WO2022188635A1 - 一种包覆改性高镍三元正极材料的制备方法、制得的材料 - Google Patents

一种包覆改性高镍三元正极材料的制备方法、制得的材料 Download PDF

Info

Publication number
WO2022188635A1
WO2022188635A1 PCT/CN2022/077706 CN2022077706W WO2022188635A1 WO 2022188635 A1 WO2022188635 A1 WO 2022188635A1 CN 2022077706 W CN2022077706 W CN 2022077706W WO 2022188635 A1 WO2022188635 A1 WO 2022188635A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
nickel ternary
modified
ternary positive
Prior art date
Application number
PCT/CN2022/077706
Other languages
English (en)
French (fr)
Inventor
高明昊
龙君君
朱文婷
Original Assignee
合肥国轩高科动力能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥国轩高科动力能源有限公司 filed Critical 合肥国轩高科动力能源有限公司
Priority to EP22766161.8A priority Critical patent/EP4293753A1/en
Priority to US18/280,271 priority patent/US20240072245A1/en
Publication of WO2022188635A1 publication Critical patent/WO2022188635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of positive electrode materials for lithium ion batteries, in particular to a method for preparing a coating modified high-nickel ternary positive electrode material, and the obtained material.
  • Lithium-ion batteries have developed rapidly due to their special advantages and the great interest in high-energy storage systems from academia and industry.
  • LIBs Lithium-ion batteries
  • Ternary layered cathode materials have the advantages of high specific capacity, energy density, power density and other advantages, and have become the research focus of lithium-ion battery cathode materials in recent years.
  • the specific capacity of the nickel-based ternary cathode material will be greatly improved with the continuous increase of the nickel content, but the decrease of the cobalt content will cause the stability of the material to deteriorate.
  • Dry doping and coating modification are mainly based on oxides, such as nano-tungsten oxide, tantalum oxide, lanthanum oxide, etc. These oxides are relatively expensive; in addition, sintering is still required in the process of preparing modified materials, and It is not a simple hybrid composite; on the other hand, doping and coating cathode materials in the process of preparing cells often cause fresh interface exposure due to high compaction, which affects the overall performance.
  • the patent application whose publication number is CN109390579A discloses a preparation method of dry and wet carbon-coated high-nickel ternary positive electrode materials.
  • the disadvantage of dry coating is that the uniformity of the coating cannot be guaranteed and whether the coating is completely formed with lithium-containing oxides, which affects the interface stability and the overall performance of the battery.
  • the conventional wet coating process will generate a large amount of sewage, which increases the manufacturing cost virtually.
  • the technical problem to be solved by the present invention is that the dry coating in the prior art cannot guarantee the uniformity and continuity of the coating, thereby affecting the interface stability and the overall performance of the battery.
  • the conventional wet cladding process will generate a large amount of sewage, which increases the manufacturing cost invisibly.
  • a method for preparing a coating modified high-nickel ternary positive electrode material comprising the following steps:
  • step (2) adding the high-nickel ternary positive electrode material into the modified polymer emulsion of step (1), and then spray-drying to form a film to obtain a coated modified high-nickel ternary positive electrode material.
  • the present invention adopts spray-drying and curing to form a film, and the polymer coating layer is continuous and uniform, which provides good mechanical properties for the material, can suppress the structural change caused by the reduction of cobalt content, and at the same time reduce the belt caused by the wet coating process.
  • the polymer film provided by the invention has excellent elasticity and ductility, can ensure the stability of the structure when the material is extruded, and increases the mechanical property data after the polymer film is formed.
  • the present invention adopts lignin amine modified polymer emulsion, and the obtained polymer has excellent electrochemical stability, is coated on the surface of the positive electrode material, effectively isolates the direct contact with the electrolyte, and reduces the occurrence of side reactions.
  • the present invention adopts lignin amine modified polymer matrix for the first time, and prepares coating modified positive electrode material by spray drying method.
  • the prepared high nickel positive electrode material has obvious improvement in cycle stability, and provides a new direction for industrial production.
  • Amines are used as chain extenders in common polymer synthesis, such as triethylamine, diethanolamine, diethylenetriamine, etc. These chain extenders are volatile and toxic.
  • Lignin is one of the three main components of plant fiber raw materials, second only to cellulose in content, and has a three-dimensional network structure. There are active groups such as aromatic groups, phenolic hydroxyl groups, alcohol hydroxyl groups, carbonyl groups, methoxy groups, carboxyl groups, and conjugated double bonds in the lignin molecule, which can carry out various chemical reactions and are a potential chemical raw material. Reactivity is low.
  • the present invention replaces the amine chain extender with the modified lignin amine, on the one hand, the harm to the human body and the environment in the synthesis process can be reduced, and on the other hand, the lignin itself has the characteristics and can give the polymer a more stable structure.
  • the lignin required for the preparation of the present invention is cheap, easy to obtain and has a huge content, and the preparation method provided by the present invention is simple and efficient, and has wide application prospects in the field of lithium ion batteries.
  • the polymer emulsion itself can form a film, but the film forming speed is very slow; spray drying is more efficient and fast, and the type of polymer has little effect on the film forming speed.
  • the preparation method of the modified polymer emulsion comprises the following steps:
  • the mass ratio of lignin, organic amine, deionized water, formaldehyde, and isopropanol is 1:(1-3):(5-15):(1-3):(20- 40).
  • the mass ratio of lignin, organic amine, deionized water, formaldehyde, and isopropanol is 1:1.5:10:1.5:28.
  • the organic amine is diethanolamine.
  • the diisocyanate includes isophorone diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate one or all of them.
  • the diisocyanate is isophorone diisocyanate.
  • the diol comprises one of polyoxypropylene diol, trimethylolpropane-polyethylene glycol monomethyl ether, polycarbonate diol, and polyneopentyl adipate diol or all, the number average molecular weight of the diol is 1000-3000.
  • the diol is trimethylolpropane-polyethylene glycol monomethyl ether.
  • the synthesized polymer type is a non-ionic polymer.
  • the diol has a comb-like structure, which can provide a stable network structure for the polymer compared with a single segment.
  • the synthetic non-ionic polymer has both good solvent resistance and ion resistance.
  • the catalyst includes one or all of stannous octoate, dibutyl tin bis(dodecyl sulfide), and dibutyl tin diacetate;
  • the chain extender includes 1,4-butanediol, dibutyl tin One or all of ethylene glycol, dimethylolpropionic acid, and neopentyl glycol.
  • the catalyst is stannous octoate
  • the chain extender is diethylene glycol
  • the mass ratio of the catalyst, modified lignin, chain extender, diisocyanate, glycol, and deionized water is 1:(2-4):(15-35):(30-60): (200 ⁇ 500): (1500 ⁇ 2000).
  • the mass ratio of the catalyst, modified lignin amine, chain extender, diisocyanate, glycol, and deionized water is 1:2.54:24.48:51.64:447.76:1716.46.
  • the molecular formula of the high nickel ternary positive electrode material is LiNi 1-xy Co x My O 2 , wherein 0 ⁇ x ⁇ 0.2 , 0 ⁇ y ⁇ 0.2, and M is one of Al, Mn or Mg or all.
  • the mass ratio of the high nickel ternary positive electrode material to the modified polymer emulsion is (1-20):1.
  • the present invention also provides a coating modified high nickel ternary positive electrode material prepared by the above preparation method.
  • the present invention adopts spray drying and curing to form a film
  • the polymer coating layer is continuous and uniform, provides good mechanical properties for the material, can suppress the structural change caused by the reduction of the cobalt content, and reduce the wet coating.
  • the large amount of sewage brought by the process reduces the manufacturing cost.
  • the present invention adopts lignin amine modified polymer emulsion, the obtained polymer has excellent electrochemical stability, is coated on the surface of the positive electrode material, effectively isolates the direct contact with the electrolyte, and reduces the occurrence of side reactions.
  • the present invention adopts lignin-modified polymer matrix for the first time, and is prepared by spray-drying method as a coating modified positive electrode material. It can be seen from the results of the invention test that the high-nickel cathode material prepared by this method has obvious improvement in cycle stability, which provides a new direction for industrial production.
  • Fig. 1 is the performance measurement result of coating modified high-nickel positive electrode material in the embodiment of the invention and the comparative example.
  • Fig. 2 is the LSV test curve of the embodiment of the present invention 3;
  • Fig. 3 is the cycle test curve under the magnification of Example 3 and Example 41C of the present invention.
  • Fig. 4 is the mechanical property test curve of Example 3 of the present invention.
  • test materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
  • the preparation method of coating modified high nickel ternary positive electrode material specifically includes the following steps:
  • LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material Take LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material and add it to the modified polymer emulsion, wherein the mass ratio of positive electrode material and emulsion is 3:1, and spray-drying is used to solidify and form a film to obtain a coated modified high-nickel material.
  • Ternary cathode material is
  • the polymer emulsion prepared in step 1 and S2 was added with lithium hexafluorophosphate to form a film, and then the assembled steel sheet/film/lithium sheet was tested by linear voltammetry, and the decomposition voltage was 4.74V.
  • the above-obtained polymer-coated LiNi 0.80 Co 0.10 Mn 0.10 O 2 material, conductive agent (SP) and binder (PVDF) were prepared in a ratio of 95:3:2 by mass to N-methylpyrrolidone (NMP)
  • NMP N-methylpyrrolidone
  • a pole piece was made for the solvent, coated on carbon-coated aluminum foil, dried at 100 °C for 5 h, and compacted on a roller press.
  • a button battery is assembled with the above positive electrode, and the charge-discharge specific capacity is carried out at a rate of 1C within the range of the cut-off voltage of 2.75 to 4.3V. It is 192.2 mAh ⁇ g -1 , and the capacity retention rate after 50 cycles is 97.8%.
  • the preparation method of coating modified high nickel ternary positive electrode material specifically includes the following steps:
  • LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material Take LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material and add it to the modified polymer emulsion, wherein the mass ratio of positive electrode material and emulsion is 5:1, and spray-drying is used to solidify into a film to obtain a coated modified high-nickel material.
  • Ternary cathode material is
  • the assembly, test, and LSV test of the battery are the same as those in Example 1.
  • the above positive electrode is assembled into a button cell, with a cut-off voltage in the range of 2.75-4.3V, a specific capacity of 193.8mAh ⁇ g -1 for charge and discharge at a rate of 1C, and a capacity retention rate of 98.8% for 50 cycles.
  • Lithium hexafluorophosphate was added to the prepared polymer emulsion, and after film formation, the steel sheet/film/lithium sheet was assembled and tested by linear voltammetry, and the decomposition voltage was 4.80V.
  • the preparation method of coating modified high nickel ternary positive electrode material specifically includes the following steps:
  • LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material Take LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material and add it into the modified polymer emulsion, wherein the mass ratio of positive electrode material and emulsion is 8:1, and spray-drying is used to solidify into a film to obtain a coated modified high-nickel material.
  • Ternary cathode material is
  • the assembly, test, and LSV test of the battery are the same as those in Example 1.
  • the above positive electrode was assembled into a button cell, with a cut-off voltage in the range of 2.75-4.3V, a specific capacity of 195.9mAh ⁇ g -1 for charge and discharge at a rate of 1C, and a capacity retention rate of 99.3% for 50 cycles.
  • Lithium hexafluorophosphate was added to the prepared polymer emulsion, and after film formation, the steel sheet/film/lithium sheet was assembled and tested by linear voltammetry, and the decomposition voltage was 4.96V.
  • the preparation method of coating modified high nickel ternary positive electrode material specifically includes the following steps:
  • LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material Take LiNi 0.85 Co 0.10 Mn 0.05 O 2 high-nickel ternary positive electrode material and add it into the modified polymer emulsion, wherein the mass ratio of positive electrode material and emulsion is 10:1, and spray-drying is used to solidify into a film to obtain a coated modified high-nickel material Ternary cathode material.
  • the assembly, test, and LSV test of the battery are the same as those in Example 1.
  • the above positive electrode was assembled into a button cell, with a cut-off voltage in the range of 2.75-4.3V, a specific capacity of 192.4mAh ⁇ g -1 for charge and discharge at a rate of 1C, and a capacity retention rate of 98.1% for 50 cycles.
  • Lithium hexafluorophosphate was added to the prepared polymer emulsion, and after film formation, the steel sheet/film/lithium sheet was assembled and tested by linear voltammetry, and the decomposition voltage was 4.87V.
  • Example 3 The difference between this comparative example and Example 3 is that the diol is a polycarbonate diol.
  • the above positive electrode was assembled into a button battery, and within the cut-off voltage range of 2.75-4.3V, the specific capacity of charge and discharge at 1C rate was 189.7mAh ⁇ g -1 , and the capacity retention rate for 50 cycles was 96.3%.
  • Lithium hexafluorophosphate was added to the prepared polymer emulsion, and after film formation, the steel sheet/film/lithium sheet was assembled and tested by linear voltammetry, and the decomposition voltage was 4.63V.
  • Example 3 The difference between this comparative example and Example 3 is that the diol is polyneopentyl adipate diol.
  • the positive electrode was assembled into a coin cell, with a cut-off voltage in the range of 2.75-4.3V, a specific capacity of 184.1mAh ⁇ g -1 for charge and discharge at a rate of 1C, and a capacity retention rate of 95.7% for 50 cycles.
  • Lithium hexafluorophosphate was added to the prepared polymer emulsion, and after film formation, the steel sheet/film/lithium sheet was assembled and tested by linear voltammetry, and the decomposition voltage was 4.60V.
  • Example 3 The difference between this comparative example and Example 3 is that triethylamine replaces lignin amine as the amine chain extender.
  • the above positive electrode was assembled into a button cell, with a cut-off voltage in the range of 2.75-4.3V, a specific capacity of 185.2mAh ⁇ g -1 for charge and discharge at a rate of 1C, and a capacity retention rate of 93.3% for 50 cycles.
  • Lithium hexafluorophosphate was added to the prepared polymer emulsion, and after film formation, the steel sheet/film/lithium sheet was assembled and tested by linear voltammetry, and the decomposition voltage was 4.52V.
  • the blank comparative example is LiNi 0.85 Co 0.10 Mn 0.05 O 2 high nickel ternary positive electrode material without any modification.
  • the positive electrode was assembled into a coin cell, with a cut-off voltage in the range of 2.75-4.3V, a specific capacity of 182.1mAh ⁇ g -1 for charge and discharge at a rate of 1C, and a capacity retention rate of 90.9% for 50 cycles.
  • FIG. 2 is the LSV test curve of Example 3 of the present invention.
  • Fig. 3 is the cycle test curve under the magnification of Example 3 and Example 41C of the present invention. It can be seen that the oxidative decomposition voltage of Examples 1 to 4 of the present invention is significantly improved compared with the comparative example. From the test results of cyclic charge and discharge, the discharge capacity and the capacity retention rate of Examples 1 to 4 are greatly improved after 50th of cyclic charge and discharge.
  • the ternary cathode material prepared by the preparation method of the present invention has a higher capacity retention rate, and has excellent mechanical strength and elongation at break.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种包覆改性高镍三元正极材料的制备方法,涉及锂离子电池正极材料技术领域,本发明包括以下步骤:(1)木质素胺改性聚合物乳液的制备:以二异氰酸酯与二元醇反应,再加入采用有机胺改性木质素替代胺类扩链剂制备得到改性聚合物乳液;(2)将高镍三元正极材料加入步骤(1)的改性聚合物乳液中,然后喷雾干燥、固化成膜,即获得包覆改性高镍三元正极材料。本发明的有益效果在于:本发明采用喷雾干燥固化成膜,聚合物包覆层连续、均匀,为材料提供了良好的力学性能,可以抑制因钴含量降低引起的结构变化,同时减少因湿法包覆工艺带来的大量污水,降低制造成本。

Description

一种包覆改性高镍三元正极材料的制备方法、制得的材料 技术领域
本发明涉及锂离子电池正极材料技术领域,具体涉及一种包覆改性高镍三元正极材料的制备方法、制得的材料。
背景技术
锂离子电池(LIBs)因具有特殊的优势,以及学术界和工业界对高能存储系统的巨大关注导致了其快速发展。特别是,随着LIBs应用的扩展,实现高容积能量密度和功率密度已经成为必然发展趋势。三元层状正极材料具有较高的比容量、能量密度、功率密度等优势异军突起,成为近年来锂离子电池正极材料的研究焦点。镍基三元正极材料随着镍含量的不断升高,材料的比容量会有大幅度的提升,但钴含量降低会造成材料的稳定性变差。同时,由于镍含量的升高,会造成大量的锂镍混排,从而导致大倍率下电池循环寿命衰减。而且,高镍正极材料在高脱锂状态下,高价态的锰会与电解液之间发生严重的界面反应,从而造成安全隐患。因此,在提高材料容量的前提下,改善其界面性能是决定高镍正极材料能否具有巨大商业应用的重要因素之一。为此,研究者提供了各种各样改性方法。目前主流的改性方法为干法或湿法包覆氧化物(如Al 2O 3、TiO 2、WO 3等)和非氧化物(如AlF 3、PVDF、Li 3PO 4等)。
干法掺杂、包覆改性主要以氧化物为主,如纳米氧化钨、氧化钽、氧化镧等,这些氧化物价格较高;此外,制备改性材料的过程中仍需进行烧结,而不是简单的混合复合;另一方面掺杂、包覆正极材料在制备电芯的 过程中往往会因为高压实而造成新鲜的界面裸露而影响综合性能。
如公开号为CN109390579A的专利申请公开一种干法和湿法碳包覆高镍三元正极材料的制备方法。其中干法包覆的缺点是无法保证包覆的均匀性以及包覆物是否全部生成含锂氧化物,从而影响其界面稳定性及电池综合性能。而常规湿法包覆工艺会产生大量污水,无形中增加了制造成本。
发明内容
本发明所要解决的技术问题在于现有技术中采用干法包覆无法保证包覆的均匀、连续,从而影响其界面稳定性及电池综合性能。常规湿法包覆工艺会产生大量污水,处理的同时无形中增加了制造成本。
本发明通过以下技术手段实现解决上述技术问题:
一种包覆改性高镍三元正极材料的制备方法,包括以下步骤:
(1)木质素胺改性聚合物乳液的制备:采用有机胺改性木质素,然后加入二异氰酸酯、二元醇、扩链剂反应制备改性聚合物乳液;
(2)将高镍三元正极材料加入步骤(1)的改性聚合物乳液中,然后喷雾干燥成膜,即获得包覆改性高镍三元正极材料。
有益效果:本发明采用喷雾干燥固化成膜,聚合物包覆层连续、均匀,为材料提供了良好的力学性能,可以抑制因钴含量降低引起的结构变化,同时减少因湿法包覆工艺带来的大量污水,降低制造成本。
本发明提供的聚合物膜具有优异的弹性及延展性,材料受挤压时能够保证结构的稳定性,增加了聚合物成膜后的力学性能数据。
本发明采用木质素胺改性聚合物乳液,获得的聚合物具有优异的电化学稳定性,包覆在正极材料表面,有效隔绝与电解液之间的直接接触,减 少副反应的发生。
本发明首次采用木质素胺改性聚合物基体,通过喷雾干燥法制备包覆改性正极材料,制备的高镍正极材料在循环稳定性上有着明显的改善,为工业化生产提供了新的方向。
常见的聚合物合成中以胺类为扩链剂,如三乙胺、二乙醇胺、二乙烯三胺等,这类扩链剂易挥发且有毒。木质素是植物纤维原料中的三种主要成分之一,含量仅次于纤维素,同时兼具三维网状结构。木质素分子中存在着芳香基、酚羟基、醇羟基、羰基、甲氧基、羧基、共轭双键等活性基团,可以进行多种化学反应,是一种潜在的化工原料,但木质素反应活性较低。
本发明以改性木质素胺替代胺类扩链剂,一方面可以降低合成过程中对人体、环境的危害,另一方面木质素本身具有特性能赋予聚合物更加稳定的结构。
本发明制备所需的木质素价格便宜、易得且含量巨大,同时本发明提供的制备方法简单、高效,在锂离子电池领域具有广泛的应用前景。
聚合物乳液本身能成膜,但成膜速度很慢;喷雾干燥更高效、快速,聚合物的种类对成膜速度影响不大。
优选地,所述改性聚合物乳液的制备方法包括以下步骤:
S1、将木质素、有机胺、去离子水按一定比例混合,采用氨水调节pH值至8~11,然后加入甲醛,升温至20~80℃反应1~6h,反应完全后,加入异丙醇获得棕色沉淀,纯化后,获得改性木质素胺;
S2、将真空条件下脱水处理后备用的二元醇与二异氰酸酯混合,升温 至80~100℃反应1~3h;降温后加入催化剂与扩链剂,升温至60~100℃反应3~6h;降温加入去离子水、步骤S1制备的改性木质素胺,乳化后,即获得改性聚合物乳液。
优选地,所述步骤S1中木质素、有机胺、去离子水、甲醛、异丙醇的质量比为1∶(1~3)∶(5~15)∶(1~3)∶(20~40)。
优选地,所述步骤S1中木质素、有机胺、去离子水、甲醛、异丙醇的质量比为1∶1.5∶10∶1.5∶28。
优选地,所述有机胺为二乙醇胺。
优选地,所述二异氰酸酯包括异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、甲苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯中的一种或全部。
优选地,所述二异氰酸酯为异佛尔酮二异氰酸酯。
优选地,所述二元醇包括聚氧化丙烯二醇、三羟甲基丙烷-聚乙二醇单甲醚、聚碳酸酯二醇、聚己二酸新戊二醇酯二醇中的一种或全部,所述二元醇的数均分子量为1000~3000。
优选地,所述二元醇为三羟甲基丙烷-聚乙二醇单甲醚。
有益效果:当二元醇为三羟甲基丙烷-聚乙二醇单甲醚,合成的聚合物类型为非离子型聚合物。该二元醇具有梳状结构,相较单一的链段能为聚合物提供稳定的网络结构。而合成的非离子聚合物又兼具良好的耐溶剂与耐离子性。
优选地,所述催化剂包括辛酸亚锡、二(十二烷基硫)二丁基锡、二醋酸二丁基锡中的一种或全部;所述扩链剂包括1,4-丁二醇、一缩二乙二醇、 二羟甲基丙酸、新戊二醇中的一种或全部。
优选地,所述催化剂为辛酸亚锡,所述扩链剂为一缩二乙二醇。
优选地,所述催化剂、改性木质素、扩链剂、二异氰酸酯、二元醇、去离子水的质量比为1∶(2~4)∶(15~35)∶(30~60)∶(200~500)∶(1500~2000)。
优选地,所述催化剂、改性木质素胺、扩链剂、二异氰酸酯、二元醇、去离子水的质量比为1∶2.54∶24.48∶51.64∶447.76∶1716.46。
优选地,所述高镍三元正极材料的分子式为LiNi 1-x-yCo xM yO 2,其中0<x≤0.2,0<y≤0.2,M为Al、Mn或Mg中的一种或全部。
优选地,所述高镍三元正极材料与改性聚合物乳液的质量比为(1~20)∶1。
本发明还提供一种采用上述制备方法制得的包覆改性高镍三元正极材料。
本发明的优点在于:本发明采用喷雾干燥固化成膜,聚合物包覆层连续、均匀,为材料提供了良好的力学性能,可以抑制因钴含量降低引起的结构变化同时减少因湿法包覆工艺带来的大量污水,降低制造成本。
本发明采用木质素胺改性聚合物乳液,获得的聚合物具有优异的电化学稳定性,包覆在正极材料表面,有效隔绝与电解液之间的直接接触,减少副反应的发生。
本发明首次采用木质素改性聚合物基体,通过喷雾干燥法制备作为包覆改性正极材料。从发明测试的结果可知,该方法制备的高镍正极材料在循环稳定性上有着明显的改善,为工业化生产提供了新的方向。
附图说明
图1为嗯发明实施例和对比例中包覆改性高镍正极材料的性能测定结果。
图2为本发明实施例3的LSV测试曲线;
图3为本发明实施例3与实施例41C倍率下循环测试曲线;
图4为本发明实施例3力学性能测试曲线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中所用的试验材料和试剂等,如无特殊说明,均可从商业途径获得。
实施例中未注明具体技术或条件者,均可以按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
实施例1
包覆改性高镍三元正极材料的制备方法,具体包括以下步骤:
1、改性聚合物乳液的制备
S1、改性木质素胺制备步骤如下:
按质量比1∶1.5∶10称取木质素、二乙醇胺、去离子水,混合均匀,采用氨水调节pH值至9;向上述溶液加入甲醛,加热至60℃反应4h,再加入异丙醇中得到棕色沉淀,抽滤后用异丙醇反复洗涤4次后再转入60℃真空干燥2h,即得改性木质素胺,命名为L-DEA;反应过程中,木质素、甲醛、异丙醇的质量比为1∶1.5∶28;
S2、改性聚合物乳液制备步骤如下:
在装有聚四氟乙烯搅拌杆、球形冷凝管和温度计的四口烧瓶中加入真空脱水后备用的三羟甲基丙烷-聚乙二醇单甲醚、异佛尔酮二异氰酸酯,搅拌均匀后缓慢升温至92℃,恒温反应2h;冰水降温至40℃缓慢加入辛酸亚锡与一缩二乙二醇,升温至82℃继续反应4h;最后加入去离子水高剪切力作用下乳化,再加入计量的L-DEA,制得改性聚合物乳液;反应过程中,辛酸亚锡、L-DEA、一缩二乙二醇、二苯基甲烷二异氰酸酯、三羟甲基丙烷-聚乙二醇单甲醚、去离子水的质量比为1∶2.54∶24.48∶51.64∶447.76∶1716.46。
2、包覆改性高镍正极材料制备步骤如下:
取LiNi 0.85Co 0.10Mn 0.05O 2高镍三元正极材料加入改性聚合物乳液中,其中正极材料与乳液的质量比为3∶1,采用喷雾干燥固化成膜,得到包覆修饰的高镍三元正极材料。
对步骤1、S2中制备的聚合物乳液加入六氟磷酸锂成膜后组装钢片/胶膜/锂片进行线性伏安扫描法测试,分解电压为4.74V。
将上述得到聚合物包覆的LiNi 0.80Co 0.10Mn 0.10O 2材料、导电剂(SP)和粘结剂(PVDF)按质量比95∶3∶2的比例,以N-甲基吡咯烷酮(NMP)为 溶剂制作极片,涂覆于涂炭铝箔上,100℃干燥5h,并在辊压机上进行压实。以金属锂片为负极、1M的LiPF 6溶液为电解液、cell gard 2300为隔膜,与上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为192.2mAh·g -1,循环50容量保持率为97.8%。
实施例2
包覆改性高镍三元正极材料的制备方法,具体包括以下步骤:
1、改性聚合物乳液的制备与实施例1相同。
2、包覆改性高镍正极材料制备步骤如下:
取LiNi 0.85Co 0.10Mn 0.05O 2高镍三元正极材料加入改性聚合物乳液中,其中正极材料与乳液的质量比为5∶1,采用喷雾干燥固化成膜,得到包覆修饰的高镍三元正极材料。
扣电组装、测试、LSV测试与实施例1相同。
上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为193.8mAh·g -1,循环50容量保持率为98.8%。向制得的聚合物乳液加入六氟磷酸锂,成膜后组装钢片/胶膜/锂片进行线性伏安扫描法测试,分解电压为4.80V。
实施例3
包覆改性高镍三元正极材料的制备方法,具体包括以下步骤:
1、改性聚合物乳液的制备与实施例1相同。
2、包覆改性高镍正极材料制备步骤如下:
取LiNi 0.85Co 0.10Mn 0.05O 2高镍三元正极材料加入改性聚合物乳液中,其中正极材料与乳液的质量比为8∶1,采用喷雾干燥固化成膜,得到包覆修 饰的高镍三元正极材料。
扣电组装、测试、LSV测试与实施例1相同。
上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为195.9mAh·g -1,循环50容量保持率为99.3%。向制得的聚合物乳液加入六氟磷酸锂,成膜后组装钢片/胶膜/锂片进行线性伏安扫描法测试,分解电压为4.96V。
实施例4
包覆改性高镍三元正极材料的制备方法,具体包括以下步骤:
1、改性聚合物乳液的制备与实施例1相同。
2、包覆改性高镍正极材料制备步骤如下:
取LiNi 0.85Co 0.10Mn 0.05O 2高镍三元正极材料加入改性聚合物乳液中,其中正极材料与乳液的质量比为10∶1,采用喷雾干燥固化成膜,得到包覆修饰的高镍三元正极材料。
扣电组装、测试、LSV测试与实施例1相同。
上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为192.4mAh·g -1,循环50容量保持率为98.1%。向制得的聚合物乳液加入六氟磷酸锂,成膜后组装钢片/胶膜/锂片进行线性伏安扫描法测试,分解电压为4.87V。
对比例1
本对比例与实施例3的区别之处在于:二元醇为聚碳酸酯二醇。
上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为189.7mAh·g -1,循环50容量保持率为96.3%。向 制得的聚合物乳液加入六氟磷酸锂,成膜后组装钢片/胶膜/锂片进行线性伏安扫描法测试,分解电压为4.63V。
对比例2
本对比例与实施例3的区别之处在于:二元醇为聚己二酸新戊二醇酯二醇。
上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为184.1mAh·g -1,循环50容量保持率为95.7%。向制得的聚合物乳液加入六氟磷酸锂,成膜后组装钢片/胶膜/锂片进行线性伏安扫描法测试,分解电压为4.60V。
对比例3
本对比例与实施例3的区别之处在于:三乙胺取代木质素胺作为胺类扩链剂。
上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为185.2mAh·g -1,循环50容量保持率为93.3%。向制得的聚合物乳液加入六氟磷酸锂,成膜后组装钢片/胶膜/锂片进行线性伏安扫描法测试,分解电压为4.52V。
对比例4
空白对比例,为未进行任何改性的LiNi 0.85Co 0.10Mn 0.05O 2高镍三元正极材料。
上述正极组装成扣式电池,在截至电压为2.75~4.3V范围内,以1C倍率进行充放电比容量为182.1mAh·g -1,循环50容量保持率为90.9%。
实施例1~4、对比例1~4中包覆改性高镍正极材料的性能测定结果如 图1所示。
图2为本发明实施例3的LSV测试曲线。图3为本发明实施例3与实施例41C倍率下循环测试曲线。可以看出,本发明实施例1~4的氧化分解电压相比对比例有明显的提升。从循环充放电测试结果来看,实施例1~4在循环充放电50th后放电容量和容量保持率均有大幅度的提升。
与对比例1-对比例4相比,采用本发明制备方法制得的三元正极材料具有较高的容量保持率,且具有优异的力学强度和断裂伸长率。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种包覆改性高镍三元正极材料的制备方法,其特征在于:包括以下步骤:
    (1)木质素胺改性聚合物乳液的制备:采用有机胺改性木质素,然后加入二异氰酸酯、二元醇、扩链剂反应制备改性聚合物乳液;
    (2)将高镍三元正极材料加入步骤(1)的改性聚合物乳液中,然后喷雾干燥成膜,即获得包覆改性高镍三元正极材料。
  2. 根据权利要求1所述的包覆改性高镍三元正极材料的制备方法,其特征在于:所述改性聚合物乳液的制备方法包括以下步骤:
    S1、将木质素、有机胺、去离子水按一定比例混合,采用氨水调节pH值至8~11,然后加入甲醛,升温至20~80℃反应1~6h,反应完全后,加入异丙醇获得棕色沉淀,纯化后,获得改性木质素胺;
    S2、将真空条件下脱水处理后备用的二元醇与二异氰酸酯混合,升温至80~100℃反应1~3h;降温后加入催化剂与扩链剂,升温至60~100℃反应3~6h;降温加入去离子水、步骤S1制备的改性木质素胺,乳化后,即获得改性聚合物乳液。
  3. 根据权利要求2所述的包覆改性高镍三元正极材料的制备方法,其特征在于:所述步骤S1中木质素、有机胺、去离子水、甲醛、异丙醇的质量比为1∶(1~3)∶(5~15)∶(1~3)∶(20~40)。
  4. 根据权利要求1~3中任一项所述的包覆改性高镍三元正极材料的制备方法,其特征在于:所述有机胺包括乙二胺、二乙醇胺、二乙烯三胺、三乙胺中的一种或全部。
  5. 根据权利要求1~3中任一项所述的包覆改性高镍三元正极材料的制 备方法,其特征在于:所述二异氰酸酯包括异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、甲苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯中的一种或全部;
    所述二元醇包括聚氧化丙烯二醇、聚四氢呋喃醚二醇、三羟甲基丙烷-聚乙二醇单甲醚、聚碳酸酯二醇、聚己二酸新戊二醇酯二醇中的一种或全部,所述大分子二元醇的数均分子量为1000~3000。
  6. 根据权利要求2所述的包覆改性高镍三元正极材料的制备方法,其特征在于:所述催化剂包括辛酸亚锡、二(十二烷基硫)二丁基锡、二醋酸二丁基锡中的一种或全部;
    所述扩链剂包括1,4-丁二醇、一缩二乙二醇、二羟甲基丙酸、新戊二醇中的一种或全部。
  7. 根据权利要求2所述的包覆改性高镍三元正极材料的制备方法,其特征在于:所述催化剂、改性木质素胺、扩链剂、二异氰酸酯、二元醇、去离子水的质量比为1∶(2~4)∶(15~35)∶(30~60)∶(200~500)∶(1500~2000)。
  8. 根据权利要求1所述的包覆改性高镍三元正极材料的制备方法,其特征在于:所述高镍三元正极材料的分子式为LiNi 1-x-yCo xM yO 2,其中0<x≤0.2,0<y≤0.2,M为Al、Mn或Mg中的一种或全部。
  9. 根据权利要求1所述的包覆改性高镍三元正极材料的制备方法,其特征在于:所述高镍三元正极材料与改性聚合物乳液的质量比为(1~20)∶1。
  10. 一种采用权利要求1~9中任一项所述的方法制得的改性高镍三元正极材料。
PCT/CN2022/077706 2021-03-12 2022-02-24 一种包覆改性高镍三元正极材料的制备方法、制得的材料 WO2022188635A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22766161.8A EP4293753A1 (en) 2021-03-12 2022-02-24 Method for preparing coating-modified high-nickel ternary positive electrode material, and prepared material
US18/280,271 US20240072245A1 (en) 2021-03-12 2022-02-24 Method for preparing coating-modified high-nickel ternary cathode material, and prepared material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110271669.4A CN112803008B (zh) 2021-03-12 2021-03-12 一种包覆改性高镍三元正极材料的制备方法、制得的材料
CN202110271669.4 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022188635A1 true WO2022188635A1 (zh) 2022-09-15

Family

ID=75815510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077706 WO2022188635A1 (zh) 2021-03-12 2022-02-24 一种包覆改性高镍三元正极材料的制备方法、制得的材料

Country Status (4)

Country Link
US (1) US20240072245A1 (zh)
EP (1) EP4293753A1 (zh)
CN (1) CN112803008B (zh)
WO (1) WO2022188635A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115513460A (zh) * 2022-09-30 2022-12-23 湖南长远锂科新能源有限公司 包覆剂及其制备方法、以及正极材料及其包覆改性方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803008B (zh) * 2021-03-12 2022-02-01 合肥国轩高科动力能源有限公司 一种包覆改性高镍三元正极材料的制备方法、制得的材料
CN113823799B (zh) * 2021-09-26 2023-10-20 珠海冠宇电池股份有限公司 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827341A (zh) * 2012-08-29 2012-12-19 中科院广州化学有限公司 一种木素胺改性水性聚氨酯材料及其制备方法与应用
US20140039146A1 (en) * 2012-08-01 2014-02-06 Empire Technology Development Llc Water based lignin epoxy resins, methods of using and making the same
CN107768653A (zh) * 2017-10-26 2018-03-06 申成利 一种锂离子电池负极浆料、负极材料、锂离子电池及其制备方法
CN109088066A (zh) * 2018-09-26 2018-12-25 龙能科技如皋市有限公司 一种镍钴锰酸锂复合材料及其制备方法
CN109390579A (zh) 2018-06-29 2019-02-26 福建金山锂科新材料有限公司 一种干法和湿法碳包覆高镍三元正极材料的制备方法
CN110021742A (zh) * 2019-03-30 2019-07-16 苏州宇量电池有限公司 一种镍钴锰酸锂复合材料及其制备方法
CN112803008A (zh) * 2021-03-12 2021-05-14 合肥国轩高科动力能源有限公司 一种包覆改性高镍三元正极材料的制备方法、制得的材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487505B2 (ja) * 2003-07-04 2010-06-23 株式会社ジーエス・ユアサコーポレーション 鉛蓄電池
CN100478375C (zh) * 2006-10-13 2009-04-15 武汉理工大学 一种木质素改性水性聚氨酯的制备方法
US8076026B2 (en) * 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
CN102361071A (zh) * 2011-06-27 2012-02-22 湖南中天新能源有限公司 一种改性LiFePO4锂离子电池正极材料的制备方法
CN104269526A (zh) * 2014-09-19 2015-01-07 易高环保能源研究院有限公司 钠离子电池用聚丙烯腈/木质素碳纳米纤维电极的制备
CN105336911A (zh) * 2015-05-10 2016-02-17 北京化工大学 一种采用木质素包覆改性锂离子电池石墨负极材料的方法
CN106276848B (zh) * 2016-07-19 2018-02-27 华南理工大学 一种以木质素为原料氮掺杂碳球及其制备方法与应用
CN107732158A (zh) * 2017-09-06 2018-02-23 深圳市比克动力电池有限公司 锂离子电池负极极片制备方法、负极极片及锂离子电池
CN110021737A (zh) * 2018-01-09 2019-07-16 南方科技大学 硅碳负极材料及其制备方法、锂离子电池
JP7158269B2 (ja) * 2018-12-20 2022-10-21 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
CN110093091B (zh) * 2019-05-29 2021-07-06 中科广化(重庆)新材料研究院有限公司 一种季胺化木质素/α-磷酸锆基复合防腐涂料及其制备方法与应用
CN110606988B (zh) * 2019-10-15 2021-03-02 福州大学 一种木质素改性石墨烯材料及其制备方法和应用
CN111653766B (zh) * 2020-06-15 2022-10-04 郑州大学 一种用于水系锌离子电池正极的木质素和金属原子共掺杂MnO2材料及其制备方法与应用
CN111848977A (zh) * 2020-08-06 2020-10-30 江南大学 一种改性木质素、制备方法及其在增韧阻燃复合材料中的应用
CN112010279B (zh) * 2020-08-17 2021-09-07 华南农业大学 一种三维多孔碳气凝胶材料的制备方法及其在锂硫电池中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140039146A1 (en) * 2012-08-01 2014-02-06 Empire Technology Development Llc Water based lignin epoxy resins, methods of using and making the same
CN102827341A (zh) * 2012-08-29 2012-12-19 中科院广州化学有限公司 一种木素胺改性水性聚氨酯材料及其制备方法与应用
CN107768653A (zh) * 2017-10-26 2018-03-06 申成利 一种锂离子电池负极浆料、负极材料、锂离子电池及其制备方法
CN109390579A (zh) 2018-06-29 2019-02-26 福建金山锂科新材料有限公司 一种干法和湿法碳包覆高镍三元正极材料的制备方法
CN109088066A (zh) * 2018-09-26 2018-12-25 龙能科技如皋市有限公司 一种镍钴锰酸锂复合材料及其制备方法
CN110021742A (zh) * 2019-03-30 2019-07-16 苏州宇量电池有限公司 一种镍钴锰酸锂复合材料及其制备方法
CN112803008A (zh) * 2021-03-12 2021-05-14 合肥国轩高科动力能源有限公司 一种包覆改性高镍三元正极材料的制备方法、制得的材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115513460A (zh) * 2022-09-30 2022-12-23 湖南长远锂科新能源有限公司 包覆剂及其制备方法、以及正极材料及其包覆改性方法

Also Published As

Publication number Publication date
EP4293753A1 (en) 2023-12-20
US20240072245A1 (en) 2024-02-29
CN112803008B (zh) 2022-02-01
CN112803008A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022188635A1 (zh) 一种包覆改性高镍三元正极材料的制备方法、制得的材料
CN105047932B (zh) 一种水系锂离子电池用醌类化合物负极材料及水系锂离子电池
CN106229498B (zh) 一种适用于水系金属离子电池的负极材料及其制备方法
CN106058222B (zh) 一种聚合物碳化原位包覆三氟化铁复合正极材料及其制备方法
CN108461719A (zh) 一种富锂材料/导电有机聚合物复合正极材料及电极的制备方法
CN107958997B (zh) 正极浆料、正极极片及锂离子电池
CN114725349B (zh) 一种锂离子电池改性正极材料的制备、制得材料的应用
CN109962239A (zh) 一种粘结剂,使用该粘结剂的电极极片及二次电池
CN111171185A (zh) 作为粘结剂的环糊精串接聚苯胺预聚体的制备及使用方法
CN116040654A (zh) 一种超疏水普鲁士蓝材料及其制备方法和应用
CN113363414B (zh) 一种使用多层包覆三元正极材料的锂离子电池正极片及其制备方法
CN113195561B (zh) 二次电池电极用粘结剂组合物、二次电池电极用导电材料糊组合物、二次电池电极用浆料组合物、二次电池用电极、以及二次电池
EP4145476A1 (en) Positive electrode of hybrid capacitor and manufacturing method therefor and use thereof
CN113809419A (zh) 化成方法及化成后的锂离子电池
CN113451578A (zh) 一种复合粘结剂及其制备方法和应用
CN113013393A (zh) 一种正极材料及制备方法和用途
CN112467131A (zh) 一种镁离子电池负极材料的制备方法
CN112500542A (zh) 一种用于负极片的水溶性聚合物、制备方法和负极片
CN104835954B (zh) LiV3O8分级纳米线网络材料及其制备方法和应用
CN114784232B (zh) 一种应用纳米硅材料制作锂离子电芯的方法
CN112886005B (zh) 正极材料的制备方法、正极材料及二次电池
CN114204019B (zh) 一种电池正极材料及其制备方法与应用
CN111933929B (zh) 一种f掺杂的正极材料及其制备方法
CN116111082A (zh) 一种高镍正极浆料及其制备方法和应用
CN116478418A (zh) 三元正极材料、其制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18280271

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022766161

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766161

Country of ref document: EP

Effective date: 20230912