガ感光型樹脂組成物及びそれから製造される光硬化パターン
WO2018181364A1 (ja) * 2017-03-27 2018-10-04 日産化学株式会社 硬化膜形成組成物、配向材および位相差材
WO2019003682A1 (ja) * 2017-06-30 2019-01-03 富士フイルム株式会社 光配向性共重合体、光配向膜、光学積層体および画像表示装置
WO2022071410A1 (ja) * 2020-09-29 2022-04-07 富士フイルム株式会社 光学積層体、偏光板および画像表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. EXPRESS, vol. 7, 2014, pages 101602
J POLYM SCI A POLYM CHEM, vol. 53, 2015, pages 1252

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070915A1 (ja) * 2022-09-26 2024-04-04 東ソー株式会社 樹脂、組成物、光架橋物、パターンおよびそれを備えた電子デバイス

Also Published As

Publication number Publication date
KR20230162071A (ko) 2023-11-28
JPWO2022210326A1 (ja) 2022-10-06
TW202307031A (zh) 2023-02-16
EP4317225A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US10078262B2 (en) Patterning devices using branched fluorinated photopolymers
TWI571474B (zh) 用於有機電子裝置之岸堤結構
TWI683185B (zh) 可光圖案化組成物以及使用該可光圖案化組成物製造電晶體元件的方法
TWI509013B (zh) A film forming composition and a film thereof, and a method for producing the organic semiconductor device using the same
KR20160118340A (ko) 교차-결합 가능한 플루오르화된 포토폴리머
JP6821991B2 (ja) 絶縁膜及びこれを含む有機電界効果トランジスタデバイス
TW201027247A (en) Resist pattern coating agent and process for producing resist pattern using
JP2011184517A (ja) 撥液レジスト組成物
WO2022210326A1 (ja) フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス
JP5691717B2 (ja) インプリント用樹脂モールド材料組成物
TWI805825B (zh) 感光性樹脂組成物、硬化膜、積層體、硬化膜之製造方法、半導體器件
JP2019178191A (ja) フッ素系樹脂
JP7480484B2 (ja) 樹脂組成物
WO2024070915A1 (ja) 樹脂、組成物、光架橋物、パターンおよびそれを備えた電子デバイス
KR20130143519A (ko) 뱅크 형성용 감광성 수지 조성물, 뱅크 및 뱅크의 형성 방법
JP2008056809A (ja) 架橋性含フッ素芳香族プレポリマーおよびその硬化物
JP2023177528A (ja) フッ素系樹脂及びそれを用いたパターンの形成方法
JP2022108813A (ja) 保護膜形成用組成物
JP2021161378A (ja) フッ素系樹脂、組成物、光架橋物、およびそれを備えた電子デバイス
WO2019181954A1 (ja) 重合性化合物、光硬化型重合体、絶縁膜、保護膜、及び有機トランジスタデバイス
CN117136202A (zh) 氟系树脂、组合物、光交联物和具备它们的电子器件
WO2018168676A1 (ja) 光架橋性重合体、絶縁膜、平坦化膜、親撥パターニング膜及びこれを含む有機電界効果トランジスタデバイス
JP6992545B2 (ja) 光架橋性重合体、絶縁膜、親撥パターニング膜およびこれを含む有機トランジスタ
JP2004191993A (ja) コンジュゲートポリマーパターン形成用組成物およびこれを用いるパターン形成方法
US20220404700A1 (en) Resist compound, method for forming pattern using same, and method for manufacturing semiconductor device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511158

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18552780

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237037041

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022780540

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780540

Country of ref document: EP

Effective date: 20231030