WO2022205535A1 - 一种生产锰酸锂材料用的电解二氧化锰的制备方法 - Google Patents

一种生产锰酸锂材料用的电解二氧化锰的制备方法 Download PDF

Info

Publication number
WO2022205535A1
WO2022205535A1 PCT/CN2021/088585 CN2021088585W WO2022205535A1 WO 2022205535 A1 WO2022205535 A1 WO 2022205535A1 CN 2021088585 W CN2021088585 W CN 2021088585W WO 2022205535 A1 WO2022205535 A1 WO 2022205535A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
manganese dioxide
solution
add
electrolytic manganese
Prior art date
Application number
PCT/CN2021/088585
Other languages
English (en)
French (fr)
Inventor
吴元花
黄景明
覃胜先
罗驰飞
罗永城
Original Assignee
广西桂柳化工有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西桂柳化工有限责任公司 filed Critical 广西桂柳化工有限责任公司
Publication of WO2022205535A1 publication Critical patent/WO2022205535A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of electrolytic manganese dioxide production, and in particular relates to a preparation method of electrolytic manganese dioxide for producing lithium manganate materials.
  • the preparation method of lithium manganate often uses electrolytic manganese dioxide as the manganese source, but the content of electrolytic manganese dioxide (EMD) obtained in the existing production is mostly about 92%, which is mixed with many impurity phases. , these impurities are difficult to separate, resulting in a decline in the quality of lithium manganate products, so electrolytic manganese dioxide with high purity and less impurities has become the key to producing high-quality lithium manganate materials.
  • EMD electrolytic manganese dioxide
  • the present invention discloses a preparation method of electrolytic manganese dioxide for producing lithium manganate materials, which can not only produce electrolytic manganese dioxide products with high purity and few impurities, but also has the advantages of low cost and low energy consumption. The advantages.
  • the present invention adopts following technical scheme to realize:
  • a preparation method of electrolytic manganese dioxide for producing lithium manganate material comprising the following steps:
  • the electrolysis conditions are as follows: the electrolysis temperature is 95 °C, the anode current density is 120 A/m2, the concentration of sulfuric acid in the electrolyte is 0.35 mol/L, and the concentration of manganese sulfate is 1.2 mol/L. , the cell voltage is 3.0V, the electrolysis period is 8 days, and the semi-finished electrolytic manganese dioxide is obtained after electrolysis;
  • the semi-finished electrolytic manganese dioxide is broken into particles with a particle size of 10-30mm, and then put into the rinsing tank for hot-water acid washing.
  • the temperature of the hot-water acid washing is controlled at 90-95 °C. Stop the acid washing with hot water at 1 g/L; then grind the electrolytic manganese dioxide to make more than 99% of the electrolytic manganese dioxide pass through the 200-mesh sieve, then add sodium permanganate, and stir the reaction at 90-95 °C
  • the reaction time was 1h, then sodium hydroxide was added to continue the reaction for 0.5h, and the temperature was controlled at 90-95°C.
  • the reaction was stopped, and then pressure-filtered and then dried at 100-105°C to obtain electrolytic dioxide.
  • the manganese powder is then blended, and the blending time is 16-24 hours to obtain electrolytic manganese dioxide for producing lithium manganate materials.
  • the stirring speed in step (1) is 50-100 r/min.
  • the mass fraction of manganese in the manganese oxide ore powder is 20-25%, and the mass fraction of effective sulfur in the pyrite powder is 25-30%.
  • the manganese oxide ore powder, pyrite powder and sulfuric acid are mixed and the liquid sulfur dioxide is slowly introduced into the reaction process, and the ratio of the manganese oxide ore powder to the added liquid sulfur dioxide is 10000g: (50 ⁇ 80)mL , the temperature of the liquid sulfur dioxide is -10 ⁇ -20°C.
  • step (2) the slurry obtained in step (1) is first cooled to 20-25°C at a rate of (2-5)°C/min.
  • the stirring speed in step (3) is 50-100 r/min.
  • the sulfurized mixture in step (3) is a sodium sulfide solution with a mass fraction of 20-30% and a barium sulfide solution with a mass fraction of 20-30%, according to the volume ratio of (0.1-0.2): (0.8-0.9 ) were mixed in the proportions.
  • the filter aid described in step (3) is obtained by mixing diatomite and perlite in a ratio of 2:1 by mass, and the volume ratio of the added amount of the filter aid to solution A is (10 ⁇ 15) g: 100L.
  • step (3) filter aid is added to obtain a filtrate, and then carboxymethyl chitosan is added to the filtrate, and the ratio of adding carboxymethyl chitosan to the filtrate is (3-5) g:100L , stand for 20-24h, and filter to obtain solution B.
  • the mass ratio of sodium permanganate added in step (5) to electrolytic manganese dioxide is 7:1000.
  • the mass ratio of sodium hydroxide added in step (5) to electrolytic manganese dioxide is 7:1000.
  • liquid sulfur dioxide is added for catalysis in the reaction process, and the reaction efficiency is improved, and the addition of liquid sulfur dioxide has the advantages of high molecular density, low consumption, accelerated reaction speed, and better catalytic effect compared with the existing sulfur dioxide gas introduced into the liquid sulfur dioxide, and the liquid sulfur dioxide can also Reduction and removal of elements such as Co, Se, Te, etc., reduce the pressure on product refining and impurity removal in the later stage.
  • the invention adopts a filter aid prepared by mixing diatomite and perlite, and simultaneously uses carboxymethyl chitosan as a flocculant, which accelerates the filtration and slag removal of the solution and the precipitation of ionic impurities.
  • a small amount of sodium permanganate is added to oxidize and remove the low-valent manganese remaining in the electrolytic manganese dioxide.
  • the EMD semi-finished product obtained by the present invention is firstly washed with acid in hot water, ground into granules and then rinsed with a quantitative sodium permanganate, and then washed with sodium hydroxide to remove the sulfuric acid and residual sulfuric acid in the electrolytic manganese dioxide.
  • Low-valent manganese, as well as a small amount of calcium sulfate and magnesium sulfate adsorbed on the surface of electrolytic manganese dioxide improve the purity of electrolytic manganese dioxide and reduce the content of impurities, and the rinsing process is simple and the rinsing effect is good, which can remove impurities and purify EMd in a short time. , thereby reducing production energy consumption.
  • the present invention uses low-grade mineral raw material to produce the slurry that obtains manganese sulfate, then adds calcium carbonate, manganese oxide ore powder, sulfide mixture and manganese dioxide ore pulp to remove residual acid and metal impurities in the slurry, obtain pure manganese sulfate solution for Electrolytic manganese dioxide is prepared by electrolysis to avoid the introduction of metal impurities in the electrolysis process. On the one hand, the electric energy supplied by the external power supply is prevented from being consumed in the redox reaction of iron ions, which reduces the electrolysis efficiency; The form is precipitated at the anode and then deposited in the EMD affecting the electrical properties of the EMD product.
  • the method of the present invention is simple in process, simplifies the production process, and is suitable for large-scale and automated production of electrolytic manganese dioxide products.
  • a preparation method of electrolytic manganese dioxide for producing lithium manganate material comprising the following steps:
  • ( 1 ) will be the granularity of 200 Objective:
  • the mass ratio of manganese oxide ore powder, pyrite powder and sulfuric acid is as follows: 1:0.20:0.30 the proportion of 60r/min mixed under stirring, in 92 React at °C 3h , the slurry of crude manganese sulfate is obtained, and the temperature is slowly introduced into the reaction process as -20 °C of liquid sulfur dioxide, the ratio of manganese oxide ore powder to the added liquid sulfur dioxide is 10000g: 60mL ; the mass fraction of manganese in the manganese oxide ore powder is 20 ⁇ 25% , the mass fraction of available sulfur in the pyrite powder is 25 ⁇ 30% ;
  • ( 3 ) will be the solution A heated to 70 °C, then according to each 1L solution A added every minute 2g
  • the proportion of vulcanized mixture is 60r/min Add the vulcanization mixture with stirring, followed by every 30min Test a solution A middle Cu , Pb , Ni , Co concentration, when Cu ⁇ 2ppm , Pb ⁇ 3ppm , Ni ⁇ 2ppm , Co ⁇ 2ppm Stop adding the sulfurized mixture, add manganese dioxide slurry to make the solution A middle Mo concentration of less than or equal to 0.003ppm , then add filter aid, stir 20min After filtering and removing the precipitate to obtain a filtrate, then adding carboxymethyl chitosan to the filtrate, and the ratio of the carboxymethyl chitosan to the filtrate is: 4g: 100L , rest 24h , filtered to get the solution B ;
  • the vulcanized mixture is a mass fraction of 25%
  • the sodium sulfide solution and mass fraction are
  • ( 4 ) will be the solution B Transfer into the electrolyzer for electrolysis, and the electrolysis conditions are: the electrolysis temperature is 95 °C, the anode current density is 120A/m2 , the concentration of sulfuric acid in the electrolyte is 0.35mol/L , the concentration of manganese sulfate is 1.2mol/L , the cell voltage is 3.0V , the electrolysis cycle is 8 day, after electrolysis, electrolytic manganese dioxide semi-finished product is obtained;
  • the purity of the product is 93.65% , moisture content ⁇ 2.0% , Fe ⁇ 25ppm , Cu ⁇ 1ppm , Pb ⁇ 2ppm , Ni ⁇ 1ppm , Co ⁇ 1ppm , the specific surface area 20 ⁇ 25m2/g .
  • the difference of the method is only: the manganese oxide ore powder, the pyrite powder and the sulfuric acid are divided into 1:0.25:0.32 the proportion of 50r/min mixed under stirring, in 90 React at °C 4h , the temperature is slowly introduced into the reaction process as -15 °C of liquid sulfur dioxide, the ratio of manganese oxide ore powder to the added liquid sulfur dioxide is 10000g: 50mL ; the slurry according to 2 °C /min rate of cooling to twenty three After °C, add calcium carbonate powder to the slurry to neutralize sulfuric acid; A heated to 75 °C, then according to each 1L solution A added every minute 3g
  • the proportion of vulcanized mixture is 50r/min Add the vulcanized mixture under stirring, then add the filter aid and stir 25min After filtering to obtain a filtrate, add carboxymethyl chitosan to the filtrate, and the ratio of the carboxymethyl chitosan to the filtrate is 3g: 100L , rest
  • the purity of the product is 93.53% , moisture content ⁇ 2.0% , Fe ⁇ 25ppm , Cu ⁇ 1ppm , Pb ⁇ 2ppm , Ni ⁇ 1ppm , Co ⁇ 1ppm , the specific surface area 20 ⁇ 25m2/g .
  • the difference of the method is only: the manganese oxide ore powder, the pyrite powder and the sulfuric acid are divided into 1:0.30:0.40 the proportion of 100r/min mixed under stirring, in 95 React at °C 3.5h , the temperature is slowly introduced into the reaction process as -10 °C of liquid sulfur dioxide, the ratio of manganese oxide ore powder to the added liquid sulfur dioxide is 10000g: 80mL ; the slurry according to 5 °C /min rate of cooling to 20 After °C, add sulfuric acid in calcium carbonate powder to the slurry; A heated to 80 °C, then according to each 1L solution A added every minute 5g The proportion of vulcanized mixture is 100r/min Add the vulcanized mixture under stirring, then add the filter aid and stir 30min After filtering to get the filtrate, add carboxymethyl chitosan to the filtrate, and the ratio of the carboxymethyl chitosan to the filtrate is 5g: 100L , rest 20h
  • the purity of the product is 93.58% , moisture content ⁇ 2.0% , Fe ⁇ 25ppm , Cu ⁇ 1ppm , Pb ⁇ 2ppm , Ni ⁇ 1ppm , Co ⁇ 1ppm , the specific surface area 20 ⁇ 25m2/g .
  • step ( 3 ) stirring without adding filter aid 180min After filtering, the precipitate was removed to obtain a solution B .
  • step ( 3 ) the filtrate was obtained by stirring and filtration without adding filter aid, and then carboxymethyl chitosan was added to the filtrate, and the ratio of adding carboxymethyl chitosan to the filtrate was 4g: 100L , rest 24h , filtered to get the solution B .
  • the purity of the product is 90.32% , moisture content ⁇ 2.0% , Fe ⁇ 30ppm , Cu ⁇ 3ppm , Pb ⁇ 3ppm , Ni ⁇ 3ppm , Co ⁇ 3ppm , the specific surface area 20 ⁇ 25m2/g .
  • step ( 3 ) add filter aid and stir 180min Then, without adding carboxymethyl chitosan, the solution was directly filtered B .
  • the purity of the product is 91.07% , moisture content ⁇ 2.0% , Fe ⁇ 28ppm , Cu ⁇ 2ppm , Pb ⁇ 2ppm , Ni ⁇ 2ppm , Co ⁇ 2ppm , the specific surface area 20 ⁇ 25m2/g .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种生产锰酸锂材料用的电解二氧化锰的制备方法,先将氧化锰矿粉、硫铁矿粉、硫酸混合反应得到浆液;用碳酸钙粉中和浆液中残留的硫酸和除铁,然后加入硫化混合物除去重金属,接着加入助滤剂过滤除去沉淀物得到溶液B;将溶液B电解得到EMD半成品,再进行破碎、热水洗酸、压滤、烘干等工序得到生产锰酸锂材料用的EMD。本发明方法成本低,耗能少,可以生产得到高品质的电解二氧化锰产品。

Description

一种生产锰酸锂材料用的电解二氧化锰的制备方法 技术领域
本发明属于电解二氧化锰生产技术领域,具体涉及一种生产锰酸锂材料用的电解二氧化锰的制备方法。
背景技术
锰酸锂的制备方法常采用电解二氧化锰作为锰源,但是现有生产得到的电解二氧化锰(EMD)含量大多在92%左右,混有较多杂质相,在制备锰酸锂过程中,这些杂质难以分离,造成锰酸锂产品质量下降,所以纯度高、杂质少的电解二氧化锰已成为生产高品质锰酸锂材料的关键。
技术解决方案
针对上述不足,本发明公开了一种生产锰酸锂材料用的电解二氧化锰的制备方法,不仅能够生产得到纯度高、杂质少的电解二氧化锰产品,而且还具有成本低,耗能少的优点。
本发明是采用如下技术方案实现的:
一种生产锰酸锂材料用的电解二氧化锰的制备方法,其包括以下步骤:
(1)将粒度为200目的氧化锰矿粉、硫铁矿粉与硫酸按照质量比为1:(0.2~0.3):(0.3~0.4)的比例搅拌混合,然后在90~95℃下反应3~4h,得到粗制硫酸锰的浆液;
(2)向浆液中加入碳酸钙粉中和残留的硫酸,当浆液的pH值达到4.5后,若浆液中二价铁离子的浓度>10-5mol/L时,继续入氧化锰矿粉直到浆液中二价铁离子的浓度小于10-5mol/L;然后继续加入碳酸钙粉使pH值达到6.5,若浆液中三价铁离子的浓度>10-5mol/L时,继续加入碳酸钙粉直到浆液中三价铁离子的浓度小于10-5mol/L,过滤除去矿渣得到硫酸锰的溶液A;
(3)将溶液A加热到70~80℃,然后按照每1L溶液A中每分钟加入(2~5)g硫化混合物的比例在搅拌条件下加入硫化混合物,接着每隔30min检测一次溶液A中的Cu、Pb、Ni、Co的浓度,当Cu≤2ppm、Pb≤3ppm、Ni≤2ppm、Co≤2ppm时停止加入硫化混合物,加入二氧化锰矿浆,使溶液A中Mo的浓度小于或等于0.003ppm,接着加入助滤剂,搅拌20~30min后过滤除去沉淀物得到溶液B;
(4)将溶液B转入电解槽中进行电解,电解条件为:电解温度为95℃,阳极电流密度为120A/m2,电解液硫酸浓度为0.35mol/L、硫酸锰浓度为1.2 mol/L,槽电压为3.0V,电解周期为8天,电解后得到电解二氧化锰半成品;
(5)将电解二氧化锰半成品破碎成粒度为10~30mm的颗粒,然后投入到漂洗槽中进行热水洗酸,热水洗酸温度控制在90~95℃,当排出的热水中硫酸浓度低于1g/L时停止热水洗酸;接着将电解二氧化锰进行磨粉,使得99%以上的电解二氧化锰能通过200目筛,然后加入高锰酸钠,在90~95℃下搅拌反应时间1h,然后加入氢氧化钠继续反应时间0.5h,温度控制在90~95℃,当pH值达到6.5~7.0时停止反应,接着先压滤再在100~105℃下烘干得到电解二氧化锰粉末后掺混,掺混时间为16~24h,得到生产锰酸锂材料用的电解二氧化锰。
进一步的,步骤(1)中所述搅拌的速度为50~100r/min。
进一步的,步骤(1)中所述氧化锰矿粉中锰的质量分数为20~25%,所述硫铁矿粉中有效硫的质量分数为25~30%。
进一步的,步骤(1)中所述氧化锰矿粉、硫铁矿粉与硫酸混合后反应过程中缓慢通入液体二氧化硫,氧化锰矿粉与加入的液体二氧化硫的比例为10000g:(50~80)mL,所述液体二氧化硫的温度为-10~-20℃。
进一步的,步骤(2)中先将步骤(1)中得到的浆液按照(2~5)℃/min的速度降温至20~25℃。
进一步的,步骤(3)中所述搅拌的速度为50~100r/min。
进一步的,步骤(3)中所述硫化混合物为质量分数为20~30%的硫化钠溶液和质量分数为20~30%的硫化钡溶液按照体积比为(0.1~0.2):(0.8~0.9)的比例混合得到的。
进一步的,步骤(3)中所述助滤剂为硅藻土和珍珠岩按照质量比为2:1的比例混合得到的,所述助滤剂的加入量与溶液A的体积比为(10~15)g:100L。
进一步的,步骤(3)中加入助滤剂过滤后得到滤液,然后再往滤液中加入羧甲基壳聚糖,加入羧甲基壳聚糖与滤液的比例为(3~5)g:100L,静置20~24h,过滤得到溶液B。
进一步的,步骤(5)中加入的高锰酸钠与电解二氧化锰的质量比为7:1000。
进一步的,步骤(5)中加入的氢氧化钠与电解二氧化锰的质量比为7:1000。
本发明在反应过程中加入液体二氧化硫进行催化,提高反应效率,而且加入液体二氧化硫相比现有通入二氧化硫气体,分子密度大,消耗少,加快反应速度,催化效果更好,并且液体二氧化硫还能还原除去Co、Se、Te等元素,减轻后期对产品精制除杂的压力。
本发明采用硅藻土和珍珠岩混合配制的助滤剂,同时使用羧甲基壳聚糖作为絮凝剂,加速了溶液的过滤除渣以及离子杂质的沉淀。加入少量的高锰酸钠起到氧化作用,去除残留在电解二氧化锰中的低价锰。
本技术方案与现有技术相比较具有以下有益效果:
1.本发明对得到的EMD半成品,先是热水洗酸,磨粉成颗粒状后再加入定量的高锰酸钠漂洗,再使用氢氧化钠碱洗,除去残留在电解二氧化锰中的硫酸和低价锰,以及少量吸附在电解二氧化锰表面的硫酸钙和硫酸镁,提高电解二氧化锰的纯度,减少杂质含量,而且漂洗工序简单、漂洗效果好,可以在短时间内除去杂质提纯EMd,从而降低生产能耗。
2.本发明使用低品位矿物原料生产得到硫酸锰的浆液,然后在加入碳酸钙、氧化锰矿粉、硫化混合物和二氧化锰矿浆去除浆液中残留的酸和金属杂质,得到纯净的硫酸锰溶液用于电解制备电解二氧化锰,避免在电解工序中带入金属杂质,一方面防止外电源供给的电能消耗在铁离子的氧化还原反应上,降低电解效率;另一方面防止金属杂质以氧化物的形式在阳极析出,然后沉积在电解二氧化锰中影响电解二氧化锰产品的电气性能。
3.本发明方法工艺简单,简化生产流程,适合规模化、自动化控制生产电解二氧化锰产品。
本发明的实施方式
以下通过实施例进一步说明本发明,但不作为对本发明的限制。
实施例 1
一种生产锰酸锂材料用的电解二氧化锰的制备方法,其包括以下步骤:
1 )将粒度为 200 目的氧化锰矿粉、硫铁矿粉与硫酸按照质量比为 1:0.20:0.30 的比例在 60r/min 的搅拌下混合,在 92 ℃下反应 3h ,得到粗制硫酸锰的浆液,反应过程中缓慢通入温度为 -20 ℃的液体二氧化硫,氧化锰矿粉与加入的液体二氧化硫的比例为 10000g:60mL ;所述氧化锰矿粉中锰的质量分数为 20 25% ,所述硫铁矿粉中有效硫的质量分数为 25 30%
2 )将浆液按照 4 /min 的速度降温至 25 ℃,然后向浆液中加入碳酸钙粉中和残留的硫酸,当浆液的 pH 值达到 4.5 后,若浆液中二价铁离子的浓度 >10-5mol/L 时,继续入氧化锰矿粉直到浆液中二价铁离子的浓度小于 10-5mol/L ;然后继续加入碳酸钙粉使 pH 值达到 6.5 ,若浆液中三价铁离子的浓度 >10-5mol/L 时,继续加入碳酸钙粉直到浆液中三价铁离子的浓度小于 10-5mol/L ,过滤除去矿渣得到硫酸锰的溶液 A
3 )将溶液 A 加热到 70 ℃,然后按照每 1L 溶液 A 中每分钟加入 2g 硫化混合物的比例在 60r/min 的搅拌下加入硫化混合物,接着每隔 30min 检测一次溶液 A 中的 Cu Pb Ni Co 的浓度,当 Cu 2ppm Pb 3ppm Ni 2ppm Co 2ppm 时停止加入硫化混合物,加入二氧化锰矿浆,使溶液 A Mo 的浓度小于或等于 0.003ppm ,接着加入助滤剂,搅拌 20min 后过滤除去沉淀物得到得到滤液,再往滤液中加入羧甲基壳聚糖,所述羧甲基壳聚糖与滤液的比例为 4g:100L ,静置 24h ,过滤得到溶液 B ;所述硫化混合物为质量分数为 25% 的硫化钠溶液和质量分数为 25% 的硫化钡溶液按照体积比为 0.1:0.9 的比例混合得到的;所述助滤剂为硅藻土和珍珠岩按照质量比为 2:1 的比例混合得到的,所述助滤剂的加入量与溶液 A 的体积比为 10g:100L
4 )将溶液 B 转入电解槽中进行电解,电解条件为:电解温度为 95 ℃,阳极电流密度为 120A/m2 ,电解液硫酸浓度为 0.35mol/L 、硫酸锰浓度为 1.2mol/L ,槽电压为 3.0V ,电解周期为 8 天,电解后得到电解二氧化锰半成品;
5 )将电解二氧化锰半成品破碎成粒度为 30mm 的颗粒,然后投入到漂洗槽中进行热水洗酸,热水洗酸温度控制在 94 ℃,当排出的热水中硫酸浓度低于 1g/L 时停止热水洗酸;接着将热水洗酸后的电解二氧化锰进行磨粉,使得 99% 以上的电解二氧化锰能通过 200 目筛,然后加入高锰酸钠在温度为 94 ℃下搅拌反应时间 1h ,加入的高锰酸钠与电解二氧化锰的质量比为 7:1000 ,然后再加入氢氧化钠继续反应时间 0.5h ,温度控制在 93 ℃,加入的氢氧化钠与电解二氧化锰的质量比为 7:1000 ,当 pH 值达到 6.5 时停止反应,接着先压滤再在 100 105 ℃下烘干得到电解二氧化锰粉末后掺混,掺混时间为 16 24h ,得到生产锰酸锂材料用的电解二氧化锰。
按照本实施例所述方法制备 EMD 产品的纯度为 93.65% ,水分含量≤ 2.0% Fe 25ppm Cu 1ppm Pb 2ppm Ni 1ppm Co 1ppm ,比表面积 20 25m2/g
实施例 2
其与实施例 1 所述方法的区别仅在于:将氧化锰矿粉、硫铁矿粉与硫酸按照质量比为 1:0.25:0.32 的比例在 50r/min 的搅拌下混合,在 90 ℃下反应 4h ,反应过程中缓慢通入温度为 -15 ℃的液体二氧化硫,氧化锰矿粉与加入的液体二氧化硫的比例为 10000g:50mL ;将浆液按照 2 /min 的速度降温至 23 ℃后,向浆液加入碳酸钙粉中和硫酸;将溶液 A 加热到 75 ℃,然后按照每 1L 溶液 A 中每分钟加入 3g 硫化混合物的比例在 50r/min 的搅拌下加入硫化混合物,接着加入助滤剂搅拌 25min 后过滤得到滤液,再往滤液中加入羧甲基壳聚糖,所述羧甲基壳聚糖与滤液的比例为 3g:100L ,静置 22h ;所述硫化混合物为质量分数为 20% 的硫化钠溶液和质量分数为 30% 的硫化钡溶液按照体积比为 0.15:0.82 的比例混合得到的;所述助滤剂为硅藻土和珍珠岩按照质量比为 2:1 的比例混合得到的,所述助滤剂的加入量与溶液 A 的体积比为 12g:100L ;将电解二氧化锰半成品破碎成粒度为 10mm 的颗粒,然后投入到漂洗槽中进行热水洗酸,热水洗酸温度控制在 90 ℃,加入高锰酸钠在温度为 90 ℃下搅拌反应时间 1h ,然后再加入氢氧化钠继续反应时间 0.5h ,温度控制在 90 ℃,当 pH 值达到 6.8 时停止反应。
按照本实施例所述方法制备 EMD 产品的纯度为 93.53% ,水分含量≤ 2.0% Fe 25ppm Cu 1ppm Pb 2ppm Ni 1ppm Co 1ppm ,比表面积 20 25m2/g
实施例 3
其与实施例 1 所述方法的区别仅在于:将氧化锰矿粉、硫铁矿粉与硫酸按照质量比为 1:0.30:0.40 的比例在 100r/min 的搅拌下混合,在 95 ℃下反应 3.5h ,反应过程中缓慢通入温度为 -10 ℃的液体二氧化硫,氧化锰矿粉与加入的液体二氧化硫的比例为 10000g:80mL ;将浆液按照 5 /min 的速度降温至 20 ℃后,向浆液加入碳酸钙粉中硫酸;将溶液 A 加热到 80 ℃,然后按照每 1L 溶液 A 中每分钟加入 5g 硫化混合物的比例在 100r/min 的搅拌下加入硫化混合物,接着加入助滤剂搅拌 30min 后过滤除得到滤液,再往滤液中加入羧甲基壳聚糖,所述羧甲基壳聚糖与滤液的比例为 5g:100L ,静置 20h ;所述硫化混合物为质量分数为 30% 的硫化钠溶液和质量分数为 20% 的硫化钡溶液按照体积比为 0.2:0.8 的比例混合得到的;所述助滤剂为硅藻土和珍珠岩按照质量比为 2:1 的比例混合得到的,所述助滤剂的加入量与溶液 A 的体积比为 15g:100L ;将电解二氧化锰半成品破碎成粒度为 20mm 的颗粒,然后投入到漂洗槽中进行热水洗酸,热水洗酸温度控制在 95 ℃,加入高锰酸钠在温度为 95 ℃下搅拌反应时间 1h ,然后再加入氢氧化钠继续反应时间 0.5h ,温度控制在 95 ℃,当 pH 值达到 7.0 时停止反应。
按照本实施例所述方法制备 EMD 产品的纯度为 93.58% ,水分含量≤ 2.0% Fe 25ppm Cu 1ppm Pb 2ppm Ni 1ppm Co 1ppm ,比表面积 20 25m2/g
对比例 1
其与实施例 1 所述方法的区别仅在于,在步骤( 3 )中,不加入助滤剂搅拌 180min 后过滤除去沉淀物得到得到溶液 B
按照本对比例所述方法制备 EMD 产品的纯度为 89.33% ,水分含量≤ 2.0% Fe 30ppm Cu 3ppm Pb 5ppm Ni 5ppm Co 5ppm ,比表面积 20 25m2/g
对比例 2
其与实施例 1 所述方法的区别仅在于,在步骤( 3 )中,不加入助滤剂搅拌过滤得到滤液,再往滤液中加入羧甲基壳聚糖,加入羧甲基壳聚糖与滤液的比例为 4g:100L ,静置 24h ,过滤得到溶液 B
按照本对比例所述方法制备 EMD 产品的纯度为 90.32% ,水分含量≤ 2.0% Fe 30ppm Cu 3ppm Pb 3ppm Ni 3ppm Co 3ppm ,比表面积 20 25m2/g
对比例 3
其与实施例 1 所述方法的区别仅在于,在步骤( 3 )中,加入助滤剂搅拌 180min 后,不加入羧甲基壳聚糖,直接过滤得到溶液 B
按照本对比例所述方法制备 EMD 产品的纯度为 91.07% ,水分含量≤ 2.0% Fe 28ppm Cu 2ppm Pb 2ppm Ni 2ppm Co 2ppm ,比表面积 20 25m2/g

Claims (4)

  1. 一种生产锰酸锂材料用的电解二氧化锰的制备方法,其特征在于:包括以下步骤:
    (1)将粒度为200目的氧化锰矿粉、硫铁矿粉与硫酸按照质量比为1:(0.2~0.3):(0.3~0.4)的比例搅拌混合,然后在90~95℃下反应3~4h,得到粗制硫酸锰的浆液;
    (2)向浆液中加入碳酸钙粉中和残留的硫酸,当浆液的pH值达到4.5后,若浆液中二价铁离子的浓度>10 -5mol/L时,继续入氧化锰矿粉直到浆液中二价铁离子的浓度小于10 -5mol/L;然后继续加入碳酸钙粉使pH值达到6.5,若浆液中三价铁离子的浓度>10 -5mol/L时,继续加入碳酸钙粉直到浆液中三价铁离子的浓度小于10 -5mol/L,过滤除去矿渣得到硫酸锰的溶液A;
    (3)将溶液A加热到70~80℃,然后按照每1L溶液A中每分钟加入(2~5)g硫化混合物的比例在搅拌条件下加入硫化混合物,接着每隔30min检测一次溶液A中的Cu、Pb、Ni、Co的浓度,当Cu≤2ppm、Pb≤3ppm、Ni≤2ppm、Co≤2ppm时停止加入硫化混合物,加入二氧化锰矿浆,使溶液A中Mo的浓度小于或等于0.003ppm,接着加入助滤剂,搅拌20~30min后过滤除去沉淀物得到溶液B;
    (4)将溶液B转入电解槽中进行电解,电解条件为:电解温度为95℃,阳极电流密度为120A/m 2,电解液硫酸浓度为0.35mol/L、硫酸锰浓度为1.2 mol/L,槽电压为3.0V,电解周期为8天,电解后得到电解二氧化锰半成品;
    (5)将电解二氧化锰半成品破碎成粒度为10~30mm的颗粒,然后投入到漂洗槽中进行热水洗酸,热水洗酸温度控制在90~95℃,当排出的热水中硫酸浓度低于1g/L时停止热水洗酸;接着将电解二氧化锰进行磨粉,使得99%以上的电解二氧化锰能通过200目筛,然后加入高锰酸钠,在90~95℃下搅拌反应时间1h,然后加入氢氧化钠继续反应时间0.5h,温度控制在90~95℃,当pH值达到6.5~7.0时停止反应,接着先压滤再在100~105℃下烘干得到电解二氧化锰粉末后掺混,掺混时间为16~24h,得到生产锰酸锂材料用的电解二氧化锰。
  2. 根据权利要求1所述生产锰酸锂材料用的电解二氧化锰的制备方法,其特征在于:步骤(1)中所述氧化锰矿粉、硫铁矿粉与硫酸混合后反应过程中缓慢通入液体二氧化硫,氧化锰矿粉与加入的液体二氧化硫的比例为10000g:(50~80)mL,所述液体二氧化硫的温度为-10~-20℃。
  3. 根据权利要求1所述生产锰酸锂材料用的电解二氧化锰的制备方法,其特征在于:步骤(3)中所述助滤剂为硅藻土和珍珠岩按照质量比为2:1的比例混合得到的,所述助滤剂的加入量与溶液A的体积比为(10~15)g:100L。
  4. 根据权利要求3所述生产锰酸锂材料用的电解二氧化锰的制备方法,其特征在于:步骤(3)中加入助滤剂过滤后得到滤液,然后再往滤液中加入羧甲基壳聚糖,加入羧甲基壳聚糖与滤液的比例为(3~5)g:100L,静置20~24h,过滤得到溶液B。
PCT/CN2021/088585 2021-03-31 2021-04-21 一种生产锰酸锂材料用的电解二氧化锰的制备方法 WO2022205535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110345368.1 2021-03-31
CN202110345368.1A CN113088998B (zh) 2021-03-31 2021-03-31 一种生产锰酸锂材料用的电解二氧化锰的制备方法

Publications (1)

Publication Number Publication Date
WO2022205535A1 true WO2022205535A1 (zh) 2022-10-06

Family

ID=76671357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088585 WO2022205535A1 (zh) 2021-03-31 2021-04-21 一种生产锰酸锂材料用的电解二氧化锰的制备方法

Country Status (2)

Country Link
CN (1) CN113088998B (zh)
WO (1) WO2022205535A1 (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB940538A (en) * 1962-04-30 1963-10-30 Manganese Chemicals Corp Electrolytic manganese dioxide process
CN1160776A (zh) * 1996-03-21 1997-10-01 日本重化学工业株式会社 电解二氧化锰的制造方法
US20010031239A1 (en) * 1998-12-21 2001-10-18 Andersen Terrell Neils High discharge capacity electrolytic manganese dioxide and methods of producing the same
CN101838040A (zh) * 2010-04-13 2010-09-22 国家海洋局天津海水淡化与综合利用研究所 以羧甲基壳聚糖作絮凝剂的海水净化方法
CN102220490A (zh) * 2011-05-06 2011-10-19 广西桂柳化工有限责任公司 电解二氧化锰的生产方法
CN102634819A (zh) * 2012-04-10 2012-08-15 四川大学 二氧化硫浸出氧化锰制取电解锰/电解二氧化锰的方法
CN103204743A (zh) * 2013-04-26 2013-07-17 赵阳臣 锰矿尾矿生产缓释复合肥的方法及设备
CN103556172A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 二氧化锰电解液深度除杂质方法
CN103555940A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 汽车动力电池专用电解二氧化锰的制备方法
CN103560241A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 扣式碱性锌/二氧化锰电池专用电解二氧化锰的制备方法
CN103560240A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 无汞碱性电池专用电解二氧化锰制备方法
CN103572315A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 扣式/二氧化锰电池专用电解二氧化锰的制备方法
CN103572055A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 一种电解二氧化锰用硫酸锰的制备方法
CN103572313A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 无汞碱锰型电解二氧化锰的生产方法
CN103572314A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 一种电解二氧化锰半成品的除杂处理方法
CN103572316A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 低杂质电池专用电解二氧化锰的制备方法
CN103572317A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 一种电解二氧化锰产品的精制方法
CN103710541A (zh) * 2013-12-24 2014-04-09 柳州豪祥特科技有限公司 湿法生产电解二氧化锰的方法
WO2015093578A1 (ja) * 2013-12-20 2015-06-25 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1405038A (en) * 1973-07-26 1975-09-03 Mitsui Mining & Smelting Co Process for the continuous preparation of aqueous manganous sulphate solution for use in the production of electrolytic manganese dioxide
AT504788B1 (de) * 2007-09-20 2008-08-15 Kubinger Ulrich Ing Fällungs- und flockungsmittel zur reinigung von wasser
CN103739053B (zh) * 2014-01-26 2015-08-12 河北工程大学 一种电镀废水处理剂

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB940538A (en) * 1962-04-30 1963-10-30 Manganese Chemicals Corp Electrolytic manganese dioxide process
CN1160776A (zh) * 1996-03-21 1997-10-01 日本重化学工业株式会社 电解二氧化锰的制造方法
US20010031239A1 (en) * 1998-12-21 2001-10-18 Andersen Terrell Neils High discharge capacity electrolytic manganese dioxide and methods of producing the same
CN101838040A (zh) * 2010-04-13 2010-09-22 国家海洋局天津海水淡化与综合利用研究所 以羧甲基壳聚糖作絮凝剂的海水净化方法
CN102220490A (zh) * 2011-05-06 2011-10-19 广西桂柳化工有限责任公司 电解二氧化锰的生产方法
CN102634819A (zh) * 2012-04-10 2012-08-15 四川大学 二氧化硫浸出氧化锰制取电解锰/电解二氧化锰的方法
CN103204743A (zh) * 2013-04-26 2013-07-17 赵阳臣 锰矿尾矿生产缓释复合肥的方法及设备
CN103555940A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 汽车动力电池专用电解二氧化锰的制备方法
CN103556172A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 二氧化锰电解液深度除杂质方法
CN103560241A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 扣式碱性锌/二氧化锰电池专用电解二氧化锰的制备方法
CN103560240A (zh) * 2013-11-07 2014-02-05 广西桂柳化工有限责任公司 无汞碱性电池专用电解二氧化锰制备方法
CN103572315A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 扣式/二氧化锰电池专用电解二氧化锰的制备方法
CN103572055A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 一种电解二氧化锰用硫酸锰的制备方法
CN103572313A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 无汞碱锰型电解二氧化锰的生产方法
CN103572314A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 一种电解二氧化锰半成品的除杂处理方法
CN103572316A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 低杂质电池专用电解二氧化锰的制备方法
CN103572317A (zh) * 2013-11-07 2014-02-12 广西桂柳化工有限责任公司 一种电解二氧化锰产品的精制方法
WO2015093578A1 (ja) * 2013-12-20 2015-06-25 東ソー株式会社 電解二酸化マンガン及びその製造方法並びにその用途
CN103710541A (zh) * 2013-12-24 2014-04-09 柳州豪祥特科技有限公司 湿法生产电解二氧化锰的方法

Also Published As

Publication number Publication date
CN113088998B (zh) 2022-08-19
CN113088998A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN103086405B (zh) 一种电池级碳酸锂的清洁化生产方法
WO2012006935A1 (zh) 无汞碱锰型电解二氧化锰的生产方法
CN103496746B (zh) 低品位锰矿高压结晶法制备电池级高纯硫酸锰
CN113428882B (zh) 一种锂辉石制备电池级碳酸锂的方法
CN101348280B (zh) 一种以菱锰矿为原料制备电子级无硒四氧化三锰的方法
CN103572313A (zh) 无汞碱锰型电解二氧化锰的生产方法
CN113772650B (zh) 一种磷酸铁锂的制备方法和用途
CN112110466B (zh) 一种去除粉煤灰及其中间产物中铁杂质的方法
CN114318417B (zh) 低品位氧化锰三矿法生产电解锰的方法
CN104261473B (zh) 一种五氧化二钒的制备方法
CN103560241A (zh) 扣式碱性锌/二氧化锰电池专用电解二氧化锰的制备方法
CN101698514B (zh) 一种电子级高纯一水合硫酸锰的制备方法
WO2022205535A1 (zh) 一种生产锰酸锂材料用的电解二氧化锰的制备方法
CN113073342B (zh) 一种高品质的电解二氧化锰的制备方法
CN114920299A (zh) 一种二氧化锰的提纯方法
CN110257851B (zh) 一种锰酸锂电池专用电解二氧化锰及其制备方法
CN113666397A (zh) 一种废旧磷酸铁锂材料酸法经济回收锂的方法
WO2022205533A1 (zh) 一种低杂质电解二氧化锰的制备方法
CN105586496B (zh) 工业化生产高纯锌的工艺
TW202017242A (zh) 由廢棄鋰電池中製備並純化碳酸鋰之方法
CN116240400B (zh) 一种锂云母提锂废渣低温高效提锂的方法
CN118255336B (zh) 基于磷酸铁生产废水和硫铁矿烧渣制备磷酸铁的方法
CN116462169A (zh) 一种废旧磷酸铁锂全元素回收制备电池级磷酸二氢锂的方法
CN116814984A (zh) 一种从废旧磷酸铁锂电池中提锂的方法
CN117163979A (zh) 一种磷酸铁锂电池粉回收制备电池级碳酸锂的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021550144

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21934189

Country of ref document: EP

Kind code of ref document: A1