WO2022191238A1 - 熱伝導性樹脂組成物及び熱伝導性樹脂材料 - Google Patents

熱伝導性樹脂組成物及び熱伝導性樹脂材料 Download PDF

Info

Publication number
WO2022191238A1
WO2022191238A1 PCT/JP2022/010288 JP2022010288W WO2022191238A1 WO 2022191238 A1 WO2022191238 A1 WO 2022191238A1 JP 2022010288 W JP2022010288 W JP 2022010288W WO 2022191238 A1 WO2022191238 A1 WO 2022191238A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
thermally conductive
phase
resin phase
conductive filler
Prior art date
Application number
PCT/JP2022/010288
Other languages
English (en)
French (fr)
Inventor
圭一 小松
旭 加須榮
敦史 山口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280014804.XA priority Critical patent/CN116888238A/zh
Publication of WO2022191238A1 publication Critical patent/WO2022191238A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition

Definitions

  • the present disclosure relates to thermally conductive resin compositions and thermally conductive resin materials. More particularly, it relates to a thermally conductive resin composition and a thermally conductive resin material containing a thermally conductive filler.
  • Patent Document 1 describes a thermally conductive silicone rubber composition.
  • a thermally conductive inorganic filler surface-treated with a specific silane coupling agent is dispersed in silicone rubber.
  • the silicone rubber is highly filled with a thermally conductive inorganic filler (increased filling amount).
  • a thermally conductive inorganic filler in order to improve the thermal conductivity of a thermally conductive silicone rubber composition and its moldings, the silicone rubber is highly filled with a thermally conductive inorganic filler (increased filling amount).
  • the thermally conductive inorganic filler is highly filled, the viscosity of the thermally conductive silicone rubber composition tends to increase, making it difficult to apply the thermally conductive silicone rubber composition and to form a molded article having a desired thickness. There was a problem.
  • An object of the present disclosure is to provide a thermally conductive resin composition and a thermally conductive resin material that can improve thermal conductivity while suppressing an increase in viscosity.
  • a thermally conductive resin composition according to one aspect of the present disclosure includes a first resin phase, a second resin phase, and a thermally conductive filler.
  • the first resin phase and the second resin phase are phase-separated.
  • the density of the thermally conductive filler in the first resin phase is higher than the density of the thermally conductive filler in the second resin phase.
  • a thermally conductive resin material according to one aspect of the present disclosure is a solidified product of the thermally conductive resin composition.
  • the solid phase of the first resin phase, the solid phase of the second resin phase, and the thermally conductive filler are included.
  • FIG. 1A is a model diagram showing an example of a phase separation structure between a first resin phase and a second resin phase.
  • FIG. 1B is a model diagram showing an example of a dispersion structure of a thermally conductive filler in a first resin phase and a second resin phase.
  • FIG. 2A is a model diagram showing another example of the phase separation structure between the first resin phase and the second resin phase.
  • FIG. 2B is a model diagram showing another example of the dispersion structure of the thermally conductive filler in the first resin phase and the second resin phase.
  • FIG. 3A is a model diagram showing another example of the phase separation structure between the first resin phase and the second resin phase.
  • FIG. 3B is a model diagram showing another example of the dispersion structure of the thermally conductive filler in the first resin phase and the second resin phase.
  • a thermally conductive resin composition according to the present embodiment includes a first resin phase, a second resin phase, and a thermally conductive filler.
  • the first resin phase and the second resin phase are phase-separated to form a multiphase system.
  • the density of the thermally conductive fillers in the first resin phase is higher than the density of the thermally conductive fillers in the second resin phase. That is, the amount of thermally conductive filler particles contained in the first resin phase per unit volume is greater than the amount of thermally conductive filler particles contained in the second resin phase per unit volume.
  • the thermally conductive filler is evenly dispersed in both the first resin phase and the second resin phase.
  • the thermally conductive filler is more unevenly distributed in the first resin phase than in the second resin phase (in the case of the thermally conductive resin composition of the present embodiment). particles are more likely to come into contact with each other. Therefore, the thermally conductive resin composition of the present embodiment can improve the thermal conductivity even when the amount of the thermally conductive filler to be filled is small.
  • the thermally conductive resin composition of the present embodiment contains a small amount of thermally conductive filler, an increase in viscosity can be suppressed.
  • the thermally conductive resin material according to this embodiment is a solidified product of the thermally conductive resin composition according to this embodiment, and includes a solid phase of the first resin phase, a solid phase of the second resin phase, and a thermally conductive contains fillers and
  • a thermally conductive resin material of the present embodiment as in the case of the thermally conductive resin composition, more thermally conductive filler is unevenly distributed in the first resin phase than in the second resin phase. is dispersed evenly in both the first resin phase and the second resin phase. Therefore, the thermally conductive resin material of the present embodiment can improve the thermal conductivity even with a small amount of the thermally conductive filler.
  • the thermally conductive resin composition according to this embodiment includes a first resin phase, a second resin phase, and thermally conductive fillers 3 .
  • the first resin phase 1 and the second resin phase 2 have a phase separation structure. That is, the first resin phase 1 and the second resin phase 2 have low compatibility and are in a separated state.
  • FIG. 1A shows a sea-island structure of a first resin phase 1 and a second resin phase 2.
  • FIG. That is, it shows a structure in which a plurality of second resin phases 2 are scattered in the first resin phase 1 .
  • FIG. 2A shows the interconnection structure of the first resin phase 1 and the second resin phase 2 . That is, it shows a structure in which the first resin phase 1 and the second resin phase 2 are interconnected in an intricate manner.
  • FIG. 3A shows the layered structure of the first resin phase 1 and the second resin phase 2.
  • the first resin phase 1 is composed of the first resin.
  • the first resin has fluidity and is a liquid or paste resin.
  • the second resin phase 2 is composed of a second resin.
  • the second resin has fluidity and is a liquid or paste resin.
  • the first resin and the second resin are different types of resin. That is, the solubility parameter (SP value) of the first resin and the solubility parameter of the second resin are different.
  • the difference between the solubility parameter of the first resin and the solubility parameter of the second resin is preferably 1 or more.
  • the compatibility between the first resin and the second resin is low, and the first resin phase 1 and the It becomes easy to form a phase separation structure with the second resin phase 2 . Since it is preferable that the difference between the solubility parameter of the first resin and the solubility parameter of the second resin is large, the upper limit is not particularly set.
  • thermosetting resin is used as the first resin.
  • the thermosetting resin is uncured, and for example, an uncured liquid epoxy resin is used.
  • epoxy resins include bisphenol A type epoxy resins.
  • a thermoplastic resin is used as the second resin.
  • the thermoplastic resin is in a liquid state such as by melting, and examples thereof include polyethersulfone, silicone resin, acrylic resin, and urethane resin. Among these, it is preferable to use polyether sulfone, which easily forms a phase-separated structure with the bisphenol A type epoxy resin.
  • first resin and the second resin may each contain an appropriate solvent for the purpose of viscosity adjustment and the like.
  • the ratio of the first resin to the second resin is not particularly limited as long as the phase separation structure of the first resin phase 1 and the second resin phase 2 can be formed.
  • the weight ratio is 95:5. to 30:70, more preferably 90:10 to 50:50.
  • the amount of the first resin is extremely excessive and the amount of the second resin is too small, the first resin phase 1 becomes close to a monolayer state, and a suitable phase separation structure cannot be obtained. If the amount of the first resin decreases, the ratio of the first resin phase 1 also decreases.
  • the thermally conductive filler unevenly distributed in the first resin phase 1 tends to become saturated, resulting in the surplus thermally conductive filler entering the second resin phase 2.
  • the effect of improving thermal conductivity due to the phase separation structure may also reach a peak.
  • the thermally conductive filler 3 is an aggregate of particles capable of conducting heat.
  • the thermally conductive filler 3 has higher thermal conductivity than the first resin phase 1 and the second resin phase 2 . That is, the thermally conductive filler 3 has a smaller thermal resistance than the first resin phase 1 and the second resin phase 2 .
  • Particles constituting the thermally conductive filler 3 are preferably particles containing an inorganic material such as alumina or spinel. In this case, the thermal conductivity of the thermally conductive filler 3 tends to be higher than when particles containing an organic material are used.
  • the thermally conductive filler 3 preferably contains polyhedral particles.
  • a polyhedral particle is a particle having a polygonal shape such as a hexagon or an octagon in cross-section, and the outer surface of the polyhedral particle preferably has a plurality of flat faces.
  • the shape of the polyhedral particles can be confirmed with a scanning electron microscope (SEM). If, for example, 5 or more and 150 or less faces can be confirmed in a polyhedral particle confirmed with an electron microscope, it can be determined to be a polyhedron.
  • Polyhedral particles can increase the contact area between adjacent particles compared to spherical particles. Therefore, thermal conductivity between particles is improved. Therefore, the thermal resistance of the thermally conductive resin composition and the thermally conductive resin material can be easily reduced.
  • the distribution curve of the number of polyhedral particles - the number of faces of the particles preferably has a maximum peak at a position where the number of faces of the polyhedral particles is 8 or more and 40 or less.
  • the thermal resistance of the thermally conductive resin material can be particularly effectively reduced. This is because when the number of facets of the particles is 14 or more and 25 or less, the likelihood of contact between particles and the size of the contact area are high in a well-balanced manner, and as a result, heat conduction between particles is particularly likely to occur. It is believed that there is.
  • the maximum peak is located at a position where the number of faces of the grain is 14 or more and 25 or less, and it is particularly preferable if the maximum peak is located at a position where the number of faces of the grain is 14 or more and 18 or less. Moreover, it is more preferable that the maximum peak is located at a position where the number of facets of the grain is close to 16.
  • the thermally conductive filler 3 is preferably an alumina filler with a ⁇ conversion rate of 80% or more.
  • the thermal resistance of the thermally conductive resin material can be effectively reduced. It is believed that this is because the polyhedral particles tend to come into surface contact with each other in the thermally conductive resin material, so that the heat transfer efficiency between the particles tends to increase.
  • the ⁇ conversion rate of the alumina filler is 80% or more, it tends to have high thermal conductivity, so that the heat transfer efficiency through the polyhedral particles tends to be further increased.
  • the ⁇ -conversion rate is more preferably 110% or more, and even more preferably 120% or more.
  • the thermal conductivity of the thermally conductive filler 3 is preferably 30 W/m ⁇ K or more. In this case, the thermal resistance of the thermally conductive resin material can be particularly effectively reduced. Such high thermal conductivity of the thermally conductive filler 3 can be realized by the high alpha conversion rate of the alumina filler.
  • the average particle diameter of the thermally conductive filler 3 is preferably 1 ⁇ m or more and 100 ⁇ m or less, for example.
  • the average particle diameter of the thermally conductive filler 3 is the median diameter (D50) calculated from the particle size distribution obtained by the dynamic light scattering method.
  • the thermally conductive filler 3 is more concentrated in the first resin phase 1 than in the second resin phase 2 . That is, more particles of the thermally conductive filler 3 are present in the first resin phase 1 than in the second resin phase 2 .
  • the thermally conductive filler 3 contained in the thermally conductive resin composition is present in the first resin phase 1, and the second resin phase 2 is Some forms do not exist at all. In this way, more thermally conductive fillers 3 are unevenly distributed in the first resin phase 1 than in the second resin phase 2, so that the thermally conductive fillers 3 are dispersed in both the first resin phase 1 and the second resin phase 2.
  • the density (packing density) of the particles of the thermally conductive filler 3 in the first resin phase 1 is higher than in the case where Therefore, the adjacent particles of the thermally conductive filler 3 are likely to come into contact with each other, and the contact area between the adjacent particles of the thermally conductive filler 3 is increased, and the contact pressure is increased. Therefore, the thermal conductivity of the thermally conductive filler 3 is improved.
  • thermally conductive fillers 3 contained in the thermally conductive resin composition more than half of the thermally conductive fillers 3 are preferably unevenly distributed in the first resin phase 1, and 60% or more of the thermally conductive fillers 3 are unevenly distributed. More preferably, the conductive filler 3 is unevenly distributed in the first resin phase 1 . Further, all (100%) of the thermally conductive fillers 3 contained in the thermally conductive resin composition may be unevenly distributed in the first resin phase 1 .
  • the thermally conductive filler 3 is more likely to be unevenly distributed in the first resin phase 1 than in the second resin phase 2 when it is more compatible with the first resin phase 1 than in the second resin phase 2 . That is, due to the properties of the surface of the particles of the thermally conductive filler 3 , it is easier to be unevenly distributed in the first resin phase 1 than in the second resin phase 2 . For example, if the surfaces of the particles of the thermally conductive filler 3 have a component (such as a functional group) that has an affinity for the first resin phase 1 rather than the second resin phase 2, the thermally conductive filler 3 is the second resin It is easier to disperse in the first resin phase 1 than in the phase 2 and tends to be unevenly distributed.
  • a component such as a functional group
  • the thermally conductive filler 3 may be treated with a coupling agent.
  • the thermally conductive filler 3 tends to disperse well in the first resin phase 1 in the thermally conductive resin composition and the thermally conductive resin material. Therefore, the thermal resistance of the thermally conductive resin material is likely to be reduced.
  • the proportion of the thermally conductive filler 3 is preferably 60% by volume or more with respect to the entire thermally conductive resin composition. If this ratio is 60% by volume or more, the thermal resistance of the thermally conductive resin material can be particularly easily reduced. More preferably, the proportion of the thermally conductive filler is 70% by volume or more. In this case, the thermal resistance of the thermally conductive resin material can be further reduced. It is also preferable that the proportion of the thermally conductive filler 3 is 80% by volume or less. In this case, the thermally conductive resin composition tends to have good fluidity, and the thermally conductive resin material tends to have good flexibility.
  • the thermally conductive resin composition is preferably liquid or paste at 25°C.
  • the viscosity of the thermally conductive resin composition at 25° C. is preferably 3000 Pa ⁇ s or less.
  • the thermally conductive resin composition can have good moldability, and can be easily molded into a film, sheet, plate, or the like using a dispenser, for example.
  • the thermally conductive resin composition is easily defoamed, and therefore voids are less likely to occur in the thermally conductive resin material.
  • the viscosity is a value measured using an E-type rotational viscometer at 0.3 rpm.
  • the thermally conductive resin composition is prepared, for example, by kneading the first resin, the second resin, and the thermally conductive filler 3.
  • the first resin phase 1 is formed so as not to be interrupted, so that the plurality of particles of the thermally conductive filler 3 are connected while being in contact with each other, and unevenly distributed in the first resin phase 1. Become.
  • the thermally conductive resin material according to the present embodiment is a solidified product of the thermally conductive resin composition according to the present embodiment. That is, the thermally conductive resin material of this embodiment includes the solid phase of the first resin phase 1 , the solid phase of the second resin phase 2 , and the thermally conductive filler 3 .
  • the solid-phase first resin phase 1 is a solidified product of the liquid-phase first resin phase 1 in the thermally conductive resin composition.
  • the solid-phase second resin phase 2 is a solidified substance of the second resin phase 2 that was in the liquid phase in the thermally conductive resin composition.
  • the liquid first resin phase 1 is an uncured thermosetting resin
  • the solid first resin phase 1 is composed of a thermosetting thermosetting resin.
  • Thermosetting resins may be cured using a curing agent.
  • the liquid second resin phase 2 is a thermoplastic resin
  • the solid second resin phase 2 is composed of a thermoplastic resin solidified by lowering the temperature.
  • a larger amount of the thermally conductive filler 3 is unevenly distributed in the first solid-phase resin phase 1 than in the second solid-phase resin phase 2 .
  • the thermally conductive filler 3 is further pushed against the first resin phase 1 by the stress generated when the first resin phase 1 and the second resin phase 2 are solidified. Therefore, uneven distribution of the thermally conductive filler 3 in the first resin phase 1 progresses more in the case of the thermally conductive resin material than in the case of the thermally conductive resin composition.
  • the thermally conductive resin composition When producing a thermally conductive resin material from a thermally conductive resin composition, for example, the thermally conductive resin composition is formed into a film, film, sheet or plate by an appropriate method such as press molding, extrusion molding, calender molding, or the like. It is molded into a shape, etc. It is also preferable to mold the thermally conductive resin composition into a film or the like using a dispenser. After that, the film-like thermally conductive resin composition is cured by heating under conditions corresponding to the composition, thereby obtaining a film-like thermally conductive resin material.
  • the thermally conductive resin material tends to have low thermal resistance. This is because, as described above, the particles of the thermally conductive filler 3 come into contact with each other in the thermally conductive resin material to form a path through which heat can be transferred. This is probably because the heat transfer efficiency of the
  • the thermal resistance of the thermally conductive resin material in the direction of the press pressure tends to be particularly low. It is considered that this is because the particles of the thermally conductive filler 3 tend to come into contact with each other in the direction of the pressing pressure. In the present embodiment, as described above, since the particles are likely to come into surface contact with each other, the thermal resistance is particularly likely to be reduced by applying a pressing pressure, and the thermal resistance can be reduced even if the pressing pressure is small.
  • the thermally conductive resin material according to the present embodiment has a reduced thermal resistance as described above, so that the thermally conductive resin material in the direction of the pressing pressure in a state of being directly pressed under the condition of a pressing pressure of 1 MPa is preferably 0.8 K/W or less.
  • the thermally conductive resin material can exhibit excellent thermal conductivity, and can easily transmit heat efficiently even when the pressing pressure is low.
  • This thermal resistance is more preferably 0.7 K/W or less, and even more preferably 0.6 K/W or less.
  • the particles of the thermally conductive filler 3 are arranged in a row in the first resin phase 1 between the second resin phases 2 .
  • a plurality of particles of the thermally conductive filler 3 are arranged in a vertical direction (for example, the thickness direction of the sheet-like thermally conductive resin material) in the first resin phase 1 between the second resin phases 2. are placed.
  • the thermally conductive resin composition according to this embodiment can be used as a heat dissipation paste. Further, the thermally conductive resin material according to this embodiment can be used as a heat dissipation sheet.
  • the heat-dissipating paste and the heat-dissipating sheet are placed, for example, between the chip component and the heat sink to facilitate conduction of heat generated by the chip component to the heat sink.
  • the thermally conductive resin material includes three or more resin phases.
  • a resin phase containing a thermosetting resin different from the first resin phase may be used together, or a resin phase containing a thermoplastic resin different from the second resin phase may be used together.
  • the thermally conductive resin composition and the thermally conductive resin material contain two or more types of thermally conductive fillers 3.
  • the thermally conductive resin composition and the thermally conductive resin material may be composed of
  • a plurality of types of thermally conductive fillers 3 having different particle sizes may be contained in the thermally conductive resin composition and the thermally conductive resin material, or a plurality of types of thermally conductive fillers 3 having different components may be thermally conductive.
  • the thermally conductive resin composition and the thermally conductive resin material may contain a plurality of types of thermally conductive fillers 3 having different particle cross-sectional shapes.
  • at least one selected from the group consisting of metal oxide particles, metal nitride particles, metal carbide particles, metal boride particles, and metal single particles may be used as the thermally conductive filler 3.
  • a thermally conductive resin composition was prepared using the components shown below.
  • First resin epoxy resin (bisphenol A type epoxy resin, manufactured by JER Corporation, combined use of Epicoat 828 and Epicote 834, SP value 13.5)
  • Second resin polyethersulfone (manufactured by ICI, Victrex 5003P, SP value 12.5)
  • Curing agent (4,4'-methylenedianiline, manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Thermally conductive filler 80% by weight of molybdenum-doped polyhedral spinel particles with an average particle size of 70 ⁇ m, 10% by weight of molybdenum-doped polyhedral spinel particles with an average particle size of 10 ⁇ m, average particle size
  • a polyhedral filler containing 5% by mass of polyhedral alumina particles manufactured by Sumitomo Chemical Co., Ltd.) having a diameter of 0.4 ⁇ m. The remainder (5% by mass) contains the first resin and the second resin.
  • the above ingredients were kneaded in the blending amounts shown in Table 1 to obtain a thermally conductive resin composition.
  • the content of the thermally conductive filler is the ratio of the thermally conductive filler to the total amount of the thermally conductive resin composition (the total amount of the first resin, the second resin, the curing agent, and the thermally conductive filler).
  • the viscosity of the thermally conductive resin composition was measured at 0.3 rpm using an E-type viscometer (model number RC-215) manufactured by Toki Sangyo Co., Ltd. as a measuring device.
  • a sheet-like sample with a thickness of 100 ⁇ m was prepared by hot-pressing the thermally conductive resin composition for 2 hours at a heating temperature of 150° C. and a pressing pressure of 1 MPa. This sample was sandwiched between two copper plates, and the sample was directly pressed with these plates at a press pressure of 1 MPa. In this state, the thermal resistance of the sample in the direction of the press pressure was measured at room temperature using DynTIM Tester manufactured by Mentor Graphic.
  • Example 1 was able to reduce the thermal resistance value even though the filler content was the same. Comparing Example 2 and Comparative Example 2, it can be seen that although the filler content is the same, Example 2 has a lower thermal resistance value and a lower viscosity. rice field. Comparing Example 3 and Comparative Example 3, although the content of the filler is the same, Example 3 can reduce the heat resistance value, and the viscosity is also lower in Example 3. rice field.
  • the thermally conductive resin composition of this embodiment can be used as a heat dissipation paste. Further, the thermally conductive resin material of this embodiment can be used as a heat dissipation sheet.
  • the heat-dissipating paste and the heat-dissipating sheet are placed, for example, between an electronic/electric component such as a transistor and a CPU (Central Processing Unit) of a computer and a radiator (heat sink).
  • the heat dissipation paste and the heat dissipation sheet conduct the heat generated from the electronic/electric parts to the radiator.

Abstract

粘度の上昇を抑えつつ、熱伝導性を向上させることができる熱伝導性樹脂組成物を提供する。熱伝導性樹脂組成物は、第1樹脂相と、第2樹脂相と、熱伝導性フィラーと、を含む。前記第1樹脂相と前記第2樹脂相とは相分離している。前記第1樹脂相における熱伝導性フィラーの密度は、前記第2樹脂相における熱伝導性フィラーの密度よりも高い。熱伝導性フィラーが第2樹脂相よりも第1樹脂相に多く偏在しているため、熱伝導性フィラーが第1樹脂相と第2樹脂相の両方に均等に分散している場合に比べて、熱伝導性フィラーの粒子同士が接触しやすくなる。

Description

熱伝導性樹脂組成物及び熱伝導性樹脂材料
 本開示は、熱伝導性樹脂組成物及び熱伝導性樹脂材料に関する。より詳細には、熱伝導性フィラーを含む熱伝導性樹脂組成物及び熱伝導性樹脂材料に関する。
 特許文献1には、熱伝導性シリコーンゴム組成物が記載されている。この熱伝導性シリコーンゴム組成物では、シリコーンゴムに、特定のシランカップリング剤で表面処理を施した熱伝導性無機フィラーを分散している。これにより、熱伝導性無機フィラーを高充填化しても、成形物に柔軟性と耐熱機械特性が付与されるようにしている。
 一般的に、熱伝導性シリコーンゴム組成物及びその成形物の熱伝導性を向上させるためには、シリコーンゴム中に熱伝導性無機フィラーを高充填する(充填量を増やす)ようにしている。しかしながら、熱伝導性無機フィラーを高充填すると、熱伝導性シリコーンゴム組成物の粘度が高くなりやすく、熱伝導性シリコーンゴム組成物が塗布しにくく、また所望の厚みの成形物が形成しにくい、という問題があった。
特開平11-209618号公報
 本開示は、粘度の上昇を抑えつつ、熱伝導性を向上させることができる熱伝導性樹脂組成物及び熱伝導性樹脂材料を提供することを目的とする。
 本開示の一態様に係る熱伝導性樹脂組成物は、第1樹脂相と、第2樹脂相と、熱伝導性フィラーと、を含む。前記第1樹脂相と前記第2樹脂相とは相分離している。前記第1樹脂相における前記熱伝導性フィラーの密度は、前記第2樹脂相における前記熱伝導性フィラーの密度よりも高い。
 本開示の一態様に係る熱伝導性樹脂材料は、前記熱伝導性樹脂組成物の固化物である。前記第1樹脂相の固相と、前記第2樹脂相の固相と、前記熱伝導性フィラーと、を含む。
図1Aは、第1樹脂相と第2樹脂相との相分離構造の一例を示すモデル図である。図1Bは、第1樹脂相と第2樹脂相に対する熱伝導性フィラーの分散構造の一例を示すモデル図である。 図2Aは、第1樹脂相と第2樹脂相との相分離構造の他の一例を示すモデル図である。図2Bは、第1樹脂相と第2樹脂相に対する熱伝導性フィラーの分散構造の他の一例を示すモデル図である。 図3Aは、第1樹脂相と第2樹脂相との相分離構造の他の一例を示すモデル図である。図3Bは、第1樹脂相と第2樹脂相に対する熱伝導性フィラーの分散構造の他の一例を示すモデル図である。
 1.概要
 本実施形態に係る熱伝導性樹脂組成物は、第1樹脂相と、第2樹脂相と、熱伝導性フィラーと、を含む。第1樹脂相と第2樹脂相とは相分離しており、多相系を構成している。そして、第1樹脂相における熱伝導性フィラーの密度は、第2樹脂相における熱伝導性フィラーの密度よりも高い。すなわち、単位体積あたりの第1樹脂相に含まれる熱伝導性フィラーの粒子の量が、単位体積あたりの第2樹脂相に含まれる熱伝導性フィラーの粒子の量よりも多い。従って、第1樹脂相と第2樹脂相の合計量に対する熱伝導性フィラーの含有量が一定であれば、熱伝導性フィラーが第1樹脂相と第2樹脂相の両方に均等に分散している場合に比べて、熱伝導性フィラーが第2樹脂相よりも第1樹脂相に多く偏在している場合(本実施形態の熱伝導性樹脂組成物の場合)の方が、熱伝導性フィラーの粒子同士が接触しやすくなる。よって、本実施形態の熱伝導性樹脂組成物は、熱伝導性フィラーの充填量が少なくても熱伝導性を向上させることができる。また本実施形態の熱伝導性樹脂組成物は、熱伝導性フィラーの充填量が少ないために粘度の上昇も抑えられる。
 本実施形態に係る熱伝導性樹脂材料は、本実施形態に係る熱伝導性樹脂組成物の固化物であり、第1樹脂相の固相と、第2樹脂相の固相と、熱伝導性フィラーと、を含んでいる。本実施形態の熱伝導性樹脂材料も、熱伝導性樹脂組成物の場合と同様に、熱伝導性フィラーが第2樹脂相よりも第1樹脂相に多く偏在しているため、熱伝導性フィラーが第1樹脂相と第2樹脂相の両方に均等に分散している場合に比べて、熱伝導性フィラーの粒子同士が接触しやすくなる。よって、本実施形態の熱伝導性樹脂材料は、熱伝導性フィラーの充填量が少なくても熱伝導性を向上させることができる。
 2.詳細
 2-1.熱伝導性樹脂組成物
 本実施形態に係る熱伝導性樹脂組成物は、第1樹脂相と、第2樹脂相と、熱伝導性フィラー3と、を含んでいる。
 図1A、図2A及び図3Aに示すように、第1樹脂相1と第2樹脂相2とは相分離構造を有している。すなわち、第1樹脂相1と第2樹脂相2とは相溶性が低く、分離している状態である。図1Aは、第1樹脂相1と第2樹脂相2の海島構造を示している。すなわち、第1樹脂相1中に複数の第2樹脂相2が点在している構造を示している。図2Aは、第1樹脂相1と第2樹脂相2の相互連結構造を示している。すなわち、第1樹脂相1と第2樹脂相2とが相互に入り組んだ状態で連結している構造を示している。図3Aは、第1樹脂相1と第2樹脂相2の層状構造を示している。すなわち、第1樹脂相1と第2樹脂相2とがそれぞれ層状で、これらの交互に配置している構造を示している。
 第1樹脂相1は第1樹脂で構成されている。第1樹脂は流動性を有し、液状又はペースト状の樹脂である。また第2樹脂相2は第2樹脂で構成されている。第2樹脂は流動性を有し、液状又はペースト状の樹脂である。第1樹脂と第2樹脂とは異なる種類の樹脂である。すなわち、第1樹脂の溶解度パラメータ(SP値)と第2樹脂の溶解度パラメータとが異なる。本実施形態において、第1樹脂の溶解度パラメータと第2樹脂の溶解度パラメータとの差は、1以上であることが好ましい。これにより、第1樹脂の溶解度パラメータと第2樹脂の溶解度パラメータとの差が1未満である場合に比べて、第1樹脂と第2樹脂との相溶性が低くなり、第1樹脂相1と第2樹脂相2とが相分離構造を形成しやすくなる。第1樹脂の溶解度パラメータと第2樹脂の溶解度パラメータとの差は大きいほうが好ましいので、上限は特に設定されない。
 第1樹脂と第2樹脂とは相分離構造を形成するものであれば、どのような種類の樹脂であっても使用可能である。例えば、第1樹脂としては熱硬化性樹脂が使用される。この熱硬化性樹脂は未硬化であって、例えば、未硬化の液状のエポキシ樹脂が使用される。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂が例示される。また第2樹脂としては、例えば、熱可塑性樹脂が使用される。この熱可塑性樹脂は溶融するなどして液状であって、例えば、ポリエーテルスルホン、シリコーン樹脂、アクリル樹脂、ウレタン樹脂などが例示される。これらの中でも、ビスフェノールA型エポキシ樹脂と相分離構造が形成しやすいポリエーテルスルホンを使用することが好ましい。なお、第1樹脂と第2樹脂とは、それぞれ、粘度調整等を目的として適宜の溶剤を含んでいてもよい。また、第1樹脂と第2樹脂の比率は、第1樹脂相1と第2樹脂相2の相分離構造を形成することができれば特に限定されるものではないが、例えば重量比で95:5~30:70の範囲内であり、より好ましくは90:10~50:50である。第1樹脂が極端に過剰で第2樹脂が少なくなりすぎると、第1樹脂相1の単層状態に近くなってしまい好適な相分離構造が得られなくなる。また第1樹脂が少なくなると第1樹脂相1の存在比率も小さくなり、第1樹脂相1が必要以上に小さくなると相分離構造による熱伝導性向上の効果が十分得られなくなる可能性がある。また、第1樹脂が少なくなると第1樹脂相1の中に偏在する熱伝導性フィラーが飽和状態となりやすく、余剰となった熱伝導性フィラーが第2樹脂相2の方に入る結果となって、相分離構造による熱伝導性向上の効果も頭打ちとなる可能性がある。
 熱伝導性フィラー3は、熱を伝導することができる粒子の集合体である。熱伝導性フィラー3は第1樹脂相1及び第2樹脂相2よりも熱伝導性が高い。すなわち、熱伝導性フィラー3は第1樹脂相1及び第2樹脂相2よりも熱抵抗が小さい。熱伝導性フィラー3を構成する粒子は、アルミナ、スピネルなどの無機材料を含む粒子であることが好ましい。この場合、有機材料を含む粒子を使用する場合に比べて、熱伝導性フィラー3の熱伝導性が高くなりやすい。
 熱伝導性フィラー3は、多面体粒子を含むことが好ましい。多面体粒子は断面形状が六角形や八角形などの多角形をなす粒子であり、多面体粒子の外面は複数の平坦面を有することが好ましい。多面体粒子の形状は、走査型電子顕微鏡(SEM)で確認できる。電子顕微鏡で確認される多面体粒子に例えば5以上150以下の面が確認できれば、多面体であると判断できる。多面体粒子は球状粒子に比べて、隣り合う粒子の接触面積を大きくすることができる。従って、粒子間の熱伝導性が向上する。よって、熱伝導性樹脂組成物及び熱伝導性樹脂材料の熱抵抗が低減しやすい。
 多面体粒子の粒子数-粒子の面数の分布曲線は、多面体粒子の面数が8以上40以下の位置に最大ピークを有することが好ましい。この場合、熱伝導性樹脂材料の熱抵抗が特に効果的に低減しうる。これは、粒子の面数が14以上25以下である場合に、粒子同士の接触の起こりやすさと接触面積の大きさとがバランスよく高くなり、それにより粒子間の熱伝導が特に起こりやすくなるためであると、考えられる。最大ピークが、粒子の面数が14以上25以下の位置にあればより好ましく、粒子の面数が14以上18以下の位置にあれば、特に好ましい。また、最大ピークが、粒子の面数が16に近い位置にあるほど好ましい。
 熱伝導性フィラー3は、α化率が80%以上であるアルミナフィラーであることが好ましい。この場合、熱伝導性樹脂材料の熱抵抗を効果的に低減しうる。これは、熱伝導性樹脂材料中で多面体粒子同士が面接触しやすいために粒子間の熱の伝達効率が高くなりやすいからであると考えられる。また、アルミナフィラーのα化率が80%以上であることで、高い熱伝導性を有しやすく、そのため、多面体粒子を通じた熱の伝達効率が更に高くなりやすいからであると考えられる。α化率は、110%以上であればより好ましく、120%以上であれば更に好ましい。
 なお、アルミナフィラーのα化率は、粉末X線回折装置を用いて得たアルミナフィラーの回折スペクトルから、2θ=25.6°の位置に現れるアルミナα相のピークの高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相及びδ相のピーク高さ(I46)とから、I25.6/(I25.6+I46)×100(%)の式により、算出される。
 熱伝導性フィラー3の熱伝導率は、30W/m・K以上であることが好ましい。この場合、熱伝導性樹脂材料の熱抵抗が特に効果的に低減しうる。このような熱伝導性フィラー3の高い熱伝導率は、アルミナフィラーの高いα化率によって実現できる。
 熱伝導性フィラー3の平均粒径は、例えば1μm以上100μm以下であることが好ましい。なお、熱伝導性フィラー3の平均粒径は、動的光散乱法により得られる粒度分布から算出されるメディアン径(D50)である。
 本実施形態の熱伝導性樹脂組成物において、熱伝導性フィラー3は第2樹脂相2よりも第1樹脂相1に偏って存在している。すなわち、熱伝導性フィラー3の粒子は第2樹脂相2よりも第1樹脂相1に多く存在している。例えば、図1B、図2B及び図3Bに示すように、熱伝導性樹脂組成物に含まれている熱伝導性フィラー3の全部が第1樹脂相1に存在し、第2樹脂相2には全く存在していない形態もある。このように熱伝導性フィラー3が第2樹脂相2よりも第1樹脂相1に多く偏在することによって、熱伝導性フィラー3が第1樹脂相1と第2樹脂相2との両方に分散する場合に比べて、第1樹脂相1における熱伝導性フィラー3の粒子の密度(充填密度)が高くなる。従って、隣り合う熱伝導性フィラー3の粒子が接触しやすくなり、隣り合う熱伝導性フィラー3の粒子の接触面積が大きくなったり接触圧力が大きくなったりする。よって、熱伝導性フィラー3による熱伝導性が向上する。
 熱伝導性樹脂組成物中に含まれている熱伝導性フィラー3のうち、半分よりも多くの熱伝導性フィラー3が第1樹脂相1に偏在していることが好ましく、60%以上の熱伝導性フィラー3が第1樹脂相1に偏在していることがより好ましい。また熱伝導性樹脂組成物中に含まれている熱伝導性フィラー3のうちの全部(100%)の熱伝導性フィラー3が第1樹脂相1に偏在してもよい。
 熱伝導性フィラー3は、第2樹脂相2よりも第1樹脂相1に馴染みやすい場合に、第2樹脂相2よりも第1樹脂相1に偏在しやすい。すなわち、熱伝導性フィラー3の粒子の表面の性状により、第2樹脂相2よりも第1樹脂相1に偏在しやすくなる。例えば、熱伝導性フィラー3の粒子の表面に、第2樹脂相2よりも第1樹脂相1に親和性のある成分(官能基等)があれば、熱伝導性フィラー3は、第2樹脂相2よりも第1樹脂相1に分散しやすくなって偏在しやすい。そこで、熱伝導性フィラー3は、カップリング剤で処理されていてもよい。熱伝導性フィラー3がカップリング剤で処理されていると、熱伝導性樹脂組成物中及び熱伝導性樹脂材料中で、熱伝導性フィラー3が第1樹脂相1中に良好に分散しやすく、そのため熱伝導性樹脂材料の熱抵抗が低減しやすい。
 熱伝導性フィラー3の割合は熱伝導性樹脂組成物全体に対して60体積%以上であることが好ましい。この割合が60体積%以上であれば、熱伝導性樹脂材料の熱抵抗が特に低減しやすい。熱伝導性フィラーの割合が70体積%以上であると、より好ましい。この場合、熱伝導性樹脂材料の熱抵抗が更に低減しやすい。熱伝導性フィラー3の割合が80体積%以下であることも好ましい。この場合、熱伝導性樹脂組成物が良好な流動性を有しやすく、かつ熱伝導性樹脂材料が良好な柔軟性を有しやすい。
 熱伝導性樹脂組成物は25℃で液状あるいはペースト状であることが好ましい。熱伝導性樹脂組成物の25℃での粘度は、3000Pa・s以下であることが好ましい。この場合、熱伝導性樹脂組成物は良好な成形性を有することができ、例えば、ディスペンサーを用いて膜状、フィルム状、シート状、板状などに成形しやすくなる。また熱伝導性樹脂組成物を脱泡しやすく、そのため熱伝導性樹脂材料にボイドを生じにくくできる。なお、粘度は、E型回転粘度計を用いて0.3rpmの条件で測定される値である。
 熱伝導性樹脂組成物は、例えば、第1樹脂と第2樹脂と熱伝導性フィラー3とを混練することで調製される。この場合、第1樹脂と第2樹脂との割合(体積比)は、第1樹脂:第2樹脂=1:9~9:1であることが好ましい。このような割合であれば、上記のような所望の性状を有する熱伝導性樹脂組成物及び熱伝導性樹脂材料が得やすい。例えば、第1樹脂相1は途切れないように形成されていることが好ましく、これにより、熱伝導性フィラー3の複数の粒子も接触しながら連なって、第1樹脂相1中に偏在することになる。しかし、第1樹脂相1が多すぎると、第1樹脂相1中で熱伝導性フィラー3が拡散されすぎて、熱伝導性フィラー3の複数の粒子が接触しにくくなることも考えられる。これらの点を考慮して、第1樹脂相1を構成する第1樹脂と、第2樹脂相2を構成する第2樹脂との割合を設定する。第1樹脂と第2樹脂とのより好ましい割合(体積比)は、第1樹脂:第2樹脂=8:2~3:7である。なお、第1樹脂相1は必ずしも途切れないように形成されている必要はなく、第1樹脂相1が海島構造の島のように途切れていてもよく、この場合、第1樹脂相1の部分に熱伝導性フィラー3が偏在し、熱伝導性樹脂組成物及び熱伝導性樹脂材料の熱伝導性を向上させることができる。
 2-2.熱伝導性樹脂材料
 本実施形態に係る熱伝導性樹脂材料は、本実施形態に係る熱伝導性樹脂組成物の固化物である。すなわち、本実施形態の熱伝導性樹脂材料は、第1樹脂相1の固相と、第2樹脂相2の固相と、熱伝導性フィラー3とを含んでいる。固相の第1樹脂相1は、熱伝導性樹脂組成物において液相であった第1樹脂相1の固化物である。固相の第2樹脂相2は、熱伝導性樹脂組成物において液相であった第2樹脂相2の固化物である。液相の第1樹脂相1が未硬化の熱硬化性樹脂の場合、固相の第1樹脂相1は熱硬化した熱硬化性樹脂で構成される。熱硬化性樹脂は硬化剤を使用して硬化してもよい。液相の第2樹脂相2が熱可塑性樹脂の場合、固相の第2樹脂相2は低温化により固化した熱可塑性樹脂で構成される。熱伝導性フィラー3は、固相の第2樹脂相2よりも固相の第1樹脂相1に多く偏在している。熱伝導性フィラー3は、第1樹脂相1及び第2樹脂相2が固化する際に生じる応力で、さらに第1樹脂相1に押される。従って、熱伝導性樹脂組成物のときよりも熱伝導性樹脂材料のほうが、熱伝導性フィラー3の第1樹脂相1への偏在化が進む。
 熱伝導性樹脂組成物から熱伝導性樹脂材料を作製する場合、例えば、熱伝導性樹脂組成物をプレス成形、押出し成形、カレンダー成形等の適宜の方法で膜状、フィルム状、シート状又は板状などに成形する。熱伝導性樹脂組成物をディスペンサーで膜状等に成形することも好ましい。この後、膜状等の熱伝導性樹脂組成物をその組成に応じた条件で加熱することで硬化させることで、膜状等の熱伝導性樹脂材料が得られる。
 熱伝導性樹脂材料は、熱伝導性フィラー3を含有することで、低い熱抵抗を有しやすい。これは、上述のとおり、熱伝導性樹脂材料中で熱伝導性フィラー3の粒子同士が接触することで熱を伝達しうる経路が形成され、このとき粒子同士が面接触しやすいことで粒子間の熱の伝達効率が高くなりやすいからであると考えられる。
 熱伝導性樹脂材料にプレス圧がかけられている場合には、熱伝導性樹脂材料のプレス圧の方向の熱抵抗が特に低くなりやすい。これは、プレス圧の方向に熱伝導性フィラー3の粒子同士が接触しやすくなるためと考えられる。本実施形態では上述のように粒子同士が面接触しやすいため、プレス圧がかけられることによる熱抵抗の低減が特に生じやすく、プレス圧が小さくても熱抵抗が低減しうる。
 本実施形態に係る熱伝導性樹脂材料は、上記のように熱抵抗が低められることで、プレス圧1MPaの条件で直圧プレスされている状態での、プレス圧の方向の熱伝導性樹脂材料の熱抵抗は、0.8K/W以下であることが好ましい。この場合、熱伝導性樹脂材料は優れた熱伝導性を発現でき、プレス圧が低くても熱を効率良く伝達しやすい。この熱抵抗は0.7K/W以下であればより好ましく、0.6K/W以下であれば更に好ましい。
 なお、図1B及び図2Bでは、熱伝導性フィラー3の粒子は、第2樹脂相2の間の第1樹脂相1中において、複数連なって配置されている。図3Bにおいては、熱伝導性フィラー3の粒子は、第2樹脂相2の間の第1樹脂相1中において、上下方向(例えば、シート状の熱伝導性樹脂材料の厚み方向)に複数連なって配置されている。
 本実施形態に係る熱伝導性樹脂組成物は放熱ペーストとして使用することができる。また本実施形態に係る熱伝導性樹脂材料は放熱シートとして使用することができる。放熱ペースト及び放熱シートは、例えば、チップ部品とヒートシンクとの間に配置され、チップ部品で生じる熱がヒートシンクに伝導しやすくする。
 3.変形例
 上記では、第1樹脂相と第2樹脂相との二種類の樹脂相からなる場合について説明したが、これに限らず、三種類以上の樹脂相を含んで熱伝導性樹脂組成物を構成してもよい。この場合、熱伝導性樹脂材料は三種類以上の樹脂相を含んで構成される。例えば、第1樹脂相とは異なる種類の熱硬化性樹脂を含む樹脂相を併用してもよいし、第2樹脂相とは異なる種類の熱可塑性樹脂を含む樹脂相を併用してもよい。
 上記では、一種類の熱伝導性フィラー3を使用した場合について説明したが、これに限らず、熱伝導性樹脂組成物及び熱伝導性樹脂材料は、二種類以上の熱伝導性フィラー3を含んで構成されていてもよい。例えば、粒径が異なる複数種の熱伝導性フィラー3が熱伝導性樹脂組成物及び熱伝導性樹脂材料に含まれていてもよいし、成分の異なる複数種の熱伝導性フィラー3が熱伝導性樹脂組成物及び熱伝導性樹脂材料に含まれていてもよいし、粒子の断面形状が異なる複数種の熱伝導性フィラー3が熱伝導性樹脂組成物及び熱伝導性樹脂材料に含まれていてもよい。具体的には、金属酸化物粒子、金属窒化物粒子、金属炭化物粒子、金属硼化物粒子、及び金属単体粒子からなる群から選択される少なくとも一種を熱伝導性フィラー3として使用してもよい。
 以下に示す成分を使用して熱伝導性樹脂組成物を調製した。
 ・第1樹脂:エポキシ樹脂(ビスフェノールA型エポキシ樹脂、JER株式会社製、エピコート828とエピコート834の併用、SP値13.5)
 ・第2樹脂:ポリエーテルスルホン(ICI社製,Victrex 5003P、SP値12.5)
 ・硬化剤(4,4’-メチレンジアニリン、東京化成工業株式会社製)
 ・熱伝導性フィラー:平均粒径70μmの、モリブデンがドープされた多面体状のスピネル粒子を80質量%、平均粒径10μmの、モリブデンがドープされた多面体状のスピネル粒子を10質量%、平均粒径0.4μmの多面体状のアルミナ粒子(住友化学工業製)を5質量%の割合で含有する多面体フィラー。残部(5質量%)は第1樹脂と第2樹脂を含む。
 上記の成分を表1に示す配合量で混練し、熱伝導性樹脂組成物を得た。なお、熱伝導性フィラーの含有量は、熱伝導性樹脂組成物の全量(第1樹脂と第2樹脂と硬化剤と熱伝導性フィラーの合計量)に対する熱伝導性フィラーの割合である。
 そして、熱伝導性樹脂組成物の粘度を、測定装置として東機産業株式会社製のE型粘度計(型番RC-215)を用い、0.3rpmの条件で測定した。
 また熱伝導性樹脂組成物を、加熱温度150℃、プレス圧1MPaの条件で2時間熱プレスすることで、厚み100μmのシート状のサンプルを作製した。このサンプルを二つの銅製のプレートで挟み、このプレートでサンプルをプレス圧1MPaの条件で直圧プレスした。この状態で、室温下における、プレス圧の方向のサンプルの熱抵抗をメンターグラフィック社製のDynTIM Testerを用いて測定した。
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例1とを対比すると、フィラーの含有量が同じであるにも関わらず、実施例1のほうが熱抵抗値を小さくすることができた。実施例2と比較例2とを対比すると、フィラーの含有量が同じであるにも関わらず、実施例2のほうが熱抵抗値を小さくすることができ、しかも粘度も実施例2のほうが小さくなった。実施例3と比較例3とを対比すると、フィラーの含有量が同じであるにも関わらず、実施例3のほうが熱抵抗値を小さくすることができ、しかも粘度も実施例3のほうが小さくなった。
 本実施形態の熱伝導性樹脂組成物は放熱ペーストとして利用可能である。また本実施形態の熱伝導性樹脂材料は放熱シートとして利用可能である。放熱ペースト及び放熱シートは、例えば、トランジスタ及びコンピュータのCPU(中央演算処理装置)等の電子・電気部品と放熱器(ヒートシンク)との間に配置される。そして、放熱ペースト及び放熱シートは、電子・電気部品から発生する熱を放熱器に伝導させる。
 1 第1樹脂相
 2 第2樹脂相
 3 熱伝導性フィラー

Claims (7)

  1.  第1樹脂相と、第2樹脂相と、熱伝導性フィラーと、を含み、
     前記第1樹脂相と前記第2樹脂相とは相分離しており、
     前記第1樹脂相における熱伝導性フィラーの密度は、前記第2樹脂相における熱伝導性フィラーの密度よりも高い、
     熱伝導性樹脂組成物。
  2.  前記第1樹脂相を構成する第1樹脂の溶解度パラメータと、前記第2樹脂相を構成する第2樹脂の溶解度パラメータとの差が1以上である、
     請求項1に記載の熱伝導性樹脂組成物。
  3.  前記熱伝導性フィラーは多面体粒子を含む、
     請求項1に記載の熱伝導性樹脂組成物。
  4.  前記熱伝導性フィラーは多面体粒子を含み、
     前記第1樹脂相を構成する第1樹脂の溶解度パラメータと、前記第2樹脂相を構成する第2樹脂の溶解度パラメータとの差が1以上である、
     請求項1に記載の熱伝導性樹脂組成物。
  5.  前記第1樹脂相は熱硬化性樹脂を含み、
     前記第2樹脂相は熱可塑性樹脂を含む、
     請求項1~4のいずれか1項に記載の熱伝導性樹脂組成物。
  6.  前記第1樹脂相はエポキシ樹脂を含み、
     前記第2樹脂相はポリエーテルスルホンを含む、
     請求項5に記載の熱伝導性樹脂組成物。
  7.  請求項1~4のいずれか1項に記載の熱伝導性樹脂組成物の固化物であって、
     前記第1樹脂相の固相と、前記第2樹脂相の固相と、前記熱伝導性フィラーと、を含む、
     熱伝導性樹脂材料。
PCT/JP2022/010288 2021-03-09 2022-03-09 熱伝導性樹脂組成物及び熱伝導性樹脂材料 WO2022191238A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280014804.XA CN116888238A (zh) 2021-03-09 2022-03-09 导热树脂组合物和导热树脂材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021037709 2021-03-09
JP2021-037709 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022191238A1 true WO2022191238A1 (ja) 2022-09-15

Family

ID=83226757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010288 WO2022191238A1 (ja) 2021-03-09 2022-03-09 熱伝導性樹脂組成物及び熱伝導性樹脂材料

Country Status (3)

Country Link
JP (1) JP2022138157A (ja)
CN (1) CN116888238A (ja)
WO (1) WO2022191238A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449325A (zh) * 2022-09-30 2022-12-09 浙江华正新材料股份有限公司 电子浆料、绝缘胶膜及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255867A (ja) * 2004-03-12 2005-09-22 Mitsuboshi Belting Ltd 熱伝導材料およびその製造方法
JP2009263476A (ja) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd 高熱伝導性樹脂組成物
JP2012140509A (ja) * 2010-12-28 2012-07-26 Jsr Corp 発泡成形体、熱伝導性成形体及びその製造方法、並びに熱伝導性シート積層体
JP2013194223A (ja) * 2012-03-22 2013-09-30 Mitsubishi Chemicals Corp 熱伝導性材料
WO2014155975A1 (ja) * 2013-03-28 2014-10-02 パナソニック株式会社 絶縁熱伝導性樹脂組成物
WO2015174023A1 (ja) * 2014-05-15 2015-11-19 パナソニックIpマネジメント株式会社 絶縁熱伝導性樹脂組成物
JP2016166374A (ja) * 2013-10-24 2016-09-15 Dic株式会社 樹脂組成物、放熱材料及び放熱部材
JP2017014302A (ja) * 2013-11-20 2017-01-19 パナソニック株式会社 絶縁樹脂組成物及びこれを備えた物品
JP2018050018A (ja) * 2016-09-23 2018-03-29 Koa株式会社 封入材
JP2018115276A (ja) * 2017-01-19 2018-07-26 東亞合成株式会社 有機−無機複合物およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255867A (ja) * 2004-03-12 2005-09-22 Mitsuboshi Belting Ltd 熱伝導材料およびその製造方法
JP2009263476A (ja) * 2008-04-24 2009-11-12 Otsuka Chem Co Ltd 高熱伝導性樹脂組成物
JP2012140509A (ja) * 2010-12-28 2012-07-26 Jsr Corp 発泡成形体、熱伝導性成形体及びその製造方法、並びに熱伝導性シート積層体
JP2013194223A (ja) * 2012-03-22 2013-09-30 Mitsubishi Chemicals Corp 熱伝導性材料
WO2014155975A1 (ja) * 2013-03-28 2014-10-02 パナソニック株式会社 絶縁熱伝導性樹脂組成物
JP2016166374A (ja) * 2013-10-24 2016-09-15 Dic株式会社 樹脂組成物、放熱材料及び放熱部材
JP2017014302A (ja) * 2013-11-20 2017-01-19 パナソニック株式会社 絶縁樹脂組成物及びこれを備えた物品
WO2015174023A1 (ja) * 2014-05-15 2015-11-19 パナソニックIpマネジメント株式会社 絶縁熱伝導性樹脂組成物
JP2018050018A (ja) * 2016-09-23 2018-03-29 Koa株式会社 封入材
JP2018115276A (ja) * 2017-01-19 2018-07-26 東亞合成株式会社 有機−無機複合物およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449325A (zh) * 2022-09-30 2022-12-09 浙江华正新材料股份有限公司 电子浆料、绝缘胶膜及其应用
CN115449325B (zh) * 2022-09-30 2024-01-09 浙江华正新材料股份有限公司 电子浆料、绝缘胶膜及其应用

Also Published As

Publication number Publication date
JP2022138157A (ja) 2022-09-22
CN116888238A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
JP5089908B2 (ja) 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP2003060134A (ja) 熱伝導性シート
JP5793494B2 (ja) セラミックス混合物、及びそれを用いたセラミックス含有熱伝導性樹脂シート
JP5405890B2 (ja) 熱伝導性成形体とその用途
JP7389014B2 (ja) 絶縁放熱シート
JP7220150B2 (ja) 低誘電率熱伝導性放熱部材
WO2022191238A1 (ja) 熱伝導性樹脂組成物及び熱伝導性樹脂材料
JP3891969B2 (ja) 熱伝導性グリース
JP7082563B2 (ja) 熱伝導性シリコーン組成物の硬化物
WO2021090780A1 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン材料
WO2021044867A1 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン材料
JP2021109825A (ja) 熱伝導性フィラー、及びそれを含有する熱伝導性組成物
JP4481019B2 (ja) 混合粉末及びその用途
JP7136065B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーンシート
JP2016124908A (ja) 樹脂成形体
JPH11145351A (ja) 放熱スペーサー
JP2021195478A (ja) 熱伝導性シリコーン組成物、その硬化物、及び放熱シート
US20240132767A1 (en) Thermally conductive resin composition and thermally conductive resin material
WO2021171970A1 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン材料
CN106590409A (zh) 一种高导热石墨烯复合垫片包覆处理工艺
WO2021241700A1 (ja) 硬化シート及びその製造方法
JP3757636B2 (ja) 放熱シート形成用の熱伝導性シリコーンゴム組成物の製造方法及び放熱シート形成用の熱伝導性シリコーンゴム組成物
KR101126644B1 (ko) 에폭시 복합재료
US20240026203A1 (en) Thermal interface composition and thermal interface material
JP2024060280A (ja) 無機フィラーを高充填化した熱伝導性有機無機コンポジット材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014804.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18548316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767192

Country of ref document: EP

Kind code of ref document: A1