WO2022198850A1 - 一种丙二醇苯醚的高选择性合成方法 - Google Patents

一种丙二醇苯醚的高选择性合成方法 Download PDF

Info

Publication number
WO2022198850A1
WO2022198850A1 PCT/CN2021/106974 CN2021106974W WO2022198850A1 WO 2022198850 A1 WO2022198850 A1 WO 2022198850A1 CN 2021106974 W CN2021106974 W CN 2021106974W WO 2022198850 A1 WO2022198850 A1 WO 2022198850A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene glycol
phenyl ether
glycol phenyl
phenol
highly selective
Prior art date
Application number
PCT/CN2021/106974
Other languages
English (en)
French (fr)
Inventor
寇然
王伟松
王新荣
刘凯
叶达峰
Original Assignee
浙江皇马科技股份有限公司
浙江皇马尚宜新材料有限公司
浙江绿科安化学有限公司
浙江皇马特种表面活性剂研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江皇马科技股份有限公司, 浙江皇马尚宜新材料有限公司, 浙江绿科安化学有限公司, 浙江皇马特种表面活性剂研究院有限公司 filed Critical 浙江皇马科技股份有限公司
Publication of WO2022198850A1 publication Critical patent/WO2022198850A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups

Definitions

  • the invention belongs to the technical field of organic compound synthesis, in particular to a highly selective synthesis method of propylene glycol phenyl ether.
  • Propylene glycol phenyl ether is a solvent with high boiling point, low volatility, mild odor, non-toxic and environmentally friendly. Due to its strong dissolving ability to many resins, low film-forming temperature, good compactness, moderate volatilization rate, and low surface tension, it is As a green and environmentally friendly paint additive, it is widely used in oil-soluble or water-soluble coatings such as automotive and automotive refinish coatings, electrophoretic coatings, industrial baking paints and marine paints, wood paints, and architectural coatings.
  • the industrial production method of propylene glycol phenyl ether uses phenol and propylene oxide as raw materials, and is prepared by alkali-catalyzed ring-opening addition. Phenol generates potassium phenate under alkaline conditions, and potassium phenate opens the ring of propylene oxide to obtain potassium propylene glycol phenylene ether. Since the alkalinity of potassium propylene glycol phenoxide is stronger than that of potassium phenate, it is very easy to react with phenol in the reaction system to obtain propylene glycol phenyl ether and potassium phenate.
  • Chinese patent CN104292083A discloses a process for removing phenol in propylene glycol phenyl ether by self-made adsorbent, and the phenol content in the prepared propylene glycol phenyl ether is less than 300ppm.
  • Chinese patent CN106478385A discloses a phenolic hydroxyl group in phenol that can be neutralized with an inorganic base and is less volatile after salt formation, and then distill out propylene glycol phenyl ether, and the phenol content in the prepared propylene glycol phenyl ether is 30-90 ppm.
  • the low-phenol content, high-purity propylene glycol phenyl ether product obtained by post-processing methods such as rectification, adsorption, alkali addition and re-distillation not only complicates the entire production process, but also greatly increases the production cost of propylene glycol phenyl ether. Therefore, it is necessary to develop a new propylene glycol phenyl ether synthesis technology to solve the above problems.
  • the object of the present invention is to provide a highly selective synthesis method of propylene glycol phenyl ether.
  • the technical scheme of the present invention is:
  • a highly selective synthetic method of propylene glycol phenyl ether comprising: phenol and propylene oxide obtain propylene glycol phenyl ether by one-step method under the catalysis of organophosphorus compound, and the chemical structure of the organophosphorus compound is shown in (1):
  • R 1 , R 2 , and R 3 are all electron-rich substituents, including an alkyl group, a phenyl group or an alkoxy group, wherein the number of Cs in the alkyl group and the alkoxy group is 2-6.
  • the synthesis method includes: uniformly mixing phenol and an organophosphorus compound, continuously adding propylene oxide under anaerobic conditions, and continuously adding the reaction for not less than 2 hours to obtain propylene glycol phenyl ether.
  • the added amount of the organophosphorus compound is 1-5 ⁇ of the sum of the mass of phenol and propylene oxide.
  • the organic phosphorus compound is at least one of triisopropyl phosphorus, triethyl phosphite, triphenylphosphine, tri-tert-butyl phosphorus, and tert-butyl diphenyl phosphorus.
  • the molar ratio of the phenol and the propylene oxide is 1:(1.0-1.1).
  • the reaction temperature is 100-140° C., and the entire reaction time is 5-13 h.
  • the present invention prepares the reaction mechanism of propylene glycol phenyl ether through organophosphorus compound catalysis phenol and propylene oxide may be as follows:
  • Phenol is weakly acidic, and the organophosphorus compound of this structure is essentially a Lewis base, so the reaction between phenol and organophosphorus compound can generate a relatively stable ion pair structure, thereby opening the ring of propylene oxide to obtain propylene glycol phenyl ether and organophosphorus ion right.
  • Propylene glycol phenyl ether is a neutral compound, and the ion pair formed by it and organophosphorus is extremely unstable and easily decomposed into propylene glycol phenyl ether and organophosphorus, thereby greatly reducing the generation of dipropylene glycol phenyl ether, and promoting the conversion of phenol to phenol. Conversion of Propylene Glycol Phenyl Ether.
  • the catalyst selectivity selected by the present invention is high, the phenol content of the synthesized product is low ( ⁇ 100ppm, GC), and the purity of propylene glycol phenyl ether is high ( ⁇ 98.0%, GC), which can be directly applied in coatings and industries closely related to life. Compared with the preparation process requiring post-processing steps, the production process is simplified and the production cost is reduced.
  • the present invention has no post-treatment process, compared to the process of the low phenol content and high-purity propylene glycol phenyl ether products obtained by post-treatment modes such as rectification, adsorption, alkali addition and re-distillation, the present invention has no waste liquid and waste residue to generate, It is an economical and environmentally friendly process.
  • the concrete method that reaction product is carried out GC detection is: adopt Agilent GC7809B gas chromatograph analyzer.
  • the main settings are:
  • Carrier gas nitrogen;
  • the present embodiment provides a method for synthesizing propylene glycol phenyl ether with high selectivity.
  • the specific steps are as follows: adding 1888 g of phenol and 15.55 g of triisopropyl phosphorus into a 5L pressure-resistant reaction kettle and mixing them evenly, then adding a propylene oxide measuring tank to the pressure kettle. connect. The air was replaced with nitrogen for 3 times, and when the temperature of the reaction kettle was maintained at about 100° C., 1187 g of propylene oxide was started to pass through, and the pass was completed in about 10 hours, and the reaction was continued for 3 hours. After completion of the reaction, degassing and cooling to obtain about 3076 g of crude propylene glycol phenyl ether.
  • the content of phenol in the product detected by GC was about 96 ppm, and the purity of propylene glycol phenyl ether was about 98.2%.
  • the present embodiment provides a method for synthesizing propylene glycol phenyl ether with high selectivity.
  • the specific steps are as follows: adding 1888g phenol and 9.33g triethyl phosphite to a 5L pressure-resistant reaction kettle and mixing them evenly; Kettle connection. The air was replaced with nitrogen three times, and when the temperature of the reaction kettle was maintained at about 120° C., 1222 g of propylene oxide was started to pass through, and the pass was completed in about 4 hours, and the reaction was continued for 3 hours. After completion of the reaction, degassing and cooling to obtain about 3078 g of crude propylene glycol phenyl ether. The content of phenol in the product detected by GC was about 65 ppm, and the purity of propylene glycol phenyl ether was about 98.3%.
  • This embodiment provides a method for synthesizing propylene glycol phenyl ether with high selectivity.
  • the specific steps are as follows: adding 1888g phenol and 3.16g triphenylphosphine to a 5L pressure-resistant glass reaction kettle and mixing them evenly; connect. The air was replaced with nitrogen three times, and when the temperature of the reaction kettle was maintained at about 140°C, 1268 g of propylene oxide was started to pass through, and the pass was completed in about 2 hours, and the reaction was continued for 3 hours. After completion of the reaction, degassing and cooling to obtain about 3084 g of crude propylene glycol phenyl ether. The content of phenol in the product detected by GC was about 32 ppm, and the purity of propylene glycol phenyl ether was about 98.9%.
  • This embodiment provides a method for synthesizing propylene glycol phenyl ether with high selectivity.
  • the specific steps are as follows: adding 1888 g of phenol and 12.64 g of tri-tert-butyl phosphorus into a 5L pressure-resistant glass reaction kettle and mixing them evenly; Kettle connection. The air was replaced with nitrogen for 3 times, and when the temperature of the reactor was maintained at about 110° C., 1210 g of propylene oxide was started to pass through, and the pass was completed in about 4 hours, and the reaction was continued for 3 hours. After completion of the reaction, degassing and cooling to obtain about 3081 g of crude propylene glycol phenyl ether. The content of phenol in the product detected by GC was about 66 ppm, and the purity of propylene glycol phenyl ether was about 98.4%.
  • the present embodiment provides a method for synthesizing propylene glycol phenyl ether with high selectivity.
  • the specific steps are as follows: adding 1888 g phenol and 6.32 g tert-butyl diphenyl phosphorus into a 5L pressure-resistant reaction kettle and mixing them evenly, then adding a propylene oxide measuring tank with Autoclave connection. The air was replaced with nitrogen three times, and when the temperature of the reactor was maintained at about 130° C., 1222 g of propylene oxide was started to be introduced, and the passage was completed in about 3 hours, and the reaction was continued for 3 hours. After completion of the reaction, degassing and cooling to obtain about 3076 g of crude propylene glycol phenyl ether. The content of phenol in the product detected by GC was about 65ppm, and the purity of propylene glycol phenyl ether was about 98.9%.
  • the present embodiment provides a highly selective synthesis method of propylene glycol phenyl ether.
  • the specific steps are: adding 1888g phenol and 12.64g triisopropylphosphorus and triphenylphosphine mixed catalyst (by mass ratio 1 : 1) Mix evenly, and connect the propylene oxide measuring tank to the autoclave. The air was replaced with nitrogen three times.
  • 1202 g of propylene oxide was started to pass through, and the pass was completed in about 6 hours, and the reaction was continued for 3 hours.
  • degassing and cooling to obtain about 3085 g of crude propylene glycol phenyl ether.
  • the content of phenol in the product detected by GC was about 54 ppm, and the purity of propylene glycol phenyl ether was about 98.4%.
  • the present embodiment provides a highly selective synthesis method of propylene glycol phenyl ether, the specific steps are: adding 1888g phenol and 9.33g triethyl phosphite and tert-butyl diphenyl phosphorus mixed catalyst ( Mix evenly according to the mass ratio of 1:1), and connect the propylene oxide measuring tank to the autoclave. The air was replaced with nitrogen for 3 times.
  • the temperature of the reaction kettle was maintained at about 130° C.
  • 1196 g of propylene oxide was started to pass through, and the pass was completed in about 5 hours, and the reaction was continued for 3 hours.
  • degassing and cooling to obtain about 3080 g of a crude product of propylene glycol phenyl ether.
  • the content of phenol in the product detected by GC was about 75ppm, and the purity of propylene glycol phenyl ether was about 98.7%.
  • This embodiment provides a highly selective synthesis method of propylene glycol phenyl ether.
  • the specific steps are: adding 1888g phenol and 6.32g triphenylphosphine, tri-tert-butylphosphorus and tert-butyldiphenyl into a 5L pressure-resistant reactor
  • the phosphorus mixed catalyst (by mass ratio 1:1:1) is mixed evenly, and the propylene oxide measuring tank is connected to the pressure kettle.
  • the air was replaced with nitrogen for 3 times, and when the temperature of the reaction kettle was maintained at about 120° C., 1248 g of propylene oxide was started to be introduced, and the passage was completed in about 7 hours, and the reaction was continued for 3 hours.
  • Example 2 Other conditions are the same as in Example 1, except that the catalyst is changed to methyltriphenylphosphonium bromide, and the product is about 3082g.
  • the content of phenol in the product detected by GC was about 24674ppm, and the purity of propylene glycol phenyl ether was about 93.2%. Comparative Example 2
  • Example 2 The other conditions were the same as in Example 2, except that the catalyst was changed to ethyltriphenylphosphonium bromide, and about 3112 g of the product was obtained.
  • the content of phenol in the product detected by GC was about 5674 ppm, and the purity of propylene glycol phenyl ether was about 94.6%. Comparative Example 3
  • Example 4 The same as the other conditions in Example 3, except that the catalyst was changed to propyltriphenylphosphonium bromide, about 3151 g of the product was obtained.
  • the content of phenol in the product detected by GC was about 837ppm, and the purity of propylene glycol phenyl ether was about 92.2%. Comparative Example 4
  • Example 4 The same as the other conditions in Example 4, except that the catalyst was changed to butyltriphenylphosphonium bromide, about 3103 g of the product was obtained.
  • the content of phenol in the product detected by GC was about 17268 ppm, and the purity of propylene glycol phenyl ether was about 93.7%.
  • Example 5 Same as the other conditions in Example 5, except that the catalyst was changed to a mixed catalyst of methyltriphenylphosphonium bromide and propyltriphenylphosphonium bromide (by mass ratio 1:1), about 3109 g of product was obtained.
  • the content of phenol in the product detected by GC was about 8446 ppm, and the purity of propylene glycol phenyl ether was about 94.5%.
  • Example 6 The same as the other conditions in Example 6, the only catalyst was changed to a mixed catalyst of ethyl triphenyl phosphorus bromide and butyl triphenyl phosphorus bromide (by mass ratio 1:1) to obtain about 3097 g of product.
  • the content of phenol in the product detected by GC was about 19943 ppm, and the purity of propylene glycol phenyl ether was about 93.5%.
  • Example 7 The same as the other conditions of Example 7, the only catalyst was changed to ethyl triphenyl phosphorus bromide, propyl triphenyl phosphorus bromide and butyl triphenyl phosphorus bromide mixed catalyst (by mass ratio 1:1:1 ), about 3089 g of product was obtained.
  • the content of phenol in the product detected by GC was about 23227 ppm, and the purity of propylene glycol phenyl ether was about 93.4%.
  • Example 8 The same as the other conditions in Example 8, the only catalyst was changed to a mixed catalyst of methyl triphenyl phosphorus bromide, ethyl triphenyl phosphorus bromide, propyl triphenyl phosphorus bromide and butyl triphenyl phosphorus bromide (by mass ratio 1:1:1:1), about 3132g of product was obtained.
  • the content of phenol in the product detected by GC was about 1096 ppm, and the purity of propylene glycol phenyl ether was about 92.4%.
  • the synthesis method of the present invention has high catalyst selectivity, the synthesized product has low phenol content ( ⁇ 100 ppm, GC), and high purity of propylene glycol phenyl ether ( ⁇ 98.0%, GC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种丙二醇苯醚的高选择性合成方法,包括:苯酚和环氧丙烷在有机磷作催化下通过一步法得到丙二醇苯醚,所述有机磷的化学结构如(I)所示,其中,R 1、R 2、R 3均为富电子取代基,包括烷基、苯基或烷氧基,其中所述烷基及所述烷氧基中C个数为2~6个。选用的催化剂选择性高,合成出的产品苯酚含量低(≤100ppm,GC),丙二醇苯醚纯度高(≥98.0%,GC),可直接在涂料和生活密切相关行业中应用。并且无后处理工艺,无废液和废渣生成,是一种经济、环境友好型工艺。

Description

一种丙二醇苯醚的高选择性合成方法 技术领域
本发明属于有机化合物合成技术领域,具体涉及一种丙二醇苯醚的高选择性合成方法。
背景技术
丙二醇苯醚是一种高沸点、低挥发、气味温和、无毒环保的溶剂,由于其对许多树脂溶解能力强、成膜温度低、致密性好、挥发速率适中、低表面张力等特性,其作为一种绿色环保涂料助剂,广泛应用于汽车及汽车修补涂料、电泳涂料、工业烤漆和船舶漆、木器漆、建筑涂料等油溶性或水溶性涂料中。
目前,工业上丙二醇苯醚的生产方法是以苯酚和环氧丙烷为原料,经碱催化开环加成制得。苯酚在碱性条件下生成苯酚钾,苯酚钾开环环氧丙烷得到丙二醇苯醚钾。由于丙二醇苯醚钾的碱性强于苯酚钾,所以其极易与反应体系中的苯酚反应得到丙二醇苯醚和苯酚钾。随着反应体系中苯酚逐渐转化成丙二醇苯醚,苯酚的含量降低到一定程度后,丙二醇苯醚钾无法及时转化为丙二醇苯醚,其就会与环氧丙烷进行反应生成二丙二醇苯醚,从而大大降低了产品中丙二醇苯醚的含量。碱催化制备丙二醇苯醚的反应机理图如下:
Figure PCTCN2021106974-appb-000001
现阶段工厂通常通过优化反应中环氧丙烷和苯酚的比例,从而达到降低产 品中二丙二醇苯醚含量的目的。然而,此类方案必然会提高产品中未反应的苯酚含量,较高含量的苯酚会造成EHS问题,这将大大限制产品在涂料和生活密切相关行业中的应用。为了降低产品中苯酚的含量,工业上通常会在产品的合成后增加分离纯化步骤,从而得到低苯酚含量、高丙二醇苯醚含量的产品。目前,工业生产中大多数用减压精馏的后处理工艺,先除去合成产物中的苯酚,再蒸馏出低苯酚含量,高纯度的丙二醇苯醚。中国专利CN104292083A公布了一种通过自制吸附剂脱除丙二醇苯醚中苯酚的工艺,制备的丙二醇苯醚中苯酚含量小于300ppm。中国专利CN106478385A公布了一种利用苯酚中的酚羟基可以和无机碱中和成盐后难挥发的特性,再蒸馏出丙二醇苯醚,制备的丙二醇苯醚中苯酚含量为30-90ppm。然而,通过精馏、吸附、加碱再蒸馏等后处理方式得到的低苯酚含量、高纯度丙二醇苯醚产品,不仅使得整个生产工艺变得复杂,还大大增加了丙二醇苯醚的生产成本。因此,有必要开发一种新的丙二醇苯醚合成技术来解决上述问题。
发明内容
针对上述存在的问题,本发明的目的在于提供一种丙二醇苯醚的高选择性合成方法。本发明的技术方案为:
一种丙二醇苯醚的高选择性合成方法,包括:苯酚和环氧丙烷在有机磷化合物催化下通过一步法得到丙二醇苯醚,所述有机磷化合物的化学结构如(I)所示:
Figure PCTCN2021106974-appb-000002
其中,R 1、R 2、R 3均为富电子取代基,包括烷基、苯基或烷氧基,其中所述烷基及所述烷氧基中C个数为2~6个。
进一步地,所述合成方法包括:将苯酚和有机磷化合物混合均匀,在无氧条件下持续加入环氧丙烷,并且持续加入时间不低于2h进行反应,得到丙二醇苯醚。
进一步地,所述有机磷化合物的添加量为苯酚和环氧丙烷质量之和的1-5‰。
优选地,所述有机磷化合物为三异丙基磷、三乙基亚磷酸酯、三苯基膦、三叔丁基磷、叔丁基二苯基磷中的至少一种。
进一步地,所述苯酚和所述环氧丙烷的摩尔比为1:(1.0-1.1)。
优选地,所述合成方法中,反应温度为100~140℃,整个反应时间为5~13h。
本发明通过有机磷化合物催化苯酚和环氧丙烷制备丙二醇苯醚的反应机理可能如下:
Figure PCTCN2021106974-appb-000003
苯酚显弱酸性,该结构的有机磷化合物实质为一种路易斯碱,所以苯酚与有机磷化合物反应可以生成一种比较稳定的离子对结构,从而开环环氧丙烷得到丙二醇苯醚与有机磷离子对。而丙二醇苯醚为一种中性化合物,其与有机磷形成的离子对极其不稳定,极易分解为丙二醇苯醚和有机磷,从而大大减少了 二丙二醇苯醚的生成,且促进了苯酚向丙二醇苯醚的转化。
与现有技术相比,具有以下突出优点和积极效果:
1.本发明选用的催化剂选择性高,合成出的产品苯酚含量低(≤100ppm,GC),丙二醇苯醚纯度高(≥98.0%,GC),可直接在涂料和生活密切相关行业中应用。相较于需要后处理步骤的制备工艺,简化了生产工艺,降低了生产成本。
2.本发明无后处理工艺,相比于通过精馏、吸附、加碱再蒸馏等后处理方式得到的低苯酚含量、高纯度丙二醇苯醚产品的工艺,本发明无废液和废渣生成,是一种经济、环境友好型工艺。
具体实施方式
在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面结合具体的实施例对本发明做进一步详细说明,所述是对本发明的解释而不是限定。
以下实施例中,对反应产物进行GC检测的具体方法为:采用Agilent GC7809B气相色谱分析仪。主要设定为:
进样口温度Inlet Temp:280℃;
柱温Oven Temp:80℃保持10min,以8℃/min的升温速率升温至260℃,并在260℃下保持10min;
检测器FID Temp:300℃;
载气:氮气;
分流比Spilt Ratio:40:1;
柱流量:1.0mL/min;
柱子类型:HP-5柱30m*0.32mm*0.25μm。
实施例1
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压反应釜中加入1888g苯酚和15.55g三异丙基磷混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约100℃,开始通入1187g环氧丙烷,约10小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3076g丙二醇苯醚粗品。GC检测产物中苯酚含量约96ppm,丙二醇苯醚纯度约98.2%。
实施例2
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压反应釜中加入1888g苯酚和9.33g三乙基亚磷酸酯混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约120℃,开始通入1222g环氧丙烷,约4小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3078g丙二醇苯醚粗品。GC检测产物中苯酚含量约65ppm,丙二醇苯醚纯度约98.3%。
实施例3
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压玻璃反应釜中加入1888g苯酚和3.16g三苯基膦混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约140℃,开始通入 1268g环氧丙烷,约2小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3084g丙二醇苯醚粗品。GC检测产物中苯酚含量约32ppm,丙二醇苯醚纯度约98.9%。
实施例4
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压玻璃反应釜中加入1888g苯酚和12.64g三叔丁基磷混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约110℃,开始通入1210g环氧丙烷,约4小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3081g丙二醇苯醚粗品。GC检测产物中苯酚含量约66ppm,丙二醇苯醚纯度约98.4%。
实施例5
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压反应釜中加入1888g苯酚和6.32g叔丁基二苯基磷混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约130℃,开始通入1222g环氧丙烷,约3小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3076g丙二醇苯醚粗品。GC检测产物中苯酚含量约65ppm,丙二醇苯醚纯度约98.9%。
实施例6
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压反应釜中加入1888g苯酚和12.64g三异丙基磷与三苯基膦混合催化剂(按质 量比1:1)混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约110℃,开始通入1202g环氧丙烷,约6小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3085g丙二醇苯醚粗品。GC检测产物中苯酚含量约54ppm,丙二醇苯醚纯度约98.4%。
实施例7
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压反应釜中加入1888g苯酚和9.33g三乙基亚磷酸酯与叔丁基二苯基磷混合催化剂(按质量比1:1)混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约130℃,开始通入1196g环氧丙烷,约5小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3080g丙二醇苯醚粗品。GC检测产物中苯酚含量约75ppm,丙二醇苯醚纯度约98.7%。
实施例8
本实施例提供一种丙二醇苯醚的高选择性合成方法,具体步骤为:在5L耐压反应釜中加入1888g苯酚和6.32g三苯基膦、三叔丁基磷与叔丁基二苯基磷混合催化剂(按质量比1:1:1)混合均匀,将环氧丙烷计量罐与压力釜连接。用氮气置换空气3次,待反应釜温度维持在约120℃,开始通入1248g环氧丙烷,约7小时通完,继续反应3小时。反应完毕后,脱气,冷却,得到约3076g丙二醇苯醚粗品。GC检测产物中苯酚含量约39ppm,丙二醇苯醚纯度约98.6%。对比例1
与实施例1其他条件一样,唯独催化剂变换为甲基三苯基溴化磷,得到产 品约3082g。GC检测产物中苯酚含量约24674ppm,丙二醇苯醚纯度约93.2%。对比例2
与实施例2其他条件一样,唯独催化剂变换为乙基三苯基溴化磷,得到产品约3112g。GC检测产物中苯酚含量约5674ppm,丙二醇苯醚纯度约94.6%。对比例3
与实施例3其他条件一样,唯独催化剂变换为丙基三苯基溴化磷,得到产品约3151g。GC检测产物中苯酚含量约837ppm,丙二醇苯醚纯度约92.2%。对比例4
与实施例4其他条件一样,唯独催化剂变换为丁基三苯基溴化磷,得到产品约3103g。GC检测产物中苯酚含量约17268ppm,丙二醇苯醚纯度约93.7%。
对比例5
与实施例5其他条件一样,唯独催化剂变换为甲基三苯基溴化磷与丙基三苯基溴化磷混合催化剂(按质量比1:1),得到产品约3109g。GC检测产物中苯酚含量约8446ppm,丙二醇苯醚纯度约94.5%。
对比例6
与实施例6其他条件一样,唯独催化剂变换为乙基三苯基溴化磷与丁基三苯基溴化磷混合催化剂(按质量比1:1),得到产品约3097g。GC检测产物中苯酚含量约19943ppm,丙二醇苯醚纯度约93.5%。
对比例7
与实施例7其他条件一样,唯独催化剂变换为乙基三苯基溴化磷、丙基三苯基溴化磷与丁基三苯基溴化磷混合催化剂(按质量比1:1:1),得到产品约3089g。GC检测产物中苯酚含量约23227ppm,丙二醇苯醚纯度约93.4%。
对比例8
与实施例8其他条件一样,唯独催化剂变换为甲基三苯基溴化磷、乙基三苯基溴化磷、丙基三苯基溴化磷与丁基三苯基溴化磷混合催化剂(按质量比1:1:1:1),得到产品约3132g。GC检测产物中苯酚含量约1096ppm,丙二醇苯醚纯度约92.4%。
综上,本发明的合成方法催化剂选择性高,合成出的产物苯酚含量低(≤100ppm,GC),丙二醇苯醚纯度高(≥98.0%,GC)。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种丙二醇苯醚的高选择性合成方法,其特征在于:包括:苯酚和环氧丙烷在有机磷化合物催化下通过一步法得到丙二醇苯醚,所述有机磷化合物的化学结构如(I)所示:
    Figure PCTCN2021106974-appb-100001
    其中,R 1、R 2、R 3均为富电子取代基,包括烷基、苯基或烷氧基,其中所述烷基及所述烷氧基中C个数为2~6个。
  2. 根据权利要求1所述的一种丙二醇苯醚的高选择性合成方法,其特征在于:将苯酚和有机磷化合物混合均匀,在无氧条件下持续加入环氧丙烷,并且持续加入时间不低于2h进行反应,得到丙二醇苯醚。
  3. 根据权利要求1或2所述的一种丙二醇苯醚的高选择性合成方法,其特征在于:所述有机磷化合物的添加量为苯酚和环氧丙烷质量之和的1-5‰。
  4. 根据权利要求3所述的一种丙二醇苯醚的高选择性合成方法,其特征在于:所述有机磷化合物为三异丙基磷、三乙基亚磷酸酯、三苯基膦、三叔丁基磷、叔丁基二苯基磷中的至少一种。
  5. 根据权利要求4所述的一种丙二醇苯醚的高选择性合成方法,其特征在于:所述苯酚和所述环氧丙烷的摩尔比为1:(1.0-1.1)。
  6. 根据权利要求4所述的一种丙二醇苯醚的高选择性合成方法,其特征在于:所述合成方法中,反应温度为100~140℃,整个反应时间为5~13h。
PCT/CN2021/106974 2021-03-25 2021-07-19 一种丙二醇苯醚的高选择性合成方法 WO2022198850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110321885.5A CN113072431A (zh) 2021-03-25 2021-03-25 一种丙二醇苯醚的高选择性合成方法
CN202110321885.5 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022198850A1 true WO2022198850A1 (zh) 2022-09-29

Family

ID=76610236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106974 WO2022198850A1 (zh) 2021-03-25 2021-07-19 一种丙二醇苯醚的高选择性合成方法

Country Status (2)

Country Link
CN (1) CN113072431A (zh)
WO (1) WO2022198850A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072431A (zh) * 2021-03-25 2021-07-06 浙江皇马科技股份有限公司 一种丙二醇苯醚的高选择性合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037534A (ja) * 2008-07-08 2010-02-18 Nippon Shokubai Co Ltd 複合粒子、樹脂組成物、及び、その硬化物
CN102295538A (zh) * 2011-08-25 2011-12-28 浙江皇马化工集团有限公司 一种苯氧基乙醇的合成方法
CN106478385A (zh) * 2015-09-02 2017-03-08 奇里茨应用技术(上海)有限公司 一种制备痕量苯酚的高纯丙二醇苯醚或乙二醇苯醚的方法
CN109651093A (zh) * 2019-01-04 2019-04-19 浙江皇马科技股份有限公司 一种双羟乙基双酚芴醚的制备方法
US20200157030A1 (en) * 2017-08-18 2020-05-21 Jiahua Chemicals (Maoming) Co., Ltd. Catalyst for preparing propylene glycol phenyl ether and method for synthesizing propylene glycol phenyl ether
CN113072431A (zh) * 2021-03-25 2021-07-06 浙江皇马科技股份有限公司 一种丙二醇苯醚的高选择性合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285848B2 (ja) * 2006-09-28 2013-09-11 三洋化成工業株式会社 ビスフェノール類のジオキシエチレンエーテルの製造方法および組成物
CN106397135B (zh) * 2016-08-31 2018-11-27 浙江皇马科技股份有限公司 一种羟丙基化季戊四醇醚的制备方法
CN107011377B (zh) * 2017-05-03 2019-02-26 南通书创药业科技有限公司 一种β-羰基磷酸酯的制备方法
CN111454129B (zh) * 2020-04-29 2023-04-11 浙江皇马科技股份有限公司 一种高纯苯氧乙醇的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037534A (ja) * 2008-07-08 2010-02-18 Nippon Shokubai Co Ltd 複合粒子、樹脂組成物、及び、その硬化物
CN102295538A (zh) * 2011-08-25 2011-12-28 浙江皇马化工集团有限公司 一种苯氧基乙醇的合成方法
CN106478385A (zh) * 2015-09-02 2017-03-08 奇里茨应用技术(上海)有限公司 一种制备痕量苯酚的高纯丙二醇苯醚或乙二醇苯醚的方法
US20200157030A1 (en) * 2017-08-18 2020-05-21 Jiahua Chemicals (Maoming) Co., Ltd. Catalyst for preparing propylene glycol phenyl ether and method for synthesizing propylene glycol phenyl ether
CN109651093A (zh) * 2019-01-04 2019-04-19 浙江皇马科技股份有限公司 一种双羟乙基双酚芴醚的制备方法
CN113072431A (zh) * 2021-03-25 2021-07-06 浙江皇马科技股份有限公司 一种丙二醇苯醚的高选择性合成方法

Also Published As

Publication number Publication date
CN113072431A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
KR101099127B1 (ko) 60%이상의 시스 디(c4-c20)알킬 시클로헥산-1,4-디카르복실레이트의 제조방법
US11111256B2 (en) High purity trisilylamine, methods of making, and use
CN101238091A (zh) 对苯二甲酸二(2-乙基己酯)的制备
CN107400043B (zh) 离子液体在丙二醇醚合成中的应用及丙二醇醚合成方法
WO2022198850A1 (zh) 一种丙二醇苯醚的高选择性合成方法
CN107814939B (zh) 一种金属氧化物催化合成聚甲基膦酸乙二醇酯的方法
CN104292066A (zh) 高纯度异丁烯制备方法
WO2018217963A1 (en) Process for preparing methacrolein
CN102503774A (zh) 硒催化下由环己烯合成1,2-环己二醇的方法
WO2019034149A1 (zh) 一种制备丙二醇苯醚的催化剂及丙二醇苯醚的合成方法
CN105032473B (zh) 一种采用硫酸改性处理纳米级hzsm‑5催化剂制备二烷氧基甲烷的方法
CN108727193B (zh) 碳酸二苯酯类化合物的制备方法
CN115745785A (zh) 一种二氟乙酸酐的合成方法
US6429340B1 (en) Process for producing 2,4,5,-trialkylbenzaldenhydes
CN100345634C (zh) 用于丙酮酸酯合成的铌铁硅磷铝分子筛催化剂的制备方法
JP5085643B2 (ja) エチン前駆体としてのα−アルキノールの形態でのエチンの輸送
CN111205172A (zh) 一种2,4-二叔丁基苯酚的清洁生产方法
JP2005247840A (ja) 1,3−プロパンジオールの製造方法及び該製造方法で得られる1,3−プロパンジオール
Koltunov et al. Direct conversion of methanol into dimethoxymethane and methyl formate by controlled oxidation. Mechanistic aspects
CN109265342B (zh) 碳酸二苯酯类化合物的制备方法
CN114181243B (zh) 一种甲基二甲氧基氢硅烷的制备方法
CN109265343B (zh) 碳酸二苯酯类化合物的制备方法
CN118164929A (zh) 一种果糖有机-无机两相连续式制备5-羟甲基糠醛的方法
JPS5943485B2 (ja) 加水分解されたグリシジル基を含有する高分子量エポキシ樹脂を製造する方法
CN116854626A (zh) 一种2-乙烯基吡啶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932464

Country of ref document: EP

Kind code of ref document: A1